EDB

EDB JDBC Connector

Version 42.7.3.4

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. Built at 2026-01-27T09:46:49

1

2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
3

4

5

54
511
5.1.2
5.1.3
5.1.4
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6
5.2.7
5.2.8
5.2.9

5.2.10

5.3
5.3.1
5.3.2
5.4
5.5
5.6
5.7

6

6.1
6.2
6.2.1

EDB JDBC Connector
Release notes
EDB JDBC Connector 42.7.3.4 release notes
EDB JDBC Connector 42.7.3.3 release notes
EDB JDBC Connector 42.7.3.2 release notes
EDB JDBC Connector 42.7.3.1 release notes
EDB JDBC Connector 42.5.4.2 release notes
EDB JDBC Connector 42.5.4.1 release notes
EDB JDBC Connector 42.5.1.2 release notes
EDB JDBC Connector 42.5.1.1 release notes
EDB JDBC Connector 42.5.0.1 release notes
EDB JDBC Connector 42.3.3.1 release notes
EDB JDBC Connector 42.3.2.1 release notes
EDB JDBC Connector 42.2.24.1 release notes
EDB JDBC Connector 42.2.19.1 release notes
EDB JDBC Connector 42.2.12.3 release notes
EDB JDBC Connector 42.2.9.1 release notes
EDB JDBC Connector 42.2.8.1 release notes
Supported platforms
EDB JDBC Connector overview
Installing EDB JDBC Connector
Installing EDB JDBC Connector on Linux IBM Power (ppcé64le)
Installing EDB JDBC Connector on RHEL 9 ppcé64le
Installing EDB JDBC Connector on RHEL 8 ppcé64le
Installing EDB JDBC Connector on SLES 15 ppc64le
Installing EDB JDBC Connector on SLES 12 ppc64le
Installing EDB JDBC Connector on Linux x86 (amd64)
Installing EDB JDBC Connector on RHEL 9 or OL 9 x86_64
Installing EDB JDBC Connector on RHEL 8 or OL 8 x86_64
Installing EDB JDBC Connector on AlmaLinux 9 or Rocky Linux 9 x86_64
Installing EDB JDBC Connector on AlmaLinux 8 or Rocky Linux 8 x86_64
Installing EDB JDBC Connector on SLES 15 x86_64
Installing EDB JDBC Connector on Ubuntu 24.04 x86_64
Installing EDB JDBC Connector on Ubuntu 22.04 x86_64
Installing EDB JDBC Connector on Debian 12 x86_64
Installing EDB JDBC Connector on Debian 11 x86_64
Installing EDB JDBC Connector on SLES 12 x86_64
Installing EDB JDBC Connector on Linux AArch64 (ARM64)
Installing EDB JDBC Connector on RHEL 9 or OL 9 arm64
Installing EDB JDBC Connector on Debian 12 arm64
Installing EDB JDBC Connector on Windows
Installing EDB JDBC Connector using Maven
Configuring EDB JDBC Connector for Java
Upgrading a Linux installation
Using the EDB JDBC Connector with Java applications
Loading EDB JDBC Connector
Connecting to the database
Additional connection properties

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB JDBC Connector

O 00 N O U &

10
11
12
13
14
15
16
17
18
19
20
21
22
23
26
28
29
31
33
35
37
38
39
40
42
44
46
47
48
49
50
52
53
54
55
57
58
59
60
61
62
63

EDB JDBC Connector

6.2.2 Preferring synchronous secondary database servers 65

6.3 Executing SQL statements through statement objects 71
6.4 Retrieving results from a ResultSet object 73
6.5 Freeing resources 74
6.6 Handling errors 75
7 Using advanced queueing 76
714 Server-side setup 77
7.3 Message acknowledgement 82
7.4 Message types 85
7.5 Non-standard message 90
8 Executing SQL commands with executeUpdate() or through PrepareStatement objects 97
9 Adding a graphical interface to a Java program 102
10 Advanced JDBC Connector functionality 106
10.1 Reducing client-side resource requirements 107
10.2 Using PreparedStatements to send SQL commands 109
10.3 Executing stored procedures 111
10.4 Using REF CURSORS with Java 119
10.5 Using BYTEA data with Java 122
10.6 Using object types and collections with Java 127
10.7 Asynchronous notification handling with NoticeListener 134
11 Security and encryption 137
111 Using SSL 138
11.1.1 Configuring the server 139
11.1.2 Configuring the client 140
11.1.3 Testing the SSL JDBC connection 141
11.1.4 Using certificate authentication without a password 142
11.2 Scram compatibility 143
11.3 Support for GSSAPI-encrypted connection 144
12 EDB JDBC Connector logging 147
13 Reference - JDBC data types 148

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 3

EDB JDBC Connector

1 EDB JDBC Connector

The EDB JDBC Connector provides connectivity between a Java application and an EDB Postgres Advanced Server database. The EDB JDBC Connector
is written in Java and conforms to Sun's JDK architecture. For more information, see JDBC driver types

The EDB JDBC Connector is built on and supports all of the functionality of the PostgreSQL community driver. For more information about the features
and functionality of the driver, please see the community documentation.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

https://jdbc.postgresql.org/documentation

2

The EDB JDBC connector documentation describes the latest version of EDB JDBC connector.

Release notes

EDB JDBC Connector

These release notes describe what's new in each release. When a minor or patch release introduces new functionality, indicators in the content

identify the version that introduced the new feature.

Version
42.7.3.4
42.7.3.3
42.7.3.2
42.7.3.1
42.5.4.2
42.5.4.1
42.5.1.2
42.5.1.1
42.5.0.1
42.3.3.1
42.3.2.1
42.2.24.1
42.2.19.1
42.2.12.3
42.2.9.1

42.2.8.1

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

Release Date
25 Nov 2025
21 May 2025
21 Nov 2024
10 Sep 2024
26 Feb 2024
16 Mar 2023
14 Feb 2023
09 Dec 2022
01 Sep 2022
20 Apr 2022
15 Feb 2022
5 Nov 2021

15 Apr 2021
22 Oct 2020
18 May 2020
21 Oct 2019

EDB JDBC Connector

241 EDB JDBC Connector 42.7.3.4 release notes

Released: 25 Nov 2025
The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.
New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.7.3.4 include:

Type Description Addresses

Added support for EDB Postgres Advanced Server

Enhancement
18.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB JDBC Connector

2.2 EDB JDBC Connector 42.7.3.3 release notes

Released: 21 May 2025
The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.7.3.3 include:

Type Description Addresses

Enhancement Added support for EDB Postgres Advanced Server 13 to 17.

. Fixed an issue where getUpdateCounts wasincorrect when using edb_stmt_Tlevel_tx to
Bug fix #45496
on.

Bug Fix Fixed an issue where duplicate messages appeared in the JMS queue.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 7

EDB JDBC Connector

2.3 EDB JDBC Connector 42.7.3.2 release notes

Released: 22 Nov 2024

The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.7.3.2 include:

Type
Performance
Enhancement
Bug fix

Bug Fix

Bug Fix

Bug Fix

Bug Fix

Bug Fix

Bug Fix

Description

Improved parsing performance with large SQL (MTK/SQL Plus).

Added support for EDB Postgres Advanced Server 17.2.

Fixes an incompatibility issue with JDK 8 that was found in version 42.7.3.1 of the edb-jdbc18 driver.

edb-jdbc installation should not install a lower JDK version when a higher version is installed.

Fixed issue where Message.getIMSMessageID() returns null.

Fixed issue with determining the queue table for a queue when there is more than one queue defined within a single schema.

Fixed issue where EDBImsMessageConsumer .receiveNoWait() returns null even when messages are available on
the queue.

Fixed issue where EDBImsMessageConsumer.receive() [withouttime parameter] fails to block until a message is
available.

Fixed issue where EDBImsMessageConsumer.receive(timeout) doesn't honor the timeout specified.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 8

EDB JDBC Connector

2.4 EDB JDBC Connector 42.7.3.1 release notes

Released: 10 Sep 2024
The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.7.3.1 include:

Add
Type Description ress
es
Upstream Merge Merged with the upstream community driver version 42.7.3. See the community JDBC documentation for details.
Enhancement Improved the parsing issue with the large SQL statements (for MTK/SQL Plus).
JMS Enhancements
- The EDB JMS API has been made according to the JMS standard. All supported JMS classes related to Factory,
Enhancement Connection, Session, Producer, Consumer and Message types can now be used in a standard way.
- DefaultMessageListenerContainer can now be used to continuously pull messages from EDB JMS Queue.
-Transacted Sessions are implemented.
. . L . . #37
Enhancement Fixed null pointer exception in case of timeout or end-of-fetch during message dequeue. 882
. - #37
Enhancement EDB JMS API now supports the basic Apache Camel Route concept as a source and destination. 882
. #37
Enhancement JMS message types, such as message, text message, bytes message, and object message, are now supported. 884
. . . #38
Enhancement EDBJmsConnectionFactory now has an alternative constructor that takes SQL Connection as a parameter. e
- EDBJmsConnection now implements the critical lifecycle methods start() and stop().
- EDBJmsSession now implements the critical close() method.
- EDBJmsSession.createQueue now returns a valid queue instance.
- EDB JMS message types are now aligned with the JMS standard. The following message types are now supported:
Enhancement 1. aqs_!ms_message #38
2.aqS$_jms_text_message 542

3.aqS$_jms_bytes_message

4.aqg$_jms_object_message

- All message types now support setProperty() and getProperty() for setting and getting properties of JMS supported
types.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 9

https://jdbc.postgresql.org/changelogs/2024-03-14-42.7.3-release/

EDB JDBC Connector

2.5 EDB JDBC Connector 42.5.4.2 release notes

Released: 26 Feb 2024

The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.5.4.2 include:

Type Description

CVE-2024-1597 - As outlined in the Security Advisory, SQL injection is possible while using a non-default connection property
Security Fix (preferQueryMode=simple) along with application code that has a vulnerable SQL that negates a parameter value. There is no
vulnerability in the driver while using the default query mode.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 10

https://www.cve.org/CVERecord?id=CVE-2024-1597
https://github.com/pgjdbc/pgjdbc/security/advisories/GHSA-24rp-q3w6-vc56

EDB JDBC Connector

2.6 EDB JDBC Connector 42.5.4.1 release notes

Released: 16 Mar 2023

The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.5.4.1 include:

Type Description

Merged with the upstream community driver version 42.5.4. See the community JDBC documentation for

Upst M
pstream Merge details.

Bug fix Fixed an issue in which there was missing information in the MANIFEST.MF file. [Support Ticket #89609]

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 11

https://jdbc.postgresql.org/changelogs/2023-02-16-42.5.4-release/

2.7 EDB JDBC Connector 42.5.1.2 release notes

Released: 14 Feb 2023
The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.
New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.5.1.2 include:

Type Description

Support for EDB Postgres Advanced Server

Enhancement
15.2.0.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB JDBC Connector

12

EDB JDBC Connector

2.8 EDB JDBC Connector 42.5.1.1 release notes

Released: 09 Dec 2022
The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.5.1.1 include:

Type Description

Upstream

Merge Merged with the upstream community driver version 42.5.1. See the community JDBC documentation for details.

Security CVE-2022-41946 - StreamWrapper spills to disk if setText or setBytea sends very large strings or arrays to the server. createTempFile
Fix creates a file that can be read by other users on Unix-like systems (not MacOS).

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 13

https://jdbc.postgresql.org/changelogs/2022-11-23-42.5.1-release/
https://github.com/pgjdbc/pgjdbc/security/advisories/GHSA-562r-vg33-8x8h

EDB JDBC Connector

2.9 EDB JDBC Connector 42.5.0.1 release notes

Released: 01 Sep 2022

The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.5.0.1 include:

Type

Upstream
Merge

Security Fix

Change

Enhancement

Enhancement

Description
Merged with the upstream community driver version 42.5.0. See the community JDBC documentation for details.

CVE-2022-31197 - Fixes the SQL generated in PgResultSet.refresh() to escape column identifiers in order to prevent SQL
injection. Previously, the column names for both key and data columns were copied as-is into the generated SQL. This allowed for
a malicious table with column names that included a statment terminator to be parsed and executed as multiple separate
commands. Also, this fix adds a new test class ResultSetRefreshTest to verify this change.

Migrated build to Gradle.

Added new changeServerName connection property. If the value for changeServerName is set to true, the
getServerName () call returnsavalueas PostgreSQL . The defaultvalueis false.

Added new forceBinaryTransfer connection property. If the value is setto true , forces the transfer of all binary types
from the PostgreSQL server to the JDBC driver in their binary form. The default value is false .

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 14

https://jdbc.postgresql.org/changelogs/2022-08-24-42.5.0-release/

EDB JDBC Connector

2.10 EDB JDBC Connector 42.3.3.1 release notes

Released: 20 Apr 2022
The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.3.3.1 include:

Type Description
Upstream . - - - . . .
Merge Merged with the upstream community driver version 42.3.3. See the community JDBC documentation for details.
) GHSA-673j-gm5f-xpv8: Removed the loggerFile and loggerLevel configuration properties as part of this fix. While the properties
Security :
Fix still exist, they can no longer be used to configure the driver logging. Instead use java.util.logging configuration mechanisms
i
such as logging.properties.
Change As part of security fix GHSA-673j-gm5f-xpv, the ability to enable logging using the connection properties is no longer available as

of version 42.3.3.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 15

https://jdbc.postgresql.org/changelogs/2022-02-15-42.3.3-release/
https://github.com/advisories/GHSA-673j-qm5f-xpv8

EDB JDBC Connector

2.11 EDB JDBC Connector 42.3.2.1 release notes

Released: 15 Feb 2022

The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.3.2.1 include:

Type Description

Upstream
merge

Merged with the upstream community driver version 42.3.2. See the community JDBC documentation for details.

org.checkerframework.* was previously packaged in the EDB JDBC jar file; causing conflicts with other applications
New feature utilizing org.checkerfamework.* with different versions. New feature is packaging the checker framework under a
custom namespace in the connector using the shade plugin. [Support Ticket: #74134]

JMS based API to interact with DBMS_AQ package seamlessly. This APl has been made part of edb-jdbc code under com.edb.jms

New feat
ewfeature and com.edb.aq packages.

New property oidTimestamp used to change default behavior of driver when using setTimeStamp method for preparedStatement.

Enhancement If property oidTimestamp it is set to true, sets the oid to Oid.TIMESTAMP, otherwise uses default behavior.

Bug fix Issue: Change in date format nls_date_format="YYYY/MM/DD’ in EDB*PLUS gives error. [Support Ticket: #75812]
Bug fix Rounding differences between EDB and Oracle. [Support Ticket: #72708]

Security fix CVE-2022-21724 as part of community merge with v42.3.2

Security fix CVE-2021-36373 - Removed dependency for org.apache.ant

Security fix CVE-2020-15250 - junit fix for temporary folder.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 16

https://jdbc.postgresql.org/changelogs/2022-02-01-42.3.2-release/

2.12 EDB JDBC Connector 42.2.24.1 release notes

Released: 05 Nov 2021
The EDB JDBC connector provides connectivity between a Java application and an Advanced Server database.
New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.2.24.1 include:

Type Description

Merged with the upstream community driver version 42.2.24. See the community JDBC documentation for

Upstream merge
P g details.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB JDBC Connector

17

https://jdbc.postgresql.org/changelogs/2021-09-22-42.2.24-release/

EDB JDBC Connector

2.13 EDB JDBC Connector 42.2.19.1 release notes

Released: 15 Apr 2021

The EDB JDBC connector provides connectivity between a Java application and an Advanced Server database.
New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.2.19.1 include:
Type Description

Upstream merge Merged with the upstream community driver version 42.2.19. See the community JDBC documentation for details.

Enhancement EDB JDBC Connector now supports GSSAPI encrypted connection. See Support for GSSAPI Encrypted Connection.

Note

EDB JDBC Connector v42.2.19.1 does not support Java 1.6 and 1.7. Previous versions of EDB JDBC Connector support Java 1.6 and 1.7 but
will not get any future updates, enhancements or bug fixes.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 18

https://jdbc.postgresql.org/changelogs/2021-02-18-42.2.19-release/

2.14 EDB JDBC Connector 42.2.12.3 release notes

Released: 22 Oct 2020
The EDB JDBC connector provides connectivity between a Java application and an Advanced Server database.
New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.2.12.3 include:

Type Description

EDB JDBC Connector now supports EDB Postgres Advanced Server

Enhancement
13.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB JDBC Connector

19

2.15 EDB JDBC Connector 42.2.9.1 release notes

Released: 18 May 2020
The EDB JDBC connector provides connectivity between a Java application and an Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.2.9.1 include:

Type Description
Enhancement EDB JDBC Connector is now supported on Red Hat Enterprise Linux and CentOS (x86_64) 8.x.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB JDBC Connector

20

EDB JDBC Connector

2.16 EDB JDBC Connector 42.2.8.1 release notes

Released: 21 Oct 2019

The EDB JDBC connector provides connectivity between a Java application and an Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.2.8.1 include:

Type Description

Merged with the upstream community driver version 42.2.8. See the community JDBC documentation for
Upstream merge

details.
Enhancement EDB JDBC Connector now supports EDB Postgres Advanced Server 12.
Enhancement EDB JDBC Connector is now supported on the Windows Server 2019 platform.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 21

https://jdbc.postgresql.org/changelogs/2019-09-13-42.2.8-release/

EDB JDBC Connector
3 Supported platforms

The JDBC Connector is supported on the same platforms as EDB Postgres Advanced Server. To determine the platform support for the JDBC
Connector, you can either refer to the platform support for EDB Postgres Advanced Server on the Platform Compatibility page on the EDB website or
refer to Installing EDB JDBC Connector.

Supported database versions

This table lists the latest JDBC Connector versions and their supported corresponding EDB Postgres Advanced Server (EPAS) versions.

JDBC Connector EPAS18 EPAS17 EPAS16 EPAS15 EPAS14 EPAS13

42.7.3.4 Y Y

42.7.3.3 N Y Y Y Y Y
42.7.3.2 N Y Y Y Y Y
42.7.3.1 N N Y Y Y Y
42.5.4.2 N N Y Y Y Y
42.5.4.1 N N N Y Y Y
42.5.1.2 N N N Y Y Y
42511 N N N N Y Y
42.5.0.1 N N N N Y Y
42.3.3.1 N N N N Y Y
42.3.2.1 N N N N Y Y
42.2.24.1 N N N N Y Y
42.2.19.1 N N N N N Y
42.2.12.3 N N N N N Y
42.2.9.1 N N N N N N
42.2.8.1 N N N N N N

Supported JDK distribution

Java Virtual Machine (JVM): Java SE 8 or higher (LTS version), including Oracle JDK, OpenJDK, and IBM SDK (Java) distributions.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 22

https://www.enterprisedb.com/platform-compatibility#epas

EDB JDBC Connector

4 EDB JDBC Connector overview

Sun Microsystems created a standardized interface for connecting Java applications to databases, known as Java Database Connectivity (JDBC). The
EDB JDBC Connector connects a Java application to a Postgres database.

JDBC driver types

There are currently four types of JDBC drivers, each with its own implementation, use, and limitations. The EDB JDBC Connector is a Type 4 driver.

Type 1 driver

This driver type is the JDBC-ODBC bridge.

It's limited to running locally.

Must have ODBC installed on computer.

Must have ODBC driver for specific database installed on computer.
Generally can’t run inside an applet because of Native Method calls.

Type 2 driver

This is the native database library driver.

Uses Native Database library on computer to access database.
Generally can’t run inside an applet because of Native Method calls.
Must have database library installed on client.

Type 3 driver

100% Java Driver, no native methods.

Doesn't require preinstallation on client.

Can be downloaded and configured on-the-fly just like any Java class file.
Uses a proprietary protocol for talking with a middleware server.
Middleware server converts from proprietary calls to DBMS specific calls.

Type & driver

100% Java driver, no native methods.

Doesn't require preinstallation on client.

Can be downloaded and configured on-the-fly just like any Java class file.
Unlike Type 3 driver, talks directly with the DBMS server.

Converts JDBC calls directly to database specific calls.

The JDBC interface

The following figure shows the core APl interfaces in the JDBC specification and how they relate to each other. These interfaces are implemented in
the java.sql package.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 23

ResultSet

Statement

JDBC classes and interfaces

The core APl is composed of classes and interfaces. These classes and interfaces work together as shown in the figure:

Connection

hJ

Statement
Prepared Statement
Callable Statement

l

ResultSet

The JDBC DriverManager

ResultSet

Statement

Connection

DriverManager

Postgres Plus
JOBC Connector

Postgres
Database

ResultSet

Statement

Data Types

EDB JDBC Connector

This figure depicts the role of the DriverManager class in a typical JDBC application. The DriverManager acts as the bridge between a Java

application and the backend database and determines the JDBC driver to use for the target database.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

24

Application

Postgres Plus JDBC Connector

Y

DriverManager

Oracle

SAL Server

EDB Postgres Advanced Server JDBC Connector compatibility

EDB JDBC Connector

This is the current version of the driver. Unless you have unusual requirements (running old applications or JVMs), this is the driver you should be
using. This driver supports PostgreSQL 10 or higher versions and requires Java 8 or higher versions. It contains support for SSL and the javax.sql

package.

Note

Deprecated support for Java 1.6 and 1.7. Previous version of EDB JDBC Connector v42.2.12.3 will continue to support Java 1.6 and 1.7

versions.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

25

5 Installing EDB JDBC Connector

Select a link to access the applicable installation instructions:

Linux x86-64 (amd64)

Red Hat Enterprise Linux (RHEL) and derivatives
e RHEL 9, RHELS8
e Oracle Linux (OL) 9, Oracle Linux (OL) 8
® Rocky Linux 9, Rocky Linux 8

o Almalinux 9, AlmaLinux 8

SUSE Linux Enterprise (SLES)

e SLES15

Debian and derivatives

o Ubuntu 24.04, Ubuntu 22.04

e Debian 12, Debian 11

Linux IBM Power (ppc64le)

Red Hat Enterprise Linux (RHEL) and derivatives

e RHEL9,RHELS8

SUSE Linux Enterprise (SLES)

e SLES15

Linux AArch64 (ARM64)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB JDBC Connector

26

EDB JDBC Connector

Red Hat Enterprise Linux (RHEL) and derivatives

e RHEL9

e Oracle Linux (OL) 9

Debian and derivatives

® Debian 12

Windows

o Windows Server 2019

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 27

5.1 Installing EDB JDBC Connector on Linux IBM Power (ppc64le)

Operating system-specific install instructions are described in the corresponding documentation:

Red Hat Enterprise Linux (RHEL)

e RHEL9

e RHELS

SUSE Linux Enterprise (SLES)

e SLES15

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB JDBC Connector

28

EDB JDBC Connector

5.1.1 Installing EDB JDBC Connector on RHEL 9 ppcé64le

Prerequisites
Before you begin the installation process:
e |Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:
o Installing EDB Postgres Advanced Server
o Installing PostgreSQL

e Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

e Review Supported JDBC distributions.
e Set up the EDB repository.
Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.
To determine if your repository exists, enter:
dnf repolist | grep enterprisedb
If no output is generated, the repository is installed.
To set up the EDB repository:
1. Go to EDB repositories.
2. Select the button that provides access to the EDB repository.
3. Select the platform and software that you want to download.
4. Follow the instructions for setting up the EDB repository.

e |nstall the EPEL repository:
sudo dnf -y 1dinstall https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm
o Refresh the cache:

sudo dnf makecache

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 29

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

EDB JDBC Connector

Install the package

sudo dnf -y dinstall edb-jdbc

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 30

EDB JDBC Connector

5.1.2 Installing EDB JDBC Connector on RHEL 8 ppcé64le

Prerequisites
Before you begin the installation process:
o |Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:
o Installing EDB Postgres Advanced Server
o Installing PostgreSQL

e Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

e Review Supported JDBC distributions.
e Set up the EDB repository.
Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.
To determine if your repository exists, enter:
dnf repolist | grep enterprisedb
If no output is generated, the repository is installed.
To set up the EDB repository:
1. Go to EDB repositories.
2. Select the button that provides access to the EDB repository.
3. Select the platform and software that you want to download.
4. Follow the instructions for setting up the EDB repository.

e Install the EPEL repository:
sudo dnf -y 1dinstall https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
o Refresh the cache:

sudo dnf makecache

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 31

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

EDB JDBC Connector

Install the package

sudo dnf -y dinstall edb-jdbc

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 32

EDB JDBC Connector

5.1.3 Installing EDB JDBC Connector on SLES 15 ppc64le

Prerequisites
Before you begin the installation process:
o |Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:
o Installing EDB Postgres Advanced Server
o Installing PostgreSQL

e Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

e Review Supported JDBC distributions.
e Set up the EDB repository.
Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.
To determine if your repository exists, enter:
zypper lr -E | grep enterprisedb
If no output is generated, the repository is installed.
To set up the EDB repository:
1. Go to EDB repositories.
2. Select the button that provides access to the EDB repository.
3. Select the platform and software that you want to download.
4. Follow the instructions for setting up the EDB repository.

e Activate the required SUSE module:
sudo SUSEConnect -p PackageHub/15.7/ppc64le
e Refresh the metadata:

sudo zypper refresh

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 33

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

EDB JDBC Connector

Install the package

sudo zypper -n install edb-jdbc

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 34

EDB JDBC Connector

5.1.4 Installing EDB JDBC Connector on SLES 12 ppc64le

Prerequisites
Before you begin the installation process:
o |Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:
o Installing EDB Postgres Advanced Server
o Installing PostgreSQL

e Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

e Review Supported JDBC distributions.
e Set up the EDB repository.
Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.
To determine if your repository exists, enter:
zypper lr -E | grep enterprisedb
If no output is generated, the repository isn't installed.
To set up the EDB repository:
1. Go to EDB repositories.
2. Select the button that provides access to the EDB repository.
3. Select the platform and software that you want to download.
4. Follow the instructions for setting up the EDB repository.

e Activate the required SUSE module:

sudo SUSEConnect -p PackageHub/12.5/ppc64le
sudo SUSEConnect -p sle-sdk/12.5/ppc64dle

e Refresh the metadata:

sudo zypper refresh

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 35

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

EDB JDBC Connector

Install the package

sudo zypper -n install edb-jdbc

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 36

EDB JDBC Connector
5.2 Installing EDB JDBC Connector on Linux x86 (amd64)

Operating system-specific install instructions are described in the corresponding documentation:

Red Hat Enterprise Linux (RHEL) and derivatives

e RHEL9

e RHEL8

e Oracle Linux (OL) 9
e Oracle Linux (OL) 8
e Rocky Linux 9

e Rocky Linux 8

e Almalinux 9

® Almalinux 8

SUSE Linux Enterprise (SLES)

e SLES15

Debian and derivatives

e Ubuntu 24.04
o Ubuntu 22.04
e Debian 12

® Debian 11

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 37

EDB JDBC Connector

5.2.1 Installing EDB JDBC Connector on RHEL 9 or OL 9 x86_64

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

o Installing EDB Postgres Advanced Server

o Installing PostgreSQL

e Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

e Review Supported JDBC distributions.

e Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

dnf repolist | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

e Install the EPEL repository:

sudo dnf -y 1dinstall https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm

Install the package

sudo dnf -y 1dinstall edb-jdbc

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 38

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

EDB JDBC Connector

5.2.2 Installing EDB JDBC Connector on RHEL 8 or OL 8 x86_64

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

o Installing EDB Postgres Advanced Server

o Installing PostgreSQL

e Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

e Review Supported JDBC distributions.

e Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

dnf repolist | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

e |nstall the EPEL repository:

sudo dnf -y 1dinstall https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

Install the package

sudo dnf -y 1dinstall edb-jdbc

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 39

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

EDB JDBC Connector

5.2.3 Installing EDB JDBC Connector on AlmaLinux 9 or Rocky Linux 9 x86_64

Prerequisites
Before you begin the installation process:
o |Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:
o Installing EDB Postgres Advanced Server
o Installing PostgreSQL

e Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

e Review Supported JDBC distributions.
e Set up the EDB repository.
Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.
To determine if your repository exists, enter:
dnf repolist | grep enterprisedb
If no output is generated, the repository is installed.
To set up the EDB repository:
1. Go to EDB repositories.
2. Select the button that provides access to the EDB repository.
3. Select the platform and software that you want to download.
4. Follow the instructions for setting up the EDB repository.

e |nstall the EPEL repository:
sudo dnf -y install epel-release
e Enable additional repositories to resolve dependencies:

sudo dnf config-manager --set-enabled crb

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 40

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

EDB JDBC Connector

Install the package

sudo dnf -y dinstall edb-jdbc

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 41

EDB JDBC Connector

5.2.4 Installing EDB JDBC Connector on AlmaLinux 8 or Rocky Linux 8 x86_64

Prerequisites
Before you begin the installation process:
e |Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:
o Installing EDB Postgres Advanced Server
o Installing PostgreSQL

e Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

e Review Supported JDBC distributions.
e Set up the EDB repository.
Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.
To determine if your repository exists, enter:
dnf repolist | grep enterprisedb
If no output is generated, the repository is installed.
To set up the EDB repository:
1. Go to EDB repositories.
2. Select the button that provides access to the EDB repository.
3. Select the platform and software that you want to download.
4. Follow the instructions for setting up the EDB repository.

e |nstall the EPEL repository:
sudo dnf -y 1install epel-release
e Enable additional repositories to resolve dependencies:

sudo dnf config-manager --set-enabled powertools

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 42

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

EDB JDBC Connector

Install the package

sudo dnf -y dinstall edb-jdbc

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 43

EDB JDBC Connector

5.2.5 Installing EDB JDBC Connector on SLES 15 x86_64

Prerequisites
Before you begin the installation process:
o |Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:
o Installing EDB Postgres Advanced Server
o Installing PostgreSQL

e Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

e Review Supported JDBC distributions.
e Set up the EDB repository.
Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.
To determine if your repository exists, enter:
zypper lr -E | grep enterprisedb
If no output is generated, the repository is installed.
To set up the EDB repository:
1. Go to EDB repositories.
2. Select the button that provides access to the EDB repository.
3. Select the platform and software that you want to download.
4. Follow the instructions for setting up the EDB repository.

e Activate the required SUSE module:
sudo SUSEConnect -p PackageHub/15.7/x86_64
e Refresh the metadata:

sudo zypper refresh

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 44

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

EDB JDBC Connector

Install the package

sudo zypper -n install edb-jdbc

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 45

EDB JDBC Connector

5.2.6 Installing EDB JDBC Connector on Ubuntu 24.04 x86_64

Prerequisites
Before you begin the installation process:
o |Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:
o Installing EDB Postgres Advanced Server
o Installing PostgreSQL

e Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

e Review Supported JDBC distributions.
e Set up the EDB repository.
Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.
To determine if your repository exists, enter:
apt-cache search enterprisedb
If no output is generated, the repository is installed.
To set up the EDB repository:
1. Go to EDB repositories.
2. Select the button that provides access to the EDB repository.
3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-jdbc

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 46

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

EDB JDBC Connector

5.2.7 Installing EDB JDBC Connector on Ubuntu 22.04 x86_64

Prerequisites
Before you begin the installation process:
e |Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:
o Installing EDB Postgres Advanced Server
o Installing PostgreSQL

e Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

e Review Supported JDBC distributions.
e Set up the EDB repository.
Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.
To determine if your repository exists, enter:
apt-cache search enterprisedb
If no output is generated, the repository is installed.
To set up the EDB repository:
1. Go to EDB repositories.
2. Select the button that provides access to the EDB repository.
3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-jdbc

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 47

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

EDB JDBC Connector

5.2.8 Installing EDB JDBC Connector on Debian 12 x86_64

Prerequisites
Before you begin the installation process:
o |Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:
o Installing EDB Postgres Advanced Server
o Installing PostgreSQL

e Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

e Review Supported JDBC distributions.
e Set up the EDB repository.
Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.
To determine if your repository exists, enter:
apt-cache search enterprisedb
If no output is generated, the repository is installed.
To set up the EDB repository:
1. Go to EDB repositories.
2. Select the button that provides access to the EDB repository.
3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-jdbc

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 48

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

EDB JDBC Connector

5.2.9 Installing EDB JDBC Connector on Debian 11 x86_64

Prerequisites
Before you begin the installation process:
o |Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:
o Installing EDB Postgres Advanced Server
o Installing PostgreSQL

e Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

e Review Supported JDBC distributions.
e Set up the EDB repository.
Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.
To determine if your repository exists, enter:
apt-cache search enterprisedb
If no output is generated, the repository is installed.
To set up the EDB repository:
1. Go to EDB repositories.
2. Select the button that provides access to the EDB repository.
3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-jdbc

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 49

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

EDB JDBC Connector

5.2.10 Installing EDB JDBC Connector on SLES 12 x86_64

Prerequisites
Before you begin the installation process:
o |Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:
o Installing EDB Postgres Advanced Server
o Installing PostgreSQL

e Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

e Review Supported JDBC distributions.
e Set up the EDB repository.
Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.
To determine if your repository exists, enter:
zypper lr -E | grep enterprisedb
If no output is generated, the repository isn't installed.
To set up the EDB repository:
1. Go to EDB repositories.
2. Select the button that provides access to the EDB repository.
3. Select the platform and software that you want to download.
4. Follow the instructions for setting up the EDB repository.

e Activate the required SUSE module:

sudo SUSEConnect -p PackageHub/12.5/x86_64
sudo SUSEConnect -p sle-sdk/12.5/x86_64

e Refresh the metadata:

sudo zypper refresh

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 50

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

EDB JDBC Connector

Install the package

sudo zypper -n install edb-jdbc

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 51

EDB JDBC Connector
5.3 Installing EDB JDBC Connector on Linux AArch64 (ARM64)

Operating system-specific install instructions are described in the corresponding documentation:

Red Hat Enterprise Linux (RHEL) and derivatives

e RHEL9

e Oracle Linux (OL) 9

Debian and derivatives

® Debian 12

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 52

EDB JDBC Connector

5.3.1 Installing EDB JDBC Connector on RHEL 9 or OL 9 arm64

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

o Installing EDB Postgres Advanced Server

o Installing PostgreSQL

e Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

e Review Supported JDBC distributions.

e Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

dnf repolist | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

e |nstall the EPEL repository:

sudo dnf -y 1dinstall https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm

Install the package

sudo dnf -y 1dinstall edb-jdbc

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 53

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

EDB JDBC Connector

5.3.2 Installing EDB JDBC Connector on Debian 12 arm64

Prerequisites
Before you begin the installation process:
o |Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:
o Installing EDB Postgres Advanced Server
o Installing PostgreSQL

e Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

e Review Supported JDBC distributions.
e Set up the EDB repository.
Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.
To determine if your repository exists, enter:
apt-cache search enterprisedb
If no output is generated, the repository is installed.
To set up the EDB repository:
1. Go to EDB repositories.
2. Select the button that provides access to the EDB repository.
3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-jdbc

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 54

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

EDB JDBC Connector
5.4 Installing EDB JDBC Connector on Windows

EDB provides a graphical installer for Windows. You can access it two ways:
e Download the graphical installer from the Downloads page, and invoke the installer directly. See Installing directly.

e Use Stack Builder (with PostgreSQL) or StackBuilder Plus (with EDB Postgres Advanced Server) to download the EDB installer package and
invoke the graphical installer. See Using Stack Builder or StackBuilder Plus.

Installing directly

After downloading the graphical installer, to start the installation wizard, assume sufficient privileges (superuser or administrator) and double-click
the installer icon. If prompted, provide a password.

In some versions of Windows, to invoke the installer with administrator privileges, you need to right-click the installer icon and select Run as
Administrator from the context menu.

Proceed to Using the graphical installer.

Using Stack Builder or StackBuilder Plus

If you're using PostgreSQL, you can invoke the graphical installer with Stack Builder. SeeUsing Stack Builder.

If you're using EDB Postgres Advanced Server, you can invoke the graphical installer with StackBuilder Plus. SeeUsing StackBuilder Plus.
1. In Stack Builder or StackBuilder Plus, follow the prompts until you get to the module selection page.

On the Welcome page, from the list of available servers, select the target server installation. If your network requires you to use a proxy server
to access the internet, select Proxy servers and specify a server. Select Next.

2. Expand the Database Drivers node and do one of the following:
o In Stack Builder, select pgJDBC.
o In StackBuilder Plus, select EnterpriseDB JDBC Connector.

3. Proceed to Using the graphical installer.

Using the graphical installer
1. Select the installation language and select OK.
2. Onthe Setup JDBC page, selectNext.

3. Browse to a directory where you want to install JDBC, or leave the directory set to the default location. SelectNext.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 55

https://www.enterprisedb.com/software-downloads-postgres#connectors
https://www.enterprisedb.com/docs/supported-open-source/postgresql/installing/using_stackbuilder/
https://www.enterprisedb.com/docs/epas/latest/installing/windows/installing_advanced_server_with_the_interactive_installer/using_stackbuilder_plus/

EDB JDBC Connector

4. On the Ready to Install page, selectNext.

An information box shows the installation progress of the selected components.

5. When the installation is complete, select Finish.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 56

EDB JDBC Connector

5.5 Installing EDB JDBC Connector using Maven

EDB supports installing EDB JDBC Connector using the Maven dependency manager. EDB-JDBC is published in theMaven Central Repository with the
following groupld and artifactld:

e groupld: com.enterprisedb
e artifactld: edb-jdbc

Add the following dependency for EDB-JDBC in your pom.xml file to install and configure the EDB JDBC Connector. Ensure you provide the correct

version to install:

<dependency>
<groupId>com.enterprisedb</groupId>
<artifactId>edb-jdbc</artifactId>
<version>42.5.4.2</version>
</dependency>

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 57

https://central.sonatype.com/artifact/com.enterprisedb/edb-jdbc

EDB JDBC Connector

5.6 Configuring EDB JDBC Connector for Java

edb-jdbc18.jar supports JDBC version 4.2.

To make the JDBC driver available to Java, you must either copy the appropriate java . jar file for the JDBC version that you're using to your
Sjava_home/jre/lib/ext directory or append the location of the .jar filetothe CLASSPATH environment variable.

If you choose to append the location of the jar file to the CLASSPATH environment variable, you must include the complete pathname:

/usr/edb/jdbc/edb-jdbc18.jar

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

58

EDB JDBC Connector

5.7 Upgrading a Linux installation

If you have an existing JDBC Connector installation on a Linux platform, you can upgrade your repository configuration file, which enables access to
the current EDB repository. Then you can upgrade to a more recent version of JDBC Connector.

To update the edb.repo file:

Update your repository configuration file
sudo <package-manager> upgrade edb-repo

Upgrade the installed product
sudo <package-manager> upgrade edb-repo

Where <package-manager> isthe package manager used with your operating system.

Package manager Operating system

dnf RHEL 8/9 and derivatives
zypper SLES
apt-get Debian and Ubuntu

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

59

6 Using the EDB JDBC Connector with Java applications

EDB JDBC Connector

With Java and the EDB JDBC Connector in place, a Java application can access an EDB Postgres Advanced Server database. This example creates an

application that executes a query and prints the result set.

import java.sql.*;
public class ListEmployees

{
public static void main(String[] args)
{
try
{
String url =
"jdbc:edb://localhost:5444/edb";
String user = "enterprisedb";

String password =
"enterprisedb";

Connection con = DriverManager.getConnection(url, user,
password) ;

Statement stmt
con.createStatement();

ResultSet rs = stmt.executeQuery ("SELECT x* FROM
emp") ;
while(rs.next())
{
System.out.println(rs.getString(1));
}

rs.close();
stmt.close();

con.close();
System.out.println("Command successfully executed");
}
catch(SQLException
exp)
{

System.out.println("SQL Exception: " +
exp.getMessage());

System.out.println("SQL State: "o+
exp.getSQLState());

System.out.println("Vendor Error: " +
exp.getErrorCode());

}

This example is simple, but it shows the fundamental steps required to interact with an EDB Postgres Advanced Server database from a Java

application:

Load the JDBC driver.

Build connection properties.
Connect to the database server.
Execute a SQL statement.
Process the result set.

Clean up.

Handle any errors that occur.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

60

EDB JDBC Connector

6.1 Loading EDB JDBC Connector

The EDB Postgres Advanced Server JDBC driver is written in Java and is distributed as a compiled Java Archive (JAR) file. Include the driver's JAR file in
your classpath so that the Java runtime can register the driver as it starts up. The registered driver will be used when an application requests a
connection with a URL beginning with the "jdbc:edb:" schema.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

61

EDB JDBC Connector

6.2 Connecting to the database

After the driver has loaded and registered itself with the DriverManager ,the ListEmployees class can attempt to connect to the database
server, as shown in the following code fragment:

String url =
"jdbc:edb://localhost:5444/edb";
String user = "enterprisedb";

String password =
"enterprisedb";

Connection con = DriverManager.getConnection(url, user,
password) ;

ALl JDBC connections start with the DriverManager .The DriverManager class offers a static method called getConnection() that's
responsible for creating a connection to the database. When you call the getConnection() method, the DriverManager mustdecide which
JDBC driver to use to connect to the database. The decision is based on a URL that you passto getConnection() .

A JDBC URL takes the following general format:

jdbc:<driver>:<connection parameters>

The first component in a JDBC URL is always jdbc . When using the EDB Postgres Advanced Server JDBC Connector, the second component (the
driver)is edb .

The Advanced Server JDBC URL takes one of the following forms:

jdbc:edb:<database>

jdbc:edb://<host>/<database>

jdbc:edb://<host>:<port>/<database>

The following table shows the various connection parameters.

Name Description
host The host name of the server. Defaults to localhost.

The port number the server is listening on. Defaults to the EDB Postgres Advanced Server standard port number

t
por (5444).

database The database name.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 62

EDB JDBC Connector
6.2.1 Additional connection properties

In addition to the standard connection parameters, the EDB Postgres Advanced Server JDBC driver supports connection properties that control
behavior specific to EDB . You can specify these properties in the connection URL oras a Properties object parameter passed to
DriverManager.getConnection() . The example shows how to use a Properties object to specify additional connection properties:

String url =
"jdbc:edb://localhost/edb";
Properties props = new Properties();

props.setProperty("user", "enterprisedb");
props.setProperty("password", "enterprisedb");
props.setProperty("sslfactory", "com.edb.ssl.NonValidatingFactory");

props.setProperty("ssl", "true");

Connection con = DriverManager.getConnection(url,
props);

Note

By default, the combination of SSL=true and setting the connection URL parameter
sslfactory=org.postgresql.ssl.NonValidatingFactory encrypts the connection but doesn't validate the SSL certificate.
To enforce certificate validation, you must use a Custom SSLSocketFactory . For more details about writinga Custom
SSLSocketFactory, see the the PostgreSQL JDBC driver documentation.

To specify additional connection properties in the URL, add a question mark and an ampersand-separated list of keyword-value pairs:
String url = "jdbc:edb://localhost/edb?user=enterprisedb&ssl=true";

Some of the additional connection properties are shown in the following table.

Name Type Description
user String The database user on whose behalf the connection is being made.
password String The database user’s password.
ssl Boolean Requests an authenticated, encrypted SSL connection.
charSet String The value of charSet determines the character set used for data sent to or received from the database.
The value of prepareThreshold determines the number of PreparedStatement executions
prepareThreshold Integer) o . s
required before switching to server-side prepared statements. The default is five.
In default mode (disabled) hosts are connected in the given order. If enabled, hosts are chosen randomly
loadBalanceHosts Boolean i -
from the set of suitable candidates.
Allows opening connections to only servers with the required state. The allowed values are any,
primary, secondary, preferSecondary,and preferSyncSecondary .The
primary/secondary distinction is currently done by observing if the server allows writes. The value
targetServerType String preferSecondary tries to connect to secondaries if any are available, otherwise allows connecting to

the primary. The EDB Postgres Advanced Server JDBC Connector supports preferSyncSecondary,
which permits connection to only synchronous secondaries or the primary if there are no active
synchronous secondaries.

When setto true, column names from the RETURNING clause aren't quoted. This eliminates a case-
skipQuotesOnReturning ~ Boolean sensitive comparison of the column name. When setto false (the default setting), column names are

quoted.

The getServerName () callin PgConnection.java returns EnterpriseDB . If
changeServerName Boolean changeServerName issetto true,itreturnsthe value as PostgreSQL . The default value is

false.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 63

https://jdbc.postgresql.org/documentation/head/ssl-factory.html

EDB JDBC Connector

Name Type Description

. If the value is set to true , forces the transfer of all binary types from the PostgreSQL server to the JDBC
forceBinaryTransfer Boolean o o)
driver in their binary form. The default value is false.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 64

EDB JDBC Connector
6.2.2 Preferring synchronous secondary database servers

The EDB Postgres Advanced Server JDBC Connector supports the preferSyncSecondary option forthe targetServerType connection
property.

The preferSyncSecondary option provides a preference for synchronous, standby servers for failover connection, thus ignoring asynchronous
servers.

The specification of this capability in the connection URL is shown by the following syntax:

jdbc:edb://primary:port,secondary_l:port_1,secondary_2:port_2,.../
database?targetServerType=preferSyncSecondary

Parameters

primary:port

The IP address or a name assigned to the primary database server followed by its port number. If primary is a name, you must specify it with its IP
addressinthe /etc/hosts file on the host running the Java program.

Note
You can specify the primary database server in any location in the list. It doesn't have to precede the secondary database servers.

secondary_n:port_n

The IP address or a name assigned to a standby, secondary database server followed by its port number. If secondary_n is a name, you must
specify it with its IP address in the /etc/hosts file on the host running the Java program.

database
The name of the database to which to make the connection.

The following is an example of the connection URL:

String url = "jdbc:edb://primary:5300,secondaryl:5400/edb?
targetServerType=preferSyncSecondary";

con = DriverManager.getConnection(url, "enterprisedb", "edb");

The following characteristics apply to the preferSyncSecondary option:

e You cam specify the primary database server in any location in the connection list.

e Connection for accessing the database for use by the Java program is first attempted on a synchronous secondary. The secondary servers are
available for read-only operations.

e No connection attempt is made to any servers running in asynchronous mode.

e The order in which connection attempts are made is determined by the loadBalanceHosts connection property. If disabled, which is the
default setting, connection attempts are made in the left-to-right order specified in the connection list. If enabled, connection attempts are
made randomly.

e [f connection can't be made to a synchronous secondary, then connection to the primary database server is used. If the primary database server
isn't active, then the connection attempt fails.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 65

EDB JDBC Connector

The synchronous secondaries to use for the preferSyncSecondary option must be configured for hot standby usage.

Configuring primary and secondary database servers overview

The process for configuring a primary and secondary database servers is described in the PostgreSQL documentation.
For general information on hot standby usage, which is needed for the preferSyncSecondary option, see the PostgreSQL core documentation.

For information about creating a base backup for the secondary database server from the primary, see Section 25.3.2, Making a Base Backup
(describes usage of the pg_basebackup utility program) or Section 25.3.3, Making a Base Backup Using the Low Level AP/in Section 25.3
Continuous Archiving and Point-in-Time Recovery (PITR)in The PostgreSQL Core Documentation.

For information on the configuration parameters to set for hot standby usage, see Section 19.6, Replication.

Example: Primary and secondary database servers

In the example that follows, the:

e Primary database server resides on host 192.168.2.24 , port 5444 .
e Secondary database serveris named secondaryl andresidesonhost 192.168.2.22 ,port 5445 .

e Secondary database serveris named secondary2 and residesonhost 192.162.2.24 ,port 5446 (same host as the primary).

In the primary database server’s pg_hba.conf file, there must be a replication entry for each unique replication database USER/ADDRESS
combination for all secondary database servers. In the following example, the database superuser enterprisedb isused as the replication
database user for both the secondaryl database serveron 192.168.2.22 andthe secondary2 database server thatis local relative to the
primary.

TYPE DATABASE USER ADDRESS METHOD
host replication enterprisedb 192.168.2.22/32 md5
host replication enterprisedb 127.0.0.1/32 md5

After the primary database server is configured in the postgresql.conf file along withits pg_hba.conf file, database server secondaryl
is created by invoking the following command on host 192.168.2.22 for secondaryl:

su - enterprisedb
Password:
-bash-4.1$ pg_basebackup -D /opt/secondaryl -h 192.168.2.24 -p 5444 -Fp -R -X stream -1 'Secondaryl'

On the secondary database server, /opt/secondaryl,a recovery.conf fileis generatedin the database cluster, which was edited in the
following example by adding the application_name=secondaryl setting as part of the primary_conninfo string and removing some of

the other unneeded options automatically generated by pg_basebackup . Also note the use of the standby_mode = 'on' parameter.
standby_mode = 'on'
primary_conninfo = 'user=enterprisedb password=password host=192.168.2.24 port=5444

application_name=secondaryl’

The application name secondaryl must be included in the synchronous_standby_names parameter of the primary database server’s
postgresql.conf file.

The secondary database server (secondary?2) is created in an alternative manner on the same host used by the primary:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 66

https://www.postgresql.org/docs/12/static/hot-standby.html
https://www.postgresql.org/docs/12/static/continuous-archiving.html
https://www.postgresql.org/docs/12/static/runtime-config-replication.html

EDB JDBC Connector

su - enterprisedb
Password:
-bash-4.1$ psql -d edb -c "SELECT pg_start_backup('Secondary2')"
Password:

pg_start_backup

0/6000028

(1 row)

-bash-4.1$ cp -rp /var/lib/edb/asl2/data/opt/secondary2

-bash-4.1$ psql -d edb -c "SELECT pg_stop_backup()"

Password:

NOTICE: pg_stop_backup complete, all required WAL segments have been archived
pg_stop_backup

0/6000130

(1 row)

On the secondary database server /opt/secondary2 ,createthe recovery.conf fileinthe database cluster. The
application_name=secondary2 settingis part of the primary_conninfo string as shown in the following example. Also be sure to

include the standby_mode = 'on' parameter.
standby_mode = 'on'
primary_conninfo = 'user=enterprisedb password=password host=localhost port=5444

application_name=secondary2'

The application name secondary2 must be included in the synchronous_standby_names parameter of the primary database server’s
postgresql.conf file.

You must ensure the configuration parameter settings in the postgresql.conf file of the secondary database servers are properly set
(particularly hot_standby=on).

Note

As of EDB Postgres Advanced Serverv12, the recovery.conf fileis no longervalid. It's replaced by the standby.signal file. Asa
result, primary_conninfo is moved fromthe recovery.conf filetothe postgresql.conf file. The presence of the
standby.signal file signals the cluster to run in standby mode. Even if you try to create a recovery.conf file manually and keep it
under the data directory, the server fails to start and reports an error.

The parameter standby_mode=on is also removed from EDB Postgres Advanced Serverv12, and the trigger_file parameter nameis
changedto promote_trigger_file.

The following table lists the basic postgresql.conf configuration parameter settings of the primary database server as compared to the
secondary database servers.

Parameter Primary Second Description
ary
archive_mode on off Completed WAL segments sent to archive storage
. cp %p :
archive_command] . n/a Archive completed WAL segments
/archive_dir/%f
wal_level (10 or later) replica minimal Information written to WAL segment
max_wal_senders _/;Ez;:t;ve 0 Maximum concurrent connections from standby servers
i

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 67

EDB JDBC Connector

Parameter Primary Second Description
ary
n (positive .
wal_keep_segments inEder) 0 Minimum number of past log segments to keep for standby servers
List of standby servers for synchronous replication. Must be present to enable
n(secondary1,

synchronous_standby_names n/a synchronous replication. These are obtained from the application_name option of

secondary?2,... . . .)
V2,:) the primary_conninfo parameter in the recovery.conf file of each standby server.

Client application can connect and run queries on the secondary server in standby

hot_standby off on mode

The secondary database server (secondaryl) is started:

-bash-4.1$ pg_ctl start -D /opt/secondaryl -1 logfile -o "-p 5445"
server starting

The secondary database server (secondary?) is started:

-bash-4.1$ pg_ctl start -D /opt/secondary2/data -1 logfile -o "-p 5446"
server starting

To ensure that the secondary database servers are properly set up in synchronous mode, use the following query on the primary database server. The
sync_state column lists applications secondaryl and secondary2 assync.

edb=# SELECT usename, application_name, client_addr, client_port, sync_state FROM
pg_stat_replication;

enterprisedb | secondaryl | 192.168.2.22 | 53525 | sync
enterprisedb | secondary2 | 127.0.0.1 | 36214 | sync
(2 rows)

The connection URL is:

String url = "jdbc:edb://primary:5444,secondaryl:5445,secondary2:5446/edb?
targetServerType=preferSyncSecondary";

con = DriverManager.getConnection(url, "enterprisedb", "password");

The /etc/hosts file on the host running the Java program contains the following entries with the server names specified in the connection URL

string:

192.168.2.24 localhost.localdomain primary
192.168.2.22 localhost.localdomain secondaryl
192.168.2.24 localhost.localdomain secondary2

For this example, the preferred synchronous secondary connection option results in the first usage attempt made on secondary1 , then on
secondary? if secondaryl is notactive, and then on the primary if both secondaryl and secondary2 aren'tactive as shown by the
following program. The program displays the IP address and port of the database server to which the connection is made.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 68

EDB JDBC Connector

import java.sql.*;
public class InetServer
{
public static void main(String[] args)
{
try
{
String url

"jdbc:edb://primary:5444,secondaryl:5445,secondary2:5446/edb?targetServerType=preferSyncSecondary";
String user = "enterprisedb";

String password
"password";

Connection con = DriverManager.getConnection(url, user,
password) ;

ResultSet rs = con.createStatement().executeQuery("SELECT inet_server_addr() || ":"' ||
inet_server_port()");

rs.next();
System.out.println(rs.getString(1));

rs.close();

con.close();
System.out.println("Command successfully executed");

}
catch(ClassNotFoundException

e)

System.out.println("Class Not Found : " +
e.getMessage());
}
catch(SQLException
exp)
{
System.out.println("SQL Exception: " +
exp.getMessage());

System.out.println("SQL State: "o+
exp.getSQLState());

System.out.println("Vendor Error: " +
exp.getErrorCode());

}

Case 1: When all database servers are active, connection is made to secondaryl on 192.168.2.22 port 5445 .

$ java InetServer
192.168.2.22/32:5445
Command successfully executed

Case 2: When secondaryl isshut down, connection is made to secondary2 on 192.168.2.24 port 5446 .

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 69

bash-4.1$ /usr/edb/asl12/bin/pg_ctl stop -D /opt/secondaryl
waiting for server to shut down.... done
server stopped

$ java InetServer
192.168.2.24/32:5446
Command successfully executed

Case 3: When secondary?2 is also shut down, connection is made to the primary on 192.168.2.24 port 5444 .

bash-4.1$ /usr/edb/asl12/bin/pg_ctl stop -D /opt/secondary2/data
waiting for server to shut down.... done
server stopped

$ java InetServer

192.168.2.24/32:5444
Command successfully executed

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB JDBC Connector

70

EDB JDBC Connector

6.3 Executing SQL statements through statement objects

After loading the EDB Postgres Advanced Server JDBC Connector driver and connecting to the server, the code in the sample application builds a JDBC
Statement object, executes a SQL query, and displays the results.

A Statement object sends SQL statements to a database. There are three kinds of Statement objects. Each is specialized to send a particular
type of SQL statement:

e A Statement objectis used to execute a simple SQL statement with no parameters.
e A PreparedStatement objectis used to execute a precompiled SQL statement with or without IN parameters.
e A CallableStatement objectis used to execute a call to a database stored procedure.

You must constructa Statement object before executing a SQL statement. The Statement object offers a way to send a SQL statement to the
server (and gain access to the result set). Each Statement object belongstoa Connection .Usethe createStatement() method to ask
the Connection tocreatethe Statement object.

A Statement object defines several methods to execute different types of SQL statements. In the sample application, the executeQuery ()
method executesa SELECT statement:

Statement stmt =
con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT * FROM
emp") ;

The executeQuery () method expects a single argument: the SQL statement that you want to execute. executeQuery () returns data from the
queryina ResultSet object. If the server encountered an error while executing the SQL statement provided, it returns an SQLException and
doesn't returna ResultSet .

Using named notation with a CallableStatement object

The JDBC Connector (EDB Postgres Advanced Server version 10 and later) supports the use of named parameters when instantiating a
CallableStatement object. This syntax is an extension of JDBC supported syntax and doesn't conform to the JDBC standard.

Youcanusea CallableStatement object to pass parameter values to a stored procedure. You can assign valuesto IN, OUT ,and INOUT
parameters witha CallableStatement object.

When using the CallableStatement class, you can use ordinal notation or named notation to specify values for actual arguments. You must set
avalue foreach IN or INOUT parameter markerin a statement.

When using ordinal notation to pass valuestoa CallableStatement object, use the setter method that corresponds to the parameter type. For
example, when passinga STRING value, use the setString setter method. Each parameter marker in a statement (?) represents an ordinal

value. When using ordinal parameters, pass the actual parameter values to the statement in the order that the formal arguments are specified in the
procedure definition.

You can also use named parameter notation when specifying argument values fora CallableStatement object. Named parameter notation

allows you to supply values for only those parameters that are required by the procedure, omitting any parameters that have acceptable default
values. You can also specify named parameters in any order.

When using named notation, each parameter name must correspond to a COLUMN_NAME returned by a call to the
DatabaseMetaData.getProcedureColumns method. Use the => token when including a named parameter in a statement call.

Use the registerOutParameter method toidentify each OUT or INOUT parameter markerin the statement.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 71

Examples

EDB JDBC Connector

The following examples show using the CallableStatement method to provide parameters to a procedure with the following signature:

CREATE OR REPLACE PROCEDURE hire_emp (ename
VARCHAR2

empno NUMBER,
job VARCHAR2,
sal NUMBER,

hiredate DATE DEFAULT
now(),

mgr NUMBER DEFAULT 7100,
deptno NUMBER

)
IS
BEGIN
INSERT INTO emp VALUES (empno, ename, job, mgr, hiredate, sal,
deptno);

END;

The following example uses ordinal notation to provide parameters:

CallableStatement cstmt = con.prepareCall("{CALL
hire_emp(?,2,2,2,2,2,2)}");

//Bind a value to each

parameter.

cstmt.setString(1, "SMITH");

cstmt.setInt(2, 8888);

cstmt.setString(3, "Sales'");

cstmt.setInt(4, 5500);

cstmt.setDate(5, Date.valueOf("2016-06-01"));
cstmt.setInt(6, 7566);

cstmt.setInt(7, 30);

The following example uses named notation to provide parameters. Using named notation, you can omit parameters that have default values or

reorder parameters:

CallableStatement cstmt =
con.prepareCall

("{CALL hire_emp(ename =>
?7

job => 7,

empno => 7,

sal => ?,

deptno => ?

)

//Bind a value to each
parameter.

cstmt.setString("ename", "SMITH");
cstmt.setInt("empno", 8888);
cstmt.setString("job", "Sales");
cstmt.setInt("sal", 5500);
cstmt.setInt("deptno'", 30);

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

72

EDB JDBC Connector

6.4 Retrieving results from a ResultSet object

A ResultSet objectis the primary storage mechanism for the data returned by a SQL statement. Each ResultSet object contains both data and
metadata in the form of a ResultSetMetaData object. ResultSetMetaData includes useful information about results returned by the SQL
command: column names, column count, row count, column length, and so on.

To access the row data stored in a ResultSet object, an application calls one or more getter methods. A getter method retrieves the value
in a particular column of the current row. There are many different getter methods. Each method returns a value of a particular type. For example,
the getString() methodreturnsa STRING type, the getDate() method returnsa Date,andthe getInt() method returnsan INT
type. When an application callsa getter method, JDBC tries to convert the value into the requested type.

Each ResultSet keepsan internal pointer that points to the current row. When the executeQuery () method returnsa ResultSet ,the
pointer is positioned before the first row. If an application calls a getter method before moving the pointer, the getter method fails. To advance
to the next (or first) row, call the ResultSet’s next() method. ResultSet.next() isaBoolean method. It returns TRUE if there's
another row in the ResultSet or FALSE if you moved past the last row.

After moving the pointer to the first row, the sample application uses the getString() getter method to retrieve the value in the first column
and then prints that value. Since ListEmployees calls rs.next() and rs.getString() inaloop, it processes each row in the result set.
ListEmployees exits the loop when rs.next () moves the pointer past the last row and returns FALSE .

while(rs.next())

{
System.out.println(rs.getString(1));

}
When using the ResultSet interface:

e Youmustcall next() before reading anyvalues. next () returns true if another row is available and prepares the row for processing.

e Under the JDBC specification, an application must access each row in the ResultSet only once. It's safest to stick to this rule, although
currently the EDB Postgres Advanced Server JDBC driver allows you to access a field as many times as you want.

e When you finish usinga ResultSet ,callthe close() method to free the resources held by that object.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 73

EDB JDBC Connector

6.5 Freeing resources

Every JDBC object consumes resources. A ResultSet object, for example, might contain a copy of every row returned by a query. A Statement
object might contain the text of the last command executed. It’s usually a good idea to free up those resources when the application no longer needs
them. The sample application releases the resources consumed by the Result, Statement ,and Connection objects by calling each object’s

close() method

rs.close();
stmt.close();
con.close();

If you attempt to use a JDBC object after closing it, that object returns an error.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

74

EDB JDBC Connector

6.6 Handling errors

When connecting to an external resource (such as a database server), errors are bound to occur. Your code must include a way to handle these errors.
Both JDBC and the EDB Postgres Advanced Server JDBC Connector provide various types of error handling. The ListEmployees class example shows
how to handle an error using try/catch blocks.

When a JDBC object returns an error (an object of type SQLException orof atype derived from SQLException), the SQLException object
exposes three different pieces of error information:

e The error message
e The SQL state
e Avendor-specific error code

In this example, the code displays the value of these components if an error occurs:

System.out.println("SQL Exception: " +
exp.getMessage());

System.out.println("SQL State: " +
exp.getSQLState());

System.out.println("Vendor Error: " +
exp.getErrorCode());

For example, if the server tries to connect to a database that doesn't exist on the specified host, the following error message is displayed:

SQL Exception: FATAL: database "acctg" does not exist
SQL State: 3D0O0O
Vendor Error: 0

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 75

EDB JDBC Connector

7 Using advanced queueing

New feature
Advanced queueing is available in JDBC 42.3.2.1 and later.

EDB Postgres Advanced Server advanced queueing provides message queueing and message processing for the EDB Postgres Advanced Server
database. User-defined messages are stored in a queue, and a collection of queues is stored in a queue table. You must first create a queue table
before creating a queue that depends on it.

On the server side, procedures in the DBMS_AQADM package create and manage message queues and queue tables. Use the DBMS_AQ package to
add or remove messages from a queue or register or unregister an SPL callback procedure. For more information about DBMS_AQ and
DBMS_AQADM , see DBMS_AQ in the EDB Postgres Advanced Server documentation.

On the client side, the application uses the EDB-JDBC driver's JMS API to enqueue and dequeue message.

Enqueueing or dequeueing a message

For more information about using EDB Postgres Advanced Server's advanced queueing functionality, seeBuilt-in packages in the EDB Postgres
Advanced Server documentation.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 76

https://www.enterprisedb.com/docs/epas/latest/reference/oracle_compatibility_reference/epas_compat_bip_guide/03_built-in_packages/02_dbms_aq/
https://www.enterprisedb.com/docs/epas/latest/reference/oracle_compatibility_reference/epas_compat_bip_guide/03_built-in_packages/

EDB JDBC Connector

7.1 Server-side setup

To use advanced queueing functionality on your JMS-based Java application, in EDB-PSQL or EDB-JDBC:

1. Create a user-defined message type, which can be one of the standard JMS message types. However, EDB-JDBC also supports any user-defined
message types. See Message types for details.

. Create a queue table specifying the payload type. This type is typically the one created in step 1.

. Create a queue using the queue table created in the previous step.

. Start the queue on the database server.

. You can use either EDB-PSQL or EDB-JDBC JMS API in your Java application.

a &~ NN

Using EDB-PSQL
Invoke EDB-PSQL and connect to the EDB Postgres Advanced Server host database. Use the SPL commands in EDB-PSQL to:

Create a user-defined type
Create the queue table
Create the queue

Start the queue

Create a user-defined type

To specify a RAW data type, create a user-defined type.

This example shows how to create a user-defined type named mytype :

CREATE OR REPLACE TYPE mytype AS (code INT, project TEXT, manager
VARCHAR(10)) ;

Create the queue table

A queue table can hold multiple queues with the same payload type.

This example shows how to create a queue table named MSG_QUEUE_TABLE :

EXEC
DBMS_AQADM.CREATE_QUEUE_TABLE

(queue_table => 'MSG_QUEUE_TABLE',
queue_payload_type => 'mytype',
comment => 'Message queue
table');
END;

Create the queue

This example shows how to create a queue named MSG_QUEUE in the table MSG_QUEUE_TABLE :

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 77

EDB JDBC Connector

EXEC DBMS_AQADM.CREATE_QUEUE
(queue_name => 'MSG_QUEUE',
queue_table => 'MSG_QUEUE_TABLE',

comment => 'This queue contains pending
messages.');

Start the queue

Once the queue is created, start the queue.

This example shows how to start a queue in the database:

EXEC DBMS_AQADM.START_QUEUE (queue_name => 'MSG_QUEUE'");
commit;

Using EDB-JDBC JMS API

Tip

The following sequence of steps is required only if you want to create message types, queue tables, and queues programmatically. If you
create the message types, queue table, and queue using EDB-PSQL, then you can use the standard JMS API.

The following JMS API calls perform the same steps performed using EDB-PSQL to:

Connect to the EDB Postgres Advanced Server database
Create the user-defined type

Create the queue table and queue

Start the queue

edbJImsFact = new EDBJImsConnectionFactory('"localhost'", 5444, "edb", "edb", "edb");

conn = (EDBJImsQueueConnection) edbJmsFact.createQueueConnection();

session = (EDBImsQueueSession) conn.createQueueSession(true, Session.CLIENT_ACKNOWLEDGE) ;

String sql = "CREATE OR REPLACE TYPE mytype AS (code int, project
TEXT);";

UDTType udtType = new UDTType(conn.getConn(), sql,

"mytype");

Operation operation = new UDTTypeOperation(udtType);
operation.execute();

queueTable = session.createQueueTable(conn.getConn(), "MSG_QUEUE_TABLE", "mytype'", "Message queue
table");

Queue queuel = new Queue(conn.getConn(), "MSG_QUEUE", "MSG_QUEUE_TABLE", "Message
Queue");

operation = new QueueOperation(queuel);
operation.execute();

queue = (EDBJImsQueue) session.createQueue('"MSG_QUEUE");
queue.setEdbQueueTbl(queueTable);

queue.start();

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 78

EDB JDBC Connector

<span
data-original-path="product_docs/docs/jdbc_connector/42.7.3.4/05a_using_advanced_queueing/jms_application
.mdx:5'>

7.2 Setting up the IMS
application

After creating the queue table and queue for the message types and starting the queue, you can set up
your JMS application:

1. Create a [connection factory]
(#connection-factory).

1. Create a [connection] (#connection) using the connection

factory.

1. Create a [session](#session) using the
connection.

1. Get the queue from the

session.

1. Create a [message producer] (#message-producer) using the session and queue to send
messages.

1. Create a [message consumer] (#message-consumer) using the session and queue to receive
messages.

##4# Connection factory

Use the connection factory to create connections. "EDBJImsConnectionFactory™ s an implementation of
‘ConnectionFactory’ and ‘QueueConnectionFactory', which you use to create ‘Connection’ and
“QueueConnection’. You can create a connection factory using one of the constructors of the
‘EDBJImsConnectionFactory’ class. You can use all three constructors to create either a
“ConnectionFactory™ or “QueueConnectionFactory’.

““java
//Constructor with connection related
properties.
public EDBJImsConnectionFactory(String host, int port, String database,

String username, String
password) ;

//Constructor with connection string, user name and
password.

public EDBJImsConnectionFactory(String connectionString,

String username, String
password) ;

//Constructor with SQL
Connection.

public EDBJImsConnectionFactory(java.sql.Connection connection);

This example shows how to create a ConnectionFactory usingan existing java.sql.Connection:

javax.jms.ConnectionFactory connFactory = new
EDBJImsConnectionFactory(connection);

This example shows how to create a QueueConnectionFactory usinga connection string, username, and password:

javax.jms.QueueConnectionFactory connFactory = new
EDBImsConnectionFactory

("jdbc:edb//localhost:5444/edb", "enterprisedb", "edb");

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 79

EDB JDBC Connector

Connection
A connection is a client's active connection that can be created from the ConnectionFactory and used to create sessions.
EDBImsConnection isanimplementation of Connection,and EDBImsQueueConnection isanimplementation of QueueConnection

and extends EDBJImsConnection . You cancreatea Connection using ConnectionFactory anda QueueConnection from
QueueConnectionFactory .

This example shows how to create a Connection anda QueueConnection:

//Connection from ConnectionFactory. Assuming connfFactory 7is
ConnectionFactory.

javax.jms.Connection connection =
connFactory.createConnection();

////Connection from QueueConnectionFactory. Assuming connfactory is
QueueConnectionFactory.

javax.jms.QueueConnection queueConnection =
connFactory.createQueueConnection();

You must start a connection for the consumer to receive messages. However, a producer can send messages without starting the connection.

This example shows how to start a connection:

queueConnection.start();

You can stop a connection at any time to stop receiving messages, and you can restart it when needed. However, you can't restart a closed connection.

This example shows how to stop and close the connection:

queueConnection.stop();
queueConnection.close();

Session

A session in EDBJms is used for creating producers and consumers and for sending and receiving messages. EDBImsSession implements the basic
Session functionality, and EDBImsQueueSession extends EDBImsSession andimplements QueueSession .A Session canbe
created froma Connection.

This example shows how to createa Session anda QueueSession:

// Session
javax.jms.Session session = connection.createSession(false, javax.jms.Session.AUTO_ACKNOWLEDGE) ;
// QueueSession

javax.jms.QueueSession session = queueConnection.createQueueSession(false,
javax.jms.Session.AUTO_ACKNOWLEDGE) ;

You canalsousea Session or QueueSession to create queues.

Important

In this context, "creating a queue" doesn't refer to physically creating the queue. As discussed earlier, you need to create and start the
queue as part of the server-side setup. In this context, creating a queue means getting the queue, related queue table, and payload type that
were already created.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 80

EDB JDBC Connector

This example shows how to create a queue:

javax.jms.Queue queue = session.createQueue('"MSG_QUEUE");

Message producer

A message producer is responsible for creating and sending messages. You create it using a session and queue. EDBIJmsMessageProducer isan
implementation of MessageProducer , butin most cases you use the standard MessageProducer .

This example shows how to create a message producer, create a message, and send it. To create messages of different types, see Message types.

javax.jms.MessageProducer messageProducer = session.createProducer(queue);

javax.jms.Message msg =
session.createMessage();

msg.setStringProperty("mypropl", "test value 1");

messageProducer.send(msg) ;

Message consumer

A message consumer receives messages. You create it using a session and a queue. EDBImsMessageConsumer isanimplementation of
MessageConsumer , but you'll most often use the standard MessageConsumer .

This example shows how to create a message consumer and receive a message:

javax.jms.MessageConsumer messageConsumer = session.createConsumer(queue);

javax.jms.Message message = messageConsumer.receive();

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 81

EDB JDBC Connector

7.3 Message acknowledgement

Acknowledgement messages are controlled by the two arguments to the createSession() and createQueueSession() methods:

EDBImsConnection.createSession(boolean transacted, int acknowledgeMode)

EDBJImsQueueConnection.createQueueSession(boolean transacted, int acknowledgeMode)

If the first argument is true, it indicates that the session mode is transacted, and the second argument is ignored. However, if the first argument is
false, then the second argument comes into play, and the client can specify different acknowledgment modes.

These acknowledgment modes include:

o Session.AUTO_ACKNOWLEDGE
® Session.CLIENT_ACKNOWLEDGE
e Session.DUPS_OK_ACKNOWLEDGE

Transacted session

In transacted sessions, messages are both sent and received during a transaction. These messages are acknowledged by making an explicit call to
commit() .If rollback() iscalled, all received messages are marked as not acknowledged.

A transacted session always has an active transaction. When a client calls the commit () or rollback() method, the current transaction is
either committed or rolled back, and a new transaction is started.

This example shows how the transacted session works:

MessageProducer messageProducer = (MessageProducer) session.createProducer(queue);

//Send a message in transacted session and commit
Tt.

//Send message

TextMessage msgl =
session.createTextMessage();

String messageTextl = "Hello 1";
msgl.setText(messageTextl);
messageProducer.send(msgl) ;

//Commit the
transaction.

session.commit();

//Now we have one message in the
queue.

//Next, we want to send and receive in the same
transaction.

MessageConsumer messageConsumer = (MessageConsumer) session.createConsumer(queue);

//Send a Message 1in
transaction.

TextMessage msg2 =
session.createTextMessage();

String messageText2 = "Hello 2";

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 82

EDB JDBC Connector

msg2.setText(messageText2);
messageProducer.send(msg2) ;

//Receive message in the same transaction. There should be 1 message
available.

Message messagel =
messageConsumer.receive();

TextMessage txtMsgl = (TextMessage)
messagel;

//Send another Message in transaction.

TextMessage msg3 =
session.createTextMessage();

String messageText3 = "Hello 3";
msg3.setText(messageText3);
messageProducer.send(msg3) ;

//Commit the
transaction.

//This should remove the one message we sent initially and received above and send 2
messages.

session.commit();

//2 messages are in the queue so we can receive these 2
messages.

//Receive

Message message2 =
messageConsumer.receive();

TextMessage txtMsg2 = (TextMessage)
message2;

//Receive
2

Message message3 =
messageConsumer.receive();

TextMessage txtMsg3 = (TextMessage)
message3;

//Commit the transaction. This will consume the two
messages.

session.commit();

//Receive should fail now as there should be no messages
available.

Message message4 =
messageConsumer.receive();

//message4 will be null here.

AUTO_ACKNOWLEDGE mode

If the first argument to createSession() or createQueueSession() isfalse and the second argument is
Session.AUTO_ACKNOWLEDGE , the messages are acknowledged automatically.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 83

EDB JDBC Connector

DUPS_OK_ACKNOWLEDGE mode

This mode instructs the session to lazily acknowledge the message and that it's okay if some messages are redelivered. However, in EDB JMS, this
option is implemented the same way as Session.AUTO_ACKNOWLEDGE , where messages are acknowledged automatically.

CLIENT_ACKNOWLEDGE mode

If the first argument to createSession() or createQueueSession() isfalse and the second argument is
Session.CLIENT_ACKNOWLEDGE , the messages are acknowledged when the client acknowledges the message by calling the

acknowledge () method on a message. Acknowledging happens at the session level, and acknowledging one message causes all the received
messages to be acknowledged.

For example, if you send five messages and then receive the five messages, acknowledging the fifth message causes all five messages to be
acknowledged.

MessageProducer messageProducer = (MessageProducer) session.createProducer(queue);

//Send 5
messages

for(int i=1; i<=5; i++)

TextMessage msg =
session.createTextMessage();

String messageText = "Hello " +
i3

msg.setText(messageText) ;
messageProducer.send(msg) ;

MessageConsumer messageConsumer = (MessageConsumer) session.createConsumer(queue);

//Receive
4
for(int d=1; i<=4; +i++)
{
Message message = messageConsumer.receive();
TextMessage txtMsg = (TextMessage)
message;
}
//Receive the 5th
message

Message message5 =
messageConsumer.receive();

TextMessage txtMsg5 = (TextMessage)
message5;

//Now acknowledge it and all the messages will be
acknowledged.

txtMsg5.acknowledge() ;

//Try to receive again. This should return null as there is no message
available.

Message messageAgain = messageConsumer.receive();

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 84

EDB JDBC Connector
7.4 Message types

EDB-JDBC JMS API supports the following message types and can be used in a standard way.

Message type JMS type
ags$_jms_message javax.jms.Message
aqs$_jms_text_message javax.jms.TextMessage
aqs$_jms_bytes_message javax.jms.BytesMessage

aqgs$_jms_object_message javax.jms.ObjectMessage

Note

The corresponding payload types (user-defined types) aren't predefined. You must create them before configuring the queue table, as shown
in the examples that follow.

You can specify schema-qualified user-defined types, but the property types and message types must be in the same schema.

Message properties

All of the supported message types support setting and getting message properties. Before creating the actual message type, you must create the
corresponding user-defined type for message properties.

This example shows how to create the user-defined type for message properties:

CREATE OR REPLACE TYPE AQ$_JMS_USERPROPERTY
AS object

(
NAME VARCHAR2(100),
VALUE VARCHAR2(2000)

Y5

All primitive types of message properties are supported.

TextMessage

You can send text messages using the TextMessage interface. EDBTextMessageImpl isanimplementation of TextMessage , but for most
cases you use the standard TextMessage . Before using the text message, you need to create a user-defined type for it.

This example shows how to create a user-defined message type for TextMessage:

CREATE OR REPLACE TYPE AQ$_JMS_TEXT_MESSAGE AS object(PROPERTIES AQ$_JMS_USERPROPERTY[], STRING_VALUE
VARCHAR2 (4000)) ;

Once the user-defined type is created, you can create the queue table using this type. This example shows how to create the queue table using the
user-defined message created in the previous example:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 85

EDB JDBC Connector

EXEC DBMS_AQADM.CREATE_QUEUE_TABLE (queue_table => 'MSG_QUEUE_TABLE', queue_payload_type =>
"AQ$_JIMS_TEXT_MESSAGE', comment => 'Message queue table');

After setting up the queue table, you can send and receive TextMessages using the standard procedure outlined in this Java code snippet:

MessageProducer messageProducer = (MessageProducer) session.createProducer(queue);

// Create text
message

TextMessage msg =
session.createTextMessage();

String messageText = "Hello
there!";

msg.setText(messageText) ;

msg.setStringProperty ("mypropl", "test value 1");
// Send message

messageProducer.send(msg) ;

MessageConsumer messageConsumer = (MessageConsumer) session.createConsumer(queue);
// Receive Message
Message message = messageConsumer.receive();

TextMessage txtMsg = (TextMessage)
message;

System.out.println(txtMsg.getText());
System.out.println(txtMsg.getStringProperty("mypropl"));

BytesMessage

BytesMessage is used to send a stream of bytes. EDBBytesMessageImpl isanimplementation of BytesMessage , butin most cases you
use the standard BytesMessage . Before using BytesMessage , you must create a user-defined type.

This example shows how to create the user-defined type for BytesMessage :

CREATE OR REPLACE TYPE AQ$_JMS_BYTES_MESSAGE AS OBJECT (PROPERTIES AQS$S_JMS_USERPROPERTY[], RAW_VALUE
CLOB) ;

Now, you can send and receive BytesMessage in the standard way.

This example shows how to create and use a BytesMessage in Java:

MessageProducer messageProducer = (MessageProducer) session.createProducer(queue);

BytesMessage msg =
session.createBytesMessage();

String messageText = "Hello
there!";

msg.writeBytes(messageText.getBytes());
messageProducer.send(msg) ;

MessageConsumer messageConsumer = (MessageConsumer) session.createConsumer(queue);
Message message = messageConsumer.receive();

BytesMessage byteMsg = (BytesMessage) message;

byteMsg.reset();

byte[] bytes = new byte[(int) byteMsg.getBodyLength()];

byteMsg.readBytes (bytes);

System.out.println(new String(bytes));

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 86

EDB JDBC Connector

ObjectMessage

ObjectMessage isused to send a serializable object as a message. EDBObjectMessageImpl isanimplementation of ObjectMessage,
but the standard ObjectMessage is most commonly used.

Before using the ObjectMessage, you need to create the user-defined type for the object message.

This example shows how to create the user-defined type for ObjectMessage :

CREATE OR REPLACE TYPE AQ$_JMS_OBJECT_MESSAGE AS object(PROPERTIES AQ$_JMS_USERPROPERTY[], OBJECT_VALUE
CLOB) ;

For example, consider the following serializable Java class:

import java.io.Serializable;

public class Emp implements Serializable
{

private int 1id;

private String name;

private String role;

// Getter and setter
methods

public int getId() {
return -id;

public void setId(int 1id) {
this.id = 1d;

public String getName() {
return name;

public void setName(String name) {
this.name = name;

public String getRole() {
return role;

public void setRole(String role) {
this.role = role;

This example shows how to use ObjectMessage to send a message containing an object of this class:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 87

EDB JDBC Connector

MessageProducer messageProducer = (MessageProducer) session.createProducer(queue);

// Create object
message

ObjectMessage msg =
session.createObjectMessage();

Emp emp = new

Emp() ;

emp.setId(l);
emp.setName("Joe'");
emp.setRole("Manager");
msg.setObject (emp) ;

// Send message
messageProducer.send(msg) ;

MessageConsumer messageConsumer = (MessageConsumer) session.createConsumer(queue);

// Receive Message

Message message = messageConsumer.receive();
ObjectMessage objMsg = (ObjectMessage)
message;

Emp empBack = (Emp)

objMsg.getObject();

System.out.println("ID: " +
empBack.getId());

System.out.println('"Name: " +
empBack.getName());

System.out.println("Role: " +
empBack.getRole());

Message

Message can be used to send a message with only properties and no body. EDBMessageImpl isanimplementation ofa Message , but you
most often use the standard Message . Before using Message , create a user-defined type.

This example shows how to create a user-defined type for Message :

CREATE OR REPLACE TYPE AQ$_JMS_MESSAGE AS object(PROPERTIES
AQ$_IMS_USERPROPERTY[]) ;

This example shows how to send a message that contains only properties and no body:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

88

EDB JDBC Connector

MessageProducer messageProducer = (MessageProducer) session.createProducer(queue);
// Create message.

Message msg =
session.createMessage();

msg.setStringProperty ("mypropl", "test value 1");
msg.setStringProperty("myprop2", "test value 2");
msg.setStringProperty ("myprop3", "test value 3");
// Send message

messageProducer.send(msg) ;

MessageConsumer messageConsumer = (MessageConsumer) session.createConsumer(queue);
// Receive Message

message = messageConsumer.receive();
System.out.println("mypropl: " +
message.getStringProperty ("mypropl"));
System.out.println("myprop2: " +
message.getStringProperty ("myprop2"));
System.out.println("myprop3: " +
message.getStringProperty ("myprop3"));

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 89

EDB JDBC Connector
7.5 Non-standard message

EDB-JDBC JMS allows you to send and receive non-standard messages that are fully controlled by the API user. These messages don't support setting
and getting properties. The process involves creating a user-defined type and setting it as the payload for the queue table.

This example shows how to create a Java Bean corresponding to the type you created:

package mypackage;
import com.edb.jms.common.CompareValue;
import java.util.ArraylList;
public class MyType extends com.edb.aq.UDTType
{

private Integer code;

private String project;

private String manager;

public MyType() {

}

/AR

* @param code the code to

set

x/
(0)
public void setCode(Integer code) {
this.code = code;
}
Ak

* @return the
code

x/

public Integer getCode() {
return code;

}

J Ak

* @param project the project to
set

*x/
(1)
public void setProject(String project) {
this.project = project;
}
Vi is
* @return the
project
*x/
public String getProject() {
return project;

(2)
public void setManager (String manager) {
this.manager = manager;
}
public String getManager() {
return manager;
}
public String valueOf() {
StringBuilder sql = new StringBuilder ("CREATE TYPE
");
sql.append(getName() + "
")s

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 90

EDB JDBC Connector

sql.append("AS

";
sql.append('code 1int,
");
sql.append("project
TEXT) ;")
return
sql.toString();
}
JAK

* Override this method and call getter methods in the same order as in CREATE TYPE
statement.

*# CREATE OR REPLACE TYPE mytype AS object (code int, project text, manager
varchar (10))

* @eturn object array containing
parameters.

*/

public Object[] getParamValues() {
ArrayList<Object> params = new ArraylList<>

O;
params.add(getCode());
params.add(getProject());

params.add(getManager());

return
params.toArray();

}

Note

e When you create a user-defined class, it must extend the com.edb.aq.operations.UDTType class and override the
getParamValues () method. In this method, add the attribute values toan ArrayList inthe same order as they appearin the
CREATE TYPE SQL statement in the database.

e Also make sure to use the annotation @CompareValue(0) with better methods, as it specifies the order of methods when using the
reflection API to reconstruct the object after dequeuing the message from the queue.

Failure to meet these requirements may result in errors.

This example shows how to send an object of this class as a message:

messageProducer = (EDBJImsMessageProducer) session.createProducer(queue);
MyType udtTypel = new

MyType() ;
udtTypel.setProject("Test

Project");

udtTypel.setManager ("Joe");
udtTypel.setCode(321);

udtTypel.setName("mytype"); //type name used in "CREATE
TYPE"

messageProducer.send (udtTypel);

This example shows how to receive this object as a message:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 91

messageConsumer = (EDBJImsMessageConsumer) session.createConsumer(queue);

Message message = messageConsumer.receive();

MyType myt = (MyType)

message;
System.out.println("Code: "+
myt.getCode());
System.out.println("Project: "+
myt.getProject());
System.out.println('"Manager: "+
myt.getManager());

Nested types

This example shows how to use nested types in the user-defined types:

CREATE OR REPLACE TYPE -innermostcustom AS object (testing_field_1

text);

CREATE OR REPLACE TYPE -tinnercustom AS object (testing_field_1 text, innermost

innermostcustom) ;

CREATE OR REPLACE TYPE custom_type AS object (testing_field text, inner

innercustom) ;

EDB JDBC Connector

In this example, custom_type isusing innercustom asanother user-defined type thatin turn is using the innermostcustom user-defined
type. EDB Postgres Advanced Server supports the nested types this manner. However, it may have performance implications at a certain level. EDB

JMS API also provides flexibility to read such nested types at the cost of an added performance impact.

To illustrate this using the EDB JMS API, you must first create the equivalent objects that represent nested custom types as shown in the examples

that follow.

InnermostCustom.java

package mypackage;

import com.edb.aq.UDTType;
import com.edb.jms.common.CompareValue;

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

92

import java.util.ArraylList;
public class InnermostCustom extends UDTType {

public InnermostCustom() {

}
private String testing_field_1;

public String getTesting_field_1() {
return testing_field_1;

(0)
public void setTesting_field_1(String testing_field_1) {
this.testing_field_1 = testing_field_1;

public Object[] getParamValues(){
ArrayList<Object> params = new ArrayList<Object>

OF

params.add(getTesting_field_1());

return
params.toArray();

}

InnerCustom.java

package mypackage;

import com.edb.aq.UDTType;
import com.edb.jms.common.CompareValue;

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB JDBC Connector

93

import java.util.ArraylList;

public class InnerCustom extends UDTType

{

public InnerCustom() {
}

private String testing_field_1;
private InnermostCustom innermostCustom;

public String getTesting_field_1() {
return testing_field_1;

()]
public void setTesting_field_1(String testing_field_1) {
this.testing_field_1 = testing_field_1;

public InnermostCustom getInnermostCustom() {
return innermostCustom;

(1)
public void setInnermostCustom(InnermostCustom innermostCustom) {
this.innermostCustom = innermostCustom;

public Object[] getParamValues(){
ArrayList<Object> params = new ArrayList<Object>

OF

params.add(getTesting_field_1());

params.add(getInnermostCustom());

return
params.toArray();

}

CustomType.java

package mypackage;

import com.edb.aq.UDTType;
import com.edb.jms.common.CompareValue;

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB JDBC Connector

94

import java.util.ArraylList;
public class CustomType extends UDTType {

private String testing_field;
private InnerCustom
innerCustom;

public String getTesting_field() {
return testing_field;

(©)
public void setTesting_field(String testing_field) {
this.testing_field = testing_field;

}

public InnerCustom getInnerCustom()
{

return

innerCustom;

}

(1)

public void setInnerCustom(InnerCustom innerCustom)

{

this.innerCustom =
innerCustom;

}

public CustomType() {

public Object[] getParamValues(){
ArraylList<Object> params = new ArraylList<Object>

(0N
params.add(getTesting_field());
params.add(getInnerCustom());

return
params.toArray();

}

This example shows how to read these nested types:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB JDBC Connector

95

EDB JDBC Connector

EDBJImsMessageProducer messageProducer = (EDBJImsMessageProducer)
session.createProducer(queue_1);

InnermostCustom innermostCustom = new InnermostCustom();
innermostCustom.setTesting_field_1("Innermost set");
innermostCustom.setName("innermostCustom") ;

InnerCustom innerCustom = new
InnerCustom();

innerCustom.setTesting_field_1("Inner
set");

innerCustom.setInnermostCustom(innermostCustom) ;

innerCustom.setName ("innercustom");

CustomType customType = new CustomType();
customType.setTesting_field("EDB");
customType.setInnerCustom(innerCustom) ;
customType.setName ("custom_type");

messageProducer.send(customType) ;

EDBJImsMessageConsumer messageConsumer = (EDBJImsMessageConsumer)
session.createConsumer(queue_1);

Message message = messageConsumer.receive();

CustomType myType = (CustomType)
message;

InnerCustom innerCustom_1 =
myType.getInnerCustom();

InnermostCustom innermostCustoml =
innerCustom_1.getInnermostCustom() ;

System.out.println("Outer type test field: " +
myType.getTesting_field());

System.out.println("Inner type test field: " +
innerCustom_1.getTesting_field_1());

System.out.println("Most Inner type test field: " +
innermostCustoml.getTesting_field_1());

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 96

EDB JDBC Connector
8 Executing SQL commands with executeUpdate() or through PrepareStatement objects

In the previous example, ListEmployees executeda SELECT statement using the Statement.executeQuery () method.
executeQuery () was designed to execute query statements so it returns a ResultSet that contains the data returned by the query. The
Statement class offers a second method that you use to execute other types of commands (UPDATE , INSERT, DELETE , and so forth). Instead
of returning a collection of rows, the executeUpdate() method returns the number of rows affected by the SQL command it executes.

The signature of the executeUpdate() methodis:
int executeUpdate(String sqlStatement)

Provide this method with a single parameter of type String containing the SQL command that you want to execute.
Avoid user-sourced values

We recommend that this string does not contain any user-sourced values. Avoid concatenating strings and values to compose your SQL
command. Instead, use PreparedStatements which are reusable, parameterized SQL statements which safely manage the use of variable
values in the SQL statement.

Using executeUpdate() to INSERT data
The example that follows shows using the executeUpdate () method to add a row to the emp table.

Code samples

The following examples are not a complete application, only example methods. These code samples don't include the code required to set
up and tear down a Connection .To experiment with the example, you must provide a class that invokes the sample code.

public void addOneEmployee(Connection
con)

{
try (Statement stmt=con.createStatement();)

{

int rowcount = stmt.executeUpdate("INSERT INTO emp(empno, ename)
VALUES (6000, 'Jones')");

System.out.println();

System.out.printf("Success - %d - rows
affected.\n",rowcount) ;

} catch(Exception err)
System.out.println("An error has
occurred.");

System.out.println("See full details below.");

err.printStackTrace();

}

The addOneEmployee () method expects a single argument from the caller,a Connection object that must be connected to an EDB Postgres
Advanced Server database:

public void addOneEmployee(Connection
con) ;

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 97

EDB JDBC Connector

A Statement objectis needed to run ExecuteUpdate() . This can be obtained by using createStatement() on the Connection object. We
use the try-resource style here to ensure the statement object is released when the try block is exited.

try (Statement stmt=con.createStatement()) {

The executeUpdate() method returns the number of rows affected by the SQL statement (an INSERT typically affects one row, but an
UPDATE or DELETE statement can affect more).

int rowcount = stmt.executeUpdate("INSERT INTO emp(empno, ename)
VALUES (6000, 'Jones')");

If executeUpdate() returnswithoutan error, the callto System.out.printf displays a message to the user that shows the number of rows
affected.

System.out.println();
System.out.printf("Success - %d - rows
affected.\n",rowcount) ;

The catch block displays an appropriate error message to the user if the program encounters an exception:

} catch (Exception err)

System.out.println("An error has
occurred.");
System.out.println("See full details below.");

err.printStackTrace();

}

You can use executeUpdate() with any SQL command that doesn't return a result set. It is best suited to situations where a specific command
needs to be executed and that command takes no parameters.

To use the DROP TABLE command to delete a table from a database:

Statement stmt=con.createStatement();
stmt.executeUpdate("DROP TABLE tableName');

To use the CREATE TABLE command to add a new table to a database:

Statement stmt=con.createStatement();
stmt.executeUpdate("CREATE TABLE tablename (fieldname NUMBER(4,2), fieldname2 VARCHAR2(30))";

Tousethe ALTER TABLE command to change the attributes of a table:

Statement stmt=con.createStatement();
stmt.executeUpdate("ALTER TABLE tablename ADD COLUMN colname BOOLEAN ";

However, you should use PreparedStatement when passing values to an SQL insert or update statement, especially if those values have come

from user input.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 98

EDB JDBC Connector

Using PreparedStatements to send SQL commands

Many applications execute the same SQL statement over and over again, changing one or more of the data values in the statement between each
iteration. If you use a Statement object to repeatedly execute a SQL statement, the server must parse, plan, and optimize the statement every
time. JDBC offers another Statement derivative, the PreparedStatement , to reduce the amount of work required in such a scenario.

The following shows invoking a PreparedStatement that accepts an employee ID and employee name and inserts that employee information in
the emp table:

public void addEmployee(Connection con, Integer id, String
name)
{
String command = "INSERT INTO emp(empno,ename)
VALUES(2,?)";
try(PreparedStatement addstmt = con.prepareStatement(command)

{
addstmt.setObject(1,1id);
addstmt.setObject(2,name);
addstmt.execute();
System.out.println("Employee
added") ;
} catch(Exception err)
{

System.out.println("An error has
occurred.");

System.out.println("See full details below.");

err.printStackTrace();

}

This version of an add employee method takes as parameters the connection and values for the employee number (an integer) and name (a string).

Instead of hard coding data values in the SQL statement, you insert placeholders to represent the values to change with each iteration. The example
shows an INSERT statement that includes two placeholders (each represented by a question mark):

String command = "INSERT INTO emp(empno,ename)
VALUES(2,2)";

With the parameterized SQL statement in hand, the AddEmployee () method can ask the Connection object to prepare that statement and
returna PreparedStatement object:

try(PreparedStatement addstmt = con.prepareStatement(command)

At this point, the PreparedStatement has parsed and planned the INSERT statement, but it doesn't know the values to add to the table. Before
executing PreparedStatement , you must supply a value for each placeholder by callinga setter method. setObject() expectstwo
arguments:

e A parameter number. Parameter number one corresponds to the first question mark, parameter number two corresponds to the second
question mark, etc.
e The value to substitute for the placeholder.

The AddEmployee () method prompts the user for an employee ID and name and calls setObject() with the values supplied in the
parameters:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 99

EDB JDBC Connector

addstmt.setObject(1,1id);
addstmt.setObject(2,name);

It then asks the PreparedStatement object to execute the statement:

addstmt.execute();

If the SQL statement executes as expected, AddEmployee () displays a message that confirms the execution. If the server encounters an exception,
the error handling code displays an error message.

Some simple syntax examples using PreparedStatement sending SQL commands follow:
To use the UPDATE command to update a row:

public static void updateEmployee(Connection con, Integer 1id, String
name)

{

String command = "UPDATE emp SET ename=? where empno=?";

try (PreparedStatement updateStmt = con.prepareStatement(command)) {
updateStmt.setObject(1,id);
updateStmt.setObject(2,name);
updateStmt.execute();

} catch(Exception err)

System.out.println("An error has
occurred.");

System.out.println("See full details below.");

err.printStackTrace();

}

For regularly and repeatedly used statements, the prepared statement can be initialized and reused.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 100

EDB JDBC Connector

PreparedStatement preparedAddStmt;

public void prepareStatements(Connection con)

try {
preparedAddStmt=con.prepareStatement("INSERT INTO emp (empno,ename)
VALUES(2,2)");
} catch (SQLException e)

{
throw new RuntimeException(e);
}
}
public void addPreparedEmployee(Integer id, String name)
{
try {
preparedAddStmt.setObject(1,1d);
preparedAddStmt.setObject(2,name);
preparedAddStmt.execute();
} catch(Exception err)
{

System.out.println("An error has
occurred.");

System.out.println("See full details below.");

err.printStackTrace();

}

This saves the system having to reparse and initialize the statement every time it is executed. Note that the prepared statement is prepared without a
try-with-resource wrapper to ensure it is not closed when it leaves the prepareStatements method.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 101

EDB JDBC Connector
9 Adding a graphical interface to a Java program

With a little extra work, you can add a graphical user interface to a program. The next example shows how to write a Java application that creates a
JTab'le (a spreadsheet-like graphical object) and copies the data returned by a query into that JTable .

Note

The following sample application is a method, not a complete application. To call this method, provide an appropriate main() function
and wrapper class.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 102

EDB JDBC Connector

import java.sql.x;

import java.util.Vector;

import javax.swing.JFrame;
import javax.swing.JScrollPane;
import javax.swing.JTable;

public void showEmployees(Connection
con)

{
try
{

Statement stmt =
con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT x FROM
emp") ;

ResultSetMetaData rsmd = rs.getMetaData();

Vector labels = new
Vector();

for(int column = 0; column < rsmd.getColumnCount() ;
column++)

labels.addElement(rsmd.getColumnLabel(column +
1));

Vector rows = new Vector();
while(rs.next())
{

Vector rowValues = new Vector();

for(int column = 0; column < rsmd.getColumnCount();
column++)

rowValues.addElement(rs.getString(column + 1));
rows.addElement (rowValues) ;

JTable table = new JTable(rows,
labels);

JFrame jf = new JFrame("Browsing table: EMP (from
EnterpriseDB)");

jf.getContentPane().add(new JScrollPane(table));
jf.setSize (400, 400);

jf.setVisible(true);
jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
System.out.println("Command successfully executed");

}

catch(Exception
err)

{
System.out.println("An error has
occurred.");
System.out.println("See full details below.");

err.printStackTrace();

}

Before writing the showEmployees () method, you must import the definitions for a few JDK-provided classes:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 103

EDB JDBC Connector

import java.sql.*;

import java.util.Vector;
import javax.swing.JFrame;
import javax.swing.JScrollPane;
import javax.swing.JTable;

The showEmployees () method expectsa Connection object to be provided by the caller. The Connection object must be connected to the
EDB Postgres Advanced Server:

public void showEmployees(Connection
con)

showEmployees () createsa Statement andusesthe executeQuery () method to execute an SQL query that generates an employee list:

Statement stmt =
con.createStatement();

ResultSet rs = stmt.executeQuery("SELECT %= FROM
emp") ;

As you'd expect, executeQuery () returnsa ResultSet object. The ResultSet object contains the metadata that describes the shape of the
result set (that is, the number of rows and columns in the result set, the data type for each column, the name of each column, and so forth). You can
extract the metadata from the ResultSet by callingthe getMetaData() method:

ResultSetMetaData rsmd = rs.getMetaData();

Next, showEmployees () creates a vector (a one-dimensional array) to hold the column headers and then copies each header from the
ResultMetaData objectinto the vector:

Vector labels = new
Vector();

for(int column = 0; column < rsmd.getColumnCount();
column++)

{

labels.addElement(rsmd.getColumnLabel(column +
1));

}

With the column headers in place, showEmployees () extracts each row from the ResultSet and copiesitinto a new vector (named rows).
The rows vectoris actually a vector of vectors: each entry in the rows vector contains a vector that contains the data values in that row. This
combination forms the two-dimensional array that you need to build a JTab'le . After creating the rows vector, the program reads through each
rowinthe ResultSet (bycalling rs.next()).Foreachcolumnineachrow,a getter method extracts the value at that row/column and adds
the value to the rowValues vector. Finally, showEmployee () addseach rowValues vectortothe rows vector:

Vector rows = new Vector();
while(rs.next())
{

Vector rowValues = new Vector();

for(int column = 0; column < rsmd.getColumnCount();
column++)

rowValues.addElement(rs.getString(column + 1));
rows.addElement (rowValues) ;

At this point, the vector (Labels) contains the column headers, and a second two-dimensional vector (rows) contains the data for the table. Now
you can create a JTable from the vectorsanda JFrame to hold the JTable:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 104

JTable table = new JTable(rows,
labels);

JFrame jf = new JFrame("Browsing table: EMP (from
EnterpriseDB)");

jf.getContentPane().add(new JScrollPane(table));
jf.setSize (400, 400);
jf.setVisible(true);

jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

System.out.println("Command successfully executed");

EDB JDBC Connector

The showEmployees () methodincludesa catch block to intercept any errors that occur and display an appropriate message to the user:

catch(Exception

err)

{

System.out.println("An error has
occurred.");

System.out.println("See full details below.");

err.printStackTrace();

}

The result of calling the showEmployees () method is shown in figure:

<5 Browsing table: EMP { from EnterpriseDB)

=]

2mpno ename| ioh | mar |hiredate| sal |cnmm|degtnn
7368 [SMITH (CLERK 7902 [1980-.. |800.00 20
7495 |ALLEM |SALE.. 7698 [1981-.. 1600.00/300.00 (30
7821 MWWARD |SALE.. 7688 [1981-.. [1250.00/500.00 (30
TEEE [JOMES MAMA.. 7839 [1981-.. |2975.00 20
TEA4 |MARTIN|SALE.. 7698 [1981-... 1250.00/1400.00(30
TE9S |[BLAKE MAMA.. 7839 [1981-.. |2850.00 30
7782 |CLARK MAMA.. 7839 [1981-.. |2450.00 10
TY88 |SCOTT AMAL.. 7866 [1987-.. [3000.00 20
7838 |KING |PRESI. 1881-... [A000.00 10
7844 |TURM..|SALE.. 7698 [1981-... [1400.00/0.00 30
TEBTE |ADAMS (CLERK 7788 [1987-.. [1100.00 20
7800 |JAMES (CLERK 7698 [1981-.. (950,00 30
7802 FORD |AmMAL.. 7866 [1981-.. |3000.00 20
78934 |MILLER CLERK 7782 [1982-.. |[1300.00 10

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

105

EDB JDBC Connector
10 Advanced JDBC Connector functionality

These examples show you some of the advanced features of the EDB Postgres Advanced Server JDBC Connector.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 106

EDB JDBC Connector
10.1 Reducing client-side resource requirements

The EDB Postgres Advanced Server JDBC driver retrieves the results of a SQL query as a ResultSet object. If a query returns a large number of
rows, using a batched ResultSet :

e Reduces the amount of time it takes to retrieve the first row.
e Saves time by retrieving only the rows that you need.
e Reduces the memory requirement of the client.

When you reduce the fetch size of a ResultSet object, the driver doesn’t copy the entire ResultSet across the network (from the server to the
client). Instead, the driver requests a small number of rows at a time. As the client application moves through the result set, the driver fetches the next
batch of rows from the server.

You can't use batched result sets in all situations. Not adhering to the following restrictions causes the driver to silently fall back to fetching the
whole ResultSet atonce:

e The client application must disable autocommit .

® You must create the Statement object witha ResultSet type of TYPE_FORWARD_ONLY type (the default). TYPE_FORWARD_ONLY
result sets can only step forward through the ResultSet.

e The query must consist of a single SQL statement.

Modifying the batch size of a statement object

Limiting the batch size of a ResultSet object can speed the retrieval of data and reduce the resources needed by a client-side application. The
following code creates a Statement object with a batch size limited to five rows:

// Make sure autocommit is
off

conn.setAutoCommit(false);

Statement stmt = conn.createStatement();

// Set the Batch
Size.

stmt.setFetchSize(5);
ResultSet rs = stmt.executeQuery("SELECT % FROM
emp');

while (rs.next())

System.out.println("a row was
returned.");

rs.close();
stmt.close();

The callto conn.setAutoCommit(false) ensuresthatthe server won't close the ResultSet before you have a chance to retrieve the first
row. After preparing the Connection,youcan constructa Statement object:

Statement stmt = db.createStatement();

The following code sets the batch size to five (rows) before executing the query:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 107

EDB JDBC Connector

stmt.setFetchSize(5);

ResultSet rs = stmt.executeQuery("SELECT * FROM
emp");

For each row in the ResultSet object, thecallto println() prints a row was returned.

System.out.println("a row was
returned.");

While the ResultSet contains all of the rows in the table, they are only fetched from the server five rows at a time. From the client’s point of view,
the only difference betweena batched result setandan unbatched result set is that a batched result can return the first row in less time.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 108

EDB JDBC Connector

10.2 Using PreparedStatements to send SQL commands

Many applications execute the same SQL statement over and over again, changing one or more of the data values in the statement between each
iteration. If you usea Statement object to repeatedly execute a SQL statement, the server must parse, plan, and optimize the statement every
time. JDBC offers another Statement derivative, the PreparedStatement , to reduce the amount of work required in this scenario.

The following code shows invokinga PreparedStatement thataccepts an employee ID and employee name and inserts that employee

information in the emp table:

public void AddEmployee(Connection
con)

{
try
{

Console ¢ =
System.console();

String command = "INSERT INTO emp(empno,ename)
VALUES(2,?)";

PreparedStatement stmt =
con.prepareStatement(command) ;

stmt.setObject(1l,new Integer(c.readLine("ID:")));
stmt.setObject(2,c.readLine("Name:"));
stmt.execute();

System.out.println("The procedure successfully executed.");

}
catch(Exception
err)

{
System.out.println("An error has
occurred.");

System.out.println("See full details below.");

err.printStackTrace();

}

Instead of hard coding data values in the SQL statement, you insert placeholders to represent the values that change with each iteration. The
following shows an INSERT statement that includes two placeholders (each represented by a question mark):

String command = "INSERT INTO emp(empno,ename)
VALUES(?,?)";

With the parameterized SQL statement in hand, the AddEmployee () method can ask the Connection object to prepare that statement and
returna PreparedStatement object:

PreparedStatement stmt =
con.prepareStatement(command) ;

At this point, the PreparedStatement has parsed and planned the INSERT statement, but it doesn't know the values to add to the table. Before
executing the PreparedStatement , you must supply a value for each placeholder by callinga setter method. setObject() expectstwo

arguments:

e A parameter number. Parameter number one corresponds to the first question mark, parameter number two corresponds to the second
question mark, etc.
e The value to substitute for the placeholder.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 109

EDB JDBC Connector
The AddEmployee () method prompts the user for an employee ID and name and calls setObject () with the values supplied by the user:

stmt.setObject(1l,new Integer(c.readLine("ID:")));

stmt.setObject(2,
c.readLine("Name:"));

It then asks the PreparedStatement object to execute the statement:

stmt.execute();

If the SQL statement executes as expected, AddEmployee () displays a message that confirms the execution. If the server encounters an exception,

the error handling code displays an error message.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 110

EDB JDBC Connector

10.3 Executing stored procedures

A stored procedure is a module that's written in EDB’s SPL and stored in the database. A stored procedure can define input parameters to supply data
to the procedure and output parameters to return data from the procedure. Stored procedures execute in the server and consist of database access
commands (SQL), control statements, and data structures that manipulate the data obtained from the database.

Stored procedures are especially useful when extensive data manipulation is required before storing data from the client. It's also efficient to use a
stored procedure to manipulate data in a batch program.

Invoking stored procedures

The CallableStatement class provides a way for a Java program to call stored procedures. A CallableStatement object can have a
variable number of parameters used for input (IN parameters), output (OUT parameters), or both (IN OUT parameters).

The syntax for invoking a stored procedure in JDBC is shown below. The square brackets indicate optional parameters. They aren't part of the
command syntax.

{call procedure_name([?, 2, ...])}
The syntax to invoke a procedure that returns a result parameter is:

{? = call procedure_name([?, 2, ...])}

Each question mark serves as a placeholder for a parameter. The stored procedure determines if the placeholders represent IN, OUT ,or IN OUT
parameters and the Java code must match.

Executing a simple stored procedure

The following shows a stored procedure that increases the salary of each employee by 10%. increaseSalary expects no arguments from the
caller and doesn't return any information:

CREATE OR REPLACE PROCEDURE
increaseSalary

IS
BEGIN

UPDATE emp SET sal = sal *
1.10;

END;

The following shows how to invoke the increaseSalary procedure:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 111

EDB JDBC Connector

public void SimpleCallSample(Connection
con)

{
try

{
CallableStatement stmt = con.prepareCall("{call
increaseSalary()}");

stmt.execute();

System.out.println("Stored Procedure executed
successfully");

}

catch(Exception
err)

{

System.out.println("An error has
occurred.");

System.out.println("See full details below.");

err.printStackTrace();

}

To invoke a stored procedure from a Java application, use a CallableStatement object. The CallableStatement classis derived from the
Statement class and, like the Statement class, you obtaina CallableStatement object byaskinga Connection object to create one
foryou. Tocreatea CallableStatement froma Connection,usethe prepareCall() method:

CallableStatement stmt = con.prepareCall("{call
increaseSalary()}");

As the name implies, the prepareCall() method prepares the statement but doesn't execute it. As Executing stored procedures with IN
parameters shows, an application typically binds parameter values between the call to prepareCall() andthecallto execute() . Toinvoke
the stored procedure on the server, call the execute () method.

stmt.execute();

This stored procedure (increaseSalary) didn't expect any IN parameters and didn't return any information to the caller (using OUT
parameters), so invoking the procedure is a matter of creatinga CallableStatement object and then calling that object’s execute() method.

Executing stored procedures with IN parameters

The code in the next example first creates and then invokes a stored procedure named empInsert . empInsert requires IN parameters that
contain employee information: empno, ename, job, sal, comm, deptno,and mgr. empInsert theninsertsthatinformation into the
emp table.

The following creates the stored procedure in the EDB Postgres Advanced Server database:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 112

CREATE OR REPLACE PROCEDURE empInsert(

pEname IN
VARCHAR,

pJob IN VARCHAR,

pSal IN FLOAT4,

pComm IN FLOAT4,
pDeptno IN INTEGER,
pMgr IN INTEGER

)
AS
DECLARE
CURSOR getMax IS SELECT MAX(empno) FROM
emp;
max_empno INTEGER := 10;
BEGIN

OPEN getMax;

FETCH getMax INTO
max_empno;

INSERT INTO emp(empno, ename, job, sal, comm, deptno,
mgr)

VALUES (max_empno+1l, pEname, pJob, pSal, pComm, pDeptno,

pMgr) ;

CLOSE getMax;
END;

The following shows how to invoke the stored procedure from Java:

public void CallExample2(Connection
con)
{
try
{
Console ¢ =
System.console();
String commandText = "{call
empInsert(?,?,2,2,2,2)}";
CallableStatement stmt =
con.prepareCall(commandText) ;

stmt.setObject (1, new
stmt.setObject (2, new
stmt.setObject (3, new
stmt.setObject (4, new

String(c.readLine("Employee Name
String(c.readLine("Job :")));
1))

Float(c.readLine("Commission :")));

"))

Float(c.readLine("Salary

stmt.setObject (5, new Integer(c.readLine("Department No
stmt.setObject (6, new Integer(c.readLine("Manager")));
stmt.execute();

}

catch(Exception
err)

{

System.out.println("An error has
occurred.");

System.out.println("See full details below.");

err.printStackTrace();

}

Each placeholder (?) in the command (commandText) represents a point in the command that's later replaced with data:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

"))

EDB JDBC Connector

113

EDB JDBC Connector

String commandText = "{call
EMP_INSERT(?,7,2,2,2,2)}";
CallableStatement stmt =
con.prepareCall(commandText) ;

The setObject() method bindsavaluetoan IN or IN OUT placeholder. Each callto setObject() specifiesa parameter numberand a
value to bind to that parameter:

stmt.setObject(1l, new String(c.readLine("Employee Name :")));
stmt.setObject(2, new String(c.readLine("Job :")));
stmt.setObject (3, new Float(c.readLine("Salary :")));
stmt.setObject (4, new Float(c.readLine("Commission :")));
stmt.setObject(5, new Integer(c.readLine('"Department No :")));
stmt.setObject (6, new Integer(c.readLine("Manager'")));

After supplying a value for each placeholder, this method executes the statement by calling the execute () method.

Executing stored procedures with OUT parameters

The next example creates and invokes an SPL stored procedure called deptSelect . This procedure requires one IN parameter (department
number) and returns two OUT parameters (the department name and location) corresponding to the department number:

CREATE OR REPLACE PROCEDURE deptSelect

(

p_deptno IN
INTEGER,

p_dname OUT VARCHAR,
p_Lloc OUT VARCHAR
)
AS
DECLARE

CURSOR deptCursor IS SELECT dname, loc FROM dept WHERE
deptno=p_deptno;

BEGIN

OPEN
deptCursor;

FETCH deptCursor INTO p_dname,
p_loc;

CLOSE
deptCursor;

END;

The following shows the Java code required to invoke the deptSelect stored procedure:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 114

EDB JDBC Connector

public void GetDeptInfo(Connection
con)

{
try
{

Console c =
System.console();

String commandText = "{call
deptSelect(?,?,?)1}";

CallableStatement stmt =
con.prepareCall(commandText) ;

stmt.setObject(1l, new Integer(c.readLine("Dept No :")));
stmt.registerOutParameter (2, Types.VARCHAR);
stmt.registerOutParameter (3, Types.VARCHAR);
stmt.execute();

System.out.println("Dept Name: " +
stmt.getString(2));

System.out.println("Location : " +
stmt.getString(3));

}

catch(Exception
err)

{

System.out.println("An error has
occurred.");

System.out.println("See full details below.");

err.printStackTrace();

}

Each placeholder (?) in the command (commandText) represents a point in the command that's later replaced with data:

String commandText = "{call
deptSelect(?,?,?)1}";
CallableStatement stmt =
con.prepareCall(commandText) ;

The setObject() method bindsavaluetoan IN or IN OUT placeholder. When calling setObject () , you mustidentify a placeholder (by its
ordinal number) and provide a value to substitute in place of that placeholder:

stmt.setObject(1l, new Integer(c.readLine("Dept No :")));

Register the JDBC type of each OUT parameter before executing the CallableStatement objects. Registering the JDBC type is done with the
registerOutParameter () method.

stmt.registerOutParameter (2, Types.VARCHAR);
stmt.registerOutParameter (3, Types.VARCHAR);

After executing the statement, the CallableStatement getter method retrieves the OUT parameter values. To retrieve a VARCHAR value, use
the getString() getter method.

stmt.execute();
System.out.println("Dept Name: " + stmt.getString(2));
System.out.println("Location : " + stmt.getString(3));

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 115

EDB JDBC Connector

In this example, GetDeptInfo() registerstwo OUT parameters and (after executing the stored procedure) retrieves the values returned in the
OUT parameters. Since both OUT parameters are defined as VARCHAR values, GetDeptInfo() usesthe getString() method to retrieve
the OUT parameters.

Executing stored procedures with IN OUT parameters

The code in the next example creates and invokes a stored procedure named empQuery defined with one IN parameter (p_deptno), two IN
OUT parameters (p_empno and p_ename)and three OUT parameters (p_job, p_hiredate and p_sal). empQuery thenreturns
information about the employee in the two IN OUT parameters and three OUT parameters.

This code creates a stored procedure named empQuery :

CREATE OR REPLACE PROCEDURE

empQuery
(
p_deptno IN
NUMBER,
p_empno IN OUT NUMBER,
p_ename IN OUT VARCHAR2,
p_job ouT VARCHAR2,
p_hiredate ouT DATE,
p_sal ouT NUMBER
)
IS
BEGIN
SELECT empno, ename, job, hiredate,
sal
INTO p_empno, p_ename, p_job, p_hiredate,
p_sal
FROM
emp
WHERE deptno =
p_deptno
AND (empno =
p_empno

OR ename = UPPER(p_ename));
END;

The following code shows invoking the empQuery procedure, providing values for the IN parameters, and handling the OUT and IN
OUT parameters:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 116

public void CallSample4(Connection
con)

{
try
{

Console c =
System.console();
String commandText = "{call
empQuery (?,?,2,2,2,?)}";
CallableStatement stmt =
con.prepareCall(commandText) ;
stmt.setInt(l, new Integer(c.readLine("Department No:")));
stmt.setInt(2, new Integer(c.readLine("Employee No:")));

stmt.setString(3, new String(c.readLine("Employee
Name:")));

stmt.registerOutParameter (2, Types.INTEGER);
stmt.registerOutParameter (3, Types.VARCHAR);
stmt.registerOutParameter (4, Types.VARCHAR);
stmt.registerOutParameter (5, Types.TIMESTAMP);
stmt.registerOutParameter (6, Types.NUMERIC);
stmt.execute();

System.out.println("Employee No: " +
stmt.getInt(2));

System.out.println("Employee Name: " +
stmt.getString(3));

System.out.println("Job : " +
stmt.getString(4));

System.out.println("Hiredate : " +
stmt.getTimestamp(5));

System.out.println("Salary : " +
stmt.getBigDecimal(6));

}

catch(Exception
err)

{

System.out.println("An error has
occurred.");

System.out.println("See full details below.");

err.printStackTrace();

}

Each placeholder (?) in the command (commandText) represents a point in the command that's later replaced with data:

String commandText = "{call empQuery(?,?,?,?2,2,?2)}";
CallableStatement stmt = con.prepareCall(commandText) ;

EDB JDBC Connector

The setInt() methodis atype-specific setter method that bindsan Integer valuetoan IN or IN OUT placeholder. The call to

setInt() specifiesa parameter number and provides a value to substitute in place of that placeholder:

stmt.setInt(1l, new Integer(c.readLine('"Department No:")));
stmt.setInt(2, new Integer(c.readLine("Employee No:")));

The setString() methodbindsa String valuetoan IN or IN OUT placeholder:

stmt.setString(3, new String(c.readLine("Employee Name:")));

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

117

EDB JDBC Connector

Before executing the CallableStatement ,you must register the JDBC type of each OUT parameter by calling the
registerOutParameter () method.

stmt.registerOutParameter (2, Types.INTEGER);
stmt.registerOutParameter (3, Types.VARCHAR);
stmt.registerOutParameter (4, Types.VARCHAR);
stmt.registerOutParameter (5, Types.TIMESTAMP);
stmt.registerOutParameter (6, Types.NUMERIC);

Before calling a procedure with an IN parameter, you must assign a value to that parameter with a setter method. Before calling a procedure with
an OUT parameter, you register the type of that parameter. Then you can retrieve the value returned by calling a getter method. When calling a
procedure that definesan IN OUT parameter, you must perform all three actions:

e Assign avalue to the parameter.
e Register the type of the parameter.
e Retrieve the value returned with a getter method.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 118

EDB JDBC Connector
10.4 Using REF CURSORS with Java

A REF CURSOR is a cursor variable that contains a pointer to a query result set returned by an OPEN statement. Unlike a static cursor,a REF
CURSOR isn't tied to a particular query. You can open the same REF CURSOR variable any number of times with the OPEN statement containing
different queries. Each time, a new result set is created for that query and made available by way of the cursor variable. A REF CURSOR can also
pass a result set from one procedure to another.

EDB Postgres Advanced Server supports the declaration of both strongly typed and weakly typed REF CURSOR variables. A strongly typed cursor
must declare the shape (the type of each column) of the expected result set. You can use only a strongly typed cursor with a query that returns the
declared columns. Opening the cursor with a query that returns a result set with a different shape causes the server to return an exception. On the
other hand, a weakly typed cursor can work with a result set of any shape.

To declare a strongly typed REF CURSOR :
TYPE <cursor_type_name> IS REF CURSOR RETURN <return_type>;
To declare a weakly typed REF_CURSOR :

name
SYS_REFCURSOR;

Using a REF CURSOR to retrieve a ResultSet

The stored procedure shown in the following ' getEmpNames) builds two REF CURSOR variabes on the server. The first REF CURSOR contains a
list of commissioned employees in the emp table. The second REF CURSOR contains a list of salaried employees in the emp table:

CREATE OR REPLACE PROCEDURE
getEmpNames

(
commissioned OUT
SYS_REFCURSOR,

salaried OUT
SYS_REFCURSOR

)
Is
BEGIN

OPEN commissioned FOR SELECT ename FROM emp WHERE comm 1is NOT
NULL;

OPEN salaried FOR SELECT ename FROM emp WHERE comm -is
NULL;

END;

The RefCursorSample () method shown in the following invokes the getEmpName () stored procedure and displays the names returned in
each of thetwo REF CURSOR variables:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 119

EDB JDBC Connector

public void RefCursorSample(Connection
con)

{
try
{

con.setAutoCommit(false);
String commandText = "{call

getEmpNames (?,?)1}";
CallableStatement stmt =

con.prepareCall(commandText) ;

stmt.registerOutParameter (1, Types.REF);
stmt.registerOutParameter (2, Types.REF);

stmt.execute();
ResultSet commissioned = (ResultSet)stmt.getObject(1l);

System.out.println("Commissioned
employees:");

while(commissioned.next())

{
System.out.println(commissioned.getString(1));

ResultSet salaried =
(ResultSet)stmt.getObject(2);

System.out.println("Salaried
employees:");

while(salaried.next())

{
System.out.println(salaried.getString(1));

}

catch(Exception
err)

{

System.out.println("An error has
occurred.");

System.out.println("See full details below.");

err.printStackTrace();

}

A CallableStatement prepareseach REF CURSOR (commissioned and salaried). Each cursoris returned asan OUT parameter of the
stored procedure, getEmpNames () :

String commandText = "{call
getEmpNames (?,?)1}";
CallableStatement stmt =
con.prepareCall(commandText) ;

Thecallto registerOutParameter () registersthe parametertype (Types.REF) of the first REF CURSOR (commissioned):

stmt.registerOutParameter (1, Types.REF);

Anothercallto registerOutParameter () registersthe second parameter type (Types.REF) of the second REF CURSOR (salaried):

stmt.registerOutParameter (2, Types.REF);

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 120

EDB JDBC Connector

Acallto stmt.execute() executesthe statement:

stmt.execute();

The getObject () method retrieves the values from the first parameter and casts the result to a ResultSet . Then, RefCursorSample
iterates through the cursor and prints the name of each commissioned employee:

ResultSet commissioned = (ResultSet)stmt.getObject(1);
while(commissioned.next())

{
System.out.println(commissioned.getString(1));

The same getter method retrieves the ResultSet from the second parameter, and RefCursorExample iterates through that cursor, printing
the name of each salaried employee:

ResultSet salaried =
(ResultSet)stmt.getObject(2);

while(salaried.next())
{
System.out.println(salaried.getString(1));

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 121

EDB JDBC Connector

10.5 Using BYTEA data with Java

The BYTEA data type stores a binary string in a sequence of bytes. Digital images and sound files are often stored as binary data. EDB Postgres
Advanced Server can store and retrieve binary data by way of the BYTEA data type.

The following Java sample stores BYTEA data in an EDB Postgres Advanced Server database and then shows how to retrieve that data.
First, the following creates a table (emp_detail) that stores BYTEA data. emp_detail contains two columns:

e The first column stores an employee’s ID number (type INT) and serves as the primary key for the table.
e The second column stores a photograph of the employee in BYTEA format.

CREATE TABLE emp_detail

(
empno INT4 PRIMARY KEY,
pic

BYTEA

)

The following creates a procedure (ADD_PIC)thatinserts a row into the emp_detail table:

CREATE OR REPLACE PROCEDURE ADD_PIC(p_empno IN int4, p_photo IN bytea)
AS

BEGIN

INSERT INTO emp_detail VALUES(p_empno, p_photo);
END;

Then, the following creates a function (GET_PIC) that returns the photograph for a given employee:

CREATE OR REPLACE FUNCTION GET_PIC(p_empno IN 1int4) RETURN BYTEA IS
DECLARE

photo
BYTEA;

BEGIN

SELECT pic INTO photo from EMP_DETAIL WHERE empno =
p_empno;

RETURN
photo;

END;

Inserting BYTEA data into an EDB Postgres Advanced Server

The following shows a Java method that invokes the ADD_PIC procedure to copy a photograph from the client file system to the emp_detail
table on the server:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 122

public void InsertPic(Connection
con)

{
try
{

Console c =
System.console();

int empno = Integer.parselnt(c.readLine("Employee No :'"));
String fileName = c.readLine("Image filename

M
File f = new

File(fileName);

if(!f.exists())

{
System.out.println("Image file not found.
Terminating...");
return;
}

CallableStatement stmt = con.prepareCall('"{call ADD_PIC(?,
[DRADK
stmt.setInt(1l, empno);
stmt.setBinaryStream(2, new FileInputStream(f), (int)f.length());
stmt.execute();
System.out.println("Added image for Employee
"+empno) ;

}

catch(Exception
err)

{
System.out.println("An error has
occurred.");
System.out.println("See full details below.");

err.printStackTrace();

}

InsertPic() promptsthe user foran employee number and the name of an image file:

int empno = Integer.parselnt(c.readLine("Employee No :'"));
String fileName = c.readLine("Image filename

M

If the requested file doesn't exist, InsertPic() displays an error message and terminates:

File f = new
File(fileName);

if(!f.exists())

{

System.out.println("Image file not found.
Terminating...");

return;
}

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB JDBC Connector

123

EDB JDBC Connector

Next, InsertPic() preparesa CallableStatement object(stmt)that callsthe ADD_PIC procedure. The first placeholder (?) represents
the first parameter expected by ADD_PIC (p_empno) .The second placeholder represents the second parameter (p_photo). To provide actual
values for those placeholders, InsertPic() calls two setter methods. Since the first parameter is of type INTEGER, InsertPic() callsthe

setInt() method to provide avalue for p_empno . The second parameter is of type BYTEA ,so InsertPic() usesa binary setter method. In
this case, the method is setBinaryStream() :

CallableStatement stmt = con.prepareCall('"{call ADD_PIC(?,
231"
stmt.setInt(1l, empno);

stmt.setBinaryStream(2 ,new FileInputStream(f),
f.length());

Once the placeholders are bound to actual values, InsertPic() executesthe CallableStatement :

stmt.execute();

Ifall goes well, InsertPic() displays a message verifying that the image was added to the table. If an error occurs, the catch block displays a
message to the user:

System.out.println("Added image for Employee
\""+empno) ;

catch(Exception

err)

{

System.out.println("An error has
occurred.");

System.out.println("See full details below.");

err.printStackTrace();

}

Retrieving BYTEA data from an EDB Postgres Advanced Server database

Now that you know how to insert BYTEA data from a Java application, the following shows how to retrieve BYTEA data from the server:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 124

EDB JDBC Connector

public static void GetPic(Connection
con)

{
try
{

Console c =
System.console();

int empno = Integer.parselnt(c.readLine("Employee No :'"));
CallableStatement stmt = con.prepareCall("{?=call
GET_PIC(?)}");
stmt.setInt(2, empno);
stmt.registerOutParameter (1, Types.BINARY);
stmt.execute();
byte[] b =
stmt.getBytes(1);

String fileName = c.readLine("Destination filename
M

FileOutputStream fos = new FileOutputStream(new
File(fileName));

fos.write(b);

fos.close();
System.out.println("File saved at \""+fileName+"\"");

}

catch(Exception
err)

{
System.out.println("An error has
occurred.");

System.out.println("See full details below.");

err.printStackTrace();

}

GetPic() starts by prompting the user for an employee ID number:

int empno = Integer.parselnt(c.readLine("Employee No :"));

Next, GetPic() preparesa CallableStatement withone IN parameterand one OUT parameter. The first parameteris the OUT parameter
that will contain the photograph retrieved from the database. Since the photographis BYTEA data, GetPic () registers the parameteras a
Type.BINARY . The second parameteristhe IN parameter that holds the employee number (an INT),so GetPic() usesthe setInt()
method to provide a value for the second parameter.

CallableStatement stmt = con.prepareCall("{?=call
GET_PIC(?)}");

stmt.setInt(2, empno);
stmt.registerOutParameter (1, Types.BINARY);

Next, GetPic() usesthe getBytes getter method to retrieve the BYTEA data from the CallableStatement :

stmt.execute();
byte[] b =
stmt.getBytes(1);

The program prompts the user for the name of the file to store the photograph:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 125

EDB JDBC Connector

String fileName = c.readLine("Destination filename

M

The FileOutputStream object writes the binary data that contains the photograph to the destination file:

FileOutputStream fos = new FileOutputStream(new
File(fileName));

fos.write(b);
fos.close();

Finally, GetPic () displays a message confirming that the file was saved at the new location:

System.out.println("File saved at \""+fileName+"\"");

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 126

EDB JDBC Connector

10.6 Using object types and collections with Java

The SQL CREATE TYPE command is used to create a user-defined object type, which is stored in the EDB Postgres Advanced Server database.

The CREATE TYPE command is also used to create a collection, commonly referred to as an array, which is also stored in the EDB Postgres
Advanced Server database.

These user-defined types can then be referenced in SPL procedures, SPL functions, and Java programs.

The basic object type is created with the CREATE TYPE AS OBJECT command along with optional usage of the CREATE TYPE BODY
command.

A nested table type collection is created using the CREATE TYPE AS TABLE OF command. A varray type collection is created with the CREATE
TYPE VARRAY command.

The following shows a Java method used by both upcoming examples to establish the connection to the EDB Postgres Advanced Server database.

public static Connection getEDBConnection() throws
ClassNotFoundException, SQLException {
String url =
"jdbc:edb://localhost:5444/test";
String user = "enterprisedb";
String password =
lledbll;

Connection conn = DriverManager.getConnection(url, user,
password) ;

return conn;

Using an object type
Create the object types in the EDB Postgres Advanced Server database. Object type addr_object_type defines the attributes of an address:

CREATE OR REPLACE TYPE addr_object_type AS

OBJECT
(
street
VARCHAR2 (30) ,
city VARCHAR2 (20) ,
state CHAR(2),
zip
NUMBER (5)
)3

Object type emp_obj_typ defines the attributes of an employee. One of these attributes is object type ADDR_OBJECT_TYPE . The object type
body contains a method that displays the employee information:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 127

EDB JDBC Connector

CREATE OR REPLACE TYPE emp_obj_typ AS

OBJECT

(
empno NUMBER(4) ,
ename VARCHAR2(20) ,
addr ADDR_OBJECT_TYPE,

MEMBER PROCEDURE display_emp(SELF IN OUT
emp_obj_typ)
)

CREATE OR REPLACE TYPE BODY emp_obj_typ
AS

MEMBER PROCEDURE display_emp (SELF IN OUT
emp_obj_typ)

IS

BEGIN

DBMS_OUTPUT.PUT_LINE('Employee No S
SELF.empno) ;

DBMS_OUTPUT.PUT_LINE('Name . |
SELF.ename);

DBMS_OUTPUT.PUT_LINE('Street S
SELF.addr.street);

DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || SELF.addr.city || ',
[
SELF.addr.state || ' ' ||
LPAD (SELF.addr.zip,5,'0'));
END;
END;

The following is a Java method that includes these user-defined object types:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 128

EDB JDBC Connector

public static void testUDT() throws SQLException {
Connection conn = null;
try {
conn = getEDBConnection();
String commandText = "{call
emp_obj_typ.display_emp(?)}";
CallableStatement stmt = conn.prepareCall(commandText) ;

// 1nitialize emp_obj_typ
structure

// create addr_object_type
structure

Struct address = conn.createStruct("addr_object_type",
new Object[]{"123 MAIN STREET","EDISON","NJ",8817});
Struct emp =
conn.createStruct("emp_obj_typ",
new Object[]{9001,"JONES", address});

// set emp_obj_typ type
param
stmt.registerOutParameter (1, Types.STRUCT, "emp_obj_typ");
stmt.setObject (1,
emp) ;
stmt.execute();

// extract emp_obj_typ
object

emp =
(Struct)stmt.getObject(1);

Object[] attrEmp =
emp.getAttributes();

System.out.println("empno: " +
attrEmp[0]);
System.out.println("ename: " +

attrEmp[1]);

// extract addr_object_type
attributes

address = (Struct) attrEmp[2];

Object[] attrAddress =
address.getAttributes();

System.out.println("street: " +
attrAddress[0]);

System.out.println("city: " +
attrAddress[1]);

System.out.println("state: " +
attrAddress[2]);

System.out.println("zip: " +
attrAddress[3]);

} catch (ClassNotFoundException cnfe) {

System.err.println("Error: " +
cnfe.getMessage());

} finally {
if (conn != null) {
conn.close();

A CallableStatement objectis prepared based onthe display_emp() method of the emp_obj_typ object type:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 129

String commandText = "{call
emp_obj_typ.display_emp(?)}";

CallableStatement stmt = conn.prepareCall(commandText) ;

EDB JDBC Connector

createStruct() initializes and creates instances of object types addr_object_type and emp_obj_typ named address and emp,

respectively:

Struct address = conn.createStruct("addr_object_type",
new Object[]{"123 MAIN STREET","EDISON","NJ",8817});

Struct emp =
conn.createStruct("emp_obj_typ",

new Object[]{9001,"JONES", address});

The callto registerOutParameter () registersthe parametertype (Types.STRUCT)of emp_obj_typ:

stmt.registerOutParameter (1, Types.STRUCT, "emp_obj_typ");

The setObject () method binds the object instance emp tothe IN OUT placeholder.

stmt.setObject (1,
emp) ;

Acallto stmt.execute() executesthe call tothe display_emp() method:

stmt.execute();

getObject () retrieves the emp_obj_typ object type. The attributes of the emp and address objectinstances are then retrieved and

displayed:

emp = (Struct)stmt.getObject(1);
Object[] attrEmp =
emp.getAttributes();

System.out.println("empno: " +
attrEmp[0]);
System.out.println("ename: " +

attrEmp[1]);

address = (Struct) attrEmp[2];
Object[] attrAddress =
address.getAttributes();
System.out.println("street: " +
attrAddress[0]);
System.out.println("city: " +
attrAddress[1]);
System.out.println("state: " +
attrAddress[2]);
System.out.println("zip: " +
attrAddress[3]);

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

130

EDB JDBC Connector

Using a collection

Create collections types NUMBER_ARRAY and CHAR_ARRAY in the EDB Postgres Advanced Server database:

CREATE OR REPLACE TYPE NUMBER_ARRAY AS TABLE OF NUMBER;
CREATE OR REPLACE TYPE CHAR_ARRAY AS TABLE OF VARCHAR(50);

The following is an SPL function that uses collection types NUMBER_ARRAY and CHAR_ARRAY as IN parametersand CHAR_ARRAY asthe
OUT parameter.

The function concatenates the employee ID from the NUMBER_ARRAY IN parameter with the employee name in the corresponding row from the
CHAR_ARRAY 1IN parameter. The resulting concatenated entries are returned in the CHAR_ARRAY OUT parameter.

CREATE OR REPLACE FUNCTION concatEmpIdName
(
arrEmpIds NUMBER_ARRAY,

arrEmpNames
CHAR_ARRAY

) RETURN CHAR_ARRAY
AS
DECLARE
i INTEGER :=
CH
arrEmpIdNames
CHAR_ARRAY ;
BEGIN

arrEmpIdNames :=
CHAR_ARRAY (NULL ,NULL) ;

FOR i IN arrEmpIds.FIRST..arrEmpIds.LAST
LOOP

arrEmpIdNames (i) := arrEmpIds(i) || ' ' ||
arrEmpNames (i) ;
END LOOP;

RETURN
arrEmpIdNames;

END;

The following is a Java method that calls the previous function, passing and retrieving the collection types:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 131

public static void testTableOfAsInOutParams() throws SQLException {

Connection conn = null;
try {
conn = getEDBConnection();

String commandText = "{? = call
concatEmpIdName(?,?)}";

CallableStatement stmt = conn.prepareCall(commandText) ;

// create collections to specify employee id and name
values

Array empIdArray = conn.createArrayOf("integer",
new Integer[]{7900, 7902});

Array empNameArray = conn.createArrayOf('"varchar",
new String[]{"JAMES", "FORD"});

// set TABLE OF VARCHAR as oOUT
param

stmt.registerOutParameter (1, Types.ARRAY);

// set TABLE OF INTEGER as IN
param

stmt.setObject (2, empIdArray, Types.OTHER);

// set TABLE OF VARCHAR as IN
param

stmt.setObject (3, empNameArray, Types.OTHER);

stmt.execute();

java.sql.Array empIdNameArray =
stmt.getArray(1);

String[] emps = (Stringl[])
empIdNameArray.getArray();

System.out.println("items length: " +
emps.length);

System.out.println("items[0]: " +
emps[0].toString());
System.out.println("items[1]: " +

emps[1].toString());

} catch (ClassNotFoundException cnfe) {

System.err.println("Error: " +
cnfe.getMessage());

} finally {
if (conn != null) {
conn.close();

A CallableStatement objectis prepared toinvoke the concatEmpIdName() function:

String commandText = "{? = call
concatEmpIdName(?,?)}";

CallableStatement stmt = conn.prepareCall(commandText) ;

createArrayOf () initializes and creates collections named empIdArray and empNameArray :

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB JDBC Connector

132

EDB JDBC Connector

Array empIdArray = conn.createArrayOf("integer",
new Integer[]{7900, 7902});

Array empNameArray = conn.createArrayOf('"varchar",
new String[]{"JAMES", "FORD"});

The callto registerOutParameter () registersthe parametertype (Types.ARRAY)of the OUT parameter:

stmt.registerOutParameter (1, Types.ARRAY);

The setObject () method binds the collections empIdArray and empNameArray tothe IN placeholders:

stmt.setObject(2, empIdArray, Types.OTHER);
stmt.setObject (3, empNameArray, Types.OTHER);

Acallto stmt.execute() invokesthe concatEmpIdName () function:

stmt.execute();

getArray () retrieves the collection returned by the function. The first two rows consisting of the concatenated employee IDs and names are
displayed:

java.sql.Array empIdNameArray =
stmt.getArray(1);

String[] emps = (String[])
empIdNameArray.getArray();
System.out.println("items length: " +
emps.length);

System.out.println("items[0]: " +
emps[0].toString());
System.out.println("items[1]: " +

emps[1].toString());

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 133

EDB JDBC Connector

10.7 Asynchronous notification handling with NoticeListener

The EDB Postgres Advanced Server JDBC Connector provides asynchronous notification handling functionality. A notification is a message generated
by the server when an SPL (or PL/pgSQL) program executesa RAISE NOTICE statement. Each notification is sent from the server to the client
application. To intercept a notification in a JDBC client, an application must createa NoticelListener object (or, more typically, an object derived
from NoticelListener).

It's important to understand that a notification is sent to the client as a result of executing an SPL (or PL/pgSQL) program. To generate a notification,

you must execute an SQL statement that invokes a stored procedure, function, or trigger. The notification is delivered to the client as the SQL

statement executes. Notifications work with any type of statement object: CallableStatement objects, PreparedStatement objects, or

simple Statement objects. A JDBC program intercepts a notification by associatinga NoticelListener witha Statement object. When the
Statement object executes an SQL statement that raises a notice, JDBC invokes the noticeReceived() method in the associated
NoticelListener.

The following shows an SPL procedure that loops through the emp table and gives each employee a 10% raise. As each employee is processed,
adjustSalary executesa RAISE NOTICE statement. (In this case, the message contained in the notification reports progress to the client
application.)

CREATE OR REPLACE PROCEDURE adjustSalary
IS
v_empno NUMBER(4) ;
v_ename VARCHAR2(10) ;
CURSOR emp_cur IS SELECT empno, ename FROM
emp;
BEGIN
OPEN
emp_cur;
LOOP
FETCH emp_cur INTO v_empno,
v_ename;
EXIT WHEN emp_cur%NOTFOUND;

UPDATE emp SET sal = sal * 1.10 WHERE empno =
v_empno;
RAISE NOTICE 'Salary increased for %',
v_ename;
END LOOP;
CLOSE
emp_cur;
END;

The following shows how to create a NoticelListener thatintercepts notifications in a JDBC application:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 134

EDB JDBC Connector

public void NoticeExample(Connection
con)

{
CallableStatement stmt;
try
{

stmt = con.prepareCall("{call
adjustSalary()}");

MyNoticelListener listener = new
MyNoticeListener();

((BaseStatement)stmt) .addNoticelListener (listener);
stmt.execute();
System.out.println("Finished");
}
catch (SQLException
e)
{

System.out.println("An error has
occurred.");

System.out.println("See full details below.");

e.printStackTrace();
}
}

class MyNoticelListener implements
NoticelListener

{
public MyNoticelListener()
{
}

public void noticeReceived(SQLWarning warn)

{
System.out.println("NOTICE: "+
warn.getMessage());

}

The NoticeExample() method is straightforward. It expects a single argument from the caller,a Connection object:

public void NoticeExample(Connection
con)

NoticeExample () begins by preparing a call to the adjustSalary procedure shown previously. As you would expect,
con.prepareCall() returnsa CallableStatement object. Before executing the CallableStatement ,you must create an object that
implements the NoticelListener interface and add that object to the list of NoticelListeners associated withthe CallableStatement :

CallableStatement stmt = con.prepareCall("{call
adjustSalary()}");

MyNoticeListener listener = new
MyNoticelListener();

((BaseStatement)stmt) .addNoticelListener(listener);

Once the NoticeListener isin place, the NoticeExample method executesthe CallableStatement (invokingthe adjustSalary
procedure on the server) and displays a message to the user:

stmt.execute();
System.out.println("Finished");

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 135

EDB JDBC Connector

Each time the adjustSalary procedure executesa RAISE NOTICE statement, the server sends the text of the message ("Salary
increased for ...'")tothe Statement (orderivative) objectin the client application. JDBC invokes the noticeReceived() method

(possibly many times) before the call to stmt.execute() completes.

class MyNoticeListener implements
NoticelListener

{
public MyNoticeListener()

{
}

public void noticeReceived(SQLWarning warn)

{
System.out.println("NOTICE: "+
warn.getMessage());

}

When JDBC calls the noticeReceived() method, it createsan SQLWarning object that contains the text of the message generated by the

RAISE NOTICE statement on the server.

Each Statement object keeps a list of NoticelListeners . When the JDBC driver receives a notification from the server, it consults the list
maintained by the Statement object. If the list is empty, the notification is saved in the Statement object. (You can retrieve the notifications by
calling stmt.getWarnings () oncethecallto execute() completes.) If the list isn't empty, the JDBC driver delivers an SQLWarning to

each listener in the order in which the listeners were added to the Statement .

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 136

EDB JDBC Connector
11 Security and encryption

PostgreSQL has native support for using SSL connections to encrypt client/server communications for increased security. This requires that OpenSSL
isinstalled on both client and server systems and that support in PostgreSQL is enabled at build time.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 137

EDB JDBC Connector
111 Using SSL

When using SSL, consider the following:

Configuring the server

Configuring the client

Testing the SSL JDBC connection

Using SSL without certificate Validation

Using certificate authentication without a password

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 138

EDB JDBC Connector

1111 Configuring the server

For information about configuring PostgreSQL or EDB Postgres Advanced Server for SSL, see thePostgreSQL documentation.
Note

Before you access your SSL-enabled server from Java, ensure that you can log in to your server via edb-psql . If you've established an SSL
connection, the output looks similar to this:

$./bin/edb-psql -U enterprisedb -d edb

psql.bin (12.0.1)

SSL connection (protocol: TLSv1l.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, compression:
off)

Type "help" for help.

edb=#

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 139

https://www.postgresql.org/docs/12.3/ssl-tcp.html

EDB JDBC Connector
11.1.2 Configuring the client

A number of connection parameters are available for configuring the client for SSL. To know more about the SSL connection parameters and
additional connection properties, see Connecting to the database.

When passed different values, the behavior of SSL connection parameters differs. When you pass the connection parameter ssl=true into the
driver, the driver validates the SSL certificate and verifies the hostname. Conversely, using 1ibpqg defaults to a nonvalidating SSL connection.

You can get better control of the SSL connection using the sslmode connection parameter. This parameter is the same as the 1ibpg sslmode
parameter, and the existing SSL implements the following sslmode connection parameters.

sslmode connection parameters

sslmode=require

This mode makes the encryption mandatory and also requires the connection to fail if it can’t be encrypted. The server is configured to accept SSL
connections for this host/IP address and that the server recognizes the client certificate.

Note

In this mode, the JDBC driver accepts all server certificates.

sslmode=verify-ca

If sslmode=verify-ca,the serverisverified by checking the certificate chain up to the root certificate stored on the client.

sslmode=verify-full

If sslmode=verify-full, the server hostname is verified to make sure it matches the name stored in the server certificate. The SSL connection
fails if it can't verify the server certificate. This mode is recommended in most security-sensitive environments.

In the case where the certificate validation is failing, you can try sslcert=,and LibPQFactory will not send the client certificate. If the server
isn't configured to authenticate using the certificate, it should connect.

You can override the location of the client certificate, client key, and root certificate with the sslcert, sslkey,and sslrootcert settings,
respectively. These defaultto /defaultdir/postgresql.crt, /defaultdir/postgresql.pk8,and /defaultdir/root.crt,
respectively, where defaultdir is ${user.home}/.postgresql/ inUnix systemsand %appdata%/postgresql/ on Windows.

In this mode, when establishing an SSL connection, the JDBC driver validates the server's identity, preventing "man in the middle" attacks. It does this
by checking that the server certificate is signed by a trusted authority and that the host you're connecting to is the same as the hostname in the
certificate.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 140

EDB JDBC Connector
11.1.3 Testing the SSL JDBC connection

If you're using Java's default mechanism (not LibPQFactory) to create the SSL connection, you need to make the server certificate available to
Java.

1. Set the following property in the Java program.

String url=%“jdbc:edb://localhost/test?
user=fred&password=secret&ssl=true”;

2. Convert the server certificate to Java format:
$ openssl x509 -in server.crt -out server.crt.der -outform der
3. Import this certificate into Java's system truststore.
$ keytool -keystore $JAVA_HOME/1lib/security/cacerts -alias postgresql-import -file server.crt.der
4. Ifyou don't have access to the system cacerts truststore, create your own truststore.
$ keytool -keystore mystore -alias postgresql -import -file server.crt.der
5. Start your Java application and test the program.
$ java -Djavax.net.ssl.trustStore=mystore com.mycompany.MyApp
For example:

$java -classpath .:/usr/edb/jdbc/edb-jdbcl8.jar-
Djavax.net.ssl.trustStore=mystore pg_test2 public

Note

To troubleshoot connection issues, add -Djavax.net.debug=ssl tothe Java command.

Using SSL without certificate validation

By default, the combination of SSL=true and setting the connection URL parameter sslfactory=com.edb.ssl.NonValidatingFactory
encrypts the connection but doesn't validate the SSL certificate. To enforce certificate validation, you must usea Custom SSLSocketFactory .

For more details about writinga Custom SSLSocketFactory , see the PostgreSQL documentation.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 141

https://jdbc.postgresql.org/documentation/ssl/#custom-sslsocketfactory

EDB JDBC Connector

11.1.4 Using certificate authentication without a password

To use certificate authentication without a password:

1. Convert the client certificate to DER format.

$ openssl x509 -in postgresql.crt -out postgresql.crt.der -outform der

2. Convert the client key to DER format.

$ openssl pkcs8 -topk8 -outform DER -in postgresql.key -out postgresql.key.pk8 -nocrypt

3. Copytheclientfiles (postgresql.crt.der, postgresql.key.pk8)and root certificate to the client machine and use the following
properties in your Java program to test it:

String url =

"jdbc:edb://snvmB01l:5444 /edbstore";
Properties props = new Properties();
props.setProperty("user","enterprisedb");
props.setProperty("ssl","true");
props.setProperty("sslmode","verify-full");
props.setProperty("sslcert","postgresql.crt.der");
props.setProperty("sslkey","postgresql.key.pk8");
props.setProperty("sslrootcert","root.crt");

4. Compile the Java program and test it.

$ java -Djavax.net.ssl.trustStore=mystore -classpath .:./edb-jdbcl8.jar pg_ssl public

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 142

EDB JDBC Connector

11.2 Scram compatibility

The EDB JDBC driver provides SCRAM-SHA-256 support for EDB Postgres Advanced Server versions 10, 11, and 12. For JRE/JDK version 1.8, this
support is available from EDB JDBC Connector release 42.2.2.1 onwards. For JRE/JDK version 1.7, this support is available from EDB JDBC Connector
release 42.2.5 onwards.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 143

EDB JDBC Connector

11.3 Support for GSSAPI-encrypted connection

**New Feature **
Support for GSSAPI-ecncrypted connections is available in EDB JDBC Connector release 42.2.19.1 and later.
The EDB JDBC driver supports GSSAPI-encrypted connections for EDB Postgres Advanced Server 12 onwards.
The gssEncMode parameter controls GSSAPI-encrypted connection. The parameter can have any of these values:
e Disable . Disables any attempt to connect using GSS-encrypted mode.
e Allow.Attempts to connect in plain text. Then, if the server requests it, it switches to encrypted mode.
e Prefer .Attempts to connect in encrypted mode and falls back to plain text if it fails to acquire an encrypted connection.

e Require . Attempts to connect in encrypted mode and fails to connect if that isn't possible.

GSSAPI/SSPI authentication
The default behavior of GSSAPI/SSPI authentication on Windows and Linux platforms is as following:

e On Windows, the EDB JDBC driver tries to connect using SSPI.
e On Linux, the EDB JDBC driver tries to connect using GSSAPI.

This default behavior is controlled using the gsslib connection parameter that takes one of the following values:

® auto . Thedriver attempts for SSPI authentication when the server requests it, the EDB JDBC client is running on Windows, and the waffle

libraries required for SSPI are on the CLASSPATH. Otherwise it opts for Kerberos/GSSAPI authentication via JSSE. Unlike libpg, the EDB JDBC
driver doesn't use the Windows SSPI libraries for Kerberos (GSSAPI) requests.

e gssapi . This option forces JSSE's GSSAPI authentication even when SSPI is available.

e sspi . This option forces SSPI authentication. This authentication fails on Linux or where SSPI is unavailable.

Using SSPI (Windows-only environment)

When the EDB Postgres Advanced Server and JDBC client both are on Windows, the JDBC driver connects with SSPI authentication using one of the
following connection strings:

con = DriverManager.getConnection("jdbc:edb://localhost:5444/edb");
OR

con = DriverManager.getConnection("jdbc:edb://localhost:5444/edb?gsslib=sspi");

Note
e gsslib=sspi isoptional because the server requires SSPI authentication.

e There is no need to specify username and password. The logged-in user credentials are used to authenticate the user.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 144

EDB JDBC Connector

Example

The example assumes that SSPI authentication is configured on a Windows machine. Suppose the edb-jdbc18.jar pathis <PATH_DRIVER>
and the waffle libraries path is <PATH_WAFFLE> . Here's how to set CLASSPATH and run the JEdb sample:

set CLASSPATH=<PATH_DRIVER>\edb-jdbc18.jar;<PATH_WAFFLE>*;
javac JEdb.java
java JEdb

Using GSSAPI (Linux-only environment)

When the EDB Postgres Advanced Server and JDBC client both are on Linux, the JDBC driver connects with GSSAPI authentication using the following
connection string:

Properties connectionProps = new Properties();
connectionProps.setProperty("user", "postgres/myrealm.example@MYREALM.EXAMPLE") ;

String databaseUrl =
"jdbc:edb://myrealm.example:5444/edb";

con = DriverManager.getConnection(databaseUrl, connectionProps);

Note

gsslib=gssapi is optional because the server requires GSSAPI authentication.

Example

This example assumes that GSS authentication is configured on a Linux machine.

Create a file named pgjdbc.conf with the following contents.

pgjdbc {
com.sun.security.auth.module.Krb5LoginModule
required

doNotPrompt=true

useTicketCache=true

renewTGT=true

debug=true;

}s
Suppose pgjdbc.conf isplacedat /etc/pgjdbc.conf . Here's how torun JEdb sample:

javac JEdb.java
java -Djava.security.auth.login.config=/etc/pgjdbc.conf -cp .:edb-jdbcl8.jar JEdb

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 145

EDB JDBC Connector

Using SSPI/GSSAPI (Windows and Linux environment)

When the EDB Postgres Advanced Server is on Linux with authentication configured as GSSAPI, and the JDBC client is on Windows, the EDB JDBC
connects either using SSPI or GSSAPI authentication.

For gsslib=sspi or gsslib=auto, EDB JDBC uses SSPI. For gsslib=gssapi it uses GSSAPI authentication.

Example

This example assumes that GSS authentication is configured between Windows Active Directory and a Linux machine.

SSPI

In this scenario, JDBC is using SSPI authentication. Create the connection using the following code:

Properties connectionProps = new Properties();
connectionProps.setProperty("user", "david@MYREALM.EXAMPLE") ;

String databaseUrl = "jdbc:edb://pg.myrealm.example:5444/edb?
gsslib=sspi";

con = DriverManager.getConnection(databaseUrl, connectionProps);

Running an EDB JDBC-based app in this case is the same as described in Using SSPI (Windows-only environment).

GSSAPI

In this scenario, JDBC is using GSSAPI authentication. Create the connection using the following code:

Properties connectionProps = new Properties();
connectionProps.setProperty("user", "david@MYREALM.EXAMPLE") ;

String databaseUrl = "jdbc:edb://pg.myrealm.example:5444/edb?
gsslib=gssapi";

con = DriverManager.getConnection(databaseUrl, connectionProps);

Set up the Kerberos credential cache file and obtain a ticket.

Create a new directory, say c:\temp ,and a system environment variable KRB5CCNAME . In the variable value field, enter
c:\temp\krb5cache .

Note

krb5cache is afile that's managed by the Kerberos software.

Obtain a ticket for a Kerberos principal either using MIT Kerberos Ticket Manager or using a keytab file using the ktpass utility.

Create the pgjdbc.conf file with the same contents described in Using GSSAPI (Linux-only environment).

Suppose pgjdbc.conf isplacedat c:\pgjdbc.conf.Here's how to run JEdb sample:

set CLASSPATH=C:\Program Files\edb\jdbc\edb-jdbcl8.jar;
java -Djava.security.auth.login.config=c:\pgjdbc.conf JEdb

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 146

EDB JDBC Connector

12 EDB JDBC Connector logging

The EDB Postgres Advanced Server JDBC Connector supports the use of logging to help resolve issues with the JDBC Connector when used in your
application. The JDBC Connector uses the logging APIs of java.util.logging thatwas part of Java since JDK 1.4. For information on
java.util.logging, see The PostgreSQL JDBC Driver.

Note

Previous versions of the EDB Postgres Advanced Server JDBC Connector used a custom mechanism to enable logging. It's now replaced by
theuse of java.util.logging inversions moving forward from community version 42.1.4.1. The older mechanism is no longer
available.

Previous versions of the Advanced Server JDBC Connector can enable logging using the connection properties, however it is no longer
available from 42.3.3 onwards.

Enabling logging with logging.properties

The default Java logging framework stores its configuration in a file called logging.properties . You can use logging properties to configure the
driver dynamically (for example, when using the JDBC Connector with an application server such as Tomcat, JBoss, WildFly, etc.), which makes it
easier to enable/disable logging at runtime. The following example demonstrates configuring logging dynamically:

handlers =
java.util.logging.FileHandler

//logging level
.level = OFF

The default file output is in the user’s home directory:

java.util.logging.FileHandler.pattern = %h/EDB-JDBC%u. log

java.util.logging.FileHandler.limit = 5000000

java.util.logging.FileHandler.count = 20

java.util.logging.FileHandler.formatter =

java.util.logging.SimpleFormatter

java.util.logging.FileHandler.level = FINEST
java.util.logging.SimpleFormatter.format=%1StY-%1$tm-%1$td %1$tH:%1$tM:%1$tS %4Ss %2$s %5$s%6$s%n

Use the following command to set the logging level for the JDBC Connector to FINEST (mapsto loggerlLevel):

com.edb.level=FINEST
Then, execute the application with the logging configuration

java -jar -Djava.util.logging.config.file=logging.properties run.jar

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 147

https://jdbc.postgresql.org/documentation/logging/

13 Reference - JDBC data types

The following table lists the JDBC data types supported by EDB Postgres Advanced Server and the JDBC Connector. If you're binding to an EDB
Postgres Advanced Server type (shown in the middle column) using the setObject () method, supply a JDBC value of the type shown in the left
column. When you retrieve data, the getObject () method returns the object type listed in the right-most column:

JDBC Type
INTEGER

TINYINT, SMALLINT
BIGINT

REAL

DOUBLE, FLOAT

DECIMAL, NUMERIC
CHAR

VARCHAR, LONGVARCHAR
DATE

TIME

TIMESTAMP

BINARY

BOOLEAN, BIT
Types.REF
Types.REF_CURSOR
Types.OTHER
Types.OTHER
Types.SQLXML

Note

Advanced Server Type
INT4

INT2

INT8

FLOAT4

FLOATS8

NUMERIC
BPCHAR
VARCHAR
DATE

TIME, TIMETZ
TIMESTAMP, TIMESTAMPTZ
BYTEA

BOOL
REFCURSOR
REFCURSOR
REFCURSOR
uuiD

XML

Types.REF_CURSOR is supported only for JRE 4.2.

getObject() returns
java.lang.Integer
java.lang.Integer
java.lang.Long
java.lang.Float

java.lang.Double (Float is same as
double)

java.math.BigDecimal
java.lang.String
java.lang.String
java.sql.Date
java.sql.Timestamp
java.sql.Timestamp
byte[](primitive)
java.lang.Boolean
java.sql.ResultSet
java.sql.ResultSet
java.sql.ResultSet
java.util.UUID
java.sql.SQLXML

EDB JDBC Connector

Types.OTHER is not only used for UUID but is also used if you don't specify a type and allow the server or the JDBC driver to determine the type. If

the parameter is an instance of java.util.UUID, the driver determines the appropriate internal type and sends it to the server.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

148

	1 EDB JDBC Connector
	2 Release notes
	2.1 EDB JDBC Connector 42.7.3.4 release notes
	2.2 EDB JDBC Connector 42.7.3.3 release notes
	2.3 EDB JDBC Connector 42.7.3.2 release notes
	2.4 EDB JDBC Connector 42.7.3.1 release notes
	2.5 EDB JDBC Connector 42.5.4.2 release notes
	2.6 EDB JDBC Connector 42.5.4.1 release notes
	2.7 EDB JDBC Connector 42.5.1.2 release notes
	2.8 EDB JDBC Connector 42.5.1.1 release notes
	2.9 EDB JDBC Connector 42.5.0.1 release notes
	2.10 EDB JDBC Connector 42.3.3.1 release notes
	2.11 EDB JDBC Connector 42.3.2.1 release notes
	2.12 EDB JDBC Connector 42.2.24.1 release notes
	2.13 EDB JDBC Connector 42.2.19.1 release notes
	2.14 EDB JDBC Connector 42.2.12.3 release notes
	2.15 EDB JDBC Connector 42.2.9.1 release notes
	2.16 EDB JDBC Connector 42.2.8.1 release notes
	3 Supported platforms
	Supported database versions
	Supported JDK distribution

	4 EDB JDBC Connector overview
	JDBC driver types
	The JDBC interface
	JDBC classes and interfaces
	The JDBC DriverManager
	EDB Postgres Advanced Server JDBC Connector compatibility

	5 Installing EDB JDBC Connector
	Linux x86-64 (amd64)
	Red Hat Enterprise Linux (RHEL) and derivatives
	SUSE Linux Enterprise (SLES)
	Debian and derivatives

	Linux IBM Power (ppc64le)
	Red Hat Enterprise Linux (RHEL) and derivatives
	SUSE Linux Enterprise (SLES)

	Linux AArch64 (ARM64)
	Red Hat Enterprise Linux (RHEL) and derivatives
	Debian and derivatives

	Windows

	5.1 Installing EDB JDBC Connector on Linux IBM Power (ppc64le)
	Red Hat Enterprise Linux (RHEL)
	SUSE Linux Enterprise (SLES)

	5.1.1 Installing EDB JDBC Connector on RHEL 9 ppc64le
	Prerequisites
	Install the package

	5.1.2 Installing EDB JDBC Connector on RHEL 8 ppc64le
	Prerequisites
	Install the package

	5.1.3 Installing EDB JDBC Connector on SLES 15 ppc64le
	Prerequisites
	Install the package

	5.1.4 Installing EDB JDBC Connector on SLES 12 ppc64le
	Prerequisites
	Install the package

	5.2 Installing EDB JDBC Connector on Linux x86 (amd64)
	Red Hat Enterprise Linux (RHEL) and derivatives
	SUSE Linux Enterprise (SLES)
	Debian and derivatives

	5.2.1 Installing EDB JDBC Connector on RHEL 9 or OL 9 x86_64
	Prerequisites
	Install the package

	5.2.2 Installing EDB JDBC Connector on RHEL 8 or OL 8 x86_64
	Prerequisites
	Install the package

	5.2.3 Installing EDB JDBC Connector on AlmaLinux 9 or Rocky Linux 9 x86_64
	Prerequisites
	Install the package

	5.2.4 Installing EDB JDBC Connector on AlmaLinux 8 or Rocky Linux 8 x86_64
	Prerequisites
	Install the package

	5.2.5 Installing EDB JDBC Connector on SLES 15 x86_64
	Prerequisites
	Install the package

	5.2.6 Installing EDB JDBC Connector on Ubuntu 24.04 x86_64
	Prerequisites
	Install the package

	5.2.7 Installing EDB JDBC Connector on Ubuntu 22.04 x86_64
	Prerequisites
	Install the package

	5.2.8 Installing EDB JDBC Connector on Debian 12 x86_64
	Prerequisites
	Install the package

	5.2.9 Installing EDB JDBC Connector on Debian 11 x86_64
	Prerequisites
	Install the package

	5.2.10 Installing EDB JDBC Connector on SLES 12 x86_64
	Prerequisites
	Install the package

	5.3 Installing EDB JDBC Connector on Linux AArch64 (ARM64)
	Red Hat Enterprise Linux (RHEL) and derivatives
	Debian and derivatives

	5.3.1 Installing EDB JDBC Connector on RHEL 9 or OL 9 arm64
	Prerequisites
	Install the package

	5.3.2 Installing EDB JDBC Connector on Debian 12 arm64
	Prerequisites
	Install the package

	5.4 Installing EDB JDBC Connector on Windows
	Installing directly
	Using Stack Builder or StackBuilder Plus
	Using the graphical installer

	5.5 Installing EDB JDBC Connector using Maven
	5.6 Configuring EDB JDBC Connector for Java
	5.7 Upgrading a Linux installation
	6 Using the EDB JDBC Connector with Java applications
	6.1 Loading EDB JDBC Connector
	6.2 Connecting to the database
	6.2.1 Additional connection properties
	6.2.2 Preferring synchronous secondary database servers
	Parameters
	Configuring primary and secondary database servers overview
	Example: Primary and secondary database servers

	6.3 Executing SQL statements through statement objects
	Using named notation with a CallableStatement object
	Examples

	6.4 Retrieving results from a ResultSet object
	6.5 Freeing resources
	6.6 Handling errors
	7 Using advanced queueing
	Enqueueing or dequeueing a message

	7.1 Server-side setup
	Using EDB-PSQL
	Create a user-defined type
	Create the queue table
	Create the queue
	Start the queue

	Using EDB-JDBC JMS API
	Connection
	Session
	Message producer
	Message consumer

	7.3 Message acknowledgement
	Transacted session
	AUTO_ACKNOWLEDGE mode
	DUPS_OK_ACKNOWLEDGE mode
	CLIENT_ACKNOWLEDGE mode

	7.4 Message types
	Message properties
	TextMessage
	BytesMessage
	ObjectMessage
	Message

	7.5 Non-standard message
	Nested types
	InnermostCustom.java
	InnerCustom.java
	CustomType.java

	8 Executing SQL commands with executeUpdate() or through PrepareStatement objects
	Using executeUpdate() to INSERT data
	Using PreparedStatements to send SQL commands

	9 Adding a graphical interface to a Java program
	10 Advanced JDBC Connector functionality
	10.1 Reducing client-side resource requirements
	Modifying the batch size of a statement object

	10.2 Using PreparedStatements to send SQL commands
	10.3 Executing stored procedures
	Invoking stored procedures
	Executing a simple stored procedure
	Executing stored procedures with IN parameters
	Executing stored procedures with OUT parameters

	Executing stored procedures with IN OUT parameters

	10.4 Using REF CURSORS with Java
	Using a REF CURSOR to retrieve a ResultSet

	10.5 Using BYTEA data with Java
	Inserting BYTEA data into an EDB Postgres Advanced Server
	Retrieving BYTEA data from an EDB Postgres Advanced Server database

	10.6 Using object types and collections with Java
	Using an object type
	Using a collection

	10.7 Asynchronous notification handling with NoticeListener
	11 Security and encryption
	11.1 Using SSL
	11.1.1 Configuring the server
	11.1.2 Configuring the client
	sslmode connection parameters
	sslmode=require
	sslmode=verify-ca
	sslmode=verify-full

	11.1.3 Testing the SSL JDBC connection
	Using SSL without certificate validation

	11.1.4 Using certificate authentication without a password
	11.2 Scram compatibility
	11.3 Support for GSSAPI-encrypted connection
	GSSAPI/SSPI authentication
	Using SSPI (Windows-only environment)
	Example

	Using GSSAPI (Linux-only environment)
	Example

	Using SSPI/GSSAPI (Windows and Linux environment)
	Example

	12 EDB JDBC Connector logging
	Enabling logging with logging.properties

	13 Reference - JDBC data types

