
EDB JDBC Connector
Version 42.7.3.4

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. Built at 2026-01-27T09:46:49

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
26
28
29
31
33
35
37
38
39
40
42
44
46
47
48
49
50
52
53
54
55
57
58
59
60
61
62
63

1 EDB JDBC Connector
2 Release notes
2.1 EDB JDBC Connector 42.7.3.4 release notes
2.2 EDB JDBC Connector 42.7.3.3 release notes
2.3 EDB JDBC Connector 42.7.3.2 release notes
2.4 EDB JDBC Connector 42.7.3.1 release notes
2.5 EDB JDBC Connector 42.5.4.2 release notes
2.6 EDB JDBC Connector 42.5.4.1 release notes
2.7 EDB JDBC Connector 42.5.1.2 release notes
2.8 EDB JDBC Connector 42.5.1.1 release notes
2.9 EDB JDBC Connector 42.5.0.1 release notes
2.10 EDB JDBC Connector 42.3.3.1 release notes
2.11 EDB JDBC Connector 42.3.2.1 release notes
2.12 EDB JDBC Connector 42.2.24.1 release notes
2.13 EDB JDBC Connector 42.2.19.1 release notes
2.14 EDB JDBC Connector 42.2.12.3 release notes
2.15 EDB JDBC Connector 42.2.9.1 release notes
2.16 EDB JDBC Connector 42.2.8.1 release notes
3 Supported platforms
4 EDB JDBC Connector overview
5 Installing EDB JDBC Connector
5.1 Installing EDB JDBC Connector on Linux IBM Power (ppc64le)
5.1.1 Installing EDB JDBC Connector on RHEL 9 ppc64le
5.1.2 Installing EDB JDBC Connector on RHEL 8 ppc64le
5.1.3 Installing EDB JDBC Connector on SLES 15 ppc64le
5.1.4 Installing EDB JDBC Connector on SLES 12 ppc64le
5.2 Installing EDB JDBC Connector on Linux x86 (amd64)
5.2.1 Installing EDB JDBC Connector on RHEL 9 or OL 9 x86_64
5.2.2 Installing EDB JDBC Connector on RHEL 8 or OL 8 x86_64
5.2.3 Installing EDB JDBC Connector on AlmaLinux 9 or Rocky Linux 9 x86_64
5.2.4 Installing EDB JDBC Connector on AlmaLinux 8 or Rocky Linux 8 x86_64
5.2.5 Installing EDB JDBC Connector on SLES 15 x86_64
5.2.6 Installing EDB JDBC Connector on Ubuntu 24.04 x86_64
5.2.7 Installing EDB JDBC Connector on Ubuntu 22.04 x86_64
5.2.8 Installing EDB JDBC Connector on Debian 12 x86_64
5.2.9 Installing EDB JDBC Connector on Debian 11 x86_64
5.2.10 Installing EDB JDBC Connector on SLES 12 x86_64
5.3 Installing EDB JDBC Connector on Linux AArch64 (ARM64)
5.3.1 Installing EDB JDBC Connector on RHEL 9 or OL 9 arm64
5.3.2 Installing EDB JDBC Connector on Debian 12 arm64
5.4 Installing EDB JDBC Connector on Windows
5.5 Installing EDB JDBC Connector using Maven
5.6 Configuring EDB JDBC Connector for Java
5.7 Upgrading a Linux installation
6 Using the EDB JDBC Connector with Java applications
6.1 Loading EDB JDBC Connector
6.2 Connecting to the database
6.2.1 Additional connection properties

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 2

65
71
73
74
75
76
77
82
85
90
97

102
106
107
109
111
119
122
127
134
137
138
139
140
141
142
143
144
147
148

6.2.2 Preferring synchronous secondary database servers
6.3 Executing SQL statements through statement objects
6.4 Retrieving results from a ResultSet object
6.5 Freeing resources
6.6 Handling errors
7 Using advanced queueing
7.1 Server-side setup
7.3 Message acknowledgement
7.4 Message types
7.5 Non-standard message
8 Executing SQL commands with executeUpdate() or through PrepareStatement objects
9 Adding a graphical interface to a Java program
10 Advanced JDBC Connector functionality
10.1 Reducing client-side resource requirements
10.2 Using PreparedStatements to send SQL commands
10.3 Executing stored procedures
10.4 Using REF CURSORS with Java
10.5 Using BYTEA data with Java
10.6 Using object types and collections with Java
10.7 Asynchronous notification handling with NoticeListener
11 Security and encryption
11.1 Using SSL
11.1.1 Configuring the server
11.1.2 Configuring the client
11.1.3 Testing the SSL JDBC connection
11.1.4 Using certificate authentication without a password
11.2 Scram compatibility
11.3 Support for GSSAPI-encrypted connection
12 EDB JDBC Connector logging
13 Reference - JDBC data types

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 3

1 EDB JDBC Connector

The EDB JDBC Connector provides connectivity between a Java application and an EDB Postgres Advanced Server database. The EDB JDBC Connector
is written in Java and conforms to Sun's JDK architecture. For more information, see JDBC driver types

The EDB JDBC Connector is built on and supports all of the functionality of the PostgreSQL community driver. For more information about the features
and functionality of the driver, please see the community documentation.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 4

https://jdbc.postgresql.org/documentation

2 Release notes

The EDB JDBC connector documentation describes the latest version of EDB JDBC connector.

These release notes describe what's new in each release. When a minor or patch release introduces new functionality, indicators in the content
identify the version that introduced the new feature.

Version Release Date

42.7.3.4 25 Nov 2025

42.7.3.3 21 May 2025

42.7.3.2 21 Nov 2024

42.7.3.1 10 Sep 2024

42.5.4.2 26 Feb 2024

42.5.4.1 16 Mar 2023

42.5.1.2 14 Feb 2023

42.5.1.1 09 Dec 2022

42.5.0.1 01 Sep 2022

42.3.3.1 20 Apr 2022

42.3.2.1 15 Feb 2022

42.2.24.1 5 Nov 2021

42.2.19.1 15 Apr 2021

42.2.12.3 22 Oct 2020

42.2.9.1 18 May 2020

42.2.8.1 21 Oct 2019

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 5

2.1 EDB JDBC Connector 42.7.3.4 release notes

Released: 25 Nov 2025

The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.7.3.4 include:

Type Description Addresses

Enhancement Added support for EDB Postgres Advanced Server
18.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 6

2.2 EDB JDBC Connector 42.7.3.3 release notes

Released: 21 May 2025

The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.7.3.3 include:

Type Description Addresses

Enhancement Added support for EDB Postgres Advanced Server 13 to 17.

Bug fix
Fixed an issue where getUpdateCounts was incorrect when using edb_stmt_level_tx to
on .

#45496

Bug Fix Fixed an issue where duplicate messages appeared in the JMS queue.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 7

2.3 EDB JDBC Connector 42.7.3.2 release notes

Released: 22 Nov 2024

The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.7.3.2 include:

Type Description

Performance Improved parsing performance with large SQL (MTK/SQL Plus).

Enhancement Added support for EDB Postgres Advanced Server 17.2.

Bug fix Fixes an incompatibility issue with JDK 8 that was found in version 42.7.3.1 of the edb-jdbc18 driver.

Bug Fix edb-jdbc installation should not install a lower JDK version when a higher version is installed.

Bug Fix Fixed issue where Message.getJMSMessageID() returns null .

Bug Fix Fixed issue with determining the queue table for a queue when there is more than one queue defined within a single schema.

Bug Fix Fixed issue where EDBJmsMessageConsumer.receiveNoWait() returns null even when messages are available on
the queue.

Bug Fix Fixed issue where EDBJmsMessageConsumer.receive() [without time parameter] fails to block until a message is
available.

Bug Fix Fixed issue where EDBJmsMessageConsumer.receive(timeout) doesn't honor the timeout specified.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 8

2.4 EDB JDBC Connector 42.7.3.1 release notes

Released: 10 Sep 2024

The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.7.3.1 include:

Type Description
Add
ress
es

Upstream Merge Merged with the upstream community driver version 42.7.3. See the community JDBC documentation for details.

Enhancement Improved the parsing issue with the large SQL statements (for MTK/SQL Plus).

Enhancement

JMS Enhancements
- The EDB JMS API has been made according to the JMS standard. All supported JMS classes related to Factory,
Connection, Session, Producer, Consumer and Message types can now be used in a standard way.
- DefaultMessageListenerContainer can now be used to continuously pull messages from EDB JMS Queue.
-Transacted Sessions are implemented.

Enhancement Fixed null pointer exception in case of timeout or end-of-fetch during message dequeue. #37
882

Enhancement EDB JMS API now supports the basic Apache Camel Route concept as a source and destination. #37
882

Enhancement JMS message types, such as message, text message, bytes message, and object message, are now supported. #37
884

Enhancement EDBJmsConnectionFactory now has an alternative constructor that takes SQL Connection as a parameter. #38
465

Enhancement

- EDBJmsConnection now implements the critical lifecycle methods start() and stop().
- EDBJmsSession now implements the critical close() method.
- EDBJmsSession.createQueue now returns a valid queue instance.
- EDB JMS message types are now aligned with the JMS standard. The following message types are now supported:
1. aq$_jms_message
2. aq$_jms_text_message
3. aq$_jms_bytes_message
4. aq$_jms_object_message
- All message types now support setProperty() and getProperty() for setting and getting properties of JMS supported
types.

#38
542

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 9

https://jdbc.postgresql.org/changelogs/2024-03-14-42.7.3-release/

2.5 EDB JDBC Connector 42.5.4.2 release notes

Released: 26 Feb 2024

The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.5.4.2 include:

Type Description

Security Fix
CVE-2024-1597 - As outlined in the Security Advisory, SQL injection is possible while using a non-default connection property
(preferQueryMode=simple) along with application code that has a vulnerable SQL that negates a parameter value. There is no
vulnerability in the driver while using the default query mode.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 10

https://www.cve.org/CVERecord?id=CVE-2024-1597
https://github.com/pgjdbc/pgjdbc/security/advisories/GHSA-24rp-q3w6-vc56

2.6 EDB JDBC Connector 42.5.4.1 release notes

Released: 16 Mar 2023

The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.5.4.1 include:

Type Description

Upstream Merge Merged with the upstream community driver version 42.5.4. See the community JDBC documentation for
details.

Bug fix Fixed an issue in which there was missing information in the MANIFEST.MF file. [Support Ticket #89609]

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 11

https://jdbc.postgresql.org/changelogs/2023-02-16-42.5.4-release/

2.7 EDB JDBC Connector 42.5.1.2 release notes

Released: 14 Feb 2023

The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.5.1.2 include:

Type Description

Enhancement Support for EDB Postgres Advanced Server
15.2.0.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 12

2.8 EDB JDBC Connector 42.5.1.1 release notes

Released: 09 Dec 2022

The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.5.1.1 include:

Type Description

Upstream
Merge

Merged with the upstream community driver version 42.5.1. See the community JDBC documentation for details.

Security
Fix

CVE-2022-41946 - StreamWrapper spills to disk if setText or setBytea sends very large strings or arrays to the server. createTempFile
creates a file that can be read by other users on Unix-like systems (not MacOS).

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 13

https://jdbc.postgresql.org/changelogs/2022-11-23-42.5.1-release/
https://github.com/pgjdbc/pgjdbc/security/advisories/GHSA-562r-vg33-8x8h

2.9 EDB JDBC Connector 42.5.0.1 release notes

Released: 01 Sep 2022

The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.5.0.1 include:

Type Description

Upstream
Merge

Merged with the upstream community driver version 42.5.0. See the community JDBC documentation for details.

Security Fix

CVE-2022-31197 - Fixes the SQL generated in PgResultSet.refresh() to escape column identifiers in order to prevent SQL
injection. Previously, the column names for both key and data columns were copied as-is into the generated SQL. This allowed for
a malicious table with column names that included a statment terminator to be parsed and executed as multiple separate
commands. Also, this fix adds a new test class ResultSetRefreshTest to verify this change.

Change Migrated build to Gradle.

Enhancement
Added new changeServerName connection property. If the value for changeServerName is set to true, the
getServerName() call returns a value as PostgreSQL . The default value is false .

Enhancement
Added new forceBinaryTransfer connection property. If the value is set to true , forces the transfer of all binary types
from the PostgreSQL server to the JDBC driver in their binary form. The default value is false .

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 14

https://jdbc.postgresql.org/changelogs/2022-08-24-42.5.0-release/

2.10 EDB JDBC Connector 42.3.3.1 release notes

Released: 20 Apr 2022

The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.3.3.1 include:

Type Description

Upstream
Merge

Merged with the upstream community driver version 42.3.3. See the community JDBC documentation for details.

Security
Fix

GHSA-673j-qm5f-xpv8: Removed the loggerFile and loggerLevel configuration properties as part of this fix. While the properties
still exist, they can no longer be used to configure the driver logging. Instead use java.util.logging configuration mechanisms
such as logging.properties .

Change As part of security fix GHSA-673j-qm5f-xpv, the ability to enable logging using the connection properties is no longer available as
of version 42.3.3.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 15

https://jdbc.postgresql.org/changelogs/2022-02-15-42.3.3-release/
https://github.com/advisories/GHSA-673j-qm5f-xpv8

2.11 EDB JDBC Connector 42.3.2.1 release notes

Released: 15 Feb 2022

The EDB JDBC connector provides connectivity between a Java application and an EDB Postgres Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.3.2.1 include:

Type Description

Upstream
merge

Merged with the upstream community driver version 42.3.2. See the community JDBC documentation for details.

New feature
org.checkerframework.* was previously packaged in the EDB JDBC jar file; causing conflicts with other applications

utilizing org.checkerfamework.* with different versions. New feature is packaging the checker framework under a
custom namespace in the connector using the shade plugin. [Support Ticket: #74134]

New feature JMS based API to interact with DBMS_AQ package seamlessly. This API has been made part of edb-jdbc code under com.edb.jms
and com.edb.aq packages.

Enhancement New property oidTimestamp used to change default behavior of driver when using setTimeStamp method for preparedStatement.
If property oidTimestamp it is set to true, sets the oid to Oid.TIMESTAMP, otherwise uses default behavior.

Bug fix Issue: Change in date format nls_date_format=’YYYY/MM/DD’ in EDB*PLUS gives error. [Support Ticket: #75812]

Bug fix Rounding differences between EDB and Oracle. [Support Ticket: #72708]

Security fix CVE-2022-21724 as part of community merge with v42.3.2

Security fix CVE-2021-36373 - Removed dependency for org.apache.ant

Security fix CVE-2020-15250 - junit fix for temporary folder.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 16

https://jdbc.postgresql.org/changelogs/2022-02-01-42.3.2-release/

2.12 EDB JDBC Connector 42.2.24.1 release notes

Released: 05 Nov 2021

The EDB JDBC connector provides connectivity between a Java application and an Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.2.24.1 include:

Type Description

Upstream merge Merged with the upstream community driver version 42.2.24. See the community JDBC documentation for
details.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 17

https://jdbc.postgresql.org/changelogs/2021-09-22-42.2.24-release/

2.13 EDB JDBC Connector 42.2.19.1 release notes

Released: 15 Apr 2021

The EDB JDBC connector provides connectivity between a Java application and an Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.2.19.1 include:

Type Description

Upstream merge Merged with the upstream community driver version 42.2.19. See the community JDBC documentation for details.

Enhancement EDB JDBC Connector now supports GSSAPI encrypted connection. See Support for GSSAPI Encrypted Connection.

Note

EDB JDBC Connector v42.2.19.1 does not support Java 1.6 and 1.7. Previous versions of EDB JDBC Connector support Java 1.6 and 1.7 but
will not get any future updates, enhancements or bug fixes.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 18

https://jdbc.postgresql.org/changelogs/2021-02-18-42.2.19-release/

2.14 EDB JDBC Connector 42.2.12.3 release notes

Released: 22 Oct 2020

The EDB JDBC connector provides connectivity between a Java application and an Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.2.12.3 include:

Type Description

Enhancement EDB JDBC Connector now supports EDB Postgres Advanced Server
13.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 19

2.15 EDB JDBC Connector 42.2.9.1 release notes

Released: 18 May 2020

The EDB JDBC connector provides connectivity between a Java application and an Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.2.9.1 include:

Type Description

Enhancement EDB JDBC Connector is now supported on Red Hat Enterprise Linux and CentOS (x86_64) 8.x.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 20

2.16 EDB JDBC Connector 42.2.8.1 release notes

Released: 21 Oct 2019

The EDB JDBC connector provides connectivity between a Java application and an Advanced Server database.

New features, enhancements, bug fixes, and other changes in the EDB JDBC Connector 42.2.8.1 include:

Type Description

Upstream merge Merged with the upstream community driver version 42.2.8. See the community JDBC documentation for
details.

Enhancement EDB JDBC Connector now supports EDB Postgres Advanced Server 12.

Enhancement EDB JDBC Connector is now supported on the Windows Server 2019 platform.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 21

https://jdbc.postgresql.org/changelogs/2019-09-13-42.2.8-release/

3 Supported platforms

The JDBC Connector is supported on the same platforms as EDB Postgres Advanced Server. To determine the platform support for the JDBC
Connector, you can either refer to the platform support for EDB Postgres Advanced Server on the Platform Compatibility page on the EDB website or
refer to Installing EDB JDBC Connector.

Supported database versions

This table lists the latest JDBC Connector versions and their supported corresponding EDB Postgres Advanced Server (EPAS) versions.

JDBC Connector EPAS18 EPAS17 EPAS16 EPAS 15 EPAS 14 EPAS 13

42.7.3.4 Y Y Y Y Y Y

42.7.3.3 N Y Y Y Y Y

42.7.3.2 N Y Y Y Y Y

42.7.3.1 N N Y Y Y Y

42.5.4.2 N N Y Y Y Y

42.5.4.1 N N N Y Y Y

42.5.1.2 N N N Y Y Y

42.5.1.1 N N N N Y Y

42.5.0.1 N N N N Y Y

42.3.3.1 N N N N Y Y

42.3.2.1 N N N N Y Y

42.2.24.1 N N N N Y Y

42.2.19.1 N N N N N Y

42.2.12.3 N N N N N Y

42.2.9.1 N N N N N N

42.2.8.1 N N N N N N

Supported JDK distribution

Java Virtual Machine (JVM): Java SE 8 or higher (LTS version), including Oracle JDK, OpenJDK, and IBM SDK (Java) distributions.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 22

https://www.enterprisedb.com/platform-compatibility#epas

4 EDB JDBC Connector overview

Sun Microsystems created a standardized interface for connecting Java applications to databases, known as Java Database Connectivity (JDBC). The
EDB JDBC Connector connects a Java application to a Postgres database.

JDBC driver types

There are currently four types of JDBC drivers, each with its own implementation, use, and limitations. The EDB JDBC Connector is a Type 4 driver.

Type 1 driver

This driver type is the JDBC-ODBC bridge.
It's limited to running locally.
Must have ODBC installed on computer.
Must have ODBC driver for specific database installed on computer.
Generally can’t run inside an applet because of Native Method calls.

Type 2 driver

This is the native database library driver.
Uses Native Database library on computer to access database.
Generally can’t run inside an applet because of Native Method calls.
Must have database library installed on client.

Type 3 driver

100% Java Driver, no native methods.
Doesn't require preinstallation on client.
Can be downloaded and configured on-the-fly just like any Java class file.
Uses a proprietary protocol for talking with a middleware server.
Middleware server converts from proprietary calls to DBMS specific calls.

Type 4 driver

100% Java driver, no native methods.
Doesn't require preinstallation on client.
Can be downloaded and configured on-the-fly just like any Java class file.
Unlike Type 3 driver, talks directly with the DBMS server.
Converts JDBC calls directly to database specific calls.

The JDBC interface

The following figure shows the core API interfaces in the JDBC specification and how they relate to each other. These interfaces are implemented in
the java.sql package.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 23

JDBC classes and interfaces

The core API is composed of classes and interfaces. These classes and interfaces work together as shown in the figure:

The JDBC DriverManager

This figure depicts the role of the DriverManager class in a typical JDBC application. The DriverManager acts as the bridge between a Java
application and the backend database and determines the JDBC driver to use for the target database.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 24

EDB Postgres Advanced Server JDBC Connector compatibility

This is the current version of the driver. Unless you have unusual requirements (running old applications or JVMs), this is the driver you should be
using. This driver supports PostgreSQL 10 or higher versions and requires Java 8 or higher versions. It contains support for SSL and the javax.sql
package.

Note

Deprecated support for Java 1.6 and 1.7. Previous version of EDB JDBC Connector v42.2.12.3 will continue to support Java 1.6 and 1.7
versions.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 25

5 Installing EDB JDBC Connector

Select a link to access the applicable installation instructions:

Linux x86-64 (amd64)

Red Hat Enterprise Linux (RHEL) and derivatives

RHEL 9, RHEL 8

Oracle Linux (OL) 9, Oracle Linux (OL) 8

Rocky Linux 9, Rocky Linux 8

AlmaLinux 9, AlmaLinux 8

SUSE Linux Enterprise (SLES)

SLES 15

Debian and derivatives

Ubuntu 24.04, Ubuntu 22.04

Debian 12, Debian 11

Linux IBM Power (ppc64le)

Red Hat Enterprise Linux (RHEL) and derivatives

RHEL 9, RHEL 8

SUSE Linux Enterprise (SLES)

SLES 15

Linux AArch64 (ARM64)

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 26

Red Hat Enterprise Linux (RHEL) and derivatives

RHEL 9

Oracle Linux (OL) 9

Debian and derivatives

Debian 12

Windows

Windows Server 2019

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 27

5.1 Installing EDB JDBC Connector on Linux IBM Power (ppc64le)

Operating system-specific install instructions are described in the corresponding documentation:

Red Hat Enterprise Linux (RHEL)

RHEL 9

RHEL 8

SUSE Linux Enterprise (SLES)

SLES 15

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 28

5.1.1 Installing EDB JDBC Connector on RHEL 9 ppc64le

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

Installing EDB Postgres Advanced Server

Installing PostgreSQL

Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

Review Supported JDBC distributions.

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

dnf repolist | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm

Refresh the cache:

sudo dnf makecache

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 29

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

Install the package

sudo dnf -y install edb-jdbc

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 30

5.1.2 Installing EDB JDBC Connector on RHEL 8 ppc64le

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

Installing EDB Postgres Advanced Server

Installing PostgreSQL

Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

Review Supported JDBC distributions.

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

dnf repolist | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

Refresh the cache:

sudo dnf makecache

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 31

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

Install the package

sudo dnf -y install edb-jdbc

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 32

5.1.3 Installing EDB JDBC Connector on SLES 15 ppc64le

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

Installing EDB Postgres Advanced Server

Installing PostgreSQL

Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

Review Supported JDBC distributions.

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

zypper lr -E | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Activate the required SUSE module:

sudo SUSEConnect -p PackageHub/15.7/ppc64le

Refresh the metadata:

sudo zypper refresh

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 33

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

Install the package

sudo zypper -n install edb-jdbc

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 34

5.1.4 Installing EDB JDBC Connector on SLES 12 ppc64le

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

Installing EDB Postgres Advanced Server

Installing PostgreSQL

Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

Review Supported JDBC distributions.

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

zypper lr -E | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Activate the required SUSE module:

sudo SUSEConnect -p PackageHub/12.5/ppc64le
sudo SUSEConnect -p sle-sdk/12.5/ppc64le

Refresh the metadata:

sudo zypper refresh

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 35

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

Install the package

sudo zypper -n install edb-jdbc

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 36

5.2 Installing EDB JDBC Connector on Linux x86 (amd64)

Operating system-specific install instructions are described in the corresponding documentation:

Red Hat Enterprise Linux (RHEL) and derivatives

RHEL 9

RHEL 8

Oracle Linux (OL) 9

Oracle Linux (OL) 8

Rocky Linux 9

Rocky Linux 8

AlmaLinux 9

AlmaLinux 8

SUSE Linux Enterprise (SLES)

SLES 15

Debian and derivatives

Ubuntu 24.04

Ubuntu 22.04

Debian 12

Debian 11

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 37

5.2.1 Installing EDB JDBC Connector on RHEL 9 or OL 9 x86_64

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

Installing EDB Postgres Advanced Server

Installing PostgreSQL

Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

Review Supported JDBC distributions.

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

dnf repolist | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm

Install the package

sudo dnf -y install edb-jdbc

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 38

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

5.2.2 Installing EDB JDBC Connector on RHEL 8 or OL 8 x86_64

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

Installing EDB Postgres Advanced Server

Installing PostgreSQL

Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

Review Supported JDBC distributions.

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

dnf repolist | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

Install the package

sudo dnf -y install edb-jdbc

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 39

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

5.2.3 Installing EDB JDBC Connector on AlmaLinux 9 or Rocky Linux 9 x86_64

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

Installing EDB Postgres Advanced Server

Installing PostgreSQL

Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

Review Supported JDBC distributions.

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

dnf repolist | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install epel-release

Enable additional repositories to resolve dependencies:

sudo dnf config-manager --set-enabled crb

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 40

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

Install the package

sudo dnf -y install edb-jdbc

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 41

5.2.4 Installing EDB JDBC Connector on AlmaLinux 8 or Rocky Linux 8 x86_64

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

Installing EDB Postgres Advanced Server

Installing PostgreSQL

Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

Review Supported JDBC distributions.

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

dnf repolist | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install epel-release

Enable additional repositories to resolve dependencies:

sudo dnf config-manager --set-enabled powertools

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 42

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

Install the package

sudo dnf -y install edb-jdbc

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 43

5.2.5 Installing EDB JDBC Connector on SLES 15 x86_64

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

Installing EDB Postgres Advanced Server

Installing PostgreSQL

Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

Review Supported JDBC distributions.

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

zypper lr -E | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Activate the required SUSE module:

sudo SUSEConnect -p PackageHub/15.7/x86_64

Refresh the metadata:

sudo zypper refresh

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 44

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

Install the package

sudo zypper -n install edb-jdbc

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 45

5.2.6 Installing EDB JDBC Connector on Ubuntu 24.04 x86_64

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

Installing EDB Postgres Advanced Server

Installing PostgreSQL

Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

Review Supported JDBC distributions.

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

apt-cache search enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-jdbc

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 46

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

5.2.7 Installing EDB JDBC Connector on Ubuntu 22.04 x86_64

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

Installing EDB Postgres Advanced Server

Installing PostgreSQL

Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

Review Supported JDBC distributions.

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

apt-cache search enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-jdbc

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 47

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

5.2.8 Installing EDB JDBC Connector on Debian 12 x86_64

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

Installing EDB Postgres Advanced Server

Installing PostgreSQL

Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

Review Supported JDBC distributions.

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

apt-cache search enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-jdbc

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 48

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

5.2.9 Installing EDB JDBC Connector on Debian 11 x86_64

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

Installing EDB Postgres Advanced Server

Installing PostgreSQL

Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

Review Supported JDBC distributions.

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

apt-cache search enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-jdbc

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 49

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

5.2.10 Installing EDB JDBC Connector on SLES 12 x86_64

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

Installing EDB Postgres Advanced Server

Installing PostgreSQL

Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

Review Supported JDBC distributions.

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

zypper lr -E | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Activate the required SUSE module:

sudo SUSEConnect -p PackageHub/12.5/x86_64
sudo SUSEConnect -p sle-sdk/12.5/x86_64

Refresh the metadata:

sudo zypper refresh

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 50

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

Install the package

sudo zypper -n install edb-jdbc

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 51

5.3 Installing EDB JDBC Connector on Linux AArch64 (ARM64)

Operating system-specific install instructions are described in the corresponding documentation:

Red Hat Enterprise Linux (RHEL) and derivatives

RHEL 9

Oracle Linux (OL) 9

Debian and derivatives

Debian 12

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 52

5.3.1 Installing EDB JDBC Connector on RHEL 9 or OL 9 arm64

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

Installing EDB Postgres Advanced Server

Installing PostgreSQL

Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

Review Supported JDBC distributions.

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

dnf repolist | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm

Install the package

sudo dnf -y install edb-jdbc

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 53

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

5.3.2 Installing EDB JDBC Connector on Debian 12 arm64

Prerequisites

Before you begin the installation process:

Install Postgres on a host that the product can connect to using a connection string. It doesn't need to be on the same host. See:

Installing EDB Postgres Advanced Server

Installing PostgreSQL

Ensure that Java is installed on your system. You can download a Java installer that matches your environment from the Oracle Java Downloads
website. Documentation that contains detailed installation instructions is available through the associated Installation Instruction
links on the same page.

Review Supported JDBC distributions.

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

apt-cache search enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-jdbc

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 54

https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.postgresql.org/download/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.enterprisedb.com/repos-downloads

5.4 Installing EDB JDBC Connector on Windows

EDB provides a graphical installer for Windows. You can access it two ways:

Download the graphical installer from the Downloads page, and invoke the installer directly. See Installing directly.

Use Stack Builder (with PostgreSQL) or StackBuilder Plus (with EDB Postgres Advanced Server) to download the EDB installer package and
invoke the graphical installer. See Using Stack Builder or StackBuilder Plus.

Installing directly

After downloading the graphical installer, to start the installation wizard, assume sufficient privileges (superuser or administrator) and double-click
the installer icon. If prompted, provide a password.

In some versions of Windows, to invoke the installer with administrator privileges, you need to right-click the installer icon and select Run as
Administrator from the context menu.

Proceed to Using the graphical installer.

Using Stack Builder or StackBuilder Plus

If you're using PostgreSQL, you can invoke the graphical installer with Stack Builder. See Using Stack Builder.

If you're using EDB Postgres Advanced Server, you can invoke the graphical installer with StackBuilder Plus. See Using StackBuilder Plus.

1. In Stack Builder or StackBuilder Plus, follow the prompts until you get to the module selection page.

On the Welcome page, from the list of available servers, select the target server installation. If your network requires you to use a proxy server
to access the internet, select Proxy servers and specify a server. Select Next.

2. Expand the Database Drivers node and do one of the following:

In Stack Builder, select pgJDBC.

In StackBuilder Plus, select EnterpriseDB JDBC Connector.

3. Proceed to Using the graphical installer.

Using the graphical installer

1. Select the installation language and select OK.

2. On the Setup JDBC page, select Next.

3. Browse to a directory where you want to install JDBC, or leave the directory set to the default location. Select Next.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 55

https://www.enterprisedb.com/software-downloads-postgres#connectors
https://www.enterprisedb.com/docs/supported-open-source/postgresql/installing/using_stackbuilder/
https://www.enterprisedb.com/docs/epas/latest/installing/windows/installing_advanced_server_with_the_interactive_installer/using_stackbuilder_plus/

4. On the Ready to Install page, select Next.

An information box shows the installation progress of the selected components.

5. When the installation is complete, select Finish.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 56

5.5 Installing EDB JDBC Connector using Maven

EDB supports installing EDB JDBC Connector using the Maven dependency manager. EDB-JDBC is published in the Maven Central Repository with the
following groupId and artifactId:

groupId: com.enterprisedb
artifactId: edb-jdbc

Add the following dependency for EDB-JDBC in your pom.xml file to install and configure the EDB JDBC Connector. Ensure you provide the correct
version to install:

<dependency>
 <groupId>com.enterprisedb</groupId>
 <artifactId>edb-jdbc</artifactId>
 <version>42.5.4.2</version>
</dependency>

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 57

https://central.sonatype.com/artifact/com.enterprisedb/edb-jdbc

5.6 Configuring EDB JDBC Connector for Java

edb-jdbc18.jar supports JDBC version 4.2.

To make the JDBC driver available to Java, you must either copy the appropriate java .jar file for the JDBC version that you're using to your
$java_home/jre/lib/ext directory or append the location of the .jar file to the CLASSPATH environment variable.

If you choose to append the location of the jar file to the CLASSPATH environment variable, you must include the complete pathname:

/usr/edb/jdbc/edb-jdbc18.jar

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 58

5.7 Upgrading a Linux installation

If you have an existing JDBC Connector installation on a Linux platform, you can upgrade your repository configuration file, which enables access to
the current EDB repository. Then you can upgrade to a more recent version of JDBC Connector.

To update the edb.repo file:

Update your repository configuration file
sudo <package-manager> upgrade edb-repo

Upgrade the installed product
sudo <package-manager> upgrade edb-repo

Where <package-manager> is the package manager used with your operating system.

Package manager Operating system

dnf RHEL 8/9 and derivatives

zypper SLES

apt-get Debian and Ubuntu

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 59

6 Using the EDB JDBC Connector with Java applications

With Java and the EDB JDBC Connector in place, a Java application can access an EDB Postgres Advanced Server database. This example creates an
application that executes a query and prints the result set.

This example is simple, but it shows the fundamental steps required to interact with an EDB Postgres Advanced Server database from a Java
application:

Load the JDBC driver.
Build connection properties.
Connect to the database server.
Execute a SQL statement.
Process the result set.
Clean up.
Handle any errors that occur.

import java.sql.*;
public class ListEmployees
{
 public static void main(String[] args)
 {
 try
 {
 String url =
"jdbc:edb://localhost:5444/edb";
 String user = "enterprisedb";
 String password =
"enterprisedb";
 Connection con = DriverManager.getConnection(url, user,
password);
 Statement stmt =
con.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT * FROM
emp");
 while(rs.next())
 {
 System.out.println(rs.getString(1));
 }

 rs.close();
 stmt.close();

con.close();
 System.out.println("Command successfully executed");
 }
 catch(SQLException
exp)
 {
 System.out.println("SQL Exception: " +
exp.getMessage());
 System.out.println("SQL State: " +
exp.getSQLState());
 System.out.println("Vendor Error: " +
exp.getErrorCode());
 }
 }
}

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 60

6.1 Loading EDB JDBC Connector

The EDB Postgres Advanced Server JDBC driver is written in Java and is distributed as a compiled Java Archive (JAR) file. Include the driver's JAR file in
your classpath so that the Java runtime can register the driver as it starts up. The registered driver will be used when an application requests a
connection with a URL beginning with the "jdbc:edb:" schema.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 61

6.2 Connecting to the database

After the driver has loaded and registered itself with the DriverManager , the ListEmployees class can attempt to connect to the database
server, as shown in the following code fragment:

All JDBC connections start with the DriverManager . The DriverManager class offers a static method called getConnection() that's
responsible for creating a connection to the database. When you call the getConnection() method, the DriverManager must decide which
JDBC driver to use to connect to the database. The decision is based on a URL that you pass to getConnection() .

A JDBC URL takes the following general format:

jdbc:<driver>:<connection parameters>

The first component in a JDBC URL is always jdbc . When using the EDB Postgres Advanced Server JDBC Connector, the second component (the
driver) is edb .

The Advanced Server JDBC URL takes one of the following forms:

jdbc:edb:<database>

jdbc:edb://<host>/<database>

jdbc:edb://<host>:<port>/<database>

The following table shows the various connection parameters.

Name Description

host The host name of the server. Defaults to localhost.

port The port number the server is listening on. Defaults to the EDB Postgres Advanced Server standard port number
(5444).

database The database name.

String url =
"jdbc:edb://localhost:5444/edb";
String user = "enterprisedb";
String password =
"enterprisedb";
Connection con = DriverManager.getConnection(url, user,
password);

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 62

6.2.1 Additional connection properties

In addition to the standard connection parameters, the EDB Postgres Advanced Server JDBC driver supports connection properties that control
behavior specific to EDB . You can specify these properties in the connection URL or as a Properties object parameter passed to
DriverManager.getConnection() . The example shows how to use a Properties object to specify additional connection properties:

Note

By default, the combination of SSL=true and setting the connection URL parameter
sslfactory=org.postgresql.ssl.NonValidatingFactory encrypts the connection but doesn't validate the SSL certificate.

To enforce certificate validation, you must use a Custom SSLSocketFactory . For more details about writing a Custom
SSLSocketFactory , see the the PostgreSQL JDBC driver documentation.

To specify additional connection properties in the URL, add a question mark and an ampersand-separated list of keyword-value pairs:

String url = "jdbc:edb://localhost/edb?user=enterprisedb&ssl=true";

Some of the additional connection properties are shown in the following table.

Name Type Description

user String The database user on whose behalf the connection is being made.

password String The database user’s password.

ssl Boolean Requests an authenticated, encrypted SSL connection.

charSet String The value of charSet determines the character set used for data sent to or received from the database.

prepareThreshold Integer The value of prepareThreshold determines the number of PreparedStatement executions
required before switching to server-side prepared statements. The default is five.

loadBalanceHosts Boolean In default mode (disabled) hosts are connected in the given order. If enabled, hosts are chosen randomly
from the set of suitable candidates.

targetServerType String

Allows opening connections to only servers with the required state. The allowed values are any ,
primary , secondary , preferSecondary , and preferSyncSecondary . The

primary/secondary distinction is currently done by observing if the server allows writes. The value
preferSecondary tries to connect to secondaries if any are available, otherwise allows connecting to

the primary. The EDB Postgres Advanced Server JDBC Connector supports preferSyncSecondary ,
which permits connection to only synchronous secondaries or the primary if there are no active
synchronous secondaries.

skipQuotesOnReturning Boolean
When set to true , column names from the RETURNING clause aren't quoted. This eliminates a case-
sensitive comparison of the column name. When set to false (the default setting), column names are
quoted.

changeServerName Boolean
The getServerName() call in PgConnection.java returns EnterpriseDB . If
changeServerName is set to true , it returns the value as PostgreSQL . The default value is
false .

String url =
"jdbc:edb://localhost/edb";
Properties props = new Properties();

props.setProperty("user", "enterprisedb");
props.setProperty("password", "enterprisedb");
props.setProperty("sslfactory", "com.edb.ssl.NonValidatingFactory");
props.setProperty("ssl", "true");

Connection con = DriverManager.getConnection(url,
props);

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 63

https://jdbc.postgresql.org/documentation/head/ssl-factory.html

forceBinaryTransfer Boolean
If the value is set to true , forces the transfer of all binary types from the PostgreSQL server to the JDBC
driver in their binary form. The default value is false .

Name Type Description

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 64

6.2.2 Preferring synchronous secondary database servers

The EDB Postgres Advanced Server JDBC Connector supports the preferSyncSecondary option for the targetServerType connection
property.

The preferSyncSecondary option provides a preference for synchronous, standby servers for failover connection, thus ignoring asynchronous
servers.

The specification of this capability in the connection URL is shown by the following syntax:

jdbc:edb://primary:port,secondary_1:port_1,secondary_2:port_2,.../
database?targetServerType=preferSyncSecondary

Parameters

primary:port

The IP address or a name assigned to the primary database server followed by its port number. If primary is a name, you must specify it with its IP
address in the /etc/hosts file on the host running the Java program.

Note

You can specify the primary database server in any location in the list. It doesn't have to precede the secondary database servers.

secondary_n:port_n

The IP address or a name assigned to a standby, secondary database server followed by its port number. If secondary_n is a name, you must
specify it with its IP address in the /etc/hosts file on the host running the Java program.

database

The name of the database to which to make the connection.

The following is an example of the connection URL:

The following characteristics apply to the preferSyncSecondary option:

You cam specify the primary database server in any location in the connection list.
Connection for accessing the database for use by the Java program is first attempted on a synchronous secondary. The secondary servers are
available for read-only operations.
No connection attempt is made to any servers running in asynchronous mode.

The order in which connection attempts are made is determined by the loadBalanceHosts connection property. If disabled, which is the
default setting, connection attempts are made in the left-to-right order specified in the connection list. If enabled, connection attempts are
made randomly.
If connection can't be made to a synchronous secondary, then connection to the primary database server is used. If the primary database server
isn't active, then the connection attempt fails.

The synchronous secondaries to use for the preferSyncSecondary option must be configured for hot standby usage.

String url = "jdbc:edb://primary:5300,secondary1:5400/edb?
targetServerType=preferSyncSecondary";
con = DriverManager.getConnection(url, "enterprisedb", "edb");

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 65

The synchronous secondaries to use for the preferSyncSecondary option must be configured for hot standby usage.

Configuring primary and secondary database servers overview

The process for configuring a primary and secondary database servers is described in the PostgreSQL documentation.

For general information on hot standby usage, which is needed for the preferSyncSecondary option, see the PostgreSQL core documentation.

For information about creating a base backup for the secondary database server from the primary, see Section 25.3.2, Making a Base Backup
(describes usage of the pg_basebackup utility program) or Section 25.3.3, Making a Base Backup Using the Low Level API in Section 25.3
Continuous Archiving and Point-in-Time Recovery (PITR) in The PostgreSQL Core Documentation.

For information on the configuration parameters to set for hot standby usage, see Section 19.6, Replication.

Example: Primary and secondary database servers

In the example that follows, the:

Primary database server resides on host 192.168.2.24 , port 5444 .
Secondary database server is named secondary1 and resides on host 192.168.2.22 , port 5445 .

Secondary database server is named secondary2 and resides on host 192.162.2.24 , port 5446 (same host as the primary).

In the primary database server’s pg_hba.conf file, there must be a replication entry for each unique replication database USER/ADDRESS
combination for all secondary database servers. In the following example, the database superuser enterprisedb is used as the replication
database user for both the secondary1 database server on 192.168.2.22 and the secondary2 database server that is local relative to the
primary.

TYPE DATABASE USER ADDRESS METHOD
host replication enterprisedb 192.168.2.22/32 md5
host replication enterprisedb 127.0.0.1/32 md5

After the primary database server is configured in the postgresql.conf file along with its pg_hba.conf file, database server secondary1
is created by invoking the following command on host 192.168.2.22 for secondary1 :

su – enterprisedb
Password:
-bash-4.1$ pg_basebackup -D /opt/secondary1 -h 192.168.2.24 -p 5444 -Fp -R -X stream -l 'Secondary1'

On the secondary database server, /opt/secondary1 , a recovery.conf file is generated in the database cluster, which was edited in the
following example by adding the application_name=secondary1 setting as part of the primary_conninfo string and removing some of
the other unneeded options automatically generated by pg_basebackup . Also note the use of the standby_mode = 'on' parameter.

The application name secondary1 must be included in the synchronous_standby_names parameter of the primary database server’s
postgresql.conf file.

The secondary database server (secondary2) is created in an alternative manner on the same host used by the primary:

standby_mode = 'on'
primary_conninfo = 'user=enterprisedb password=password host=192.168.2.24 port=5444
application_name=secondary1'

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 66

https://www.postgresql.org/docs/12/static/hot-standby.html
https://www.postgresql.org/docs/12/static/continuous-archiving.html
https://www.postgresql.org/docs/12/static/runtime-config-replication.html

su - enterprisedb
Password:
-bash-4.1$ psql -d edb -c "SELECT pg_start_backup('Secondary2')"
Password:
 pg_start_backup

 0/6000028
(1 row)

-bash-4.1$ cp -rp /var/lib/edb/as12/data/opt/secondary2
-bash-4.1$ psql -d edb -c "SELECT pg_stop_backup()"
Password:
NOTICE: pg_stop_backup complete, all required WAL segments have been archived
 pg_stop_backup

 0/6000130
(1 row)

On the secondary database server /opt/secondary2 , create the recovery.conf file in the database cluster. The
application_name=secondary2 setting is part of the primary_conninfo string as shown in the following example. Also be sure to

include the standby_mode = 'on' parameter.

The application name secondary2 must be included in the synchronous_standby_names parameter of the primary database server’s
postgresql.conf file.

You must ensure the configuration parameter settings in the postgresql.conf file of the secondary database servers are properly set
(particularly hot_standby=on).

Note

As of EDB Postgres Advanced Server v12, the recovery.conf file is no longer valid. It's replaced by the standby.signal file. As a
result, primary_conninfo is moved from the recovery.conf file to the postgresql.conf file. The presence of the
standby.signal file signals the cluster to run in standby mode. Even if you try to create a recovery.conf file manually and keep it

under the data directory, the server fails to start and reports an error.

The parameter standby_mode=on is also removed from EDB Postgres Advanced Server v12, and the trigger_file parameter name is
changed to promote_trigger_file .

The following table lists the basic postgresql.conf configuration parameter settings of the primary database server as compared to the
secondary database servers.

Parameter Primary Second
ary

Description

archive_mode on off Completed WAL segments sent to archive storage

archive_command cp %p
/archive_dir/%f

n/a Archive completed WAL segments

wal_level (10 or later) replica minimal Information written to WAL segment

max_wal_senders n (positive
integer)

0 Maximum concurrent connections from standby servers

standby_mode = 'on'
primary_conninfo = 'user=enterprisedb password=password host=localhost port=5444
application_name=secondary2'

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 67

wal_keep_segments n (positive
integer)

0 Minimum number of past log segments to keep for standby servers

synchronous_standby_names
n(secondary1,
secondary2,...) n/a

List of standby servers for synchronous replication. Must be present to enable
synchronous replication. These are obtained from the application_name option of
the primary_conninfo parameter in the recovery.conf file of each standby server.

hot_standby off on Client application can connect and run queries on the secondary server in standby
mode

Parameter Primary Second
ary

Description

The secondary database server (secondary1) is started:

-bash-4.1$ pg_ctl start -D /opt/secondary1 -l logfile -o "-p 5445"
server starting

The secondary database server (secondary2) is started:

-bash-4.1$ pg_ctl start -D /opt/secondary2/data -l logfile -o "-p 5446"
server starting

To ensure that the secondary database servers are properly set up in synchronous mode, use the following query on the primary database server. The
sync_state column lists applications secondary1 and secondary2 as sync.

output
 usename | application_name | client_addr | client_port | sync_state
--------------+------------------+--------------+-------------+------------
 enterprisedb | secondary1 | 192.168.2.22 | 53525 | sync
 enterprisedb | secondary2 | 127.0.0.1 | 36214 | sync
(2 rows)

The connection URL is:

The /etc/hosts file on the host running the Java program contains the following entries with the server names specified in the connection URL
string:

192.168.2.24 localhost.localdomain primary
192.168.2.22 localhost.localdomain secondary1
192.168.2.24 localhost.localdomain secondary2

For this example, the preferred synchronous secondary connection option results in the first usage attempt made on secondary1 , then on
secondary2 if secondary1 is not active, and then on the primary if both secondary1 and secondary2 aren't active as shown by the

following program. The program displays the IP address and port of the database server to which the connection is made.

edb=# SELECT usename, application_name, client_addr, client_port, sync_state FROM
pg_stat_replication;

String url = "jdbc:edb://primary:5444,secondary1:5445,secondary2:5446/edb?
targetServerType=preferSyncSecondary";
con = DriverManager.getConnection(url, "enterprisedb", "password");

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 68

Case 1: When all database servers are active, connection is made to secondary1 on 192.168.2.22 port 5445 .

$ java InetServer
192.168.2.22/32:5445
Command successfully executed

Case 2: When secondary1 is shut down, connection is made to secondary2 on 192.168.2.24 port 5446 .

import java.sql.*;
public class InetServer
{
 public static void main(String[] args)
 {
 try
 {
 String url
=
 "jdbc:edb://primary:5444,secondary1:5445,secondary2:5446/edb?targetServerType=preferSyncSecondary";
 String user = "enterprisedb";
 String password =
"password";
 Connection con = DriverManager.getConnection(url, user,
password);

 ResultSet rs = con.createStatement().executeQuery("SELECT inet_server_addr() || ':' ||
inet_server_port()");
 rs.next();
 System.out.println(rs.getString(1));

 rs.close();

con.close();
 System.out.println("Command successfully executed");
 }
 catch(ClassNotFoundException
e)
 {
 System.out.println("Class Not Found : " +
e.getMessage());
 }
 catch(SQLException
exp)
 {
 System.out.println("SQL Exception: " +
exp.getMessage());
 System.out.println("SQL State: " +
exp.getSQLState());
 System.out.println("Vendor Error: " +
exp.getErrorCode());
 }
 }
}

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 69

bash-4.1$ /usr/edb/as12/bin/pg_ctl stop -D /opt/secondary1
waiting for server to shut down.... done
server stopped

$ java InetServer
192.168.2.24/32:5446
Command successfully executed

Case 3: When secondary2 is also shut down, connection is made to the primary on 192.168.2.24 port 5444 .

bash-4.1$ /usr/edb/as12/bin/pg_ctl stop -D /opt/secondary2/data
waiting for server to shut down.... done
server stopped

$ java InetServer
192.168.2.24/32:5444
Command successfully executed

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 70

6.3 Executing SQL statements through statement objects

After loading the EDB Postgres Advanced Server JDBC Connector driver and connecting to the server, the code in the sample application builds a JDBC
Statement object, executes a SQL query, and displays the results.

A Statement object sends SQL statements to a database. There are three kinds of Statement objects. Each is specialized to send a particular
type of SQL statement:

A Statement object is used to execute a simple SQL statement with no parameters.
A PreparedStatement object is used to execute a precompiled SQL statement with or without IN parameters.
A CallableStatement object is used to execute a call to a database stored procedure.

You must construct a Statement object before executing a SQL statement. The Statement object offers a way to send a SQL statement to the
server (and gain access to the result set). Each Statement object belongs to a Connection . Use the createStatement() method to ask
the Connection to create the Statement object.

A Statement object defines several methods to execute different types of SQL statements. In the sample application, the executeQuery()
method executes a SELECT statement:

The executeQuery() method expects a single argument: the SQL statement that you want to execute. executeQuery() returns data from the
query in a ResultSet object. If the server encountered an error while executing the SQL statement provided, it returns an SQLException and
doesn't return a ResultSet .

Using named notation with a CallableStatement object

The JDBC Connector (EDB Postgres Advanced Server version 10 and later) supports the use of named parameters when instantiating a
CallableStatement object. This syntax is an extension of JDBC supported syntax and doesn't conform to the JDBC standard.

You can use a CallableStatement object to pass parameter values to a stored procedure. You can assign values to IN , OUT , and INOUT
parameters with a CallableStatement object.

When using the CallableStatement class, you can use ordinal notation or named notation to specify values for actual arguments. You must set
a value for each IN or INOUT parameter marker in a statement.

When using ordinal notation to pass values to a CallableStatement object, use the setter method that corresponds to the parameter type. For
example, when passing a STRING value, use the setString setter method. Each parameter marker in a statement (?) represents an ordinal
value. When using ordinal parameters, pass the actual parameter values to the statement in the order that the formal arguments are specified in the
procedure definition.

You can also use named parameter notation when specifying argument values for a CallableStatement object. Named parameter notation
allows you to supply values for only those parameters that are required by the procedure, omitting any parameters that have acceptable default
values. You can also specify named parameters in any order.

When using named notation, each parameter name must correspond to a COLUMN_NAME returned by a call to the
DatabaseMetaData.getProcedureColumns method. Use the => token when including a named parameter in a statement call.

Use the registerOutParameter method to identify each OUT or INOUT parameter marker in the statement.

Statement stmt =
con.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM
emp");

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 71

Examples

The following examples show using the CallableStatement method to provide parameters to a procedure with the following signature:

The following example uses ordinal notation to provide parameters:

The following example uses named notation to provide parameters. Using named notation, you can omit parameters that have default values or
reorder parameters:

CREATE OR REPLACE PROCEDURE hire_emp (ename
VARCHAR2
empno NUMBER,
job VARCHAR2,
sal NUMBER,
hiredate DATE DEFAULT
now(),
mgr NUMBER DEFAULT 7100,
deptno NUMBER
)
IS
 BEGIN
 INSERT INTO emp VALUES (empno, ename, job, mgr, hiredate, sal,
deptno);
 END;

CallableStatement cstmt = con.prepareCall("{CALL
hire_emp(?,?,?,?,?,?,?)}");
//Bind a value to each
parameter.
cstmt.setString(1, "SMITH");
cstmt.setInt(2, 8888);
cstmt.setString(3, "Sales");
cstmt.setInt(4, 5500);
cstmt.setDate(5, Date.valueOf("2016-06-01"));
cstmt.setInt(6, 7566);
cstmt.setInt(7, 30);

CallableStatement cstmt =
con.prepareCall
("{CALL hire_emp(ename =>
?,
job => ?,
empno => ?,
sal => ?,
deptno => ?
)}");

//Bind a value to each
parameter.
cstmt.setString("ename", "SMITH");
cstmt.setInt("empno", 8888);
cstmt.setString("job", "Sales");
cstmt.setInt("sal", 5500);
cstmt.setInt("deptno", 30);

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 72

6.4 Retrieving results from a ResultSet object

A ResultSet object is the primary storage mechanism for the data returned by a SQL statement. Each ResultSet object contains both data and
metadata in the form of a ResultSetMetaData object. ResultSetMetaData includes useful information about results returned by the SQL
command: column names, column count, row count, column length, and so on.

To access the row data stored in a ResultSet object, an application calls one or more getter methods. A getter method retrieves the value
in a particular column of the current row. There are many different getter methods. Each method returns a value of a particular type. For example,
the getString() method returns a STRING type, the getDate() method returns a Date , and the getInt() method returns an INT
type. When an application calls a getter method, JDBC tries to convert the value into the requested type.

Each ResultSet keeps an internal pointer that points to the current row. When the executeQuery() method returns a ResultSet , the
pointer is positioned before the first row. If an application calls a getter method before moving the pointer, the getter method fails. To advance
to the next (or first) row, call the ResultSet’s next() method. ResultSet.next() is a Boolean method. It returns TRUE if there's
another row in the ResultSet or FALSE if you moved past the last row.

After moving the pointer to the first row, the sample application uses the getString() getter method to retrieve the value in the first column
and then prints that value. Since ListEmployees calls rs.next() and rs.getString() in a loop, it processes each row in the result set.
ListEmployees exits the loop when rs.next() moves the pointer past the last row and returns FALSE .

When using the ResultSet interface:

You must call next() before reading any values. next() returns true if another row is available and prepares the row for processing.
Under the JDBC specification, an application must access each row in the ResultSet only once. It's safest to stick to this rule, although
currently the EDB Postgres Advanced Server JDBC driver allows you to access a field as many times as you want.
When you finish using a ResultSet , call the close() method to free the resources held by that object.

while(rs.next())
{
System.out.println(rs.getString(1));
}

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 73

6.5 Freeing resources

Every JDBC object consumes resources. A ResultSet object, for example, might contain a copy of every row returned by a query. A Statement
object might contain the text of the last command executed. It’s usually a good idea to free up those resources when the application no longer needs
them. The sample application releases the resources consumed by the Result , Statement , and Connection objects by calling each object’s
close() method:

If you attempt to use a JDBC object after closing it, that object returns an error.

rs.close();
stmt.close();
con.close();

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 74

6.6 Handling errors

When connecting to an external resource (such as a database server), errors are bound to occur. Your code must include a way to handle these errors.
Both JDBC and the EDB Postgres Advanced Server JDBC Connector provide various types of error handling. The ListEmployees class example shows
how to handle an error using try/catch blocks.

When a JDBC object returns an error (an object of type SQLException or of a type derived from SQLException), the SQLException object
exposes three different pieces of error information:

The error message
The SQL state
A vendor-specific error code

In this example, the code displays the value of these components if an error occurs:

For example, if the server tries to connect to a database that doesn't exist on the specified host, the following error message is displayed:

SQL Exception: FATAL: database "acctg" does not exist
SQL State: 3D000
Vendor Error: 0

System.out.println("SQL Exception: " +
exp.getMessage());
System.out.println("SQL State: " +
exp.getSQLState());
System.out.println("Vendor Error: " +
exp.getErrorCode());

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 75

7 Using advanced queueing

New feature

Advanced queueing is available in JDBC 42.3.2.1 and later.

EDB Postgres Advanced Server advanced queueing provides message queueing and message processing for the EDB Postgres Advanced Server
database. User-defined messages are stored in a queue, and a collection of queues is stored in a queue table. You must first create a queue table
before creating a queue that depends on it.

On the server side, procedures in the DBMS_AQADM package create and manage message queues and queue tables. Use the DBMS_AQ package to
add or remove messages from a queue or register or unregister an SPL callback procedure. For more information about DBMS_AQ and
DBMS_AQADM , see DBMS_AQ in the EDB Postgres Advanced Server documentation.

On the client side, the application uses the EDB-JDBC driver's JMS API to enqueue and dequeue message.

Enqueueing or dequeueing a message

For more information about using EDB Postgres Advanced Server's advanced queueing functionality, see Built-in packages in the EDB Postgres
Advanced Server documentation.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 76

https://www.enterprisedb.com/docs/epas/latest/reference/oracle_compatibility_reference/epas_compat_bip_guide/03_built-in_packages/02_dbms_aq/
https://www.enterprisedb.com/docs/epas/latest/reference/oracle_compatibility_reference/epas_compat_bip_guide/03_built-in_packages/

7.1 Server-side setup

To use advanced queueing functionality on your JMS-based Java application, in EDB-PSQL or EDB-JDBC:

1. Create a user-defined message type, which can be one of the standard JMS message types. However, EDB-JDBC also supports any user-defined
message types. See Message types for details.

2. Create a queue table specifying the payload type. This type is typically the one created in step 1.
3. Create a queue using the queue table created in the previous step.
4. Start the queue on the database server.
5. You can use either EDB-PSQL or EDB-JDBC JMS API in your Java application.

Using EDB-PSQL

Invoke EDB-PSQL and connect to the EDB Postgres Advanced Server host database. Use the SPL commands in EDB-PSQL to:

Create a user-defined type
Create the queue table
Create the queue
Start the queue

Create a user-defined type

To specify a RAW data type, create a user-defined type.

This example shows how to create a user-defined type named mytype :

Create the queue table

A queue table can hold multiple queues with the same payload type.

This example shows how to create a queue table named MSG_QUEUE_TABLE :

Create the queue

This example shows how to create a queue named MSG_QUEUE in the table MSG_QUEUE_TABLE :

CREATE OR REPLACE TYPE mytype AS (code INT, project TEXT, manager
VARCHAR(10));

EXEC
DBMS_AQADM.CREATE_QUEUE_TABLE
 (queue_table => 'MSG_QUEUE_TABLE',
 queue_payload_type => 'mytype',
 comment => 'Message queue
table');
END;

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 77

Start the queue

Once the queue is created, start the queue.

This example shows how to start a queue in the database:

Using EDB-JDBC JMS API

Tip

The following sequence of steps is required only if you want to create message types, queue tables, and queues programmatically. If you
create the message types, queue table, and queue using EDB-PSQL, then you can use the standard JMS API.

The following JMS API calls perform the same steps performed using EDB-PSQL to:

Connect to the EDB Postgres Advanced Server database
Create the user-defined type
Create the queue table and queue
Start the queue

EXEC DBMS_AQADM.CREATE_QUEUE
 (queue_name => 'MSG_QUEUE',
 queue_table => 'MSG_QUEUE_TABLE',
 comment => 'This queue contains pending
messages.');

EXEC DBMS_AQADM.START_QUEUE(queue_name => 'MSG_QUEUE');
commit;

edbJmsFact = new EDBJmsConnectionFactory("localhost", 5444, "edb", "edb", "edb");

conn = (EDBJmsQueueConnection) edbJmsFact.createQueueConnection();

session = (EDBJmsQueueSession) conn.createQueueSession(true, Session.CLIENT_ACKNOWLEDGE);

String sql = "CREATE OR REPLACE TYPE mytype AS (code int, project
TEXT);";
UDTType udtType = new UDTType(conn.getConn(), sql,
"mytype");
Operation operation = new UDTTypeOperation(udtType);
operation.execute();

queueTable = session.createQueueTable(conn.getConn(), "MSG_QUEUE_TABLE", "mytype", "Message queue
table");

Queue queue1 = new Queue(conn.getConn(), "MSG_QUEUE", "MSG_QUEUE_TABLE", "Message
Queue");
operation = new QueueOperation(queue1);
operation.execute();

queue = (EDBJmsQueue) session.createQueue("MSG_QUEUE");
queue.setEdbQueueTbl(queueTable);

queue.start();
'''

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 78

This example shows how to create a ConnectionFactory using an existing java.sql.Connection :

This example shows how to create a QueueConnectionFactory using a connection string, username, and password:

<span
data-original-path='product_docs/docs/jdbc_connector/42.7.3.4/05a_using_advanced_queueing/jms_application
.mdx:5'>

7.2 Setting up the JMS
application

After creating the queue table and queue for the message types and starting the queue, you can set up
your JMS application:

1. Create a [connection factory]
(#connection-factory).
1. Create a [connection](#connection) using the connection
factory.
1. Create a [session](#session) using the
connection.
1. Get the queue from the
session.
1. Create a [message producer](#message-producer) using the session and queue to send
messages.
1. Create a [message consumer](#message-consumer) using the session and queue to receive
messages.

Connection factory

Use the connection factory to create connections. `EDBJmsConnectionFactory` is an implementation of
`ConnectionFactory` and `QueueConnectionFactory`, which you use to create `Connection` and
`QueueConnection`. You can create a connection factory using one of the constructors of the
`EDBJmsConnectionFactory` class. You can use all three constructors to create either a
`ConnectionFactory` or `QueueConnectionFactory`.

```java
//Constructor with connection related 
properties.
public EDBJmsConnectionFactory(String host, int port, String database, 
     String username, String 
password);
//Constructor with connection string, user name and 
password.
public EDBJmsConnectionFactory(String connectionString, 
     String username, String 
password);
//Constructor with SQL 
Connection.
public EDBJmsConnectionFactory(java.sql.Connection connection);

javax.jms.ConnectionFactory connFactory = new 
EDBJmsConnectionFactory(connection);

javax.jms.QueueConnectionFactory connFactory = new 
EDBJmsConnectionFactory
   ("jdbc:edb//localhost:5444/edb", "enterprisedb", "edb");

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 79



Connection

A connection is a client's active connection that can be created from the ConnectionFactory  and used to create sessions. 
EDBJmsConnection  is an implementation of Connection , and EDBJmsQueueConnection  is an implementation of QueueConnection

and extends EDBJmsConnection . You can create a Connection  using ConnectionFactory  and a QueueConnection  from 
QueueConnectionFactory .

This example shows how to create a Connection  and a QueueConnection :

You must start a connection for the consumer to receive messages. However, a producer can send messages without starting the connection.

This example shows how to start a connection:

You can stop a connection at any time to stop receiving messages, and you can restart it when needed. However, you can't restart a closed connection.

This example shows how to stop and close the connection:

Session

A session in EDBJms is used for creating producers and consumers and for sending and receiving messages. EDBJmsSession  implements the basic
Session  functionality, and EDBJmsQueueSession  extends EDBJmsSession  and implements QueueSession . A Session  can be

created from a Connection .

This example shows how to create a Session  and a QueueSession :

You can also use a Session  or QueueSession  to create queues.

Important

In this context, "creating a queue" doesn't refer to physically creating the queue. As discussed earlier, you need to create and start the
queue as part of the server-side setup. In this context, creating a queue means getting the queue, related queue table, and payload type that
were already created.

//Connection from ConnectionFactory. Assuming connFactory is 
ConnectionFactory.
javax.jms.Connection connection = 
connFactory.createConnection();

////Connection from QueueConnectionFactory. Assuming connFactory is 
QueueConnectionFactory.
javax.jms.QueueConnection queueConnection = 
connFactory.createQueueConnection();

queueConnection.start();

queueConnection.stop();
queueConnection.close();

// Session
javax.jms.Session session = connection.createSession(false, javax.jms.Session.AUTO_ACKNOWLEDGE);
// QueueSession
javax.jms.QueueSession session = queueConnection.createQueueSession(false, 
javax.jms.Session.AUTO_ACKNOWLEDGE);

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 80



This example shows how to create a queue:

Message producer

A message producer is responsible for creating and sending messages. You create it using a session and queue. EDBJmsMessageProducer  is an
implementation of MessageProducer , but in most cases you use the standard MessageProducer .

This example shows how to create a message producer, create a message, and send it. To create messages of different types, see Message types.

Message consumer

A message consumer receives messages. You create it using a session and a queue. EDBJmsMessageConsumer  is an implementation of 
MessageConsumer , but you'll most often use the standard MessageConsumer .

This example shows how to create a message consumer and receive a message:

javax.jms.Queue queue = session.createQueue("MSG_QUEUE");

javax.jms.MessageProducer messageProducer = session.createProducer(queue);

javax.jms.Message msg = 
session.createMessage();
msg.setStringProperty("myprop1", "test value 1");

messageProducer.send(msg);

javax.jms.MessageConsumer messageConsumer = session.createConsumer(queue);
      
javax.jms.Message message = messageConsumer.receive();

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 81



7.3          Message acknowledgement

Acknowledgement messages are controlled by the two arguments to the createSession()  and createQueueSession()  methods:

If the first argument is true, it indicates that the session mode is transacted, and the second argument is ignored. However, if the first argument is
false, then the second argument comes into play, and the client can specify different acknowledgment modes.

These acknowledgment modes include:

Session.AUTO_ACKNOWLEDGE
Session.CLIENT_ACKNOWLEDGE
Session.DUPS_OK_ACKNOWLEDGE

Transacted session

In transacted sessions, messages are both sent and received during a transaction. These messages are acknowledged by making an explicit call to 
commit() . If rollback()  is called, all received messages are marked as not acknowledged.

A transacted session always has an active transaction. When a client calls the commit()  or rollback()  method, the current transaction is
either committed or rolled back, and a new transaction is started.

This example shows how the transacted session works:

EDBJmsConnection.createSession(boolean transacted, int acknowledgeMode)

EDBJmsQueueConnection.createQueueSession(boolean transacted, int acknowledgeMode)

    MessageProducer messageProducer = (MessageProducer) session.createProducer(queue);

    //Send a message in transacted session and commit 
it.

    //Send message
    TextMessage msg1 = 
session.createTextMessage();
    String messageText1 = "Hello 1";
    msg1.setText(messageText1);
    messageProducer.send(msg1);

    //Commit the 
transaction.
    session.commit();

    //Now we have one message in the 
queue.
    
    //Next, we want to send and receive in the same 
transaction.

    MessageConsumer messageConsumer = (MessageConsumer) session.createConsumer(queue);

    //Send a Message in 
transaction.
    TextMessage msg2 = 
session.createTextMessage();
    String messageText2 = "Hello 2";

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 82



AUTO_ACKNOWLEDGE mode

If the first argument to createSession()  or createQueueSession()  is false and the second argument is 
Session.AUTO_ACKNOWLEDGE , the messages are acknowledged automatically.

    msg2.setText(messageText2);
    messageProducer.send(msg2);

    //Receive message in the same transaction. There should be 1 message 
available.
    Message message1 = 
messageConsumer.receive();
    TextMessage txtMsg1 = (TextMessage) 
message1;

    //Send another Message in transaction.
    TextMessage msg3 = 
session.createTextMessage();
    String messageText3 = "Hello 3";
    msg3.setText(messageText3);
    messageProducer.send(msg3);

    //Commit the 
transaction.
    //This should remove the one message we sent initially and received above and send 2 
messages.
    session.commit();

    //2 messages are in the queue so we can receive these 2 
messages.

    //Receive 
1
    Message message2 = 
messageConsumer.receive();
    TextMessage txtMsg2 = (TextMessage) 
message2;

    //Receive 
2
    Message message3 = 
messageConsumer.receive();
    TextMessage txtMsg3 = (TextMessage) 
message3;

    //Commit the transaction. This will consume the two 
messages.
    session.commit();

    //Receive should fail now as there should be no messages 
available.
    Message message4 = 
messageConsumer.receive();
    //message4 will be null here.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 83



DUPS_OK_ACKNOWLEDGE mode

This mode instructs the session to lazily acknowledge the message and that it's okay if some messages are redelivered. However, in EDB JMS, this
option is implemented the same way as Session.AUTO_ACKNOWLEDGE , where messages are acknowledged automatically.

CLIENT_ACKNOWLEDGE mode

If the first argument to createSession()  or createQueueSession()  is false and the second argument is 
Session.CLIENT_ACKNOWLEDGE , the messages are acknowledged when the client acknowledges the message by calling the 
acknowledge()  method on a message. Acknowledging happens at the session level, and acknowledging one message causes all the received

messages to be acknowledged.

For example, if you send five messages and then receive the five messages, acknowledging the fifth message causes all five messages to be
acknowledged.

    MessageProducer messageProducer = (MessageProducer) session.createProducer(queue);

    //Send 5 
messages
    for(int i=1; i<=5; i++) 
{
        TextMessage msg = 
session.createTextMessage();
        String messageText = "Hello " + 
i;
        
msg.setText(messageText);
        messageProducer.send(msg);
    }

    MessageConsumer messageConsumer = (MessageConsumer) session.createConsumer(queue);
      
    //Receive 
4
    for(int i=1; i<=4; i++) 
{
        Message message = messageConsumer.receive();
        TextMessage txtMsg = (TextMessage) 
message;
    }

    //Receive the 5th 
message
    Message message5 = 
messageConsumer.receive();
    TextMessage txtMsg5 = (TextMessage) 
message5;

    //Now acknowledge it and all the messages will be 
acknowledged.
    txtMsg5.acknowledge();

    //Try to receive again. This should return null as there is no message 
available.
    Message messageAgain = messageConsumer.receive();

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 84



7.4          Message types

EDB-JDBC JMS API supports the following message types and can be used in a standard way.

Message type JMS type

aq$_jms_message javax.jms.Message

aq$_jms_text_message javax.jms.TextMessage

aq$_jms_bytes_message javax.jms.BytesMessage

aq$_jms_object_message javax.jms.ObjectMessage

Note

The corresponding payload types (user-defined types) aren't predefined. You must create them before configuring the queue table, as shown
in the examples that follow.

You can specify schema-qualified user-defined types, but the property types and message types must be in the same schema.

Message properties

All of the supported message types support setting and getting message properties. Before creating the actual message type, you must create the
corresponding user-defined type for message properties.

This example shows how to create the user-defined type for message properties:

All primitive types of message properties are supported.

TextMessage

You can send text messages using the TextMessage  interface. EDBTextMessageImpl  is an implementation of TextMessage , but for most
cases you use the standard TextMessage . Before using the text message, you need to create a user-defined type for it.

This example shows how to create a user-defined message type for TextMessage :

Once the user-defined type is created, you can create the queue table using this type. This example shows how to create the queue table using the
user-defined message created in the previous example:

CREATE OR REPLACE TYPE AQ$_JMS_USERPROPERTY
AS object
(
    NAME VARCHAR2(100),
    VALUE VARCHAR2(2000)
);

CREATE OR REPLACE TYPE AQ$_JMS_TEXT_MESSAGE AS object(PROPERTIES AQ$_JMS_USERPROPERTY[], STRING_VALUE 
VARCHAR2(4000));

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 85



After setting up the queue table, you can send and receive TextMessages  using the standard procedure outlined in this Java code snippet:

BytesMessage

BytesMessage  is used to send a stream of bytes. EDBBytesMessageImpl  is an implementation of BytesMessage , but in most cases you
use the standard BytesMessage . Before using BytesMessage , you must create a user-defined type.

This example shows how to create the user-defined type for BytesMessage :

Now, you can send and receive BytesMessage  in the standard way.

This example shows how to create and use a BytesMessage  in Java:

EXEC DBMS_AQADM.CREATE_QUEUE_TABLE (queue_table => 'MSG_QUEUE_TABLE', queue_payload_type => 
'AQ$_JMS_TEXT_MESSAGE', comment => 'Message queue table');

MessageProducer messageProducer = (MessageProducer) session.createProducer(queue);
// Create text 
message
TextMessage msg = 
session.createTextMessage();
String messageText = "Hello 
there!";
msg.setText(messageText);
msg.setStringProperty("myprop1", "test value 1");
// Send message
messageProducer.send(msg);

MessageConsumer messageConsumer = (MessageConsumer) session.createConsumer(queue);
// Receive Message
Message message = messageConsumer.receive();
TextMessage txtMsg = (TextMessage) 
message;
System.out.println(txtMsg.getText());
System.out.println(txtMsg.getStringProperty("myprop1"));

CREATE OR REPLACE TYPE AQ$_JMS_BYTES_MESSAGE AS OBJECT (PROPERTIES AQ$_JMS_USERPROPERTY[], RAW_VALUE 
CLOB);

MessageProducer messageProducer = (MessageProducer) session.createProducer(queue);
BytesMessage msg = 
session.createBytesMessage();
String messageText = "Hello 
there!";
msg.writeBytes(messageText.getBytes());
messageProducer.send(msg);

MessageConsumer messageConsumer = (MessageConsumer) session.createConsumer(queue);
Message message = messageConsumer.receive();
BytesMessage byteMsg = (BytesMessage) message;
byteMsg.reset();
byte[] bytes = new byte[(int) byteMsg.getBodyLength()];
byteMsg.readBytes(bytes);
System.out.println(new String(bytes));

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 86



ObjectMessage

ObjectMessage  is used to send a serializable object as a message. EDBObjectMessageImpl  is an implementation of ObjectMessage ,
but the standard ObjectMessage  is most commonly used.

Before using the ObjectMessage , you need to create the user-defined type for the object message.

This example shows how to create the user-defined type for ObjectMessage :

For example, consider the following serializable Java class:

This example shows how to use ObjectMessage  to send a message containing an object of this class:

CREATE OR REPLACE TYPE AQ$_JMS_OBJECT_MESSAGE AS object(PROPERTIES AQ$_JMS_USERPROPERTY[], OBJECT_VALUE 
CLOB);

import java.io.Serializable;

public class Emp implements Serializable 
{
    private int id;
    private String name;
    private String role;

    // Getter and setter 
methods
    public int getId() {
        return id;
    }

    public void setId(int id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public String getRole() {
        return role;
    }

    public void setRole(String role) {
        this.role = role;
    }
}

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 87



Message

Message  can be used to send a message with only properties and no body. EDBMessageImpl  is an implementation of a Message , but you
most often use the standard Message . Before using Message , create a user-defined type.

This example shows how to create a user-defined type for Message :

This example shows how to send a message that contains only properties and no body:

MessageProducer messageProducer = (MessageProducer) session.createProducer(queue);

// Create object 
message
ObjectMessage msg = 
session.createObjectMessage();
Emp emp = new 
Emp();
emp.setId(1);
emp.setName("Joe");
emp.setRole("Manager");
msg.setObject(emp);

// Send message
messageProducer.send(msg);

MessageConsumer messageConsumer = (MessageConsumer) session.createConsumer(queue);

// Receive Message
Message message = messageConsumer.receive();
ObjectMessage objMsg = (ObjectMessage) 
message;
Emp empBack = (Emp) 
objMsg.getObject();
System.out.println("ID: " + 
empBack.getId());
System.out.println("Name: " + 
empBack.getName());
System.out.println("Role: " + 
empBack.getRole());

CREATE OR REPLACE TYPE AQ$_JMS_MESSAGE AS object(PROPERTIES 
AQ$_JMS_USERPROPERTY[]);

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 88



MessageProducer messageProducer = (MessageProducer) session.createProducer(queue);
// Create message. 
Message msg = 
session.createMessage();
msg.setStringProperty("myprop1", "test value 1");
msg.setStringProperty("myprop2", "test value 2");
msg.setStringProperty("myprop3", "test value 3");
// Send message
messageProducer.send(msg);
MessageConsumer messageConsumer = (MessageConsumer) session.createConsumer(queue);
// Receive Message 
message = messageConsumer.receive();
System.out.println("myprop1: " + 
message.getStringProperty("myprop1"));
System.out.println("myprop2: " + 
message.getStringProperty("myprop2"));
System.out.println("myprop3: " + 
message.getStringProperty("myprop3"));

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 89



7.5          Non-standard message

EDB-JDBC JMS allows you to send and receive non-standard messages that are fully controlled by the API user. These messages don't support setting
and getting properties. The process involves creating a user-defined type and setting it as the payload for the queue table.

This example shows how to create a Java Bean corresponding to the type you created:

package mypackage;
import com.edb.jms.common.CompareValue;
import java.util.ArrayList;
public class MyType extends com.edb.aq.UDTType 
{
    private Integer code;
    private String project;
    private String manager;
    public MyType() {
    }
    /**
     * @param code the code to 
set
     */
    @CompareValue(0)
    public void setCode(Integer code) {
      this.code = code;
    }
    /**
     * @return the 
code
     */
    public Integer getCode() {
      return code;
    }
    /**
     * @param project the project to 
set
     */
    @CompareValue(1)
    public void setProject(String project) {
      this.project = project;
    }
    /**
     * @return the 
project
     */
    public String getProject() {
      return project;
    }
    @CompareValue(2)
    public void setManager(String manager) {
      this.manager = manager;
    }
    public String getManager() {
      return manager;
    }
    public String valueOf() {
        StringBuilder sql = new StringBuilder("CREATE TYPE 
");
        sql.append(getName() + " 
");

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 90



Note

When you create a user-defined class, it must extend the com.edb.aq.operations.UDTType  class and override the 
getParamValues()  method. In this method, add the attribute values to an ArrayList  in the same order as they appear in the

CREATE TYPE SQL statement in the database.
Also make sure to use the annotation @CompareValue(0) with better methods, as it specifies the order of methods when using the
reflection API to reconstruct the object after dequeuing the message from the queue.

Failure to meet these requirements may result in errors.

This example shows how to send an object of this class as a message:

This example shows how to receive this object as a message:

        sql.append("AS 
(");
        sql.append("code int, 
");
        sql.append("project 
TEXT);");
        return 
sql.toString();
    }
  /**
   * Override this method and call getter methods in the same order as in CREATE TYPE 
statement.
   * CREATE OR REPLACE TYPE mytype AS object (code int, project text, manager 
varchar(10))
   * @return object array containing 
parameters.
   */
  @Override
  public Object[] getParamValues() {
    ArrayList<Object> params = new ArrayList<>
();
    
params.add(getCode());
    
params.add(getProject());
    
params.add(getManager());
    return 
params.toArray();
  }
}

messageProducer = (EDBJmsMessageProducer) session.createProducer(queue);
      MyType udtType1 = new 
MyType();
      udtType1.setProject("Test 
Project");
      
udtType1.setManager("Joe");
      
udtType1.setCode(321);
      udtType1.setName("mytype"); //type name used in "CREATE 
TYPE"
      messageProducer.send(udtType1);

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 91



Nested types

This example shows how to use nested types in the user-defined types:

In this example, custom_type  is using innercustom  as another user-defined type that in turn is using the innermostcustom  user-defined
type. EDB Postgres Advanced Server supports the nested types this manner. However, it may have performance implications at a certain level. EDB
JMS API also provides flexibility to read such nested types at the cost of an added performance impact.

To illustrate this using the EDB JMS API, you must first create the equivalent objects that represent nested custom types as shown in the examples
that follow.

InnermostCustom.java

messageConsumer = (EDBJmsMessageConsumer) session.createConsumer(queue);

Message message = messageConsumer.receive();

MyType myt = (MyType) 
message;
System.out.println("Code: "+ 
myt.getCode());
System.out.println("Project: "+ 
myt.getProject());
System.out.println("Manager: "+ 
myt.getManager());

CREATE OR REPLACE TYPE innermostcustom AS object (testing_field_1 
text);

CREATE OR REPLACE TYPE innercustom AS object (testing_field_1 text, innermost 
innermostcustom);

CREATE OR REPLACE TYPE custom_type AS object (testing_field text, inner 
innercustom);

package mypackage;

import com.edb.aq.UDTType;
import com.edb.jms.common.CompareValue;

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 92



InnerCustom.java

import java.util.ArrayList;

public class InnermostCustom extends UDTType {

    public InnermostCustom() {
    }

    private String testing_field_1;

    public String getTesting_field_1() {
        return testing_field_1;
    }

    @CompareValue(0)
    public void setTesting_field_1(String testing_field_1) {
        this.testing_field_1 = testing_field_1;
    }
  @Override
  public Object[] getParamValues(){
    ArrayList<Object> params = new ArrayList<Object>
();
    
params.add(getTesting_field_1());
    return 
params.toArray();
  }
}

package mypackage;

import com.edb.aq.UDTType;
import com.edb.jms.common.CompareValue;

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 93



CustomType.java

import java.util.ArrayList;

public class InnerCustom  extends UDTType 
{

    public InnerCustom() {
    }

    private String testing_field_1;
    private InnermostCustom innermostCustom;

    public String getTesting_field_1() {
        return testing_field_1;
    }

    @CompareValue(0)
    public void setTesting_field_1(String testing_field_1) {
        this.testing_field_1 = testing_field_1;
    }

  public InnermostCustom getInnermostCustom() {
    return innermostCustom;
  }

  @CompareValue(1)
  public void setInnermostCustom(InnermostCustom innermostCustom) {
    this.innermostCustom = innermostCustom;
  }
  @Override
  public Object[] getParamValues(){
    ArrayList<Object> params = new ArrayList<Object>
();
    
params.add(getTesting_field_1());
    
params.add(getInnermostCustom());
    return 
params.toArray();
  }
}

package mypackage;

import com.edb.aq.UDTType;
import com.edb.jms.common.CompareValue;

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 94



This example shows how to read these nested types:

import java.util.ArrayList;

public class CustomType extends UDTType {

    private String testing_field;
    private InnerCustom 
innerCustom;

    public String getTesting_field() {
        return testing_field;
    }

    @CompareValue(0)
    public void setTesting_field(String testing_field) {
        this.testing_field = testing_field;
    }

    public InnerCustom getInnerCustom() 
{
        return 
innerCustom;
    }

    @CompareValue(1)
    public void setInnerCustom(InnerCustom innerCustom) 
{
        this.innerCustom = 
innerCustom;
    }

    public CustomType() {

    }

    public Object[] getParamValues(){
        ArrayList<Object> params = new ArrayList<Object>
();
        
params.add(getTesting_field());
        
params.add(getInnerCustom());
        return 
params.toArray();
    }
}

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 95



      EDBJmsMessageProducer messageProducer = (EDBJmsMessageProducer) 
session.createProducer(queue_1);

      InnermostCustom innermostCustom = new InnermostCustom();
      innermostCustom.setTesting_field_1("Innermost set");
      innermostCustom.setName("innermostCustom");

      InnerCustom innerCustom = new 
InnerCustom();
      innerCustom.setTesting_field_1("Inner 
set");
      
innerCustom.setInnermostCustom(innermostCustom);
      
innerCustom.setName("innercustom");

      CustomType customType = new CustomType();
      customType.setTesting_field("EDB");
      customType.setInnerCustom(innerCustom);
      customType.setName("custom_type");

      messageProducer.send(customType);

      EDBJmsMessageConsumer messageConsumer = (EDBJmsMessageConsumer) 
session.createConsumer(queue_1);

      Message message = messageConsumer.receive();

      CustomType myType = (CustomType) 
message;
      InnerCustom innerCustom_1 = 
myType.getInnerCustom();
      InnermostCustom innermostCustom1 = 
innerCustom_1.getInnermostCustom();

      System.out.println("Outer type test field: " + 
myType.getTesting_field());
      System.out.println("Inner type test field: " + 
innerCustom_1.getTesting_field_1());
      System.out.println("Most Inner type test field: " + 
innermostCustom1.getTesting_field_1());

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 96



8          Executing SQL commands with executeUpdate() or through PrepareStatement objects

In the previous example, ListEmployees  executed a SELECT  statement using the Statement.executeQuery()  method. 
executeQuery()  was designed to execute query statements so it returns a ResultSet  that contains the data returned by the query. The 
Statement  class offers a second method that you use to execute other types of commands ( UPDATE , INSERT , DELETE , and so forth). Instead

of returning a collection of rows, the executeUpdate()  method returns the number of rows affected by the SQL command it executes.

The signature of the executeUpdate()  method is:

Provide this method with a single parameter of type String  containing the SQL command that you want to execute.

Avoid user-sourced values

We recommend that this string does not contain any user-sourced values. Avoid concatenating strings and values to compose your SQL
command. Instead, use PreparedStatements which are reusable, parameterized SQL statements which safely manage the use of variable
values in the SQL statement.

Using executeUpdate() to INSERT data

The example that follows shows using the executeUpdate()  method to add a row to the emp  table.

Code samples

The following examples are not a complete application, only example methods. These code samples don't include the code required to set
up and tear down a Connection . To experiment with the example, you must provide a class that invokes the sample code.

The addOneEmployee()  method expects a single argument from the caller, a Connection  object that must be connected to an EDB Postgres
Advanced Server database:

    int executeUpdate(String sqlStatement)

    public void addOneEmployee(Connection 
con)
    {
        try (Statement stmt=con.createStatement();)
        {
            int rowcount = stmt.executeUpdate("INSERT INTO emp(empno, ename) 
VALUES(6000,'Jones')");
            System.out.println();
            System.out.printf("Success - %d - rows 
affected.\n",rowcount);
        } catch(Exception err) 
{
            System.out.println("An error has 
occurred.");
            System.out.println("See full details below.");
            
err.printStackTrace();
        }
    }

    public void addOneEmployee(Connection 
con);

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 97



A Statement  object is needed to run ExecuteUpdate() . This can be obtained by using createStatement()  on the Connection object. We
use the try-resource style here to ensure the statement object is released when the try block is exited.

The executeUpdate()  method returns the number of rows affected by the SQL statement (an INSERT  typically affects one row, but an 
UPDATE  or DELETE  statement can affect more).

If executeUpdate()  returns without an error, the call to System.out.printf  displays a message to the user that shows the number of rows
affected.

The catch block displays an appropriate error message to the user if the program encounters an exception:

You can use executeUpdate()  with any SQL command that doesn't return a result set. It is best suited to situations where a specific command
needs to be executed and that command takes no parameters.

To use the DROP TABLE  command to delete a table from a database:

To use the CREATE TABLE  command to add a new table to a database:

To use the ALTER TABLE  command to change the attributes of a table:

However, you should use PreparedStatement  when passing values to an SQL insert or update statement, especially if those values have come
from user input.

    try (Statement stmt=con.createStatement()) {

    int rowcount = stmt.executeUpdate("INSERT INTO emp(empno, ename) 
VALUES(6000,'Jones')");

    System.out.println(); 
    System.out.printf("Success - %d - rows 
affected.\n",rowcount);

    } catch (Exception err)
{
        System.out.println("An error has 
occurred.");
        System.out.println("See full details below.");
        
err.printStackTrace();
    }

   Statement stmt=con.createStatement();
   stmt.executeUpdate("DROP TABLE tableName");     

   Statement stmt=con.createStatement();
   stmt.executeUpdate("CREATE TABLE tablename (fieldname NUMBER(4,2), fieldname2 VARCHAR2(30))"; 

    Statement stmt=con.createStatement();
    stmt.executeUpdate("ALTER TABLE tablename ADD COLUMN colname BOOLEAN "; 

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 98



Using PreparedStatements to send SQL commands

Many applications execute the same SQL statement over and over again, changing one or more of the data values in the statement between each
iteration. If you use a Statement  object to repeatedly execute a SQL statement, the server must parse, plan, and optimize the statement every
time. JDBC offers another Statement  derivative, the PreparedStatement , to reduce the amount of work required in such a scenario.

The following shows invoking a PreparedStatement  that accepts an employee ID and employee name and inserts that employee information in
the emp  table:

This version of an add employee method takes as parameters the connection and values for the employee number (an integer) and name (a string).

Instead of hard coding data values in the SQL statement, you insert placeholders to represent the values to change with each iteration. The example
shows an INSERT  statement that includes two placeholders (each represented by a question mark):

With the parameterized SQL statement in hand, the AddEmployee()  method can ask the Connection  object to prepare that statement and
return a PreparedStatement  object:

At this point, the PreparedStatement  has parsed and planned the INSERT  statement, but it doesn't know the values to add to the table. Before
executing PreparedStatement , you must supply a value for each placeholder by calling a setter  method. setObject()  expects two
arguments:

A parameter number. Parameter number one corresponds to the first question mark, parameter number two corresponds to the second
question mark, etc.
The value to substitute for the placeholder.

The AddEmployee()  method prompts the user for an employee ID and name and calls setObject()  with the values supplied in the
parameters:

    public void addEmployee(Connection con, Integer id, String 
name)
    {
        String command = "INSERT INTO emp(empno,ename) 
VALUES(?,?)";
        try(PreparedStatement addstmt = con.prepareStatement(command) 
{
            addstmt.setObject(1,id);
            addstmt.setObject(2,name);
            addstmt.execute();
            System.out.println("Employee 
added");
        } catch(Exception err) 
{
            System.out.println("An error has 
occurred.");
            System.out.println("See full details below.");
            
err.printStackTrace();
        }
    }

    String command = "INSERT INTO emp(empno,ename) 
VALUES(?,?)";

     try(PreparedStatement addstmt = con.prepareStatement(command) 
{

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 99



It then asks the PreparedStatement  object to execute the statement:

If the SQL statement executes as expected, AddEmployee()  displays a message that confirms the execution. If the server encounters an exception,
the error handling code displays an error message.

Some simple syntax examples using PreparedStatement  sending SQL commands follow:

To use the UPDATE  command to update a row:

For regularly and repeatedly used statements, the prepared statement can be initialized and reused.

    addstmt.setObject(1,id);
    addstmt.setObject(2,name);

    addstmt.execute();

    public static void updateEmployee(Connection con, Integer id, String 
name)
    {
        String command = "UPDATE emp SET ename=? where empno=?"; 
        try (PreparedStatement updateStmt = con.prepareStatement(command)) {    
            updateStmt.setObject(1,id);
            updateStmt.setObject(2,name);
            updateStmt.execute();
        } catch(Exception err) 
{
            System.out.println("An error has 
occurred.");
            System.out.println("See full details below.");
            
err.printStackTrace();
        }
    }

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 100



This saves the system having to reparse and initialize the statement every time it is executed. Note that the prepared statement is prepared without a
try-with-resource wrapper to ensure it is not closed when it leaves the prepareStatements  method.

    PreparedStatement preparedAddStmt;

    public void prepareStatements(Connection con) 
{
        try {
            preparedAddStmt=con.prepareStatement("INSERT INTO emp(empno,ename) 
VALUES(?,?)");
        } catch (SQLException e) 
{
            throw new RuntimeException(e);
        }
    }

    public void addPreparedEmployee(Integer id, String name)
    {
        try {
            preparedAddStmt.setObject(1,id);
            preparedAddStmt.setObject(2,name);
            preparedAddStmt.execute();
        } catch(Exception err) 
{
            System.out.println("An error has 
occurred.");
            System.out.println("See full details below.");
            
err.printStackTrace();
        }
    }

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 101



9          Adding a graphical interface to a Java program

With a little extra work, you can add a graphical user interface to a program. The next example shows how to write a Java application that creates a 
JTable  (a spreadsheet-like graphical object) and copies the data returned by a query into that JTable .

Note

The following sample application is a method, not a complete application. To call this method, provide an appropriate main()  function
and wrapper class.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 102



Before writing the showEmployees()  method, you must import the definitions for a few JDK-provided classes:

import java.sql.*;
import java.util.Vector;
import javax.swing.JFrame;
import javax.swing.JScrollPane;
import javax.swing.JTable;

...
public void showEmployees(Connection 
con)
{
  try
  {
    Statement stmt = 
con.createStatement();
    ResultSet rs = stmt.executeQuery("SELECT * FROM 
emp");
    ResultSetMetaData rsmd = rs.getMetaData();
    Vector labels = new 
Vector();
    for(int column = 0; column < rsmd.getColumnCount(); 
column++)
      labels.addElement(rsmd.getColumnLabel(column + 
1));

    Vector rows = new Vector();
    while(rs.next())
    {
      Vector rowValues = new Vector();
      for(int column = 0; column < rsmd.getColumnCount(); 
column++)
        rowValues.addElement(rs.getString(column + 1));
      rows.addElement(rowValues);
    }

    JTable table = new JTable(rows, 
labels);
    JFrame jf = new JFrame("Browsing table: EMP (from 
EnterpriseDB)");
    jf.getContentPane().add(new JScrollPane(table));
    jf.setSize(400, 400);
    jf.setVisible(true);
    jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    System.out.println("Command successfully executed");
  }
  catch(Exception 
err)
  {
    System.out.println("An error has 
occurred.");
    System.out.println("See full details below.");
    
err.printStackTrace();
  }
}

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 103



The showEmployees()  method expects a Connection  object to be provided by the caller. The Connection  object must be connected to the
EDB Postgres Advanced Server:

showEmployees()  creates a Statement  and uses the executeQuery()  method to execute an SQL query that generates an employee list:

As you'd expect, executeQuery()  returns a ResultSet  object. The ResultSet  object contains the metadata that describes the shape of the
result set (that is, the number of rows and columns in the result set, the data type for each column, the name of each column, and so forth). You can
extract the metadata from the ResultSet  by calling the getMetaData()  method:

Next, showEmployees()  creates a vector (a one-dimensional array) to hold the column headers and then copies each header from the 
ResultMetaData  object into the vector:

With the column headers in place, showEmployees()  extracts each row from the ResultSet  and copies it into a new vector (named rows ).
The rows  vector is actually a vector of vectors: each entry in the rows  vector contains a vector that contains the data values in that row. This
combination forms the two-dimensional array that you need to build a JTable . After creating the rows  vector, the program reads through each
row in the ResultSet  (by calling rs.next() ). For each column in each row, a getter  method extracts the value at that row/column and adds
the value to the rowValues  vector. Finally, showEmployee()  adds each rowValues  vector to the rows  vector:

At this point, the vector ( labels ) contains the column headers, and a second two-dimensional vector ( rows ) contains the data for the table. Now
you can create a JTable  from the vectors and a JFrame  to hold the JTable :

import java.sql.*;
import java.util.Vector;
import javax.swing.JFrame;
import javax.swing.JScrollPane;
import javax.swing.JTable;

public void showEmployees(Connection 
con)

Statement stmt = 
con.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM 
emp");

ResultSetMetaData rsmd = rs.getMetaData();

Vector labels = new 
Vector();
for(int column = 0; column < rsmd.getColumnCount(); 
column++)
{
  labels.addElement(rsmd.getColumnLabel(column + 
1));
}

Vector rows = new Vector();
while(rs.next())
{
  Vector rowValues = new Vector();
  for(int column = 0; column < rsmd.getColumnCount(); 
column++)
    rowValues.addElement(rs.getString(column + 1));
  rows.addElement(rowValues);
}

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 104



The showEmployees()  method includes a catch  block to intercept any errors that occur and display an appropriate message to the user:

The result of calling the showEmployees()  method is shown in figure:

JTable table = new JTable(rows, 
labels);
JFrame jf = new JFrame("Browsing table: EMP (from 
EnterpriseDB)");
jf.getContentPane().add(new JScrollPane(table));
jf.setSize(400, 400);
jf.setVisible(true);
jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
System.out.println("Command successfully executed");

catch(Exception 
err)
{
  System.out.println("An error has 
occurred.");
  System.out.println("See full details below.");
  
err.printStackTrace();
}

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 105



10          Advanced JDBC Connector functionality

These examples show you some of the advanced features of the EDB Postgres Advanced Server JDBC Connector.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 106



10.1          Reducing client-side resource requirements

The EDB Postgres Advanced Server JDBC driver retrieves the results of a SQL query as a ResultSet  object. If a query returns a large number of
rows, using a batched ResultSet :

Reduces the amount of time it takes to retrieve the first row.
Saves time by retrieving only the rows that you need.
Reduces the memory requirement of the client.

When you reduce the fetch size of a ResultSet  object, the driver doesn’t copy the entire ResultSet  across the network (from the server to the
client). Instead, the driver requests a small number of rows at a time. As the client application moves through the result set, the driver fetches the next
batch of rows from the server.

You can't use batched result sets in all situations. Not adhering to the following restrictions causes the driver to silently fall back to fetching the
whole ResultSet  at once:

The client application must disable autocommit .
You must create the Statement  object with a ResultSet  type of TYPE_FORWARD_ONLY  type (the default). TYPE_FORWARD_ONLY
result sets can only step forward through the ResultSet.
The query must consist of a single SQL statement.

Modifying the batch size of a statement object

Limiting the batch size of a ResultSet  object can speed the retrieval of data and reduce the resources needed by a client-side application. The
following code creates a Statement  object with a batch size limited to five rows:

The call to conn.setAutoCommit(false)  ensures that the server won’t close the ResultSet  before you have a chance to retrieve the first
row. After preparing the Connection , you can construct a Statement  object:

The following code sets the batch size to five (rows) before executing the query:

// Make sure autocommit is 
off
conn.setAutoCommit(false);

Statement stmt = conn.createStatement();
// Set the Batch 
Size.
stmt.setFetchSize(5);

ResultSet rs = stmt.executeQuery("SELECT * FROM 
emp");
while (rs.next())
  System.out.println("a row was 
returned.");

rs.close();
stmt.close();

Statement stmt = db.createStatement();

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 107



For each row in the ResultSet  object, the call to println()  prints a row was returned .

While the ResultSet  contains all of the rows in the table, they are only fetched from the server five rows at a time. From the client’s point of view,
the only difference between a batched  result set and an unbatched  result set is that a batched result can return the first row in less time.

stmt.setFetchSize(5);

ResultSet rs = stmt.executeQuery("SELECT * FROM 
emp");

System.out.println("a row was 
returned.");

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 108



10.2          Using PreparedStatements to send SQL commands

Many applications execute the same SQL statement over and over again, changing one or more of the data values in the statement between each
iteration. If you use a Statement  object to repeatedly execute a SQL statement, the server must parse, plan, and optimize the statement every
time. JDBC offers another Statement  derivative, the PreparedStatement , to reduce the amount of work required in this scenario.

The following code shows invoking a PreparedStatement  that accepts an employee ID and employee name and inserts that employee
information in the emp  table:

Instead of hard coding data values in the SQL statement, you insert placeholders to represent the values that change with each iteration. The
following shows an INSERT  statement that includes two placeholders (each represented by a question mark):

With the parameterized SQL statement in hand, the AddEmployee()  method can ask the Connection  object to prepare that statement and
return a PreparedStatement  object:

At this point, the PreparedStatement  has parsed and planned the INSERT  statement, but it doesn't know the values to add to the table. Before
executing the PreparedStatement , you must supply a value for each placeholder by calling a setter  method. setObject()  expects two
arguments:

A parameter number. Parameter number one corresponds to the first question mark, parameter number two corresponds to the second
question mark, etc.
The value to substitute for the placeholder.

The AddEmployee()  method prompts the user for an employee ID and name and calls setObject()  with the values supplied by the user:

public void AddEmployee(Connection 
con)
{
  try
  {
    Console c = 
System.console();
    String command = "INSERT INTO emp(empno,ename) 
VALUES(?,?)";
    PreparedStatement stmt = 
con.prepareStatement(command);
    stmt.setObject(1,new Integer(c.readLine("ID:")));
    stmt.setObject(2,c.readLine("Name:"));
    stmt.execute();

    System.out.println("The procedure successfully executed.");
  }
  catch(Exception 
err)
  {
     System.out.println("An error has 
occurred.");
     System.out.println("See full details below.");
     
err.printStackTrace();
  }
}

String command = "INSERT INTO emp(empno,ename) 
VALUES(?,?)";

PreparedStatement stmt = 
con.prepareStatement(command);

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 109



The AddEmployee()  method prompts the user for an employee ID and name and calls setObject()  with the values supplied by the user:

It then asks the PreparedStatement  object to execute the statement:

If the SQL statement executes as expected, AddEmployee()  displays a message that confirms the execution. If the server encounters an exception,
the error handling code displays an error message.

stmt.setObject(1,new Integer(c.readLine("ID:")));
stmt.setObject(2, 
c.readLine("Name:"));

stmt.execute();

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 110



10.3          Executing stored procedures

A stored procedure is a module that's written in EDB’s SPL and stored in the database. A stored procedure can define input parameters to supply data
to the procedure and output parameters to return data from the procedure. Stored procedures execute in the server and consist of database access
commands (SQL), control statements, and data structures that manipulate the data obtained from the database.

Stored procedures are especially useful when extensive data manipulation is required before storing data from the client. It's also efficient to use a
stored procedure to manipulate data in a batch program.

Invoking stored procedures

The CallableStatement  class provides a way for a Java program to call stored procedures. A CallableStatement  object can have a
variable number of parameters used for input ( IN  parameters), output ( OUT  parameters), or both ( IN OUT  parameters).

The syntax for invoking a stored procedure in JDBC is shown below. The square brackets indicate optional parameters. They aren't part of the
command syntax.

{call procedure_name([?, ?, ...])}

The syntax to invoke a procedure that returns a result parameter is:

{? = call procedure_name([?, ?, ...])}

Each question mark serves as a placeholder for a parameter. The stored procedure determines if the placeholders represent IN , OUT , or IN OUT
parameters and the Java code must match.

Executing a simple stored procedure

The following shows a stored procedure that increases the salary of each employee by 10%. increaseSalary  expects no arguments from the
caller and doesn't return any information:

The following shows how to invoke the increaseSalary  procedure:

CREATE OR REPLACE PROCEDURE 
increaseSalary
IS
  BEGIN
    UPDATE emp SET sal = sal * 
1.10;
  END;

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 111



To invoke a stored procedure from a Java application, use a CallableStatement  object. The CallableStatement  class is derived from the 
Statement  class and, like the Statement  class, you obtain a CallableStatement  object by asking a Connection  object to create one

for you. To create a CallableStatement  from a Connection , use the prepareCall()  method:

As the name implies, the prepareCall()  method prepares the statement but doesn't execute it. As Executing stored procedures with IN
parameters shows, an application typically binds parameter values between the call to prepareCall()  and the call to execute() . To invoke
the stored procedure on the server, call the execute()  method.

This stored procedure ( increaseSalary ) didn't expect any IN  parameters and didn't return any information to the caller (using OUT
parameters), so invoking the procedure is a matter of creating a CallableStatement  object and then calling that object’s execute()  method.

Executing stored procedures with IN parameters

The code in the next example first creates and then invokes a stored procedure named empInsert . empInsert  requires IN  parameters that
contain employee information: empno , ename , job , sal , comm , deptno , and mgr . empInsert  then inserts that information into the 
emp  table.

The following creates the stored procedure in the EDB Postgres Advanced Server database:

public void SimpleCallSample(Connection 
con)
{
  try
  {
    CallableStatement stmt = con.prepareCall("{call 
increaseSalary()}");
    stmt.execute();
    System.out.println("Stored Procedure executed 
successfully");
  }
  catch(Exception 
err)
  {
    System.out.println("An error has 
occurred.");
    System.out.println("See full details below.");
    
err.printStackTrace();
  }
}

CallableStatement stmt = con.prepareCall("{call 
increaseSalary()}");

stmt.execute();

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 112



The following shows how to invoke the stored procedure from Java:

Each placeholder (?) in the command ( commandText ) represents a point in the command that's later replaced with data:

CREATE OR REPLACE PROCEDURE empInsert(
    pEname  IN 
VARCHAR,
    pJob    IN VARCHAR,
    pSal    IN FLOAT4,
    pComm   IN FLOAT4,
pDeptno IN INTEGER,
pMgr    IN INTEGER
)
AS
DECLARE
  CURSOR getMax IS SELECT MAX(empno) FROM 
emp;
  max_empno INTEGER := 10;
BEGIN
  OPEN getMax;
  FETCH getMax INTO 
max_empno;
  INSERT INTO emp(empno, ename, job, sal, comm, deptno, 
mgr)
    VALUES(max_empno+1, pEname, pJob, pSal, pComm, pDeptno, 
pMgr);
  CLOSE getMax;
END;

public void CallExample2(Connection 
con)
{
  try
  {
    Console c = 
System.console();
    String commandText = "{call 
empInsert(?,?,?,?,?,?)}";
    CallableStatement stmt = 
con.prepareCall(commandText);
    stmt.setObject(1, new String(c.readLine("Employee Name :")));
    stmt.setObject(2, new String(c.readLine("Job :")));
    stmt.setObject(3, new Float(c.readLine("Salary :")));
    stmt.setObject(4, new Float(c.readLine("Commission :")));
    stmt.setObject(5, new Integer(c.readLine("Department No :")));
    stmt.setObject(6, new Integer(c.readLine("Manager")));
    stmt.execute();
  }
  catch(Exception 
err)
  {
    System.out.println("An error has 
occurred.");
    System.out.println("See full details below.");
    
err.printStackTrace();
  }
}

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 113



The setObject()  method binds a value to an IN  or IN  OUT  placeholder. Each call to setObject()  specifies a parameter number and a
value to bind to that parameter:

After supplying a value for each placeholder, this method executes the statement by calling the execute()  method.

Executing stored procedures with OUT parameters

The next example creates and invokes an SPL stored procedure called deptSelect . This procedure requires one IN  parameter (department
number) and returns two OUT  parameters (the department name and location) corresponding to the department number:

The following shows the Java code required to invoke the deptSelect  stored procedure:

String commandText = "{call 
EMP_INSERT(?,?,?,?,?,?)}";
CallableStatement stmt = 
con.prepareCall(commandText);

stmt.setObject(1, new String(c.readLine("Employee Name :")));
stmt.setObject(2, new String(c.readLine("Job :")));
stmt.setObject(3, new Float(c.readLine("Salary :")));
stmt.setObject(4, new Float(c.readLine("Commission :")));
stmt.setObject(5, new Integer(c.readLine("Department No :")));
stmt.setObject(6, new Integer(c.readLine("Manager")));

CREATE OR REPLACE PROCEDURE deptSelect
(
  p_deptno IN  
INTEGER,
  p_dname  OUT VARCHAR,
  p_loc    OUT VARCHAR
)
AS
DECLARE
  CURSOR deptCursor IS SELECT dname, loc FROM dept WHERE 
deptno=p_deptno;
BEGIN
  OPEN 
deptCursor;
  FETCH deptCursor INTO p_dname, 
p_loc;

  CLOSE 
deptCursor;
END;

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 114



Each placeholder (?) in the command ( commandText ) represents a point in the command that's later replaced with data:

The setObject()  method binds a value to an IN  or IN OUT  placeholder. When calling setObject() , you must identify a placeholder (by its
ordinal number) and provide a value to substitute in place of that placeholder:

Register the JDBC type of each OUT  parameter before executing the CallableStatement  objects. Registering the JDBC type is done with the 
registerOutParameter()  method.

After executing the statement, the CallableStatement  getter method retrieves the OUT  parameter values. To retrieve a VARCHAR  value, use
the getString()  getter method.

In this example, GetDeptInfo()  registers two OUT  parameters and (after executing the stored procedure) retrieves the values returned in the 

public void GetDeptInfo(Connection 
con)
{
  try
  {
    Console c = 
System.console();
    String commandText = "{call 
deptSelect(?,?,?)}";
    CallableStatement stmt = 
con.prepareCall(commandText);
    stmt.setObject(1, new Integer(c.readLine("Dept No :")));
    stmt.registerOutParameter(2, Types.VARCHAR);
    stmt.registerOutParameter(3, Types.VARCHAR);
    stmt.execute();
    System.out.println("Dept Name: " + 
stmt.getString(2));
    System.out.println("Location : " + 
stmt.getString(3));
  }
  catch(Exception 
err)
  {
    System.out.println("An error has 
occurred.");
    System.out.println("See full details below.");
    
err.printStackTrace();
  }
}

String commandText = "{call 
deptSelect(?,?,?)}";
CallableStatement stmt = 
con.prepareCall(commandText);

stmt.setObject(1, new Integer(c.readLine("Dept No :")));  

stmt.registerOutParameter(2, Types.VARCHAR);
stmt.registerOutParameter(3, Types.VARCHAR);

stmt.execute();   
System.out.println("Dept Name: " + stmt.getString(2));   
System.out.println("Location : " + stmt.getString(3));  

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 115



In this example, GetDeptInfo()  registers two OUT  parameters and (after executing the stored procedure) retrieves the values returned in the 
OUT  parameters. Since both OUT  parameters are defined as VARCHAR  values, GetDeptInfo()  uses the getString()  method to retrieve

the OUT  parameters.

Executing stored procedures with IN OUT parameters

The code in the next example creates and invokes a stored procedure named empQuery  defined with one IN  parameter ( p_deptno ), two IN 
OUT parameters ( p_empno  and p_ename ) and three OUT  parameters ( p_job , p_hiredate  and p_sal ). empQuery  then returns
information about the employee in the two IN OUT  parameters and three OUT  parameters.

This code creates a stored procedure named empQuery  :

The following code shows invoking the empQuery  procedure, providing values for the IN  parameters, and handling the OUT  and IN 
OUT parameters:

CREATE OR REPLACE PROCEDURE 
empQuery
(
    p_deptno        IN     
NUMBER,
    p_empno         IN OUT NUMBER,
    p_ename         IN OUT VARCHAR2,
    p_job           OUT    VARCHAR2,
    p_hiredate      OUT    DATE,
    p_sal           OUT    NUMBER
)
IS
BEGIN
  SELECT empno, ename, job, hiredate, 
sal
    INTO p_empno, p_ename, p_job, p_hiredate, 
p_sal
    FROM 
emp
    WHERE deptno = 
p_deptno
      AND (empno = 
p_empno
      OR ename = UPPER(p_ename));
END;

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 116



Each placeholder (?) in the command ( commandText ) represents a point in the command that's later replaced with data:

The setInt()  method is a type-specific setter  method that binds an Integer  value to an IN  or IN OUT  placeholder. The call to 
setInt()  specifies a parameter number and provides a value to substitute in place of that placeholder:

The setString()  method binds a String  value to an IN  or IN OUT  placeholder:

Before executing the CallableStatement , you must register the JDBC type of each OUT  parameter by calling the 

public void CallSample4(Connection 
con)
{
  try
  {
    Console c = 
System.console();
    String commandText = "{call 
empQuery(?,?,?,?,?,?)}";
    CallableStatement stmt = 
con.prepareCall(commandText);
    stmt.setInt(1, new Integer(c.readLine("Department No:")));
    stmt.setInt(2, new Integer(c.readLine("Employee No:")));
    stmt.setString(3, new String(c.readLine("Employee 
Name:")));
    stmt.registerOutParameter(2, Types.INTEGER);
    stmt.registerOutParameter(3, Types.VARCHAR);
    stmt.registerOutParameter(4, Types.VARCHAR);
    stmt.registerOutParameter(5, Types.TIMESTAMP);
    stmt.registerOutParameter(6, Types.NUMERIC);
    stmt.execute();
    System.out.println("Employee No: " + 
stmt.getInt(2));
    System.out.println("Employee Name: " + 
stmt.getString(3));
    System.out.println("Job : " + 
stmt.getString(4));
    System.out.println("Hiredate : " + 
stmt.getTimestamp(5));
    System.out.println("Salary : " + 
stmt.getBigDecimal(6));
  }
  catch(Exception 
err)
  {
    System.out.println("An error has 
occurred.");
    System.out.println("See full details below.");
    
err.printStackTrace();
  }
}

String commandText = "{call empQuery(?,?,?,?,?,?)}";   
CallableStatement stmt = con.prepareCall(commandText);  

stmt.setInt(1, new Integer(c.readLine("Department No:")));   
stmt.setInt(2, new Integer(c.readLine("Employee No:")));  

stmt.setString(3, new String(c.readLine("Employee Name:")));  

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 117



Before executing the CallableStatement , you must register the JDBC type of each OUT  parameter by calling the 
registerOutParameter()  method.

Before calling a procedure with an IN  parameter, you must assign a value to that parameter with a setter method. Before calling a procedure with
an OUT  parameter, you register the type of that parameter. Then you can retrieve the value returned by calling a getter method. When calling a
procedure that defines an IN OUT  parameter, you must perform all three actions:

Assign a value to the parameter.
Register the type of the parameter.
Retrieve the value returned with a getter method.

stmt.registerOutParameter(2, Types.INTEGER);
stmt.registerOutParameter(3, Types.VARCHAR);
stmt.registerOutParameter(4, Types.VARCHAR);
stmt.registerOutParameter(5, Types.TIMESTAMP);
stmt.registerOutParameter(6, Types.NUMERIC);

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 118



10.4          Using REF CURSORS with Java

A REF CURSOR  is a cursor variable that contains a pointer to a query result set returned by an OPEN  statement. Unlike a static cursor, a REF 
CURSOR  isn't tied to a particular query. You can open the same REF CURSOR  variable any number of times with the OPEN  statement containing
different queries. Each time, a new result set is created for that query and made available by way of the cursor variable. A REF CURSOR  can also
pass a result set from one procedure to another.

EDB Postgres Advanced Server supports the declaration of both strongly typed and weakly typed REF CURSOR  variables. A strongly typed cursor
must declare the shape  (the type of each column) of the expected result set. You can use only a strongly typed cursor with a query that returns the
declared columns. Opening the cursor with a query that returns a result set with a different shape causes the server to return an exception. On the
other hand, a weakly typed cursor can work with a result set of any shape.

To declare a strongly typed REF CURSOR :

To declare a weakly typed REF_CURSOR :

Using a REF CURSOR to retrieve a ResultSet

The stored procedure shown in the following (getEmpNames ) builds two REF CURSOR  variabes on the server. The first REF CURSOR  contains a
list of commissioned employees in the emp  table. The second REF CURSOR  contains a list of salaried employees in the emp  table:

The RefCursorSample()  method shown in the following invokes the getEmpName()  stored procedure and displays the names returned in
each of the two REF CURSOR  variables:

TYPE <cursor_type_name> IS REF CURSOR RETURN <return_type>;

name 
SYS_REFCURSOR;

CREATE OR REPLACE PROCEDURE 
getEmpNames
(
  commissioned OUT 
SYS_REFCURSOR,
  salaried OUT 
SYS_REFCURSOR
)
IS
BEGIN
  OPEN commissioned FOR SELECT ename FROM emp WHERE comm is NOT 
NULL;
  OPEN salaried FOR SELECT ename FROM emp WHERE comm is 
NULL;
END;

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 119



A CallableStatement  prepares each REF CURSOR  ( commissioned  and salaried ). Each cursor is returned as an OUT  parameter of the
stored procedure, getEmpNames() :

The call to registerOutParameter()  registers the parameter type ( Types.REF ) of the first REF CURSOR  ( commissioned ) :

Another call to registerOutParameter()  registers the second parameter type ( Types.REF ) of the second REF CURSOR  ( salaried ) :

A call to stmt.execute()  executes the statement:

public void RefCursorSample(Connection 
con)
{
  try
  {
    
con.setAutoCommit(false);
    String commandText = "{call 
getEmpNames(?,?)}";
    CallableStatement stmt = 
con.prepareCall(commandText);
    stmt.registerOutParameter(1, Types.REF);
    stmt.registerOutParameter(2, Types.REF);

    stmt.execute();
    ResultSet commissioned = (ResultSet)stmt.getObject(1);
    System.out.println("Commissioned 
employees:");
    while(commissioned.next())
    {
      System.out.println(commissioned.getString(1));
    }

    ResultSet salaried = 
(ResultSet)stmt.getObject(2);
    System.out.println("Salaried 
employees:");
    while(salaried.next())
    {
      System.out.println(salaried.getString(1));
    }
  }
  catch(Exception 
err)
  {
    System.out.println("An error has 
occurred.");
    System.out.println("See full details below.");
    
err.printStackTrace();
  }
}

String commandText = "{call 
getEmpNames(?,?)}";
CallableStatement stmt = 
con.prepareCall(commandText);

stmt.registerOutParameter(1, Types.REF);

stmt.registerOutParameter(2, Types.REF);

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 120



A call to stmt.execute()  executes the statement:

The getObject()  method retrieves the values from the first parameter and casts the result to a ResultSet . Then, RefCursorSample
iterates through the cursor and prints the name of each commissioned employee:

The same getter method retrieves the ResultSet  from the second parameter, and RefCursorExample  iterates through that cursor, printing
the name of each salaried employee:

stmt.execute();

ResultSet commissioned = (ResultSet)stmt.getObject(1);
while(commissioned.next())
{
  System.out.println(commissioned.getString(1));
}

ResultSet salaried = 
(ResultSet)stmt.getObject(2);
while(salaried.next())
{
  System.out.println(salaried.getString(1));
}

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 121



10.5          Using BYTEA data with Java

The BYTEA  data type stores a binary string in a sequence of bytes. Digital images and sound files are often stored as binary data. EDB Postgres
Advanced Server can store and retrieve binary data by way of the BYTEA  data type.

The following Java sample stores BYTEA  data in an EDB Postgres Advanced Server database and then shows how to retrieve that data.

First, the following creates a table (emp_detail ) that stores BYTEA  data. emp_detail  contains two columns:

The first column stores an employee’s ID number (type INT ) and serves as the primary key for the table.
The second column stores a photograph of the employee in BYTEA  format.

The following creates a procedure (ADD_PIC ) that inserts a row into the emp_detail  table:

Then, the following creates a function (GET_PIC ) that returns the photograph for a given employee:

Inserting BYTEA data into an EDB Postgres Advanced Server

The following shows a Java method that invokes the ADD_PIC  procedure to copy a photograph from the client file system to the emp_detail
table on the server:

CREATE TABLE emp_detail
(
  empno INT4 PRIMARY KEY,
  pic   
BYTEA
);

CREATE OR REPLACE PROCEDURE ADD_PIC(p_empno IN int4, p_photo IN bytea) 
AS
BEGIN
  INSERT INTO emp_detail VALUES(p_empno, p_photo);
END;

CREATE OR REPLACE FUNCTION GET_PIC(p_empno IN int4) RETURN BYTEA IS
DECLARE
  photo 
BYTEA;
BEGIN
  SELECT pic INTO photo from EMP_DETAIL WHERE empno = 
p_empno;
  RETURN 
photo;
END;

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 122



InsertPic()  prompts the user for an employee number and the name of an image file:

If the requested file doesn't exist, InsertPic()  displays an error message and terminates:

Next, InsertPic()  prepares a CallableStatement  object ( stmt ) that calls the ADD_PIC  procedure. The first placeholder (?) represents

public void InsertPic(Connection 
con)
{
  try
  {
    Console c = 
System.console();
    int empno = Integer.parseInt(c.readLine("Employee No :"));
    String fileName = c.readLine("Image filename 
:");
    File f = new 
File(fileName);

    if(!f.exists())
    {
      System.out.println("Image file not found. 
Terminating...");
      return;
    }

    CallableStatement stmt = con.prepareCall("{call ADD_PIC(?, 
?)}");
    stmt.setInt(1, empno);
    stmt.setBinaryStream(2, new FileInputStream(f), (int)f.length());
    stmt.execute();
    System.out.println("Added image for Employee 
"+empno);
  }
  catch(Exception 
err)
  {
    System.out.println("An error has 
occurred.");
    System.out.println("See full details below.");
    
err.printStackTrace();
  }
}

int empno = Integer.parseInt(c.readLine("Employee No :"));
String fileName = c.readLine("Image filename 
:");

File f = new 
File(fileName);

if(!f.exists())
{
  System.out.println("Image file not found. 
Terminating...");
  return;
}

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 123



Next, InsertPic()  prepares a CallableStatement  object ( stmt ) that calls the ADD_PIC  procedure. The first placeholder (?) represents
the first parameter expected by ADD_PIC (p_empno) . The second placeholder represents the second parameter (p_photo ). To provide actual
values for those placeholders, InsertPic()  calls two setter methods. Since the first parameter is of type INTEGER , InsertPic()  calls the 
setInt()  method to provide a value for p_empno . The second parameter is of type BYTEA , so InsertPic()  uses a binary setter method. In

this case, the method is setBinaryStream() :

Once the placeholders are bound to actual values, InsertPic()  executes the CallableStatement :

If all goes well, InsertPic()  displays a message verifying that the image was added to the table. If an error occurs, the catch  block displays a
message to the user:

Retrieving BYTEA data from an EDB Postgres Advanced Server database

Now that you know how to insert BYTEA  data from a Java application, the following shows how to retrieve BYTEA  data from the server:

CallableStatement stmt = con.prepareCall("{call ADD_PIC(?, 
?)}");
stmt.setInt(1, empno);
stmt.setBinaryStream(2 ,new FileInputStream(f), 
f.length());

stmt.execute();

System.out.println("Added image for Employee 
\""+empno);
catch(Exception 
err)
{
  System.out.println("An error has 
occurred.");
  System.out.println("See full details below.");
  
err.printStackTrace();
}

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 124



GetPic()  starts by prompting the user for an employee ID number:

Next, GetPic()  prepares a CallableStatement  with one IN  parameter and one OUT  parameter. The first parameter is the OUT  parameter
that will contain the photograph retrieved from the database. Since the photograph is BYTEA  data, GetPic()  registers the parameter as a 
Type.BINARY . The second parameter is the IN  parameter that holds the employee number (an INT ), so GetPic()  uses the setInt()

method to provide a value for the second parameter.

Next, GetPic()  uses the getBytes  getter method to retrieve the BYTEA  data from the CallableStatement :

The program prompts the user for the name of the file to store the photograph:

public static void GetPic(Connection 
con)
{
  try
  {
    Console c = 
System.console();
    int empno = Integer.parseInt(c.readLine("Employee No :"));
    CallableStatement stmt = con.prepareCall("{?=call 
GET_PIC(?)}");
    stmt.setInt(2, empno);
    stmt.registerOutParameter(1, Types.BINARY);
    stmt.execute();
    byte[] b = 
stmt.getBytes(1);

    String fileName = c.readLine("Destination filename 
:");
    FileOutputStream fos = new FileOutputStream(new 
File(fileName));
    
fos.write(b);
    
fos.close();
    System.out.println("File saved at \""+fileName+"\"");
  }
  catch(Exception 
err)
  {
    System.out.println("An error has 
occurred.");
    System.out.println("See full details below.");
    
err.printStackTrace();
  }
}

int empno = Integer.parseInt(c.readLine("Employee No :"));

CallableStatement stmt = con.prepareCall("{?=call 
GET_PIC(?)}");
stmt.setInt(2, empno);
stmt.registerOutParameter(1, Types.BINARY);

stmt.execute();
byte[] b = 
stmt.getBytes(1);

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 125



The FileOutputStream  object writes the binary data that contains the photograph to the destination file:

Finally, GetPic()  displays a message confirming that the file was saved at the new location:

String fileName = c.readLine("Destination filename 
:");

FileOutputStream fos = new FileOutputStream(new 
File(fileName));
fos.write(b);
fos.close();

System.out.println("File saved at \""+fileName+"\"");

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 126



10.6          Using object types and collections with Java

The SQL CREATE TYPE  command is used to create a user-defined object type , which is stored in the EDB Postgres Advanced Server database.
The CREATE TYPE  command is also used to create a collection, commonly referred to as an array, which is also stored in the EDB Postgres
Advanced Server database.

These user-defined types can then be referenced in SPL procedures, SPL functions, and Java programs.

The basic object type is created with the CREATE TYPE AS OBJECT  command along with optional usage of the CREATE TYPE BODY
command.

A nested table type collection is created using the CREATE TYPE AS TABLE OF  command. A varray type collection is created with the CREATE 
TYPE VARRAY  command.

The following shows a Java method used by both upcoming examples to establish the connection to the EDB Postgres Advanced Server database.

Using an object type

Create the object types in the EDB Postgres Advanced Server database. Object type addr_object_type  defines the attributes of an address:

Object type emp_obj_typ  defines the attributes of an employee. One of these attributes is object type ADDR_OBJECT_TYPE . The object type
body contains a method that displays the employee information:

public static Connection getEDBConnection() throws
  ClassNotFoundException, SQLException {
  String url = 
"jdbc:edb://localhost:5444/test";
  String user = "enterprisedb";
  String password = 
"edb";
  Connection conn = DriverManager.getConnection(url, user, 
password);
  return conn;
}

CREATE OR REPLACE TYPE addr_object_type AS 
OBJECT
(
    street          
VARCHAR2(30),
    city            VARCHAR2(20),
    state           CHAR(2),
    zip             
NUMBER(5)
);

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 127



The following is a Java method that includes these user-defined object types:

CREATE OR REPLACE TYPE emp_obj_typ AS 
OBJECT
(
    empno           NUMBER(4),
    ename           VARCHAR2(20),
    addr            ADDR_OBJECT_TYPE,
    MEMBER PROCEDURE display_emp(SELF IN OUT 
emp_obj_typ)
);

CREATE OR REPLACE TYPE BODY emp_obj_typ 
AS
  MEMBER PROCEDURE display_emp (SELF IN OUT 
emp_obj_typ)
  IS
  BEGIN
    DBMS_OUTPUT.PUT_LINE('Employee No   : ' || 
SELF.empno);
    DBMS_OUTPUT.PUT_LINE('Name          : ' || 
SELF.ename);
    DBMS_OUTPUT.PUT_LINE('Street        : ' || 
SELF.addr.street);
    DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || SELF.addr.city || ', ' 
||
      SELF.addr.state || ' ' || 
LPAD(SELF.addr.zip,5,'0'));
  END;
END;

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 128



A CallableStatement  object is prepared based on the display_emp()  method of the emp_obj_typ  object type:

public static void testUDT() throws SQLException {
  Connection conn = null;
  try {
    conn = getEDBConnection();
    String commandText = "{call 
emp_obj_typ.display_emp(?)}";
    CallableStatement stmt = conn.prepareCall(commandText);

    // initialize emp_obj_typ 
structure
    // create addr_object_type 
structure
    Struct address = conn.createStruct("addr_object_type",
      new Object[]{"123 MAIN STREET","EDISON","NJ",8817});
    Struct emp     = 
conn.createStruct("emp_obj_typ",
      new Object[]{9001,"JONES", address});

    // set emp_obj_typ type 
param
    stmt.registerOutParameter(1, Types.STRUCT, "emp_obj_typ");
    stmt.setObject(1, 
emp);
    stmt.execute();

    // extract emp_obj_typ 
object
    emp = 
(Struct)stmt.getObject(1);
    Object[] attrEmp = 
emp.getAttributes();
    System.out.println("empno: " + 
attrEmp[0]);
    System.out.println("ename: " + 
attrEmp[1]);

    // extract addr_object_type 
attributes
    address = (Struct) attrEmp[2];
    Object[] attrAddress = 
address.getAttributes();
    System.out.println("street: " + 
attrAddress[0]);
    System.out.println("city: " + 
attrAddress[1]);
    System.out.println("state: " + 
attrAddress[2]);
    System.out.println("zip: " + 
attrAddress[3]);
  } catch (ClassNotFoundException cnfe) {
    System.err.println("Error: " + 
cnfe.getMessage());
  } finally {
    if (conn != null) {
      conn.close();
    }
  }
}

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 129



createStruct()  initializes and creates instances of object types addr_object_type  and emp_obj_typ  named address  and emp ,
respectively:

The call to registerOutParameter()  registers the parameter type ( Types.STRUCT ) of emp_obj_typ :

The setObject()  method binds the object instance emp  to the IN OUT  placeholder.

A call to stmt.execute()  executes the call to the display_emp()  method:

getObject()  retrieves the emp_obj_typ  object type. The attributes of the emp  and address  object instances are then retrieved and
displayed:

String commandText = "{call 
emp_obj_typ.display_emp(?)}";
CallableStatement stmt = conn.prepareCall(commandText);

Struct address = conn.createStruct("addr_object_type",
  new Object[]{"123 MAIN STREET","EDISON","NJ",8817});
Struct emp     = 
conn.createStruct("emp_obj_typ",
  new Object[]{9001,"JONES", address});

stmt.registerOutParameter(1, Types.STRUCT, "emp_obj_typ");

stmt.setObject(1, 
emp);

stmt.execute();

emp = (Struct)stmt.getObject(1);
Object[] attrEmp = 
emp.getAttributes();
System.out.println("empno: " + 
attrEmp[0]);
System.out.println("ename: " + 
attrEmp[1]);

address = (Struct) attrEmp[2];
Object[] attrAddress = 
address.getAttributes();
System.out.println("street: " + 
attrAddress[0]);
System.out.println("city: " + 
attrAddress[1]);
System.out.println("state: " + 
attrAddress[2]);
System.out.println("zip: " + 
attrAddress[3]);

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 130



Using a collection

Create collections types NUMBER_ARRAY  and CHAR_ARRAY  in the EDB Postgres Advanced Server database:

The following is an SPL function that uses collection types NUMBER_ARRAY  and CHAR_ARRAY  as IN  parameters and CHAR_ARRAY  as the 
OUT  parameter.

The function concatenates the employee ID from the NUMBER_ARRAY IN  parameter with the employee name in the corresponding row from the 
CHAR_ARRAY IN  parameter. The resulting concatenated entries are returned in the CHAR_ARRAY OUT  parameter.

The following is a Java method that calls the previous function, passing and retrieving the collection types:

CREATE OR REPLACE TYPE NUMBER_ARRAY  AS TABLE OF NUMBER;
CREATE OR REPLACE TYPE CHAR_ARRAY  AS TABLE OF VARCHAR(50);

CREATE OR REPLACE FUNCTION concatEmpIdName
(
    arrEmpIds       NUMBER_ARRAY,
    arrEmpNames     
CHAR_ARRAY
) RETURN CHAR_ARRAY
AS
DECLARE
    i               INTEGER := 
0;
    arrEmpIdNames   
CHAR_ARRAY;
BEGIN
  arrEmpIdNames := 
CHAR_ARRAY(NULL,NULL);
  FOR i IN arrEmpIds.FIRST..arrEmpIds.LAST 
LOOP
    arrEmpIdNames(i) := arrEmpIds(i) || '  ' || 
arrEmpNames(i);
  END LOOP;
  RETURN 
arrEmpIdNames;
END;

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 131



A CallableStatement  object is prepared to invoke the concatEmpIdName()  function:

createArrayOf()  initializes and creates collections named empIdArray  and empNameArray :

public static void testTableOfAsInOutParams() throws SQLException {
  Connection conn = null;
  try {
    conn = getEDBConnection();
    String commandText = "{? = call 
concatEmpIdName(?,?)}";
    CallableStatement stmt = conn.prepareCall(commandText);

    // create collections to specify employee id and name 
values
    Array empIdArray = conn.createArrayOf("integer",
      new Integer[]{7900, 7902});
    Array empNameArray = conn.createArrayOf("varchar",
      new String[]{"JAMES", "FORD"});

    // set TABLE OF VARCHAR as OUT 
param
    stmt.registerOutParameter(1, Types.ARRAY);

    // set TABLE OF INTEGER as IN 
param
    stmt.setObject(2, empIdArray, Types.OTHER);

    // set TABLE OF VARCHAR as IN 
param
    stmt.setObject(3, empNameArray, Types.OTHER);
    stmt.execute();
    java.sql.Array empIdNameArray = 
stmt.getArray(1);
    String[] emps = (String[]) 
empIdNameArray.getArray();

    System.out.println("items length: " + 
emps.length);
    System.out.println("items[0]: " + 
emps[0].toString());
    System.out.println("items[1]: " + 
emps[1].toString());

  } catch (ClassNotFoundException cnfe) {
    System.err.println("Error: " + 
cnfe.getMessage());
  } finally {
    if (conn != null) {
      conn.close();
    }
  }
}

String commandText = "{? = call 
concatEmpIdName(?,?)}";
CallableStatement stmt = conn.prepareCall(commandText);

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 132



The call to registerOutParameter()  registers the parameter type ( Types.ARRAY ) of the OUT  parameter:

The setObject()  method binds the collections empIdArray  and empNameArray  to the IN  placeholders:

A call to stmt.execute()  invokes the concatEmpIdName()  function:

getArray()  retrieves the collection returned by the function. The first two rows consisting of the concatenated employee IDs and names are
displayed:

Array empIdArray = conn.createArrayOf("integer",
  new Integer[]{7900, 7902});
Array empNameArray = conn.createArrayOf("varchar",
  new String[]{"JAMES", "FORD"});

stmt.registerOutParameter(1, Types.ARRAY);

stmt.setObject(2, empIdArray, Types.OTHER);
stmt.setObject(3, empNameArray, Types.OTHER);

stmt.execute();

java.sql.Array empIdNameArray = 
stmt.getArray(1);
String[] emps = (String[]) 
empIdNameArray.getArray();
System.out.println("items length: " + 
emps.length);
System.out.println("items[0]: " + 
emps[0].toString());
System.out.println("items[1]: " + 
emps[1].toString());

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 133



10.7          Asynchronous notification handling with NoticeListener

The EDB Postgres Advanced Server JDBC Connector provides asynchronous notification handling functionality. A notification is a message generated
by the server when an SPL (or PL/pgSQL) program executes a RAISE NOTICE  statement. Each notification is sent from the server to the client
application. To intercept a notification in a JDBC client, an application must create a NoticeListener  object (or, more typically, an object derived
from NoticeListener ).

It's important to understand that a notification is sent to the client as a result of executing an SPL (or PL/pgSQL) program. To generate a notification,
you must execute an SQL statement that invokes a stored procedure, function, or trigger. The notification is delivered to the client as the SQL
statement executes. Notifications work with any type of statement object: CallableStatement  objects, PreparedStatement  objects, or
simple Statement  objects. A JDBC program intercepts a notification by associating a NoticeListener  with a Statement  object. When the 
Statement  object executes an SQL statement that raises a notice, JDBC invokes the noticeReceived()  method in the associated 
NoticeListener .

The following shows an SPL procedure that loops through the emp  table and gives each employee a 10% raise. As each employee is processed, 
adjustSalary  executes a RAISE NOTICE  statement. (In this case, the message contained in the notification reports progress to the client

application.)

The following shows how to create a NoticeListener  that intercepts notifications in a JDBC application:

CREATE OR REPLACE PROCEDURE adjustSalary
IS
  v_empno         NUMBER(4);
  v_ename         VARCHAR2(10);
  CURSOR emp_cur IS SELECT empno, ename FROM 
emp;
BEGIN
  OPEN 
emp_cur;
  LOOP
    FETCH emp_cur INTO v_empno, 
v_ename;
    EXIT WHEN emp_cur%NOTFOUND;

    UPDATE emp SET sal = sal * 1.10 WHERE empno = 
v_empno;
    RAISE NOTICE 'Salary increased for %', 
v_ename;
  END LOOP;
  CLOSE 
emp_cur;
END;

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 134



The NoticeExample()  method is straightforward. It expects a single argument from the caller, a Connection  object:

NoticeExample()  begins by preparing a call to the adjustSalary  procedure shown previously. As you would expect, 
con.prepareCall()  returns a CallableStatement  object. Before executing the CallableStatement , you must create an object that

implements the NoticeListener  interface and add that object to the list of NoticeListeners  associated with the CallableStatement :

Once the NoticeListener  is in place, the NoticeExample  method executes the CallableStatement  (invoking the adjustSalary
procedure on the server) and displays a message to the user:

public void NoticeExample(Connection 
con)
{
  CallableStatement stmt;
  try
  {
    stmt = con.prepareCall("{call 
adjustSalary()}");

    MyNoticeListener listener = new 
MyNoticeListener();
    ((BaseStatement)stmt).addNoticeListener(listener);
    stmt.execute();
    System.out.println("Finished");
  }
  catch (SQLException 
e)
  {
    System.out.println("An error has 
occurred.");
    System.out.println("See full details below.");
    
e.printStackTrace();
  }
}
class MyNoticeListener implements 
NoticeListener
{
  public MyNoticeListener()
  {
  }

  public void noticeReceived(SQLWarning warn)
  {
    System.out.println("NOTICE: "+ 
warn.getMessage());
  }
}

public void NoticeExample(Connection 
con)

CallableStatement stmt = con.prepareCall("{call 
adjustSalary()}");
MyNoticeListener listener = new 
MyNoticeListener();
((BaseStatement)stmt).addNoticeListener(listener);

stmt.execute();
System.out.println("Finished");

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 135



Each time the adjustSalary  procedure executes a RAISE NOTICE  statement, the server sends the text of the message ( "Salary 
increased for ..." ) to the Statement  (or derivative) object in the client application. JDBC invokes the noticeReceived()  method
(possibly many times) before the call to stmt.execute()  completes.

When JDBC calls the noticeReceived()  method, it creates an SQLWarning  object that contains the text of the message generated by the 
RAISE NOTICE  statement on the server.

Each Statement  object keeps a list of NoticeListeners . When the JDBC driver receives a notification from the server, it consults the list
maintained by the Statement  object. If the list is empty, the notification is saved in the Statement  object. (You can retrieve the notifications by
calling stmt.getWarnings()  once the call to execute()  completes.) If the list isn't empty, the JDBC driver delivers an SQLWarning  to
each listener in the order in which the listeners were added to the Statement .

class MyNoticeListener implements 
NoticeListener
{
  public MyNoticeListener()
  {
  }

  public void noticeReceived(SQLWarning warn)
  {
    System.out.println("NOTICE: "+ 
warn.getMessage());
  }
}

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 136



11          Security and encryption

PostgreSQL has native support for using SSL connections to encrypt client/server communications for increased security. This requires that OpenSSL
is installed on both client and server systems and that support in PostgreSQL is enabled at build time.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 137



11.1          Using SSL

When using SSL, consider the following:

Configuring the server
Configuring the client
Testing the SSL JDBC connection
Using SSL without certificate Validation
Using certificate authentication without a password

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 138



11.1.1          Configuring the server

For information about configuring PostgreSQL or EDB Postgres Advanced Server for SSL, see the PostgreSQL documentation.

Note

Before you access your SSL-enabled server from Java, ensure that you can log in to your server via edb-psql . If you've established an SSL
connection, the output looks similar to this:

$ ./bin/edb-psql -U enterprisedb -d edb
psql.bin (12.0.1)
SSL connection (protocol: TLSv1.2, cipher: ECDHE-RSA-AES256-GCM-SHA384, bits: 256, compression: 
off)
Type "help" for help.

edb=#

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 139

https://www.postgresql.org/docs/12.3/ssl-tcp.html


11.1.2          Configuring the client

A number of connection parameters are available for configuring the client for SSL. To know more about the SSL connection parameters and
additional connection properties, see Connecting to the database.

When passed different values, the behavior of SSL connection parameters differs. When you pass the connection parameter ssl=true  into the
driver, the driver validates the SSL certificate and verifies the hostname. Conversely, using libpq  defaults to a nonvalidating SSL connection.

You can get better control of the SSL connection using the sslmode  connection parameter. This parameter is the same as the libpq sslmode
parameter, and the existing SSL implements the following sslmode  connection parameters.

sslmode connection parameters

sslmode=require

This mode makes the encryption mandatory and also requires the connection to fail if it can’t be encrypted. The server is configured to accept SSL
connections for this host/IP address and that the server recognizes the client certificate.

Note

In this mode, the JDBC driver accepts all server certificates.

sslmode=verify-ca

If sslmode=verify-ca , the server is verified by checking the certificate chain up to the root certificate stored on the client.

sslmode=verify-full

If sslmode=verify-full , the server hostname is verified to make sure it matches the name stored in the server certificate. The SSL connection
fails if it can't verify the server certificate. This mode is recommended in most security-sensitive environments.

In the case where the certificate validation is failing, you can try sslcert= , and LibPQFactory  will not send the client certificate. If the server
isn't configured to authenticate using the certificate, it should connect.

You can override the location of the client certificate, client key, and root certificate with the sslcert , sslkey , and sslrootcert  settings,
respectively. These default to /defaultdir/postgresql.crt , /defaultdir/postgresql.pk8 , and /defaultdir/root.crt ,
respectively, where defaultdir  is ${user.home}/.postgresql/  in Unix systems and %appdata%/postgresql/  on Windows.

In this mode, when establishing an SSL connection, the JDBC driver validates the server's identity, preventing "man in the middle" attacks. It does this
by checking that the server certificate is signed by a trusted authority and that the host you're connecting to is the same as the hostname in the
certificate.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 140



11.1.3          Testing the SSL JDBC connection

If you're using Java's default mechanism (not LibPQFactory ) to create the SSL connection, you need to make the server certificate available to
Java.

1. Set the following property in the Java program.

2. Convert the server certificate to Java format:

$ openssl x509 -in server.crt -out server.crt.der -outform der

3. Import this certificate into Java's system truststore.

$ keytool -keystore $JAVA_HOME/lib/security/cacerts -alias postgresql-import -file server.crt.der

4. If you don't have access to the system cacerts truststore, create your own truststore.

$ keytool -keystore mystore -alias postgresql -import -file server.crt.der

5. Start your Java application and test the program.

$ java -Djavax.net.ssl.trustStore=mystore com.mycompany.MyApp

For example:

$java -classpath .:/usr/edb/jdbc/edb-jdbc18.jar–
Djavax.net.ssl.trustStore=mystore pg_test2 public

Note

To troubleshoot connection issues, add -Djavax.net.debug=ssl  to the Java command.

Using SSL without certificate validation

By default, the combination of SSL=true  and setting the connection URL parameter sslfactory=com.edb.ssl.NonValidatingFactory
encrypts the connection but doesn't validate the SSL certificate. To enforce certificate validation, you must use a Custom SSLSocketFactory .

For more details about writing a Custom SSLSocketFactory , see the PostgreSQL documentation.

String url=“jdbc:edb://localhost/test?
user=fred&password=secret&ssl=true”;

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 141

https://jdbc.postgresql.org/documentation/ssl/#custom-sslsocketfactory


11.1.4          Using certificate authentication without a password

To use certificate authentication without a password:

1. Convert the client certificate to DER format.

$ openssl x509 –in postgresql.crt -out postgresql.crt.der -outform der

2. Convert the client key to DER format.

$ openssl pkcs8 -topk8 -outform DER -in postgresql.key -out postgresql.key.pk8 –nocrypt

3. Copy the client files (postgresql.crt.der , postgresql.key.pk8 ) and root certificate to the client machine and use the following
properties in your Java program to test it:

4. Compile the Java program and test it.

$ java -Djavax.net.ssl.trustStore=mystore -classpath .:./edb-jdbc18.jar pg_ssl public

String url = 
"jdbc:edb://snvm001:5444/edbstore";
     Properties props = new Properties();
     props.setProperty("user","enterprisedb");
     props.setProperty("ssl","true");
     props.setProperty("sslmode","verify-full");
     props.setProperty("sslcert","postgresql.crt.der");
     props.setProperty("sslkey","postgresql.key.pk8");
     props.setProperty("sslrootcert","root.crt");

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 142



11.2          Scram compatibility

The EDB JDBC driver provides SCRAM-SHA-256 support for EDB Postgres Advanced Server versions 10, 11, and 12. For JRE/JDK version 1.8, this
support is available from EDB JDBC Connector release 42.2.2.1 onwards. For JRE/JDK version 1.7, this support is available from EDB JDBC Connector
release 42.2.5 onwards.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 143



11.3          Support for GSSAPI-encrypted connection

**New Feature **

Support for GSSAPI-ecncrypted connections is available in EDB JDBC Connector release 42.2.19.1 and later.

The EDB JDBC driver supports GSSAPI-encrypted connections for EDB Postgres Advanced Server 12 onwards.

The gssEncMode  parameter controls GSSAPI-encrypted connection. The parameter can have any of these values:

Disable . Disables any attempt to connect using GSS-encrypted mode.

Allow . Attempts to connect in plain text. Then, if the server requests it, it switches to encrypted mode.

Prefer . Attempts to connect in encrypted mode and falls back to plain text if it fails to acquire an encrypted connection.

Require . Attempts to connect in encrypted mode and fails to connect if that isn't possible.

GSSAPI/SSPI authentication

The default behavior of GSSAPI/SSPI authentication on Windows and Linux platforms is as following:

On Windows, the EDB JDBC driver tries to connect using SSPI.
On Linux, the EDB JDBC driver tries to connect using GSSAPI.

This default behavior is controlled using the gsslib  connection parameter that takes one of the following values:

auto . The driver attempts for SSPI authentication when the server requests it, the EDB JDBC client is running on Windows, and the waffle
libraries required for SSPI are on the CLASSPATH. Otherwise it opts for Kerberos/GSSAPI authentication via JSSE. Unlike libpq, the EDB JDBC
driver doesn't use the Windows SSPI libraries for Kerberos (GSSAPI) requests.

gssapi . This option forces JSSE's GSSAPI authentication even when SSPI is available.

sspi . This option forces SSPI authentication. This authentication fails on Linux or where SSPI is unavailable.

Using SSPI (Windows-only environment)

When the EDB Postgres Advanced Server and JDBC client both are on Windows, the JDBC driver connects with SSPI authentication using one of the
following connection strings:

Note

gsslib=sspi  is optional because the server requires SSPI authentication.
There is no need to specify username and password. The logged-in user credentials are used to authenticate the user.

con = DriverManager.getConnection("jdbc:edb://localhost:5444/edb");
OR
con = DriverManager.getConnection("jdbc:edb://localhost:5444/edb?gsslib=sspi"); 

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 144



Example

The example assumes that SSPI authentication is configured on a Windows machine. Suppose the edb-jdbc18.jar  path is <PATH_DRIVER>
and the waffle libraries path is <PATH_WAFFLE> . Here's how to set CLASSPATH  and run the JEdb sample:

set CLASSPATH=<PATH_DRIVER>\edb-jdbc18.jar;<PATH_WAFFLE>\*;
javac JEdb.java
java JEdb

Using GSSAPI (Linux-only environment)

When the EDB Postgres Advanced Server and JDBC client both are on Linux, the JDBC driver connects with GSSAPI authentication using the following
connection string:

Note

gsslib=gssapi  is optional because the server requires GSSAPI authentication.

Example

This example assumes that GSS authentication is configured on a Linux machine.

Create a file named pgjdbc.conf  with the following contents.

Suppose pgjdbc.conf  is placed at /etc/pgjdbc.conf . Here's how to run JEdb sample:

javac JEdb.java
java -Djava.security.auth.login.config=/etc/pgjdbc.conf -cp .:edb-jdbc18.jar JEdb

Properties connectionProps = new Properties();
connectionProps.setProperty("user", "postgres/myrealm.example@MYREALM.EXAMPLE");
String databaseUrl = 
"jdbc:edb://myrealm.example:5444/edb";
con = DriverManager.getConnection(databaseUrl, connectionProps);

pgjdbc {
com.sun.security.auth.module.Krb5LoginModule 
required
doNotPrompt=true
useTicketCache=true
renewTGT=true
debug=true;
};

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 145



Using SSPI/GSSAPI (Windows and Linux environment)

When the EDB Postgres Advanced Server is on Linux with authentication configured as GSSAPI, and the JDBC client is on Windows, the EDB JDBC
connects either using SSPI or GSSAPI authentication.

For gsslib=sspi  or gsslib=auto , EDB JDBC uses SSPI. For gsslib=gssapi  it uses GSSAPI authentication.

Example

This example assumes that GSS authentication is configured between Windows Active Directory and a Linux machine.

SSPI

In this scenario, JDBC is using SSPI authentication. Create the connection using the following code:

Running an EDB JDBC-based app in this case is the same as described in Using SSPI (Windows-only environment).

GSSAPI

In this scenario, JDBC is using GSSAPI authentication. Create the connection using the following code:

Set up the Kerberos credential cache file and obtain a ticket.

Create a new directory, say c:\temp , and a system environment variable KRB5CCNAME . In the variable value field, enter 
c:\temp\krb5cache .

Note

krb5cache  is a file that's managed by the Kerberos software.

Obtain a ticket for a Kerberos principal either using MIT Kerberos Ticket Manager or using a keytab  file using the ktpass  utility.

Create the pgjdbc.conf  file with the same contents described in Using GSSAPI (Linux-only environment).

Suppose pgjdbc.conf  is placed at c:\pgjdbc.conf . Here's how to run JEdb sample:

set CLASSPATH=C:\Program Files\edb\jdbc\edb-jdbc18.jar;
java -Djava.security.auth.login.config=c:\pgjdbc.conf JEdb

Properties connectionProps = new Properties();
connectionProps.setProperty("user", "david@MYREALM.EXAMPLE");
String databaseUrl = "jdbc:edb://pg.myrealm.example:5444/edb?
gsslib=sspi";
con = DriverManager.getConnection(databaseUrl, connectionProps);

Properties connectionProps = new Properties();
connectionProps.setProperty("user", "david@MYREALM.EXAMPLE");
String databaseUrl = "jdbc:edb://pg.myrealm.example:5444/edb?
gsslib=gssapi";
con = DriverManager.getConnection(databaseUrl, connectionProps);

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 146



12          EDB JDBC Connector logging

The EDB Postgres Advanced Server JDBC Connector supports the use of logging to help resolve issues with the JDBC Connector when used in your
application. The JDBC Connector uses the logging APIs of java.util.logging  that was part of Java since JDK 1.4. For information on 
java.util.logging , see The PostgreSQL JDBC Driver.

Note

Previous versions of the EDB Postgres Advanced Server JDBC Connector used a custom mechanism to enable logging. It's now replaced by
the use of java.util.logging  in versions moving forward from community version 42.1.4.1. The older mechanism is no longer
available.

Previous versions of the Advanced Server JDBC Connector can enable logging using the connection properties, however it is no longer
available from 42.3.3 onwards.

Enabling logging with logging.properties

The default Java logging framework stores its configuration in a file called logging.properties . You can use logging properties to configure the
driver dynamically (for example, when using the JDBC Connector with an application server such as Tomcat, JBoss, WildFly, etc.), which makes it
easier to enable/disable logging at runtime. The following example demonstrates configuring logging dynamically:

The default file output is in the user’s home directory:

Use the following command to set the logging level for the JDBC Connector to FINEST  (maps to loggerLevel ):

com.edb.level=FINEST

Then, execute the application with the logging configuration:

java –jar -Djava.util.logging.config.file=logging.properties run.jar

handlers = 
java.util.logging.FileHandler
//logging level
.level = OFF

java.util.logging.FileHandler.pattern = %h/EDB-JDBC%u.log
java.util.logging.FileHandler.limit = 5000000
java.util.logging.FileHandler.count = 20
java.util.logging.FileHandler.formatter = 
java.util.logging.SimpleFormatter 
java.util.logging.FileHandler.level = FINEST  
java.util.logging.SimpleFormatter.format=%1$tY-%1$tm-%1$td %1$tH:%1$tM:%1$tS %4$s %2$s %5$s%6$s%n

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 147

https://jdbc.postgresql.org/documentation/logging/


13          Reference - JDBC data types

The following table lists the JDBC data types supported by EDB Postgres Advanced Server and the JDBC Connector. If you're binding to an EDB
Postgres Advanced Server type (shown in the middle column) using the setObject()  method, supply a JDBC value of the type shown in the left
column. When you retrieve data, the getObject()  method returns the object type listed in the right-most column:

JDBC Type Advanced Server Type getObject() returns

INTEGER INT4 java.lang.Integer

TINYINT, SMALLINT INT2 java.lang.Integer

BIGINT INT8 java.lang.Long

REAL FLOAT4 java.lang.Float

DOUBLE, FLOAT FLOAT8 java.lang.Double (Float is same as
double)

DECIMAL, NUMERIC NUMERIC java.math.BigDecimal

CHAR BPCHAR java.lang.String

VARCHAR, LONGVARCHAR VARCHAR java.lang.String

DATE DATE java.sql.Date

TIME TIME, TIMETZ java.sql.Timestamp

TIMESTAMP TIMESTAMP, TIMESTAMPTZ java.sql.Timestamp

BINARY BYTEA byte[](primitive)

BOOLEAN, BIT BOOL java.lang.Boolean

Types.REF REFCURSOR java.sql.ResultSet

Types.REF_CURSOR REFCURSOR java.sql.ResultSet

Types.OTHER REFCURSOR java.sql.ResultSet

Types.OTHER UUID java.util.UUID

Types.SQLXML XML java.sql.SQLXML

Note

Types.REF_CURSOR  is supported only for JRE 4.2.

Types.OTHER  is not only used for UUID but is also used if you don't specify a type and allow the server or the JDBC driver to determine the type. If
the parameter is an instance of java.util.UUID , the driver determines the appropriate internal type and sends it to the server.

EDB JDBC Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 148


	1          EDB JDBC Connector
	2          Release notes
	2.1          EDB JDBC Connector 42.7.3.4 release notes
	2.2          EDB JDBC Connector 42.7.3.3 release notes
	2.3          EDB JDBC Connector 42.7.3.2 release notes
	2.4          EDB JDBC Connector 42.7.3.1 release notes
	2.5          EDB JDBC Connector 42.5.4.2 release notes
	2.6          EDB JDBC Connector 42.5.4.1 release notes
	2.7          EDB JDBC Connector 42.5.1.2 release notes
	2.8          EDB JDBC Connector 42.5.1.1 release notes
	2.9          EDB JDBC Connector 42.5.0.1 release notes
	2.10          EDB JDBC Connector 42.3.3.1 release notes
	2.11          EDB JDBC Connector 42.3.2.1 release notes
	2.12          EDB JDBC Connector 42.2.24.1 release notes
	2.13          EDB JDBC Connector 42.2.19.1 release notes
	2.14          EDB JDBC Connector 42.2.12.3 release notes
	2.15          EDB JDBC Connector 42.2.9.1 release notes
	2.16          EDB JDBC Connector 42.2.8.1 release notes
	3          Supported platforms
	Supported database versions
	Supported JDK distribution

	4          EDB JDBC Connector overview
	JDBC driver types
	The JDBC interface
	JDBC classes and interfaces
	The JDBC DriverManager
	EDB Postgres Advanced Server JDBC Connector compatibility

	5          Installing EDB JDBC Connector
	Linux x86-64 (amd64)
	Red Hat Enterprise Linux (RHEL) and derivatives
	SUSE Linux Enterprise (SLES)
	Debian and derivatives

	Linux IBM Power (ppc64le)
	Red Hat Enterprise Linux (RHEL) and derivatives
	SUSE Linux Enterprise (SLES)

	Linux AArch64 (ARM64)
	Red Hat Enterprise Linux (RHEL) and derivatives
	Debian and derivatives

	Windows

	5.1          Installing EDB JDBC Connector on Linux IBM Power (ppc64le)
	Red Hat Enterprise Linux (RHEL)
	SUSE Linux Enterprise (SLES)

	5.1.1          Installing EDB JDBC Connector on RHEL 9 ppc64le
	Prerequisites
	Install the package

	5.1.2          Installing EDB JDBC Connector on RHEL 8 ppc64le
	Prerequisites
	Install the package

	5.1.3          Installing EDB JDBC Connector on SLES 15 ppc64le
	Prerequisites
	Install the package

	5.1.4          Installing EDB JDBC Connector on SLES 12 ppc64le
	Prerequisites
	Install the package

	5.2          Installing EDB JDBC Connector on Linux x86 (amd64)
	Red Hat Enterprise Linux (RHEL) and derivatives
	SUSE Linux Enterprise (SLES)
	Debian and derivatives

	5.2.1          Installing EDB JDBC Connector on RHEL 9 or OL 9 x86_64
	Prerequisites
	Install the package

	5.2.2          Installing EDB JDBC Connector on RHEL 8 or OL 8 x86_64
	Prerequisites
	Install the package

	5.2.3          Installing EDB JDBC Connector on AlmaLinux 9 or Rocky Linux 9 x86_64
	Prerequisites
	Install the package

	5.2.4          Installing EDB JDBC Connector on AlmaLinux 8 or Rocky Linux 8 x86_64
	Prerequisites
	Install the package

	5.2.5          Installing EDB JDBC Connector on SLES 15 x86_64
	Prerequisites
	Install the package

	5.2.6          Installing EDB JDBC Connector on Ubuntu 24.04 x86_64
	Prerequisites
	Install the package

	5.2.7          Installing EDB JDBC Connector on Ubuntu 22.04 x86_64
	Prerequisites
	Install the package

	5.2.8          Installing EDB JDBC Connector on Debian 12 x86_64
	Prerequisites
	Install the package

	5.2.9          Installing EDB JDBC Connector on Debian 11 x86_64
	Prerequisites
	Install the package

	5.2.10          Installing EDB JDBC Connector on SLES 12 x86_64
	Prerequisites
	Install the package

	5.3          Installing EDB JDBC Connector on Linux AArch64 (ARM64)
	Red Hat Enterprise Linux (RHEL) and derivatives
	Debian and derivatives

	5.3.1          Installing EDB JDBC Connector on RHEL 9 or OL 9 arm64
	Prerequisites
	Install the package

	5.3.2          Installing EDB JDBC Connector on Debian 12 arm64
	Prerequisites
	Install the package

	5.4          Installing EDB JDBC Connector on Windows
	Installing directly
	Using Stack Builder or StackBuilder Plus
	Using the graphical installer

	5.5          Installing EDB JDBC Connector using Maven
	5.6          Configuring EDB JDBC Connector for Java
	5.7          Upgrading a Linux installation
	6          Using the EDB JDBC Connector with Java applications
	6.1          Loading EDB JDBC Connector
	6.2          Connecting to the database
	6.2.1          Additional connection properties
	6.2.2          Preferring synchronous secondary database servers
	Parameters
	Configuring primary and secondary database servers overview
	Example: Primary and secondary database servers

	6.3          Executing SQL statements through statement objects
	Using named notation with a CallableStatement object
	Examples


	6.4          Retrieving results from a ResultSet object
	6.5          Freeing resources
	6.6          Handling errors
	7          Using advanced queueing
	Enqueueing or dequeueing a message

	7.1          Server-side setup
	Using EDB-PSQL
	Create a user-defined type
	Create the queue table
	Create the queue
	Start the queue

	Using EDB-JDBC JMS API
	Connection
	Session
	Message producer
	Message consumer


	7.3          Message acknowledgement
	Transacted session
	AUTO_ACKNOWLEDGE mode
	DUPS_OK_ACKNOWLEDGE mode
	CLIENT_ACKNOWLEDGE mode

	7.4          Message types
	Message properties
	TextMessage
	BytesMessage
	ObjectMessage
	Message

	7.5          Non-standard message
	Nested types
	InnermostCustom.java
	InnerCustom.java
	CustomType.java


	8          Executing SQL commands with executeUpdate() or through PrepareStatement objects
	Using executeUpdate() to INSERT data
	Using PreparedStatements to send SQL commands

	9          Adding a graphical interface to a Java program
	10          Advanced JDBC Connector functionality
	10.1          Reducing client-side resource requirements
	Modifying the batch size of a statement object

	10.2          Using PreparedStatements to send SQL commands
	10.3          Executing stored procedures
	Invoking stored procedures
	Executing a simple stored procedure
	Executing stored procedures with IN parameters
	Executing stored procedures with OUT parameters

	Executing stored procedures with IN OUT parameters

	10.4          Using REF CURSORS with Java
	Using a REF CURSOR to retrieve a ResultSet

	10.5          Using BYTEA data with Java
	Inserting BYTEA data into an EDB Postgres Advanced Server
	Retrieving BYTEA data from an EDB Postgres Advanced Server database

	10.6          Using object types and collections with Java
	Using an object type
	Using a collection

	10.7          Asynchronous notification handling with NoticeListener
	11          Security and encryption
	11.1          Using SSL
	11.1.1          Configuring the server
	11.1.2          Configuring the client
	sslmode connection parameters
	sslmode=require
	sslmode=verify-ca
	sslmode=verify-full


	11.1.3          Testing the SSL JDBC connection
	Using SSL without certificate validation

	11.1.4          Using certificate authentication without a password
	11.2          Scram compatibility
	11.3          Support for GSSAPI-encrypted connection
	GSSAPI/SSPI authentication
	Using SSPI (Windows-only environment)
	Example

	Using GSSAPI (Linux-only environment)
	Example

	Using SSPI/GSSAPI (Windows and Linux environment)
	Example


	12          EDB JDBC Connector logging
	Enabling logging with logging.properties

	13          Reference - JDBC data types

