
EDB .NET Connector
Version 9.0.3.1

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. Built at 2026-01-27T09:46:43

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
21
22
33
37
42
44
47
49
61
74
78
81
90
97
98

103

1 EDB .NET Connector
2 Release notes
2.1 Version 9.0.3.1
2.2 Version 8.0.5.1
2.3 Version 8.0.2.1
2.4 Version 7.0.6.2
2.5 Version 7.0.6.1
2.6 Version 7.0.4.1
2.7 Version 6.0.2.1
2.8 Version 5.0.7.1
2.9 Version 4.1.6.1
2.10 Version 4.1.5.1
2.11 Version 4.1.3.1
2.12 Version 4.0.10.2
2.13 Version 4.0.10.1
2.14 Version 4.0.6.1
3 Product compatibility
4 EDB .NET Connector overview
5 Installing and configuring the .NET Connector
6 Opening a database connection
7 Retrieving database records
8 Parameterized queries
9 Inserting records in a database
10 Deleting records in a database
11 Using SPL stored procedures in your .NET application
12 Using advanced queueing
13 Using a ref cursor in a .NET application
14 Using plugins
15 Using object types in .NET
16 Using nested tables
17 Scram compatibility
18 EDB .NET Connector logging
19 API reference

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 2

1 EDB .NET Connector

The EDB .NET Connector distributed with EDB Postgres Advanced Server provides connectivity between a .NET client application and an EDB Postgres
Advanced Server database server. You can:

Connect to an instance of EDB Postgres Advanced Server.
Retrieve information from an EDB Postgres Advanced Server database.
Update information stored on an EDB Postgres Advanced Server database.

To understand these examples, you need a solid working knowledge of C# and .NET. The EDB .NET Connector functionality is built on the core
functionality of the Npgsql open source project. For details, see the Npgsql User Guide.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 3

http://www.npgsql.org/doc/index.html

2 Release notes

The EDB .NET connector documentation describes the latest version of EDB .NET connector.

These release notes describe what's new in each release. When a minor or patch release introduces new functionality, indicators in the content
identify the version that introduced the new feature.

Version Release Date

9.0.3.1 21 May 2025

8.0.5.1 22 Nov 2024

8.0.2.1 15 May 2024

7.0.6.2 15 Feb 2024

7.0.6.1 25 Oct 2023

7.0.4.1 07 Jul 2023

6.0.2.1 25 Jul 2022

5.0.7.1 06 Aug 2021

4.1.6.1 17 Dec 2020

4.1.5.1 11 Nov 2020

4.1.3.1 27 Aug 2020

4.0.10.2 12 Mar 2020

4.0.10.1 26 Sep 2019

4.0.6.1 01 Aug 2019

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 4

2.1 Version 9.0.3.1

Released: 21 May 2025

Release notes updated: 25 Nov 2025, 23 Jan 2026

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

Note

Unlike the upstream Npgsql community driver, the EDB .NET Connector retains full support for .NET Framework 4.7.2+.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 9.0.3.1 include:

Type Description Addres
ses

Upstream
merge

Merged with community .NET driver version 9.0.3. See release notes for more information about merge updates.

Bug fix
Populated the EDBAQMessage.MessageId property with a string uniquely identifying the message, instead of
the previously used byte[] .

#41979

Deprecation Removed .NET5, .NET6, and .NET7 targets as they have reached end of support.

Enhancement Added support for EDB Postgres Advanced Server 18.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 5

https://www.npgsql.org/doc/release-notes/9.0.html

2.2 Version 8.0.5.1

Released: 22 Nov 2024

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 8.0.5.1 include:

Type Description
Add
ress
es

Upstream
merge

Merged with community .NET driver version 8.0.5 and EF Core Driver 8.0.10. See release notes for more information
about merge updates.

Bug fix Fixed a performance issue. Performance is now improved when reading data while targeting .NET Framework 4.7.2, 4.8,
and 4.8.1.

#41
979

Enhancement Added support for EDB Postgres Advanced Server 17.2.

Enhancement
Added support for IS TABLE OF . EDB Postgres Advanced Server supports Oracle nested table collection types
created with CREATE TYPE ... AS TABLE OF statements. See Using nested tables for more information.

Deprecation Removed .NET5 and .NET7 targets as they have reached end of support.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 6

https://www.npgsql.org/doc/release-notes/8.0.html

2.3 Version 8.0.2.1

Released: 15 May 2024

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 8.0.2.1 include:

Type Description

Upstream
merge

Merged with community .NET driver version 8.0.2. See release notes for more information about merge updates.

Security fix Fixed a security issue CVE-2024-32655. This security fix fixes the Npgsql that was vulnerable to SQL injection via protocol
message size overflow.

Bug fix Fixed an issue for SPL CALLS. SPL CALLs with output parameters are now returning DataReader with a row of parameters on the
batch commands.

Bug fix EnableErrorBarriers is now functional on the batch commands. See the EnableErrorBarriers documentation for more
information.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 7

https://www.npgsql.org/doc/release-notes/8.0.html
https://github.com/advisories/GHSA-x9vc-6hfv-hg8c
https://www.npgsql.org/doc/api/Npgsql.NpgsqlBatchCommand.html#Npgsql_NpgsqlBatchCommand_AppendErrorBarrier

2.4 Version 7.0.6.2

Released: 15 Feb 2024

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 7.0.6.2 include:

Type Description

Enhancement .NET packages are now available on nuget.org.

Bug fix Fixed an issue while any attempt to connect synchronously hung indefinitely, referencing the .Net Framework assembly using
non-ASYNC code.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 8

https://www.nuget.org/

2.5 Version 7.0.6.1

Released: 25 Oct 2023

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 7.0.6.1 include:

Deprecation

This release removes support for .NET 5 and .NET Core 3.1.

Type Description

Upstream merge Merged with community .NET driver version 7.0.6. For more information about the merge updates, see community release
notes.

Enhancement Added support for .NET 4.7.2, .NET 4.8, .NET 4.8.1

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 9

https://www.npgsql.org/doc/release-notes/7.0.html

2.6 Version 7.0.4.1

Released: 07 Jul 2023

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 7.0.4.1 include:

Type Description

Upstream
merge

Merged with community .NET driver version 7.0.4. For more information about the merge updates, see
https://www.npgsql.org/doc/release-notes/7.0.html.

Enhancement Added support for .NET 7.0.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 10

https://www.npgsql.org/doc/release-notes/7.0.html

2.7 Version 6.0.2.1

Released: 25 Jul 2022

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 6.0.2.1 include:

Type Description

Upstream
merge

Merged with community .NET driver version 6.0.2. For more information about the merge updates, see
https://www.npgsql.org/doc/release-notes/6.0.html.

Enhancement Support for .NET 6.0 is added.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 11

https://www.npgsql.org/doc/release-notes/6.0.html

2.8 Version 5.0.7.1

Released: 06 Aug 2021

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 5.0.7.1 include:

Type Description

Upstream
merge

Merged with the upstream Npgsql driver version 5.0.7. For more information about the merge updates, see
https://www.nuget.org/packages/Npgsql/5.0.7.

Enhancement Support for .NET 5.0 and .NET Core 3.1 (earlier available as .NET Core 3.0).

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 12

https://www.nuget.org/packages/Npgsql/5.0.7

2.9 Version 4.1.6.1

Released: 17 Dec 2020

The EDB .NET Connector provides connectivity between a .NET client application and an Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 4.1.6.1 include:

Type Description

Upstream
Merge

Merged with the upstream Npgsql driver version 4.1.6. For more information about the merge updates, see
https://www.nuget.org/packages/Npgsql/4.1.6.

Enhancement Support for .NET Framework 4.7.2 and .NET Framework 4.8.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 13

https://www.nuget.org/packages/Npgsql/4.1.6

2.10 Version 4.1.5.1

Released: 11 Nov 2020

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 4.1.5.1 include:

Type Description

Upstream
merge

Merged with the upstream Npgsql driver version 4.1.5. For more information about the merge updates, see
https://www.nuget.org/packages/Npgsql/4.1.5.

Enhancement Support for EDB Postgres Advanced Server 13.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 14

https://www.nuget.org/packages/Npgsql/4.1.5

2.11 Version 4.1.3.1

Released: 27 Aug 2020

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 4.1.3.1 include:

Type Description

Upstream
merge

Merged with the upstream Npgsql driver version 4.1.3. For more information about the merge updates, see
https://www.nuget.org/packages/Npgsql/4.1.3.

Enhancement Support for .NET Framework 4.6.1, .NET Core 3.0 and .NET Standard 2.1.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 15

https://www.nuget.org/packages/Npgsql/4.1.3

2.12 Version 4.0.10.2

Released: 12 Mar 2020

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 4.0.10.2 include:

Type Description

Enhancement
Added connection parameter, Load Role Based
Tables .

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 16

2.13 Version 4.0.10.1

Released: 26 Sep 2019

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 4.0.10.1 include:

Type Description

Upstream merge Merged with the upstream community driver version 4.0.10.

Enhancement Added support for Windows Server 2019 platform.

Enhancement Added support for VSIX for Visual Studio 2019.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 17

2.14 Version 4.0.6.1

Released: 01 Aug 2019

The EDB .NET Connector provides connectivity between a .NET client application and an EDB Postgres Advanced Server database server.

New features, enhancements, bug fixes, and other changes in the EDB .NET Connector 4.0.6.1 include:

Type Description

Upstream
merge

Merged with the upstream community driver version 4.0.6.

Enhancement Added Advanced Queueing feature that provides message queueing and message processing support for the EDB Advanced
Server database.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 18

3 Product compatibility

The following sections detail the supported platforms and database versions for the EDB .NET Connector.

Supported .NET versions

The .NET Connector supports the following frameworks:

.NET Framework 4.7.2, 4.8 and 4.8.1

.NET 8 and .NET 9

Version compatibility for Entity Framework Core is strictly mapped to the EDB .NET Connector major version. Make sure that both components share
the same major version (9.x, etc.) for supported operation.

Note

Unlike the upstream Npgsql community driver, the EDB .NET Connector retains full support for .NET Framework 4.7.2+.

Supported platforms

The EDB .NET Connector graphical installers are supported on the following Windows platforms:

64-bit Windows:

Windows Server 2019 and 2022
Windows 10 and 11

32-bit Windows:

Windows 10

Supported database server versions

This table lists the latest EDB .NET Connector versions and their supported corresponding EDB Postgres Advanced Server (EPAS) versions.

EDB .NET Connector EPAS 18 EPAS 17 EPAS 16 EPAS 15 EPAS 14 EPAS 13

9.0.3.1 Y Y Y Y Y Y

8.0.5.1 N Y Y Y Y Y

8.0.2.1 N N Y Y Y Y

7.0.6.2 N N Y Y Y Y

7.0.6.1 N N Y Y Y Y

7.0.4.1 N N N Y Y Y

6.0.2.1 N N N N Y Y

5.0.7.1 N N N N N Y

4.1.6.1 N N N N N Y

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 19

4.1.5.1 N N N N N Y

4.1.3.1 N N N N N Y

4.0.10.2 N N N N N N

4.0.10.1 N N N N N N

4.0.6.1 N N N N N N

EDB .NET Connector EPAS 18 EPAS 17 EPAS 16 EPAS 15 EPAS 14 EPAS 13

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 20

4 EDB .NET Connector overview

EDB .NET Connector is a .NET data provider that allows a client application to connect to a database stored on an EDB Postgres Advanced Server host.
The .NET Connector accesses the data directly, allowing the client application optimal performance, a broad spectrum of functionality, and access to
EDB Postgres Advanced Server features.

The .NET class hierarchy

The .NET class hierarchy contains classes that you can use to create objects that control a connection to the EDB Postgres Advanced Server database
and manipulate the data stored on the server. The following are a few of the most commonly used object classes.

EDBDataSource

EDBDataSource is the entry point for all the connections made to the database. It's responsible for issuing connections to the server and
efficiently managing them. Starting with EDB .NET Connector 7.0.4.1, you no longer need direct instantiation of EDBConnection . Instantiate
EDBDataSource and use the method provided to create commands or execute queries.

EDBConnection

The EDBConnection class represents a connection to EDB Postgres Advanced Server. An EDBConnection object contains a
ConnectionString that tells the .NET client how to connect to an EDB Postgres Advanced Server database. Obtain EDBConnection from an
EDBDataSource instance, and use it directly only in specific scenarios, such as transactions.

EDBCommand

An EDBCommand object contains a SQL command that the client executes against EDB Postgres Advanced Server. Before you can execute an
EDBCommand object, you must link it to an EDBConnection object.

EDBDataReader

An EDBDataReader object provides a way to read an EDB Postgres Advanced Server result set. You can use an EDBDataReader object to step
through one row at a time, forward only.

EDBDataAdapter

An EDBDataAdapter object links a result set to the EDB Postgres Advanced Server database. You can modify values and use the
EDBDataAdapter class to update the data stored in an EDB Postgres Advanced Server database.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 21

5 Installing and configuring the .NET Connector

Installing the .NET Connector

You can install the EDB .NET Connector using either the EDB installer or the installer from NuGet.org.

Installing and configuring the .NET Connector from NuGet.org

Install NuGet package via command line

Launch a terminal from your solution folder and run:

dotnet add package EnterpriseDB.EDBClient

This command downloads and installs the EDB .NET Connector matching your .NET version. Your project is then ready to import the EDB .NET
Connector namespace:

using EnterpriseDB.EDBClient;

You can find all the EDB .NET Connector satellite packages at NuGet.org.

For more information, see the EDB .NET Connector Now Published on NuGet blog post.

Install NuGet package via Visual Studio interface

1. Right-click your project or solution and select Manage NuGet package.
2. Search the package using enterprisedb.edbclient as the search text.
3. Select the EnterpriseDB.EDBClient package.
4. Select Install to proceed to package download and installation.

This command downloads and installs the EDB .NET Connector matching your .NET version. Your project is then ready to import the EDB .NET
Connector namespace:

using EnterpriseDB.EDBClient;

For more information, see the EDB .NET Connector Now Published on NuGet blog post.

Installing the .NET Connector using EDB installer

You can use the EDB .NET Connector installer to add the .NET Connector to your system. The installer is available from the EDB website.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 22

https://www.nuget.org/profiles/EnterpriseDB
https://www.enterprisedb.com/blog/improving-developer-experience-updated-edb-net-connector-now-published-nuget
https://www.enterprisedb.com/blog/improving-developer-experience-updated-edb-net-connector-now-published-nuget
https://www.enterprisedb.com/software-downloads-postgres

1. After downloading the installer, right-click the installer icon, and select Run As Administrator. When prompted, select an installation language
and select OK to continue to the Setup window.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 23

2. Select Next.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 24

3. Use the Installation Directory dialog box to specify the directory in which to install the connector. Select Next.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 25

4. To start the installation, on the Ready to Install dialog box, select Next. Popups confirm the progress of the installation wizard.

5. When the wizard informs you that it has completed the setup, select Finish.

You can also use StackBuilder Plus to add or update the connector on an existing EDB Postgres Advanced Server installation.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 26

1. To open StackBuilder Plus, from the Windows Apps menu, select StackBuilder Plus.

2. When StackBuilder Plus opens, follow the onscreen instructions.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 27

3. From the Database Drivers node of the tree control, select the EnterpriseDB.Net Connector option.

4. Follow the directions of the onscreen wizard to add or update an installation of an EDB Connector.

Configuring the .NET Connector

For information about configuring the .NET Connector in each environment, see:

Referencing the Library Files. General configuration information applicable to all components.
.NET 8.0 Instructions for configuring for use with .NET 8.0.
.NET Framework 4.7.2 Instructions for configuring for use with .NET framework 4.7.2.
.NET Framework 4.8 Instructions for configuring for use with .NET Framework 4.8.
.NET Framework 4.8.1 Instructions for configuring for use with .NET Framework 4.8.1.
.NET Standard 2.0 Instructions for configuring for use with .NET Standard 2.0.
.NET Standard 2.1 Instructions for configuring for use with .NET Standard 2.1.
.NET EntityFramework Core Instructions for configuring for use with .NET EntityFramework Core.

Referencing the library files

To reference library files with Microsoft Visual Studio:

1. In the Solution Explorer, select the project.
2. Select Project > Add Reference.
3. In the Add Reference dialog box, browse to select the appropriate library files.

Optionally, you can copy the library files to the specified location.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 28

Before you can use an EDB .NET class, you must import the namespace into your program. Importing a namespace makes the compiler aware of the
classes available in the namespace. The namespace is EnterpriseDB.EDBClient .

The method you use to include the namespace varies by the type of application you're writing. For example, the following command imports a
namespace into an ASP.NET page:

 <% import namespace="EnterpriseDB.EDBClient" %>

To import a namespace into a C# application, use:

.NET framework setup

Each .NET version has specific setup instructions.

.NET 8.0

For .NET 8.0, the data provider installation path is:

C:\Program Files\edb\dotnet\net8.0\

You must add the following dependencies to your project:

EnterpriseDB.EDBClient.dll

Depending upon the type of application you use, you may be required to import the namespace into the source code. See Referencing the library files
for this and other information about referencing library files.

.NET Framework 4.7.2

For .NET Framework 4.7.2, the data provider installation path is:

C:\Program Files\edb\dotnet\net472\ .

You must add the following dependency to your project. You may also need to add other dependencies from the same directory:

EnterpriseDB.EDBClient.dll

Depending on your application type, you might need to import the namespace into the source code. See Referencing the library files for this and the
other information about referencing the library files.

.NET Framework 4.8

For .NET Framework 4.8, the data provider installation path is:

C:\Program Files\edb\dotnet\net48\ .

You must add the following dependency to your project. You may also need to add other dependencies from the same directory:

 using EnterpriseDB.EDBClient;

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 29

EnterpriseDB.EDBClient.dll

Depending on your application type, you might need to import the namespace into the source code. See Referencing the library files for this and the
other information about referencing the library files.

.NET Framework 4.8.1

For .NET Framework 4.8.1, the data provider installation path is:

C:\Program Files\edb\dotnet\net481\ .

You must add the following dependency to your project. You may also need to add other dependencies from the same directory:

EnterpriseDB.EDBClient.dll

Depending on your application type, you might need to import the namespace into the source code. See Referencing the library files for this and the
other information about referencing the library files.

.NET Standard 2.0

For .NET Standard Framework 2.0, the data provider installation path is:

C:\Program Files\edb\dotnet\netstandard2.0\ .

You must add the following dependencies to your project:

EnterpriseDB.EDBClient.dll

System.Threading.Tasks.Extensions.dll

System.Runtime.CompilerServices.Unsafe.dll

System.ValueTuple.dll

Depending on your application type, you might need to import the namespace into the source code. See Referencing the library files for this and the
other information about referencing the library files.

.NET Standard 2.1

For .NET Standard Framework 2.1, the data provider installation path is C:\Program Files\edb\dotnet\netstandard2.1\ .

The following shared library files are required:

EnterpriseDB.EDBClient.dll

System.Memory.dll

System.Runtime.CompilerServices.Unsafe.dll

System.Text.Json.dll

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 30

System.Text.Json.dll

System.Threading.Tasks.Extensions.dll

System.ValueTuple.dll

Depending on your application type, you might need to import the namespace into the source code. See Referencing the library files for this and the
other information about referencing the library files.

.NET Entity Framework Core

To configure the .NET Connector for use with Entity Framework Core, the data provider installation path is:

C:\Program Files\edb\dotnet\EF.Core\EFCore.PG\net8.0 The following shared library file is required:

EnterpriseDB.EDBClient.EntityFrameworkCore.PostgreSQL.dll

See Referencing the library files for information about referencing the library files.

The following NuGet packages are required:

Microsoft.EntityFrameworkCore.Design

Microsoft.EntityFrameworkCore.Relational

Microsoft.EntityFrameworkCore.Abstractions

For usage information about Entity Framework Core, see the Microsoft documentation.

Prerequisite

To open a command prompt:

Select Tools > Command Line > Developer Command Prompt.

Install dotnet-ef (using the command prompt),

dotnet tool install --global dotnet-ef

Sample project

Create a new Console Application based on .NET 8.0.

Add Reference to the following EDB assemblies:

EnterpriseDB.EDBClient.EntityFrameworkCore.PostgreSQL.dll

EnterpriseDB.EDBClient.dll

Add the following NuGet packages:

Microsoft.EntityFrameworkCore.Design

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 31

https://learn.microsoft.com/en-us/ef/core/

Microsoft.EntityFrameworkCore.Design

Microsoft.EntityFrameworkCore.Relational

Microsoft.EntityFrameworkCore.Abstractions

Database-first scenario

Issue the following command to create model classes corresponding to all objects in the specified database:

dotnet ef dbcontext scaffold Host=<HOST>;Database=<DATABASE>;Username=<USER>;Password=<PASSWORD>;Port=
<PORT> EnterpriseDB.EDBClient.EntityFrameworkCore.PostgreSQL -o Models

Code-first scenario

Add code for defining a DbContext and create, read, update, and delete operations.

For more details, see the Microsoft documentation.

Issue the following commands to create the initial database and tables:

 dotnet ef migrations add InitialCreate --context BloggingContext

 dotnet ef database update --context BloggingContext

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 32

6 Opening a database connection

An EDBConnection object is responsible for handling the communication between an instance of EDB Postgres Advanced Server and a .NET
application. Before you can access data stored in an EDB Postgres Advanced Server database, you must create and open an EDBConnection
object.

Creating an EDBConnection object

Once you have installed and configured the .NET Connector, you can open a connection using one of the following approaches. In either case, you
must import the namespace EnterpriseDB.EDBClient .

Connection with a data source

1. Create an instance of the EDBDataSource object using a connection string as a parameter to the create method of the EDBDataSource
class.

2. To open a connection, call the OpenConnection method of the EDBDataSource object.

This example shows how to open a connection using a data source:

Connection without a data source

1. Create an instance of the EDBConnection object using a connection string as a parameter to the constructor of the EDBConnection
class.

2. Call the Open method of the EDBConnection object to open the connection.

Note

For EnterpriseDB.EDBClient 8.0.4 and later, we recommend EDBDataSource to connect to EDB Postgres Advanced Server
database or execute SQL directly against it. For more information on the data source, see the Npgsql documentation.

// EDBDataSource should be long lived through your
application
await using var dataSource = EDBDataSource.Create(connectionString);
await using var connection = await dataSource.OpenConnectionAsync();

// your code here
await connection.CloseAsync();

// EDBDataSource should be long lived through your
application
using (var dataSource = EDBDataSource.Create(connectionString))
{
 using (var connection = await dataSource.OpenConnectionAsync())
 {
 // your code here
 await connection.CloseAsync();
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 33

https://www.npgsql.org/doc/basic-usage.html

This example shows how to open a connection without a data source:

Connection string parameters

A valid connection string specifies location and authentication information for an EDB Postgres Advanced Server instance. You must provide the
connection string before opening the connection. A connection string must contain:

The name or IP address of the server
The name of the EDB Postgres Advanced Server database
The name of an EDB Postgres Advanced Server user
The password associated with that user

You can include the following parameters in the connection string:

Parameter Description Default

Host or
Server

The name or IP address of the EDB Postgres Advanced Server host Required

Port The TCP port of the EDB Postgres Advanced Server host 5444

Databas
e The name of the database to connect to.

name of
connected
user

User
Id or
UserNam
e

The username to connect with. OS
username

Passwor
d Password associated to the user to establish a connection with the server

Authentic
ation
dependent

Command
Timeout

Specifies the length of time (in seconds) to wait for a command to finish executing before throwing an exception. 30

Pooling Specify a value of false to disable connection pooling true

No
Reset
On
Close

When Pooling is enabled and the connection is closed, reopened, and the underlying connection is reused, then some
operations are executed to discard the previous connection resources. You can override this behavior by enabling No
Reset On Close.

false

await using var connection = new EDBConnection(connectionString);
await connection.OpenAsync();
// your code here
await connection.CloseAsync();

using (var connection = new EDBConnection(ConnectionString))
{
 await connection.OpenAsync();
 // your code here
 await connection.CloseAsync();
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 34

SSL
Mode

Controls whether SSL is used, depending on server support.
Prefer — Use SSL if possible. This is the default behavior.
Require — Throw an exception if an SSL connection can't be established.
Allow — Connect without SSL unless server requires it
Disable — Don't attempt an SSL connection.
VerifyCA — SSL with certificate validation
VerifyFull — SSL with certificate validation and host name validation
See Npgsql docs for possible values and more info.

Prefer

Parameter Description Default

For other parameters please refer to the community documentation.

Example: Opening a database connection

This example shows how to open a connection to an instance of EDB Postgres Advanced Server and then close the connection.

using EnterpriseDB.EDBClient; // Add NuGet package
EnterpriseDB.EDBClient

namespace OpeningDatabaseConnection;

internal class Program
{
 static async Task Main(string[] args)
 {
 // NOT FOR PRODUCTION Consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=enterprisedb;Database=edb";
 try
 {
 await using var dataSource = EDBDataSource.Create(connectionString);
 await using var conn = await dataSource.OpenConnectionAsync();
 Console.WriteLine("Connection opened
successfully");
 await conn.CloseAsync();
 }
 catch (EDBException
exp)
 {
 Console.Write($"Error:
{exp}");
 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 35

https://www.npgsql.org/doc/connection-string-parameters.html

In a production application, connection strings should be moved outside of the code, using configuration files for example. See official Microsoft .NET
documentation.

using
System;
using
System.Threading.Tasks;
using EnterpriseDB.EDBClient; // Add NuGet package
EnterpriseDB.EDBClient

namespace OpeningDatabaseConnection
{
 internal class Program
 {
 static async Task Main(string[] args)
 {
 // NOT FOR PRODUCTION Consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=enterprisedb;Database=edb";
 try
 {
 using (var dataSource = EDBDataSource.Create(connectionString))
 {
 var conn = await dataSource.OpenConnectionAsync();
 Console.WriteLine("Connection opened
successfully");
 await conn.CloseAsync();
 }
 }
 catch (EDBException
exp)
 {
 Console.Write($"Error:
{exp}");
 }
 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 36

https://learn.microsoft.com/en-us/dotnet/core/extensions/configuration

7 Retrieving database records

You can use a SELECT statement to retrieve records from the database using a SELECT command. To execute a SELECT statement you must:

1. Create and open a database connection.
2. Create an EDBCommand object that represents the SELECT statement.
3. Execute the command with the ExecuteReader() method of the EDBCommand object returning EDBDataReader .
4. Loop through the EDBDataReader , displaying the results or binding the EDBDataReader to some control.

An EDBDataReader object represents a forward-only and read-only stream of database records, presented one record at a time. To view a
subsequent record in the stream, you must call the Read() method of the EDBDataReader object.

The example that follows:

1. Imports the EDB Postgres Advanced Server namespace EnterpriseDB.EDBClient .
2. Initializes an EDBCommand object with a SELECT statement.
3. Opens a connection to the database.
4. Executes the EDBCommand by calling the ExecuteReader method of the EDBCommand object.

The results of the SQL statement are retrieved into an EDBDataReader object.

Loop through the contents of the EDBDataReader object to display the records returned by the query in a WHILE loop.

The Read() method advances to the next record (if there is one) and returns true if a record exists. It returns false if EDBDataReader has
reached the end of the result set.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 37

using
System.Data;
using EnterpriseDB.EDBClient;

namespace RetrievingDatabaseRecords;

internal class Program
{
 static async Task Main(string[] args)
 {
 try
 {
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

 await using var dataSource = EDBDataSource.Create(connectionString);
 await using var conn = await dataSource.OpenConnectionAsync();
 await using var selectCommand = new EDBCommand("SELECT * FROM dept",
conn);
 selectCommand.CommandType =
CommandType.Text;

 await using var reader = await
selectCommand.ExecuteReaderAsync();
 while (await
reader.ReadAsync())
 {
 Console.Write($"Department Number: {reader["deptno"]}");
 Console.Write($"\tDepartment Name: {reader["dname"]}");
 Console.Write($"\tDepartment Location: {reader["loc"]}");
 Console.WriteLine();
 }
 await
reader.CloseAsync();
 await conn.CloseAsync();
 }
 catch (Exception
exp)
 {
 Console.WriteLine($"An error occured:
{exp}");
 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 38

This program should output the following text on the console :

Department Number: 10 Department Name: ACCOUNTING Department Location: NEW YORK
Department Number: 20 Department Name: RESEARCH Department Location: DALLAS
Department Number: 30 Department Name: SALES Department Location: CHICAGO
Department Number: 40 Department Name: OPERATIONS Department Location: BOSTON

using
System;
using
System.Threading.Tasks;
using EnterpriseDB.EDBClient;

namespace RetrievingDatabaseRecords
{
 internal class Program
 {
 static async Task Main(string[] args)
 {
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=localhost;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
 try
 {
 using (var dataSource = EDBDataSource.Create(connectionString))
 using (var conn = await dataSource.OpenConnectionAsync())
 {
 using (var selectCommand = new EDBCommand("SELECT * FROM dept",
conn))
 {
 selectCommand.CommandType =
CommandType.Text;
 using (var reader = await
selectCommand.ExecuteReaderAsync())
 {
 while (await
reader.ReadAsync())
 {
 Console.Write($"Department Number: {reader["deptno"]}");
 Console.Write($"\tDepartment Name: {reader["dname"]}");
 Console.Write($"\tDepartment Location: {reader["loc"]}");
 Console.WriteLine();
 }
 await
reader.CloseAsync();
 }
 }
 await conn.CloseAsync();
 }
 }
 catch (Exception
exp)
 {
 Console.WriteLine($"An error occured:
{exp}");
 }
 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 39

Retrieving a single database record

To retrieve a single result from a query, use the ExecuteScalar() method of the EDBCommand object. The ExecuteScalar() method
returns the first value of the first column of the first row of the result set generated by the specified query.

static async Task Main(string[] args)
{
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
 try
 {
 await using var dataSource = EDBDataSource.Create(connectionString);
 await using var connection = await dataSource.OpenConnectionAsync();
 await using var command = new EDBCommand("SELECT MAX(sal) FROM emp",
connection);
 command.CommandType =
CommandType.Text;

 var maxSalObject = await command.ExecuteScalarAsync();
 if (maxSalObject is decimal
maxSal)
 {
 Console.WriteLine($"Max Salary: {maxSal}");
 }

 await connection.CloseAsync();
 }
 catch (Exception
exp)
 {
 Console.WriteLine($"An error occured:
{exp}");
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 40

This program should output the following text on the console :

Max Salary: 5000.00

The sample includes an explicit conversion of the value returned by the ExecuteScalar() method. The ExecuteScalar() method returns an object (it’s a
decimal value boxed into an object). You can access the native value by using an explicit cast to a nullable decimal value.

static async Task Main(string[] args)
{
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
 try
 {
 using (var dataSource = EDBDataSource.Create(connectionString))
 using (var connection = await dataSource.OpenConnectionAsync())
 {
 using (var command = new EDBCommand("SELECT MAX(sal) FROM emp",
connection))
 {
 command.CommandType =
CommandType.Text;

 var maxSalObject = await command.ExecuteScalarAsync();
 if (maxSalObject is decimal
maxSal)
 {
 Console.WriteLine($"Max Salary: {maxSal}");
 }
 }
 await connection.CloseAsync();
 }
 }
 catch (Exception
exp)
 {
 Console.WriteLine($"An error occured:
{exp}");
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 41

8 Parameterized queries

A parameterized query is a query with one or more parameter markers embedded in the SQL statement. Before executing a parameterized query, you
must supply a value for each marker found in the text of the SQL statement.

Parameterized queries are useful when you need to supply values dynamically (from user input or from other data in memory, for example).
Parameterized queries are also great to prevent SQL injection and for performance, as a query plan can be reused.

As shown in the following example, you must declare the data type of each parameter specified in the parameterized query by creating an
EDBParameter object and adding that object to the command's parameter collection. Then, you must specify a value for each parameter by calling

the parameter's Value property.

The example shows using a parameterized query with an UPDATE statement that increases an employee salary:

using EnterpriseDB.EDBClient;

namespace ParameterizedQueries;

internal static class Program
{
 static async Task Main(string[] args)
 {
 try
 {
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

 var updateQuery = "UPDATE emp SET sal = sal+500 where empno =
:ID";

 await using var dataSource = EDBDataSource.Create(connectionString);
 await using var connection = await dataSource.OpenConnectionAsync();
 await using var updateCommand = new EDBCommand(updateQuery, connection);

 var idParameter = updateCommand.Parameters.Add(new EDBParameter(":ID",
EDBTypes.EDBDbType.Integer));
 idParameter.Value =
7788;

 var numRowsUpdated = await
updateCommand.ExecuteNonQueryAsync();

 Console.WriteLine($"{numRowsUpdated} record(s)
updated");
 await connection.CloseAsync();

 }
 catch (Exception
exp)
 {
 Console.WriteLine($"An error occured:
{exp}");
 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 42

This program should show the following output in the Console:

1 record(s) updated

using
System;
using
System.Threading.Tasks;
using EnterpriseDB.EDBClient;

namespace ParameterizedQueries
{
 internal static class Program
 {
 static async Task Main(string[] args)
 {
 try
 {
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

 var updateQuery = "UPDATE emp SET sal = sal+500 where empno =
:ID";

 using (var dataSource = EDBDataSource.Create(connectionString))
 using (var connection = await dataSource.OpenConnectionAsync())
 {
 using (var updateCommand = new EDBCommand(updateQuery, connection))
 {

 var idParameter = updateCommand.Parameters.Add(new EDBParameter(":ID",
EDBTypes.EDBDbType.Integer));
 idParameter.Value =
7788;

 var numRowsUpdated = await
updateCommand.ExecuteNonQueryAsync();

 Console.WriteLine($"{numRowsUpdated} record(s)
updated");
 }
 await connection.CloseAsync();
 }
 }
 catch (Exception
exp)
 {
 Console.WriteLine($"An error occured:
{exp}");
 }
 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 43

9 Inserting records in a database

You can use the ExecuteNonQuery() method of EDBCommand to add records to a database stored on an EDB Postgres Advanced Server host
with an INSERT command.

In the example that follows, the INSERT command is stored in the variable insertCommand . The values prefixed with a colon (:) are
placeholders for EDBParameters that are instantiated, assigned values, and then added to the INSERT command's parameter collection in the
statements that follow. The INSERT command is executed by the ExecuteNonQuery() method of the insertCommand object.

Note that ExecuteNonQuery() method returns the number of rows affected by the command. It is usually a good practice to check the number of
affected rows matches your expectations (1 in this example).

The example adds an employee to the emp table:

using EnterpriseDB.EDBClient;

namespace
InsertingRecords;

internal static class Program
{
 static async Task Main(string[] args)
 {
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
 try
 {
 await using var dataSource = EDBDataSource.Create(connectionString);
 await using var conn = await dataSource.OpenConnectionAsync();

 var query = "INSERT INTO emp(empno,ename) VALUES(:EmpNo,
:EName)";
 using var insertCommand = new EDBCommand(query, conn);
 var empNo = insertCommand.Parameters.Add(new EDBParameter("EmpNo",
EDBTypes.EDBDbType.Integer));
 var empName = insertCommand.Parameters.Add(new EDBParameter("EName",
EDBTypes.EDBDbType.Text));
 empNo.Value = 1234;
 empName.Value = "Lola";

 var numRows = await insertCommand.ExecuteNonQueryAsync();

 Console.WriteLine($"{numRows} record(s) inserted
successfully");
 await conn.CloseAsync();
 }
 catch (Exception
exp)
 {
 Console.WriteLine($"An error occured:
{exp}");
 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 44

This program should show the following output in the Console:

1 record(s) inserted successfully

using
System;
using
System.Threading.Tasks;
using EnterpriseDB.EDBClient;

namespace
InsertingRecords
{
 internal static class Program
 {
 static async Task Main(string[] args)
 {
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
 try
 {
 using (var dataSource = EDBDataSource.Create(connectionString))
 using (var conn = await dataSource.OpenConnectionAsync())
 {

 var query = "INSERT INTO emp(empno,ename) VALUES(:EmpNo,
:EName)";
 using (var insertCommand = new EDBCommand(query, conn))
 {

 var empNo = insertCommand.Parameters.Add(new EDBParameter("EmpNo",
EDBTypes.EDBDbType.Integer));
 var empName = insertCommand.Parameters.Add(new EDBParameter("EName",
EDBTypes.EDBDbType.Text));
 empNo.Value = 1234;
 empName.Value = "Lola";

 var numRows = await insertCommand.ExecuteNonQueryAsync();

 Console.WriteLine($"{numRows} record(s) inserted
successfully");
 }
 await conn.CloseAsync();
 }
 }
 catch (Exception
exp)
 {
 Console.WriteLine($"An error occured:
{exp}");
 }
 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 45

Note

There are several ways to declare parameters and assign their values. Here are some examples :

// One-liners (parameter types are induced from their
value)
insertCommand.Parameters.AddWithValue("EmpNo", 1234);
insertCommand.Parameters.AddWithValue("EName", "Lola");

// Using the parameter variable to set its value, instead of getting it via the
command
var empParam = insertCommand.Parameters.Add(new EDBParameter("EmpNo",
EDBTypes.EDBDbType.Integer));
empParam.Value = 1234;
var nameParam = insertCommand.Parameters.Add(new EDBParameter("EName",
EDBTypes.EDBDbType.Text));
nameParam.Value = "Lola";

insertCommand.Parameters[0].Value = 1234; // works but not recommended: access by index is error-
prone
insertCommand.Parameters["EmpNo"].Value = 1234; // works but any parameter name change will break
here

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 46

10 Deleting records in a database

You can use the ExecuteNonQuery() method of EDBCommand to delete records from a database stored on an EDB Postgres Advanced Server
host with a DELETE statement.

In the example that follows, the DELETE command is stored in the variable deleteCommand . The values prefixed with a colon (:) are
placeholders for EDBParameters.

The EDBParameter for the employee ID is created and assigned at the same time using command’s parameter collection
EDBParameterCollection.AddWithValue(string parameterName, object value) method.

The DELETE command is then executed by the ExecuteNonQuery() method of the deleteCommand object.

Note that ExecuteNonQuery() method returns the number of rows affected by the command. It is usually a good practice to check that the
number of affected rows matches your expectations (0 or 1 in this example).

The example deletes an employee having the 1234 ID from the emp table:

using EnterpriseDB.EDBClient;

namespace DeletingRecords;

internal static class Program
{
 static async Task Main(string[] args)
 {
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
 try
 {
 await using var dataSource = EDBDataSource.Create(connectionString);
 await using var conn = await dataSource.OpenConnectionAsync();
 await using var deleteCommand = new EDBCommand("DELETE FROM emp WHERE empno = :ID",
conn);

 deleteCommand.Parameters.AddWithValue(":ID", 1234);

 var numRows = await deleteCommand.ExecuteNonQueryAsync();

 Console.WriteLine($"{numRows} record(s) deleted successfully");

 await conn.CloseAsync();
 }
 catch (Exception
exp)
 {
 Console.WriteLine($"An error occured:
{exp}");
 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 47

This program should show the following output in the Console:

1 record(s) deleted successfully

using
System;
using
System.Threading.Tasks;
using EnterpriseDB.EDBClient;

namespace DeletingRecords
{
 internal static class Program
 {
 static async Task Main(string[] args)
 {
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
 try
 {
 using (var dataSource = EDBDataSource.Create(connectionString))
 using (var conn = await dataSource.OpenConnectionAsync())
 {
 using (var deleteCommand = new EDBCommand("DELETE FROM emp WHERE empno = :ID",
conn))
 {
 deleteCommand.Parameters.AddWithValue(":ID", 1234);

 var numRows = await deleteCommand.ExecuteNonQueryAsync();

 Console.WriteLine($"{numRows} record(s) deleted successfully");
 }
 await conn.CloseAsync();
 }
 }
 catch (Exception
exp)
 {
 Console.WriteLine($"An error occured:
{exp}");
 }
 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 48

11 Using SPL stored procedures in your .NET application

You can include SQL statements in an application in two ways:

By adding the SQL statements directly in the .NET application code
By packaging the SQL statements in a stored procedure and executing the stored procedure from the .NET application

In some cases, a stored procedure can provide advantages over embedded SQL statements. Stored procedures support complex conditional and
looping constructs that are difficult to duplicate with SQL statements embedded directly in an application.

You can also see an improvement in performance by using stored procedures. A stored procedure needs to be parsed, compiled, and optimized only
once on the server side. A SQL statement that's included in an application might be parsed, compiled, and optimized each time it's executed from a
.NET application.

To use a stored procedure in your .NET application you must:

1. Create an SPL stored procedure on the EDB Postgres Advanced Server host.
2. Import the EnterpriseDB.EDBClient namespace.
3. Pass the name of the stored procedure to the instance of the EDBCommand .

4. Change the EDBCommand.CommandType to CommandType.StoredProcedure .
5. Prepare() the command.
6. Execute the command.

Example: Executing a stored procedure without parameters

This sample procedure prints the name of department 10. The procedure takes no parameters and returns no parameters. To create the sample
procedure, invoke EDB-PSQL and connect to the EDB Postgres Advanced Server host database. Enter the following SPL code at the command line:

When EDB Postgres Advanced Server validates the stored procedure, it echoes CREATE PROCEDURE .

Using the EDBCommand object to execute a stored procedure

The CommandType property of the EDBCommand object indicates the type of command being executed. The CommandType property is set to
one of three possible CommandType enumeration values:

Use the default Text value when passing a SQL string for execution.
Use the StoredProcedure value, passing the name of a stored procedure for execution.
Use the TableDirect value when passing a table name. This value passes back all records in the specified table.

The CommandText property must contain a SQL string, stored procedure name, or table name, depending on the value of the CommandType

CREATE OR REPLACE PROCEDURE
list_dept10
IS
 v_deptname VARCHAR2(30);
BEGIN
 DBMS_OUTPUT.PUT_LINE('Dept No:
10');
 SELECT dname INTO v_deptname FROM dept WHERE deptno =
10;
 DBMS_OUTPUT.PUT_LINE('Dept Name: ' ||
v_deptname);
END;

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 49

The CommandText property must contain a SQL string, stored procedure name, or table name, depending on the value of the CommandType
property.

This example :

Creates an EDBDataSource and issues an opened EDBConnection .
Registers a handler (a local function) to connection’s Notice event, thus listening to server side notices, raised by
DBMS_OUTPUT.PUT_LINE . The handler will display the notice text to the Console.

Unregisters the handler to free up the connection.

using
System.Data;
using EnterpriseDB.EDBClient;

namespace
UsingSPLStoredProcedures_Basics;

internal static class Program
{
 static async Task Main(string[] args)
 {
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
 await using var dataSource = EDBDataSource.Create(connectionString);
 await using var conn = await dataSource.OpenConnectionAsync();

 // register event
handler
 conn.Notice += Connection_Notice;

 await using var storedProcCommand = new EDBCommand("list_dept10", conn);
 storedProcCommand.CommandType =
CommandType.StoredProcedure;
 await storedProcCommand.PrepareAsync();
 await storedProcCommand.ExecuteNonQueryAsync();

 Console.WriteLine("Stored Procedure executed
successfully.");

 // unregister event handler
 conn.Notice -= Connection_Notice;

 await conn.CloseAsync();

 // Handles notices from server (eg: output messages, errors and
warnings)
 void Connection_Notice(object sender, EDBNoticeEventArgs e)
 => Console.WriteLine($"Notice received: {e.Notice.MessageText}");
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 50

This program should display the following result in the Console:

Notice received: Dept No: 10
Notice received: Dept Name: ACCOUNTING
Stored Procedure executed successfully.

using
System;
using
System.Data;
using
System.Threading.Tasks;
using EnterpriseDB.EDBClient;

namespace
UsingSPLStoredProcedures_Basics
{
 internal static class Program
 {
 static async Task Main(string[] args)
 {
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
 using (var dataSource = EDBDataSource.Create(connectionString))
 using (var conn = await dataSource.OpenConnectionAsync())
 {
 // register event
handler
 conn.Notice += Connection_Notice;
 using (var storedProcCommand = new EDBCommand("list_dept10", conn))
 {
 storedProcCommand.CommandType =
CommandType.StoredProcedure;

 await storedProcCommand.PrepareAsync();
 await storedProcCommand.ExecuteNonQueryAsync();

 Console.WriteLine("Stored Procedure executed
successfully.");
 }

 // unregister event handler
 conn.Notice -= Connection_Notice;

 await conn.CloseAsync();
 }

 // Handles notices from server (eg: output messages, errors and
warnings)
 void Connection_Notice(object sender, EDBNoticeEventArgs e)
 => Console.WriteLine($"Notice received: {e.Notice.MessageText}");
 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 51

Example: Executing a stored procedure with IN parameters

This example calls a stored procedure that includes IN parameters. To create the sample procedure, invoke EDB-PSQL and connect to the EDB
Postgres Advanced Server host database. Enter the following SPL code at the command line:

When EDB Postgres Advanced Server validates the stored procedure, it echoes CREATE PROCEDURE .

Passing input values to a stored procedure

In the example below, the body of the Main method declares and instantiates an EDBConnection object. The sample then creates an
EDBCommand object with the properties needed to execute the stored procedure.

The example then uses the AddWithValue method of the EDBCommand 's parameter collection to add six input parameters. It assigns a value to
each parameter before passing them to the EMP_INSERT stored procedure.

The Prepare() method prepares the statement before calling the ExecuteNonQuery() method. Note that the Prepare() method is
mandatory for SPL procedures.

The ExecuteNonQuery() method of the EDBCommand object executes the stored procedure.

CREATE OR REPLACE PROCEDURE
 EMP_INSERT

(
 pENAME IN
VARCHAR,
 pJOB IN VARCHAR,
 pSAL IN FLOAT4,
 pCOMM IN FLOAT4,
 pDEPTNO IN INTEGER,
 pMgr IN INTEGER

)
AS
DECLARE
 CURSOR TESTCUR IS SELECT MAX(EMPNO) FROM EMP;
 MAX_EMPNO INTEGER := 10;
BEGIN

 OPEN
TESTCUR;
 FETCH TESTCUR INTO MAX_EMPNO;
 INSERT INTO EMP(EMPNO,ENAME,JOB,SAL,COMM,DEPTNO,MGR)
 VALUES(MAX_EMPNO+1,pENAME,pJOB,pSAL,pCOMM,pDEPTNO,pMgr);
 CLOSE
testcur;
END;

using
System.Data;
using
EDBTypes;
using EnterpriseDB.EDBClient;

namespace
UsingSPLStoredProcedures_INParameters;

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 52

internal static class Program
{
 static async Task Main(string[] args)
 {
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

 var empName = "EDB";
 var empJob =
"Manager";
 var salary =
1000.0;
 var commission = 0.0;
 var deptno =
20;
 var manager = 7839;

 try
 {
 await using var dataSource = EDBDataSource.Create(connectionString);
 await using var conn = await dataSource.OpenConnectionAsync();
 await using var cmdStoredProc = new
EDBCommand("EMP_INSERT(:EmpName,:Job,:Salary,:Commission,:DeptNo,:Manager)", conn);
 cmdStoredProc.CommandType =
CommandType.StoredProcedure;

 // AddWithValue allows to create parameter, specify its type and value,
 // and add it to the command's parameter collection at
once
 cmdStoredProc.Parameters.AddWithValue("EmpName", EDBDbType.Varchar, empName);
 cmdStoredProc.Parameters.AddWithValue("Job", EDBDbType.Varchar,
empJob);
 cmdStoredProc.Parameters.AddWithValue("Salary", EDBDbType.Real,
salary);
 cmdStoredProc.Parameters.AddWithValue("Commission", EDBDbType.Real, commission);
 cmdStoredProc.Parameters.AddWithValue("DeptNo", EDBDbType.Integer,
deptno);
 cmdStoredProc.Parameters.AddWithValue("Manager", EDBDbType.Integer, manager);

 await cmdStoredProc.PrepareAsync();
 await cmdStoredProc.ExecuteNonQueryAsync();

 Console.WriteLine($"""
 Following information inserted
successfully:
 Employee Name:
{empName}
 Job:
{empJob}
 Salary:
{salary}
 Commission: {commission}
 Manager: {manager}
 """);

 await conn.CloseAsync();

 }
 catch (Exception
exp)
 {

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 53

 Console.WriteLine($"An error occured:
{exp}");
 }
 }
}

using
System;
using
System.Data;
using
System.Threading.Tasks;
using
EDBTypes;
using EnterpriseDB.EDBClient;

namespace
UsingSPLStoredProcedures_INParameters
{
 internal static class Program
 {
 static async Task Main(string[] args)
 {
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

 var empName = "EDB";
 var empJob =
"Manager";
 var salary =
1000.0;
 var commission = 0.0;
 var deptno =
20;
 var manager = 7839;

 try
 {
 using (var dataSource = EDBDataSource.Create(connectionString))
 using (var conn = await dataSource.OpenConnectionAsync())
 {
 using (var cmdStoredProc = new
EDBCommand("EMP_INSERT(:EmpName,:Job,:Salary,:Commission,:DeptNo,:Manager)", conn))
 {

 cmdStoredProc.CommandType =
CommandType.StoredProcedure;

 // AddWithValue allows to create parameter, specify its type and value,
 // and add it to the command's parameter collection at
once
 cmdStoredProc.Parameters.AddWithValue("EmpName", EDBDbType.Varchar, empName);
 cmdStoredProc.Parameters.AddWithValue("Job", EDBDbType.Varchar,
empJob);
 cmdStoredProc.Parameters.AddWithValue("Salary", EDBDbType.Real,
salary);
 cmdStoredProc.Parameters.AddWithValue("Commission", EDBDbType.Real, commission);
 cmdStoredProc.Parameters.AddWithValue("DeptNo", EDBDbType.Integer,
deptno);
 cmdStoredProc.Parameters.AddWithValue("Manager", EDBDbType.Integer, manager);

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 54

After the stored procedure executes, a test record is inserted into the emp table, and the values inserted are displayed in the Console:

Following information inserted successfully:
Employee Name: EDB
Job: Manager
Salary: 1000
Commission: 0
Manager: 7839

Example: Executing a stored procedure with IN, OUT, and INOUT parameters

The previous example showed how to pass IN parameters to a stored procedure. The following examples show how to pass IN values and return
OUT values from a stored procedure.

Creating the stored procedure

The following stored procedure passes the department number and returns the corresponding location and department name. To create the sample
procedure, invoke EDB-PSQL and connect to the EDB Postgres Advanced Server host database. Enter the following SPL code at the command line:

 await cmdStoredProc.PrepareAsync();
 await cmdStoredProc.ExecuteNonQueryAsync();

 Console.WriteLine("Following information inserted
successfully:");
 Console.WriteLine($"Employee Name: {empName}");
 Console.WriteLine($"Job: {empJob}");
 Console.WriteLine($"Salary: {salary}");
 Console.WriteLine($"Commission: {commission}");
 Console.WriteLine($"Manager: {manager}");

 }
 await conn.CloseAsync();
 }
 }
 catch (Exception
exp)
 {
 Console.WriteLine($"An error occured:
{exp}");
 }
 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 55

When EDB Postgres Advanced Server validates the stored procedure, it echoes CREATE PROCEDURE .

Receiving output values from a stored procedure

When retrieving values from INOUT or OUT parameters, you must explicitly specify the direction of those parameters respectively as
ParameterDirection.InputOutput and ParameterDirection.Output . You can retrieve the values from these parameters in two

ways:

Call the ExecuteReader method of the EDBCommand and explicitly loop through the returned EDBDataReader . The reader will contain one
row where columns reflect INOUT or OUT parameters returned. Note that this behavior is legacy and should no longer be used.

Call the ExecuteNonQuery method of EDBCommand and explicitly get the value of a declared INOUT or OUT parameter by calling
EDBParameter.Value property.

In each method, you must declare each parameter, indicating the direction of the parameter (ParameterDirection.Input ,
ParameterDirection.Output , or ParameterDirection.InputOutput). Values are mandatory for IN and INOUT parameters, and

does not need to be provided for OUT parameters.

After the procedure returns, you can retrieve the OUT and INOUT parameter values from the command.Parameters[] array, or from the
EDBParameter itself if you have backed its instance.

This code shows using the ExecuteReader method to retrieve a result set:

CREATE OR REPLACE PROCEDURE

DEPT_SELECT

(
 pDEPTNO IN INTEGER,
 pDNAME OUT
VARCHAR,
 pLOC OUT VARCHAR

)
AS
DECLARE
 CURSOR TESTCUR IS SELECT DNAME,LOC FROM DEPT;
 REC
RECORD;
BEGIN

 OPEN
TESTCUR;
 FETCH TESTCUR INTO REC;

 pDNAME :=
REC.DNAME;
 pLOC :=
REC.LOC;

 CLOSE
testcur;
END;

using
System.Data;
using
EDBTypes;

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 56

using EnterpriseDB.EDBClient;

namespace UsingSPLStoredProcedures_INOUTParameters;

internal static class Program
{
 static async Task Main(string[] args)
 {
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

 try
 {
 await using var dataSource = EDBDataSource.Create(connectionString);
 await using var conn = await dataSource.OpenConnectionAsync();
 await using var command = new EDBCommand("DEPT_SELECT (:pDEPTNO,:pDNAME,:pLOC)", conn);

 command.CommandType =
CommandType.StoredProcedure;

 var depNoParam = command.Parameters.Add(new EDBParameter("pDEPTNO", EDBDbType.Integer) {
Direction = ParameterDirection.Input });

 var nameParam = command.Parameters.Add(new EDBParameter("pDNAME", EDBDbType.Varchar) {
Direction = ParameterDirection.Output });
 var locParam = command.Parameters.Add(new EDBParameter("pLOC", EDBDbType.Varchar) { Direction
= ParameterDirection.Output });

 await command.PrepareAsync();

 // set input parameter value before
executing
 // out parameters don't need a value to be
set
 depNoParam.Value = 10;

 await using var reader = await
command.ExecuteReaderAsync();

 // Getting OUT parameters values in the first
row
 Console.WriteLine("Retrieve OUT parameters values in the first returned
row.");
 // only one row is returned, no need for a while
loop
 if (await
reader.ReadAsync())
 {
 for (var i = 0; i < reader.FieldCount;
i++)
 {
 Console.WriteLine($"reader[{i}]={Convert.ToString(reader[i])}");
 }
 }
 await
reader.CloseAsync();

 // Getting OUT parameters values
directly
 // EDBCommand.ExecuteNonQuery() would also work here
 Console.WriteLine("Retrieve OUT parameters values
directly.");

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 57

 Console.WriteLine($"{nameof(nameParam)}={nameParam.Value}");
 Console.WriteLine($"{nameof(locParam)}={locParam.Value}");

 await conn.CloseAsync();
 }
 catch (Exception
exp)
 {
 Console.WriteLine($"An error occured:
{exp}");
 }
 }
}

using
System;
using
System.Data;
using
System.Threading.Tasks;
using
EDBTypes;
using EnterpriseDB.EDBClient;

namespace UsingSPLStoredProcedures_INOUTParameters
{
 internal static class Program
 {
 static async Task Main(string[] args)
 {
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

 try
 {
 using (var dataSource = EDBDataSource.Create(connectionString))
 using (var conn = await dataSource.OpenConnectionAsync())
 {
 using (var command = new EDBCommand("DEPT_SELECT (:pDEPTNO,:pDNAME,:pLOC)", conn))
 {
 command.CommandType =
CommandType.StoredProcedure;

 var depNoParam = command.Parameters.Add(new EDBParameter("pDEPTNO",
EDBDbType.Integer) { Direction = ParameterDirection.Input });

 var nameParam = command.Parameters.Add(new EDBParameter("pDNAME",
EDBDbType.Varchar) { Direction = ParameterDirection.Output });
 var locParam = command.Parameters.Add(new EDBParameter("pLOC", EDBDbType.Varchar)
{ Direction = ParameterDirection.Output });

 await command.PrepareAsync();

 // set input parameter value before
executing
 // out parameters don't need a value to be
set
 depNoParam.Value = 10;

 // Getting OUT parameters values in the first
row

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 58

This program should display the following result in the Console:

Retrieve OUT parameters values in the first returned row.
reader[0]=ACCOUNTING
reader[1]=NEW YORK
Retrieve OUT parameters values directly.
pDNAME=ACCOUNTING
pLOC=NEW YORK

 Console.WriteLine("Retrieve OUT parameters values in the first returned
row.");
 using (var reader = await
command.ExecuteReaderAsync())
 {
 // only one row is returned, no need for a while
loop
 if (await
reader.ReadAsync())
 {
 for (var i = 0; i < reader.FieldCount;
i++)
 {
 Console.WriteLine($"reader[{i}]={Convert.ToString(reader[i])}");
 }
 }
 await
reader.CloseAsync();
 }

 // Getting OUT parameters values
directly
 // EDBCommand.ExecuteNonQuery() would also work here
 Console.WriteLine("Retrieve OUT parameters values
directly.");
 Console.WriteLine($"{nameof(nameParam)}={nameParam.Value}");
 Console.WriteLine($"{nameof(locParam)}={locParam.Value}");

 }
 await conn.CloseAsync();
 }
 }
 catch (Exception
exp)
 {
 Console.WriteLine($"An error occured:
{exp}");
 }
 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 59

Note

The preferred method (less error-prone) to retrieve OUT parameter values is by using EDBCommand.ExecuteNonQuery() . In that
case, EDBParameter.Value will hold the output value and can be accessed directly without going through a data row. This is the
preferred method, less error-prone, as the value is held by the parameter itself.

// Assign OUT parameters to local
variables
var deptNameParam = command.Parameters.Add(new EDBParameter("pDNAME", EDBDbType.Varchar) {
Direction = ParameterDirection.Output });
var locParam = command.Parameters.Add(new EDBParameter("pLOC", EDBDbType.Varchar) { Direction =
ParameterDirection.Output });

// Prepare, ExecuteNonQuery
await command.PrepareAsync();
await command.ExecuteNonQueryAsync();

// Parameter values are fed!
Console.WriteLine($"pDNAME={deptNameParam.Value}");
Console.WriteLine($"pLOC={locParam.Value}");

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 60

12 Using advanced queueing

EDB Postgres Advanced Server advanced queueing provides message queueing and message processing for the EDB Postgres Advanced Server
database. User-defined messages are stored in a queue. A collection of queues is stored in a queue table. Create a queue table before creating a
queue that depends on it.

On the server side, procedures in the DBMS_AQADM package create and manage message queues and queue tables. Use the DBMS_AQ package to
add messages to or remove messages from a queue or register or unregister a PL/SQL callback procedure. For more information about DBMS_AQ and
DBMS_AQADM , see DBMS_AQ.

On the client side, the application uses the EDB.NET driver to enqueue and dequeue messages.

Enqueueing or dequeueing a message

For more information about using EDB Postgres Advanced Server's advanced queueing functionality, see Built-in packages.

Server-side setup

To use advanced queueing functionality on your .NET application, you must first create a user-defined type, queue table, and queue, and then start the
queue on the database server. Invoke EDB-PSQL and connect to the EDB Postgres Advanced Server host database. Use the following SPL commands
at the command line.

Creating a user-defined type

To specify a RAW data type, create a user-defined type. This example shows creating a user-defined type named myxml :

Creating the queue table

A queue table can hold multiple queues with the same payload type. This example shows creating a table named MSG_QUEUE_TABLE :

Creating the queue

This example shows creating a queue named MSG_QUEUE in the table MSG_QUEUE_TABLE :

CREATE TYPE myxml AS (value
XML);

EXEC
DBMS_AQADM.CREATE_QUEUE_TABLE
 (queue_table => 'MSG_QUEUE_TABLE',
 queue_payload_type => 'myxml',
 comment => 'Message queue
table');
END;

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 61

https://www.enterprisedb.com/docs/epas/latest/reference/oracle_compatibility_reference/epas_compat_bip_guide/03_built-in_packages/02_dbms_aq/
https://www.enterprisedb.com/docs/epas/latest/reference/oracle_compatibility_reference/epas_compat_bip_guide/

Starting the queue

Once the queue is created, invoke the following SPL code at the command line to start a queue in the EDB database:

Client-side example

Once you've created a user-defined type, the queue table, and the queue, start the queue. Then, you can enqueue or dequeue a message using EDB
.Net drivers.

Enqueue a message

To enqueue a message on your .NET application, you must:

1. Import the EnterpriseDB.EDBClient namespace.
2. Pass the name of the queue and create the instance of the EDBAQQueue .
3. Create an EDBAQMessage message set its payload.
4. Call the EDBAQQueue.Enqueue method.

5. The EDBAQMessage.MessageID property will be populated with a string uniquely identifying your message.

The following code shows how to use EDBAQQueue.Enqueue method. A custom message payload is created and then enqueued.

Note

As an example, we are using the ambient Connection via EDBAQQueue.Connection to begin a transaction, so that if anything goes
wrong the queue won't be polluted.

BEGIN
DBMS_AQADM.CREATE_QUEUE (queue_name => 'MSG_QUEUE', queue_table => 'MSG_QUEUE_TABLE', comment => 'This
queue contains pending messages.');
END;

BEGIN
DBMS_AQADM.START_QUEUE
(queue_name => 'MSG_QUEUE');
END;

using EnterpriseDB.EDBClient;

namespace EnterpriseDB;

internal static class Program
{
 // Sample message
payload
 class MyXML
 {
 public string Value { get; set; }
 }

 public static async Task Main(string[] args)
 {
 // not for production, move connection string to app
settings

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 62

 string connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

 // Note registration of MyXml type
 var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);
 dataSourceBuilder
 .MapComposite<MyXML>("enterprisedb.myxml");

 await using var dataSource = dataSourceBuilder.Build();
 await using var connection = await dataSource.OpenConnectionAsync();
 using var queue = CreateQueue("MSG_QUEUE", connection);

 // Enqueue 5
messages
 int messagesToSend =
5;
 for (int i = 0; i < messagesToSend;
i++)
 {
 var payload = new MyXML()
 {
 Value = $"(<Message><MessageText>Test message: {i}</MessageText>
</Message>)"
 };

 if (TryEnqueueMessage(queue, payload, out var
_))
 {
 // MessageId is populated with a unique
identifier
 Console.WriteLine($"Message {i} ({message.MessageId})
enqueued");
 }
 else
 {
 Console.WriteLine($"Message {i} enqueue
failed");
 }
 }

 }

 // Creates and returns a queue ready for use in our
sample
 private static EDBAQQueue CreateQueue(string queueName, EDBConnection connection)
 {
 var queue = new EDBAQQueue(queueName, connection);
 queue.MessageType =
EDBAQMessageType.Udt;
 queue.EnqueueOptions.Visibility = EDBAQVisibility.ON_COMMIT;
 queue.UdtTypeName = "myxml";

 return queue;
 }

 // Enqueues the
payload
 // If the enqueuing was successfull, message variable receives the queue message and the function
returns true
 // otherwise message is null and the function returns
false
 private static bool TryEnqueueMessage<T>(EDBAQQueue queue, T payload, out EDBAQMessage
message)

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 63

 {
 using EDBTransaction transaction =
queue.Connection.BeginTransaction();

 try
 {
 message = new EDBAQMessage() { Payload = payload };
 queue.Enqueue(message);

transaction.Commit();

 return true;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error while enqueing message:
{ex.Message}");

transaction?.Rollback();

 message = null;
 return false;
 }
 }
}

using
System;
using
System.Threading.Tasks;
using EnterpriseDB.EDBClient;

namespace EnterpriseDB
{
 internal static class Program
 {
 // Sample message
payload
 class MyXML
 {
 public string Value { get; set; }
 }

 public static async Task Main(string[] args)
 {
 // not for production, move connection string to app
settings
 string connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

 // Note registration of MyXml type
 var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);
 dataSourceBuilder
 .MapComposite<MyXML>("enterprisedb.myxml");

 using (var dataSource = dataSourceBuilder.Build())
 using (var connection = await dataSource.OpenConnectionAsync())
 using (var queue = CreateQueue("MSG_QUEUE", connection))
 {
 // Enqueue 5
messages

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 64

 int messagesToSend =
5;
 for (int i = 0; i < messagesToSend;
i++)
 {
 var payload = new MyXML()
 {
 Value = $"(<Message><MessageText>Test message: {i}</MessageText>
</Message>)"
 };

 if (TryEnqueueMessage(queue, payload, out var
_))
 {
 // MessageId is populated with a unique
identifier
 Console.WriteLine($"Message {i} ({message.MessageId})
enqueued");
 }
 else
 {
 Console.WriteLine($"Message {i} enqueue
failed");
 }
 }
 }
 }

 // Creates and returns a queue ready for use in our
sample
 private static EDBAQQueue CreateQueue(string queueName, EDBConnection connection)
 {
 var queue = new EDBAQQueue(queueName, connection);
 queue.MessageType =
EDBAQMessageType.Udt;
 queue.EnqueueOptions.Visibility = EDBAQVisibility.ON_COMMIT;
 queue.UdtTypeName = "myxml";

 return queue;
 }

 // Enqueues the
payload
 // If the enqueuing was successfull, message variable receives the queue message and the
function returns true
 // otherwise message is null and the function returns
false
 private static bool TryEnqueueMessage<T>(EDBAQQueue queue, T payload, out EDBAQMessage
message)
 {
 using (EDBTransaction transaction =
queue.Connection.BeginTransaction())
 {
 try
 {
 message = new EDBAQMessage() { Payload = payload };
 queue.Enqueue(message);

transaction.Commit();

 return true;
 }
 catch (Exception ex)

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 65

Dequeue a message

To dequeue a message on your .NET application, you must:

1. Import the EnterpriseDB.EDBClient namespace.
2. Pass the name of the queue and create the instance of the EDBAQQueue .
3. Call the EDBAQQueue.Dequeue() method.

Note

The following code shows how to use the EDBAQQueue.Dequeue method. A queue is retrieved by its name, and a attempt is made to
dequeue a message.

If a PostgresException with SqlState set to P0002 is raised, then the queue is empty or the wait time (set with
queue.DequeueOptions.Wait) has expired, and the code gracefully returns a null message.

 {
 Console.WriteLine($"Error while enqueing message:
{ex.Message}");

transaction?.Rollback();

 message = null;
 return false;
 }
 }
 }
 }
}

using EnterpriseDB.EDBClient;

namespace EnterpriseDB;
internal static class Program
{
 // Sample message
payload
 class MyXML
 {
 public string Value { get; set; }
 }

 public static async Task Main(string[] args)
 {
 // not for production, move connection string to app
settings
 string connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

 // Note registration of MyXml type
 var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);
 dataSourceBuilder
 .MapComposite<MyXML>("enterprisedb.myxml");

 await using var dataSource = dataSourceBuilder.Build();
 await using var connection = await dataSource.OpenConnectionAsync();
 using var queue = CreateQueue("MSG_QUEUE", connection);

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 66

 // Dequeue 5
messages
 int messagesToDequeue = 5;
 for (int i = 0; i < messagesToDequeue;
i++)
 {
 if (TryDequeueMessage(queue, out var message))
 {
 Console.WriteLine($"Message {message.MessageId}
dequeued");

 if (message?.Payload is MyXML myXML)
 {
 Console.WriteLine($"MyXML Message received:
{myXML.Value}");
 }
 else
 {
 Console.WriteLine($"Other message received");
 }
 }
 else
 {
 Console.WriteLine($"No
message");
 }
 }
 }

 // Creates and returns a queue ready for use in our
sample
 private static EDBAQQueue CreateQueue(string queueName, EDBConnection connection)
 {
 var queue = new EDBAQQueue(queueName, connection);
 queue.MessageType =
EDBAQMessageType.Udt;
 queue.DequeueOptions.Navigation =
EDBAQNavigationMode.FIRST_MESSAGE;
 queue.DequeueOptions.Visibility = EDBAQVisibility.ON_COMMIT;
 queue.DequeueOptions.Wait = 1; // wait for 1
seconds
 queue.UdtTypeName = "myxml";

 return queue;
 }

 // Dequeues a
payload
 // If the dequeuing was successfull, message variable receives the queue message and the function
returns true
 // otherwise message is null and the function returns
false
 private static bool TryDequeueMessage(EDBAQQueue queue, out EDBAQMessage message)
 {
 using EDBTransaction transaction =
queue.Connection.BeginTransaction();

 try
 {
 message = queue.Dequeue();

transaction.Commit();

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 67

 return true;
 }
 catch (PostgresException pgException) when (pgException.SqlState ==
"P0002")
 {
 // Queue empty or time
out

transaction.Commit();

 message = null;
 return false;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error while dequeuing message:
{ex.Message}");

transaction?.Rollback();

 message = null;
 return false;
 }
 }
}

using
System;
using
System.Threading.Tasks;
using EnterpriseDB.EDBClient;

namespace EnterpriseDB
{
 internal static class Program
 {
 // Sample message
payload
 class MyXML
 {
 public string Value { get; set; }
 }

 public static async Task Main(string[] args)
 {
 // not for production, move connection string to app
settings
 string connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

 // Note registration of MyXml type
 var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);
 dataSourceBuilder
 .MapComposite<MyXML>("enterprisedb.myxml");

 using (var dataSource = dataSourceBuilder.Build())
 using (var connection = await dataSource.OpenConnectionAsync())
 using (var queue = CreateQueue("MSG_QUEUE", connection))
 {
 // Dequeue 5
messages
 int messagesToDequeue = 5;

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 68

 for (int i = 0; i < messagesToDequeue;
i++)
 {
 if (TryDequeueMessage(queue, out var message))
 {
 Console.WriteLine($"Message {message.MessageId}
dequeued");

 if (message?.Payload is MyXML myXML)
 {
 Console.WriteLine($"MyXML Message received:
{myXML.Value}");
 }
 else
 {
 Console.WriteLine($"Other message received");
 }
 }
 else
 {
 Console.WriteLine($"No
message");
 }
 }
 }
 }

 // Creates and returns a queue ready for use in our
sample
 private static EDBAQQueue CreateQueue(string queueName, EDBConnection connection)
 {
 var queue = new EDBAQQueue(queueName, connection);
 queue.MessageType =
EDBAQMessageType.Udt;
 queue.DequeueOptions.Navigation =
EDBAQNavigationMode.FIRST_MESSAGE;
 queue.DequeueOptions.Visibility = EDBAQVisibility.ON_COMMIT;
 queue.DequeueOptions.Wait = 1; // wait for 1
seconds
 queue.UdtTypeName = "myxml";

 return queue;
 }

 // Dequeues a
payload
 // If the dequeuing was successfull, message variable receives the queue message and the
function returns true
 // otherwise message is null and the function returns
false
 private static bool TryDequeueMessage(EDBAQQueue queue, out EDBAQMessage message)
 {
 using (EDBTransaction transaction =
queue.Connection.BeginTransaction())
 {
 try
 {
 message = queue.Dequeue();

transaction.Commit();

 return true;
 }

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 69

EDBAQ classes

The following EDBAQ classes are used in this application.

EDBAQDequeueMode

The EDBAQDequeueMode class lists all the dequeuer modes available.

Value Description

Browse Reads the message without locking.

Locked Reads and gets a write lock on the message.

Remove Deletes the message after reading. This is the default value.

Remove_NoData Confirms receipt of the message.

EDBAQDequeueOptions

The EDBAQDequeueOptions class lists the options available when dequeuing a message.

Property Description

ConsumerName The name of the consumer for which to dequeue the message.

DequeueMode Set from EDBAQDequeueMode . It represents the locking behavior linked with the dequeue option.

Navigation Set from EDBAQNavigationMode . It represents the position of the message to fetch.

Visibility Set from EDBAQVisibility . It represents whether the new message is dequeued as part of the current transaction.

 catch (PostgresException pgException) when (pgException.SqlState ==
"P0002")
 {
 // Queue empty or time
out

transaction.Commit();

 message = null;
 return false;
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error while dequeuing message:
{ex.Message}");

transaction?.Rollback();

 message = null;
 return false;
 }
 }
 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 70

Wait The wait time for a message as per the search criteria.

Msgid The message identifier.

Correlation The correlation identifier.

DeqCondition The dequeuer condition. It's a Boolean expression.

Transformation The transformation to apply before dequeuing the message.

DeliveryMode The delivery mode of the dequeued message.

Property Description

EDBAQEnqueueOptions

The EDBAQEnqueueOptions class lists the options available when enqueuing a message.

Property Description

Visibility Set from EDBAQVisibility . It represents whether the new message is enqueued as part of the current transaction.

RelativeMsgid The relative message identifier.

SequenceDeviation The sequence when to dequeue the message.

Transformation The transformation to apply before enqueuing the message.

DeliveryMode The delivery mode of the enqueued message.

EDBAQMessage

The EDBAQMessage class lists a message to enqueue/dequeue.

Property Description

Payload The actual message to queue.

MessageId The ID of the queued message.

EDBAQMessageProperties

The EDBAQMessageProperties lists the message properties available.

Property Description

Priority The priority of the message.

Delay The duration after which the message is available for dequeuing, in
seconds.

Expiration The duration for which the message is available for dequeuing, in seconds.

Correlation The correlation identifier.

Attempts The number of attempts taken to dequeue the message.

RecipientList The recipients list that overthrows the default queue subscribers.

ExceptionQueue The name of the queue to move the unprocessed messages to.

EnqueueTime The time when the message was enqueued.

State The state of the message while dequeued.

OriginalMsgid The message identifier in the last queue.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 71

TransactionGroup The transaction group for the dequeued messages.

DeliveryMode The delivery mode of the dequeued message.

Property Description

EDBAQMessageState

The EDBAQMessageState class represents the state of the message during dequeue.

Value Description

Expired The message is moved to the exception queue.

Processed The message is processed and kept.

Ready The message is ready to be processed.

Waiting The message is in waiting state. The delay isn't reached.

EDBAQMessageType

The EDBAQMessageType class represents the types for payload.

Value Description

Raw
The raw message type.

Note: Currently, this payload type isn't supported.

UDT The user-defined type message.

XML
The XML type message.

Note: Currently, this payload type isn't supported.

EDBAQNavigationMode

The EDBAQNavigationMode class represents the different types of navigation modes available.

Value Description

First_Message Returns the first available message that matches the search terms.

Next_Message Returns the next available message that matches the search items.

Next_Transaction Returns the first message of next transaction group.

EDBAQQueue

The EDBAQQueue class represents a SQL statement to execute DMBS_AQ functionality on a PostgreSQL database.

Property Description

Connection The connection to use.

Name The name of the queue.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 72

MessageType The message type that's enqueued/dequeued from this queue, for example EDBAQMessageType.Udt .

UdtTypeName The user-defined type name of the message type.

EnqueueOptions The enqueue options to use.

DequeuOptions The dequeue options to use.

MessageProperties The message properties to use.

Property Description

EDBAQVisibility

The EDBAQVisibility class represents the visibility options available.

Value Description

Immediate The enqueue/dequeue isn't part of the ongoing transaction.

On_Commit The enqueue/dequeue is part of the current transaction.

Note

To review the default options for these parameters, see DBMS_AQ.
EDB advanced queueing functionality uses user-defined types for calling enqueue/dequeue operations. Server Compatibility
Mode=NoTypeLoading can't be used with advanced queueing because NoTypeLoading doesn't load any user-defined types.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 73

https://www.enterprisedb.com/docs/epas/latest/reference/oracle_compatibility_reference/epas_compat_bip_guide/03_built-in_packages/02_dbms_aq/

13 Using a ref cursor in a .NET application

A ref cursor is a cursor variable that contains a pointer to a query result set. The result set is determined by executing the OPEN FOR
statement using the cursor variable. A cursor variable isn't tied to a particular query like a static cursor. You can open the same cursor variable a
number of times with the OPEN FOR statement containing different queries each time. A new result set is created for that query and made available
by way of the cursor variable. You can declare a cursor variable in two ways:

Use the SYS_REFCURSOR built-in data type to declare a weakly typed ref cursor.
Define a strongly typed ref cursor that declares a variable of that type.

SYS_REFCURSOR is a ref cursor type that allows any result set to be associated with it. This is known as a weakly typed ref cursor. The following
example is a declaration of a weakly typed ref cursor:

Following is an example of a strongly typed ref cursor:

Creating the stored procedure

This sample code creates a stored procedure called refcur_inout_callee . It specifies the data type of the ref cursor being passed as an OUT
parameter. To create the sample procedure, invoke EDB-PSQL and connect to the EDB Postgres Advanced Server host database. Enter the following
SPL code at the command line:

This C# code uses the stored procedure to retrieve employee names from the emp table.

Note

Ref cursors live only within the current scope of the caller/callee. The sample below creates an ambient transaction to leave the cursor
variable alive and ready to fetch.

 name
SYS_REFCURSOR;

TYPE <cursor_type_name> IS REF CURSOR RETURN
emp%ROWTYPE;

CREATE OR REPLACE PROCEDURE
 refcur_inout_callee(v_refcur OUT
SYS_REFCURSOR)
IS
BEGIN
 OPEN v_refcur FOR SELECT ename FROM
emp;
END;

using
System.Data;
using EnterpriseDB.EDBClient;

namespace
UsingRefCursor
{
 internal static class Program
 {
 static async Task Main(string[] args)
 {

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 74

 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
 try
 {
 await using var dataSource = EDBDataSource.Create(connectionString);
 await using var connection = await dataSource.OpenConnectionAsync();
 await using var tran = await connection.BeginTransactionAsync();
 await using var command = new EDBCommand("refcur_inout_callee", connection);

 command.CommandType =
CommandType.StoredProcedure;
 command.Transaction = tran;

 var refCursorParam = command.Parameters.Add(new EDBParameter("refCursor",
EDBTypes.EDBDbType.Refcursor));
 refCursorParam.Direction =
ParameterDirection.Output;

 await command.PrepareAsync();
 await command.ExecuteNonQueryAsync();

 if (refCursorParam.Value is null)
 {
 Console.WriteLine("Error: Ref cursor is
null!");
 return;
 }
 var cursorName =
refCursorParam.Value.ToString();
 command.CommandText = "fetch all in \"" + cursorName +
"\"";
 command.CommandType =
CommandType.Text;

 await using (var reader = await
command.ExecuteReaderAsync())
 {
 var fc =
reader.FieldCount;
 while (await
reader.ReadAsync())
 {
 for (int i = 0; i < fc;
i++)
 {
 Console.WriteLine($"{reader.GetName(i)} =
{reader.GetString(i)}");
 }
 }
 await
reader.CloseAsync();
 }

 await tran.CommitAsync();
 await connection.CloseAsync();

 }
 catch (Exception
exp)
 {
 Console.WriteLine($"An error occured:
{exp}");

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 75

 }
 }
 }
}

using
System;
using
System.Data;
using
System.Threading.Tasks;
using EnterpriseDB.EDBClient;

namespace
UsingRefCursor
{
 internal static class Program
 {
 static async Task Main(string[] args)
 {
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
 try
 {
 using (var dataSource = EDBDataSource.Create(connectionString))
 using (var connection = await dataSource.OpenConnectionAsync())
 using (var tran = connection.BeginTransaction())
 {
 using (var command = new EDBCommand("refcur_inout_callee", connection))
 {
 command.CommandType =
CommandType.StoredProcedure;
 command.Transaction = tran;

 var refCursorParam = command.Parameters.Add(new EDBParameter("refCursor",
EDBTypes.EDBDbType.Refcursor));
 refCursorParam.Direction =
ParameterDirection.Output;

 await command.PrepareAsync();
 await command.ExecuteNonQueryAsync();

 if (refCursorParam.Value is null)
 {
 Console.WriteLine("Error: Ref cursor is
null!");
 return;
 }

 var cursorName =
refCursorParam.Value.ToString();
 command.CommandText = "fetch all in \"" + cursorName +
"\"";
 command.CommandType =
CommandType.Text;

 using (var reader = await
command.ExecuteReaderAsync())
 {
 var fc =
reader.FieldCount;

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 76

This .NET code snippet displays the result on the console:

ename = ALLEN
ename = WARD
ename = JONES
ename = MARTIN
ename = BLAKE
ename = CLARK
ename = KING
ename = TURNER
ename = ADAMS
ename = JAMES
ename = FORD
ename = MILLER
ename = EDB
ename = EDB
ename = EDB
ename = EDB
ename = EDB
ename = Mark
ename = SCOTT

 while (await
reader.ReadAsync())
 {
 for (int i = 0; i < fc;
i++)
 {
 Console.WriteLine($"{reader.GetName(i)} =
{reader.GetString(i)}");
 }
 }
 await
reader.CloseAsync();
 }
 }
 await tran.CommitAsync();
 await connection.CloseAsync();
 }
 }
 catch (Exception
exp)
 {
 Console.WriteLine($"An error occured:
{exp}");
 }
 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 77

14 Using plugins

EDB .NET Connector plugins support the enhanced capabilities for different data types that are otherwise not directly available using only the default
type mappings. The different plugins available support:

GeoJSON
Json.NET
NetTopologySuite
NodaTime
Dependency Injection
OpenTelemetry

The plugins support the use of spatial, data/time, and JSON types. The following are the supported frameworks and data provider installation path for
these plugins.

Note that the plugins are also available on NuGet. See our blog post on Using EDB .NET Connector with NuGet for more information.

GeoJSON

If you're using the GeoJSON plugin on .NET Standard 2.0, the data provider installation paths are:

C:\Program Files\edb\dotnet\plugins\GeoJSON\netstandard2.0
C:\Program Files\edb\dotnet\plugins\GeoJSON\net472
C:\Program Files\edb\dotnet\plugins\GeoJSON\net48
C:\Program Files\edb\dotnet\plugins\GeoJSON\net481

The following shared library files are required:

EnterpriseDB.EDBClient.GeoJSON.dll

For detailed information about using the GeoJSON plugin, see the Npgsql documentation.

Json.NET

If you're using the Json.NET plugin on .NET Standard 2.0, the data provider installation paths are:

C:\Program Files\edb\dotnet\plugins\Json.NET\netstandard2.0
C:\Program Files\edb\dotnet\plugins\Json.NET\net472
C:\Program Files\edb\dotnet\plugins\Json.NET\net48
C:\Program Files\edb\dotnet\plugins\Json.NET\net481

The following shared library files are required:

EnterpriseDB.EDBClient.Json.NET.dll

For detailed information about using the Json.NET plugin, see the Npgsql documentation.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 78

https://www.nuget.org/profiles/EnterpriseDB
https://www.enterprisedb.com/blog/improving-developer-experience-updated-edb-net-connector-now-published-nuget
http://www.npgsql.org/doc/types/geojson.html
http://www.npgsql.org/doc/types/jsonnet.html

NetTopologySuite

If you're using the NetTopologySuite plugin on .Net Standard 2.0, the data provider installation paths are:

C:\Program Files\edb\dotnet\plugins\NetTopologySuite\netstandard2.0
C:\Program Files\edb\dotnet\plugins\NetTopologySuite\net472
C:\Program Files\edb\dotnet\plugins\NetTopologySuite\net48
C:\Program Files\edb\dotnet\plugins\NetTopologySuite\net481

The following shared library files are required:

EnterpriseDB.EDBClient.NetTopologySuite.dll

For detailed information about using the NetTopologySuite type plugin, see the Npgsql documentation.

NodaTime

If you're using the NodaTime plugin on .Net Standard 2.0, the data provider installation paths are:

C:\Program Files\edb\dotnet\plugins\NodaTime\netstandard2.0
C:\Program Files\edb\dotnet\plugins\NodaTime\net472
C:\Program Files\edb\dotnet\plugins\NodaTime\net48
C:\Program Files\edb\dotnet\plugins\NodaTime\net481

The following shared library files are required:

EnterpriseDB.EDBClient.NodaTime.dll

For detailed information about using the NodaTime plugin, see the Npgsql documentation.

Available plugins on NuGet

See our blog post on Using EDB .NET Connector with NuGet for more information.

EDB NuGet package ID Description

EnterpriseDB.EDBClient Core EDB .NET Connector

EnterpriseDB.EDBClient.DependencyInjection Dependency Injection helpers for EDB .NET Connector
(.NET Core only)

EnterpriseDB.EDBClient.EntityFrameworkCore.PostgreSQL Entity Framework Core driver
(.NET Core only)

EnterpriseDB.EDBClient.Json.NET
Json.NET plugin for EDB .NET Connector, allowing transparent
serialization/deserialization of JSON objects directly to and from
the database.

EnterpriseDB.EDBClient.NodaTime NodaTime plugin for EDB .NET Connector, allowing mapping of
PostgreSQL date/time types to NodaTime types.

EnterpriseDB.EDBClient.NetTopologySuite NetTopologySuite plugin for Npgsql, allowing mapping of
PostGIS geometry types to NetTopologySuite types.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 79

http://www.npgsql.org/doc/types/nts.html
http://www.npgsql.org/doc/types/nodatime.html
https://www.enterprisedb.com/blog/improving-developer-experience-updated-edb-net-connector-now-published-nuget

EnterpriseDB.EDBClient.EntityFrameworkCore.PostgreSQL.NetTopologySuite

NetTopologySuite PostGIS spatial support plugin for
PostgreSQL/EDB .NET Connector Entity Framework Core
provider.
(.NET Core only)

EnterpriseDB.EDBClient.EntityFrameworkCore.PostgreSQL.NodaTime
NodaTime support plugin for PostgreSQL/EDB .NET Connector
Entity Framework Core provider.
(.NET Core only)

EDB NuGet package ID Description

To install one of those plugins packages, simply add a package reference using Visual Studio IDE or using the .NET CLI.

Note

Sample projects for this article is available in the EDB .NET documentation samples repository:

.NET Framework samples : UsingPlugins

.NET samples : UsingPlugins

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 80

https://github.com/EnterpriseDB/edb-dotnet-docs-samples
https://github.com/EnterpriseDB/edb-dotnet-docs-samples/tree/main/netframework/UsingPlugins
https://github.com/EnterpriseDB/edb-dotnet-docs-samples/tree/main/net/UsingPlugins

15 Using object types in .NET

The SQL CREATE TYPE command creates a user-defined object type, which is stored in the EDB Postgres Advanced Server database. You can then
reference these user-defined types in SPL procedures, SPL functions, and .NET programs.

Create the basic object type with the CREATE TYPE AS OBJECT command. Optionally, use the CREATE TYPE BODY command.

Using an object type

To use an object type, you must first create the object type in the EDB Postgres Advanced Server database. Object type addr_object_type
defines the attributes of an address:

Object type emp_obj_typ defines the attributes of an employee. One of these attributes is object type ADDR_OBJECT_TYPE , as previously
described. The object type body contains a method that displays the employee information:

This example is a complete .NET program that uses these user-defined object types:

CREATE OR REPLACE TYPE addr_object_type AS
OBJECT
(
 street
VARCHAR2(30),
 city VARCHAR2(20),
 state CHAR(2),
 zip
NUMBER(5)
);

CREATE OR REPLACE TYPE emp_obj_typ AS
OBJECT
(
 empno NUMBER(4),
 ename VARCHAR2(20),
 addr ADDR_OBJECT_TYPE,
 MEMBER PROCEDURE display_emp(SELF IN OUT
emp_obj_typ)
);

CREATE OR REPLACE TYPE BODY emp_obj_typ
AS
 MEMBER PROCEDURE display_emp (SELF IN OUT
emp_obj_typ)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Employee No : ' ||
SELF.empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' ||
SELF.ename);
 DBMS_OUTPUT.PUT_LINE('Street : ' ||
SELF.addr.street);
 DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || SELF.addr.city || ', '
||
 SELF.addr.state || ' ' ||
LPAD(SELF.addr.zip,5,'0'));
 END;
END;

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 81

using
System.Data;
using
EDBTypes;
using EnterpriseDB.EDBClient;

namespace
UsingObjectTypes;

internal class Program
{
 // The following.NET types are defined to map to the types in EDB Postgres Advanced
Server
 // Note the PgName attribute that allows to choose any name in .NET for the type
attributes
 public class Address
 {
 [PgName("street")]
 public string
Street;
 [PgName("city")]
 public string City;
 [PgName("state")]
 public string State;
 [PgName("zip")]
 public decimal
Zip;
 }
 public class
Employee
 {
 [PgName("empno")]
 public decimal
Number;
 [PgName("ename")]
 public string Name;
 [PgName("addr")]
 public Address Address;
 }

 static async Task Main(string[] args)
 {
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
 var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);

 // MapComposite maps the .NET type to the EDB Postgres Advanced Server
types
 dataSourceBuilder.MapComposite<Address>("enterprisedb.addr_object_type");
 dataSourceBuilder.MapComposite<Employee>("enterprisedb.emp_obj_typ");

 await using var dataSource = dataSourceBuilder.Build();
 try
 {
 await using var connection = await dataSource.OpenConnectionAsync();
 Console.WriteLine("Connection opened
successfully");

 Console.WriteLine("Preparing database...");
 await SetupDatabaseAsync(connection);

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 82

 var address = new Address()
 {
 Street = "123 MAIN
STREET",
 City = "EDISON",
 State = "NJ",
 Zip =
8817
 };
 var emp = new
Employee()
 {
 Number =
9001,
 Name = "JONES",
 Address = address
 };
 await using var cmd = new EDBCommand("emp_obj_typ.display_emp",
connection);

 cmd.CommandType =
CommandType.StoredProcedure;

 var empParameter = cmd.Parameters.AddWithValue("emp_obj_typ",
emp);
 empParameter.Direction = ParameterDirection.InputOutput;
 empParameter.DataTypeName = "enterprisedb.emp_obj_typ";

 // Listen to server
notices
 connection.Notice += Connection_Notice;

 await
cmd.PrepareAsync();
 await
cmd.ExecuteNonQueryAsync();

 var empOut = empParameter.Value as
Employee;
 Console.WriteLine($"Emp No:
{empOut?.Number}");
 Console.WriteLine($"Emp Name: {empOut?.Name}");
 Console.WriteLine($"Emp Address Street:
{empOut?.Address?.Street}");
 Console.WriteLine($"Emp Address City:
{empOut?.Address?.City}");
 Console.WriteLine($"Emp Address State:
{empOut?.Address?.State}");
 Console.WriteLine($"Emp Address Zip: {empOut?.Address?.Zip}");

 await connection.CloseAsync();

 connection.Notice -= Connection_Notice;
 }
 catch (EDBException
exp)
 {
 Console.Write($"Error:
{exp}");
 }
 finally
 {
 Console.WriteLine("Cleaning database...");

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 83

 await using var connection = await dataSource.OpenConnectionAsync();
 await CleanDatabaseAsync(connection);
 }

 Console.WriteLine("Press any key to close the
program...");
 Console.ReadKey();
 }

 private static void Connection_Notice(object sender, EDBNoticeEventArgs
e)
 {
 Console.WriteLine($"Server Notice: {e.Notice.MessageText}");
 }

 private async static Task SetupDatabaseAsync(EDBConnection connection)
 {
 await CleanDatabaseAsync(connection);

 string createScript = """
 CREATE OR REPLACE TYPE addr_object_type AS
OBJECT
 (
 street
VARCHAR2(30),
 city VARCHAR2(20),
 state CHAR(2),
 zip
NUMBER(5)
);
 """;
 using EDBCommand createCommand = new(createScript, connection);
 await createCommand.ExecuteNonQueryAsync();

 createScript = """
 CREATE OR REPLACE TYPE emp_obj_typ AS
OBJECT
 (
 empno NUMBER(4),
 ename VARCHAR2(20),
 addr
ADDR_OBJECT_TYPE,
 MEMBER PROCEDURE display_emp(SELF IN OUT
emp_obj_typ)
);
 """;
 createCommand.CommandText = createScript;
 await createCommand.ExecuteNonQueryAsync();

 createScript = """
 CREATE OR REPLACE TYPE BODY emp_obj_typ AS
 MEMBER PROCEDURE display_emp (SELF IN OUT
emp_obj_typ)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Employee No : ' ||
SELF.empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' ||
SELF.ename);
 DBMS_OUTPUT.PUT_LINE('Street : ' ||
SELF.addr.street);

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 84

 DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || SELF.addr.city || ', '
||
 SELF.addr.state || ' ' ||
LPAD(SELF.addr.zip,5,'0'));

END;

END;
 """;
 createCommand.CommandText = createScript;
 await createCommand.ExecuteNonQueryAsync();

 await connection.ReloadTypesAsync();
 }

 private static async Task CleanDatabaseAsync(EDBConnection connection)
 {
 try
 {
 string dropTypeScript = "DROP TYPE IF EXISTS
emp_obj_typ";
 using EDBCommand dropCommand = new(dropTypeScript,
connection);
 await
dropCommand.ExecuteNonQueryAsync();

 }
 catch (Exception ex)
 {
 Console.WriteLine($"Couldn't clean database :
{ex.Message}");
 }

 }
}

using
System;
using
System.Data;
using
System.Threading.Tasks;
using
EDBTypes;
using EnterpriseDB.EDBClient;

namespace
UsingObjectTypes
{

 internal class Program
 {
 // The following.NET types are defined to map to the types in EDB Postgres Advanced
Server
 // Note the PgName attribute that allows to choose any name in .NET for the type
attributes
 public class Address
 {
 [PgName("street")]
 public string
Street;
 [PgName("city")]
 public string City;

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 85

 [PgName("state")]
 public string State;
 [PgName("zip")]
 public decimal
Zip;
 }
 public class
Employee
 {
 [PgName("empno")]
 public decimal
Number;
 [PgName("ename")]
 public string Name;
 [PgName("addr")]
 public Address Address;
 }

 static async Task Main(string[] args)
 {
 // NOT FOR PRODUCTION, consider moving the connection string in a configuration
file
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";
 var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);

 // MapComposite maps the .NET type to the EDB Postgres Advanced Server
types
 dataSourceBuilder.MapComposite<Address>("enterprisedb.addr_object_type");
 dataSourceBuilder.MapComposite<Employee>("enterprisedb.emp_obj_typ");

 using (var dataSource = dataSourceBuilder.Build())
 {
 try
 {
 using (var connection = await dataSource.OpenConnectionAsync())
 {
 Console.WriteLine("Connection opened
successfully");

 Console.WriteLine("Preparing database...");
 await SetupDatabaseAsync(connection);

 var address = new Address()
 {
 Street = "123 MAIN
STREET",
 City = "EDISON",
 State = "NJ",
 Zip =
8817
 };
 var emp = new
Employee()
 {
 Number =
9001,
 Name = "JONES",
 Address = address
 };
 using (var cmd = new EDBCommand("emp_obj_typ.display_emp",
connection))
 {

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 86

 cmd.CommandType =
CommandType.StoredProcedure;

 var empParameter = cmd.Parameters.AddWithValue("emp_obj_typ",
emp);
 empParameter.Direction = ParameterDirection.InputOutput;
 empParameter.DataTypeName = "enterprisedb.emp_obj_typ";

 // Listen to server
notices
 connection.Notice += Connection_Notice;

 await
cmd.PrepareAsync();
 await
cmd.ExecuteNonQueryAsync();

 var empOut = empParameter.Value as
Employee;
 Console.WriteLine($"Emp No:
{empOut?.Number}");
 Console.WriteLine($"Emp Name: {empOut?.Name}");
 Console.WriteLine($"Emp Address Street:
{empOut?.Address?.Street}");
 Console.WriteLine($"Emp Address City:
{empOut?.Address?.City}");
 Console.WriteLine($"Emp Address State:
{empOut?.Address?.State}");
 Console.WriteLine($"Emp Address Zip: {empOut?.Address?.Zip}");
 }

 await connection.CloseAsync();

 connection.Notice -= Connection_Notice;
 }
 }
 catch (EDBException
exp)
 {
 Console.Write($"Error:
{exp}");
 }
 finally
 {
 Console.WriteLine("Cleaning database...");
 using (var connection = await dataSource.OpenConnectionAsync())
 {
 await CleanDatabaseAsync(connection);
 }
 }
 }

 Console.WriteLine("Press any key to close the
program...");
 Console.ReadKey();
 }

 private static void Connection_Notice(object sender, EDBNoticeEventArgs
e)
 {
 Console.WriteLine($"Server Notice: {e.Notice.MessageText}");
 }

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 87

 private async static Task SetupDatabaseAsync(EDBConnection connection)
 {
 await CleanDatabaseAsync(connection);

 string createScript = "CREATE OR REPLACE TYPE addr_object_type AS OBJECT
"
 +"(
"
 +" street VARCHAR2(30),
"
 +" city VARCHAR2(20),
"
 +" state CHAR(2),
"
 +" zip NUMBER(5)
"
 +");
";
 using (var createCommand = new EDBCommand(createScript, connection))
 {
 await createCommand.ExecuteNonQueryAsync();

 createScript = "CREATE OR REPLACE TYPE emp_obj_typ AS OBJECT
"
 +"(
"
 +" empno NUMBER(4),
"
 +" ename VARCHAR2(20),
"
 +" addr ADDR_OBJECT_TYPE,
"
 +" MEMBER PROCEDURE display_emp(SELF IN OUT emp_obj_typ)
"
 +");
";
 createCommand.CommandText = createScript;
 await createCommand.ExecuteNonQueryAsync();

 createScript = "CREATE OR REPLACE TYPE BODY emp_obj_typ AS
"
 +" MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_typ)
"
 +" IS
"
 +" BEGIN
"
 +" DBMS_OUTPUT.PUT_LINE('Employee No : ' || SELF.empno);
"
 +" DBMS_OUTPUT.PUT_LINE('Name : ' || SELF.ename);
"
 +" DBMS_OUTPUT.PUT_LINE('Street : ' || SELF.addr.street);
"
 +" DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || SELF.addr.city || ', ' ||
"
 +" SELF.addr.state || ' ' || LPAD(SELF.addr.zip,5,'0'));
"
 +" END;
"
 +"END;
";
 createCommand.CommandText = createScript;
 await createCommand.ExecuteNonQueryAsync();
 }

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 88

This program should display the following output in the Console:

Connection opened successfully
Preparing database...
Server Notice: Employee No : 9001
Server Notice: Name : JONES
Server Notice: Street : 123 MAIN STREET
Server Notice: City/State/Zip: EDISON, NJ 08817
Emp No: 9001
Emp Name: JONES
Emp Address Street: 123 MAIN STREET
Emp Address City: EDISON
Emp Address State: NJ
Emp Address Zip: 8817
Cleaning database...

 await connection.ReloadTypesAsync();
 }

 private static async Task CleanDatabaseAsync(EDBConnection connection)
 {
 try
 {
 string dropTypeScript = "DROP TYPE IF EXISTS
emp_obj_typ";
 using (var dropCommand = new EDBCommand(dropTypeScript,
connection))
 {
 await
dropCommand.ExecuteNonQueryAsync();
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Couldn't clean database :
{ex.Message}");
 }

 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 89

16 Using nested tables

EDB Postgres Advanced Server supports nested table collection types created with CREATE TYPE ... AS TABLE OF statements. The EDB .NET
Connector supports output parameters declared as nested tables out of the box, whether free-standing types or declared inside packages.

Nested table types mapping

Nested table types are mapped to List<object> s in C#, as it is preferred over ArrayList . These lists contain as many elements as the nested
table type's rows. The nested table items are translated to be compatible with the C# application using the following rules:

The connector resolves all nested table rows into a List<object> in C# while maintaining and converting each column's underlying type.
For example, a [text1, text2, num1] row will be resolved as a [string, string, decimal] item in the list.

If the nested type IS TABLE OF a domain type (int, varchar, decimal, etc.), all the rows will be their C# counterpart according to the
Supported Types and their Mappings.

If the nested type IS TABLE OF a record or composite type not mapped to a C# class, all rows become a nested List containing as many
elements as the record or composite fields, with proper type translation.

If the nested type IS TABLE OF a record or composite type mapped to a C# class (for example, MyComposite), all rows will be
MyComposite instances.

Example: Retrieving nested table output parameter

This program:

Creates a package with a nested emp_tbl_typ table type of emp_rec_typ . This package has a stored procedure that fills the nested table
output parameter.

Maps the nested table type to a C# class via MapComposite<> .

Executes and displays the results.

Cleans up the database by dropping the package (and implicitly the nested table type)

Note

Always provide type names in lowercase.

Program example

Create an empty console program and paste the following code.

using
System.Data;
using
EDBTypes;
using EnterpriseDB.EDBClient;

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 90

https://www.npgsql.org/doc/types/basic.html#read-mappings

namespace
UsingNestedTableTypes
{
 internal static class Program
 {
 // Composite type, will be mapped to the nested table
type
 // This will work if field types are convertible from database
types
 public class
Employee
 {
 [PgName("empno")]
 public decimal
Number;
 [PgName("ename")]
 public string Name;
 }

 public static async Task Main(string[] args)
 {
 // not for production, move connection string to app
settings
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

 var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);
 dataSourceBuilder.MapComposite<Employee>("pkgextendtest.emp_rec_typ");

 await using var dataSource = dataSourceBuilder.Build();
 await using var connection = await dataSource.OpenConnectionAsync();
 try
 {
 await CreatePackageAsync(connection);
 Console.WriteLine("Package
created");

 await using var cstmt = new EDBCommand("pkgExtendTest.nestedTableExtendTest",
connection);
 cstmt.CommandType =
CommandType.StoredProcedure;
 var tableOfParam = cstmt.Parameters.Add(new EDBParameter()
 {
 Direction = ParameterDirection.Output,
 DataTypeName = "pkgextendtest.emp_tbl_typ" // nested table is always
lowercase
 });

 await cstmt.PrepareAsync();
 await cstmt.ExecuteNonQueryAsync();

 if (tableOfParam.Value is not List<object>
employees)
 {
 Console.WriteLine($"No employee
found");
 return;
 }

 foreach (var employeeRecord in
employees)
 {

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 91

 if (employeeRecord is Employee
employee)
 {
 Console.WriteLine($"Employee {employee.Number}:
{employee.Name}");
 }
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }
 finally
 {
 await CleanupAsync(connection);
 Console.WriteLine("Package successfully
deleted");
 }
 }

 // helper methods to create package and cleaning up
 static async Task CreatePackageAsync(EDBConnection connection)
 {

 var createPackage = """
 CREATE OR REPLACE PACKAGE pkgExtendTest
IS
 TYPE emp_rec_typ IS RECORD
(
 empno NUMBER(4),
 ename VARCHAR2(10)
);
 TYPE emp_tbl_typ IS TABLE OF emp_rec_typ;
 PROCEDURE nestedTableExtendTest(emp_tbl OUT
emp_tbl_typ);
 END
pkgExtendTest;
 """;
 using (var com = new EDBCommand(createPackage, connection) { CommandType = CommandType.Text
})
 {
 await
com.ExecuteNonQueryAsync();
 }

 var createPackageBody = """
 CREATE OR REPLACE PACKAGE BODY pkgExtendTest IS
 PROCEDURE nestedTableExtendTest(emp_tbl OUT emp_tbl_typ) IS
 DECLARE
 CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10
order by empno;
 i INTEGER := 0;
 BEGIN
 emp_tbl := emp_tbl_typ();
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_tbl.EXTEND;
 emp_tbl(i) := r_emp;
 END LOOP;
 END nestedTableExtendTest;
 END pkgExtendTest;
 """;

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 92

 using (var com = new EDBCommand(createPackageBody, connection) { CommandType =
CommandType.Text })
 {
 await
com.ExecuteNonQueryAsync();
 }

 await connection.ReloadTypesAsync();
 }

 static async Task CleanupAsync(EDBConnection connection)
 {
 var dropPackageBody = "DROP PACKAGE BODY
pkgExtendTest";
 var dropPackage = "DROP PACKAGE
pkgExtendTest";

 using (var com = new EDBCommand(dropPackageBody, connection) { CommandType = CommandType.Text
})
 {
 await
com.ExecuteNonQueryAsync();
 }
 using (var com = new EDBCommand(dropPackage, connection) { CommandType = CommandType.Text
})
 {
 await
com.ExecuteNonQueryAsync();
 }
 }
 }
}

using
System;
using
System.Collections.Generic;
using
System.Data;
using
System.Threading.Tasks;
using
EDBTypes;
using EnterpriseDB.EDBClient;

namespace
UsingNestedTableTypes
{
 internal static class Program
 {
 // Composite type, will be mapped to the nested table
type
 // This will work if field types are convertible from database
types
 public class
Employee
 {
 [PgName("empno")]
 public decimal
Number;
 [PgName("ename")]
 public string Name;
 }

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 93

 public static async Task Main(string[] args)
 {
 // not for production, move connection string to app
settings
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

 var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);
 dataSourceBuilder.MapComposite<Employee>("pkgextendtest.emp_rec_typ");

 using (var dataSource = dataSourceBuilder.Build())
 using (var connection = await dataSource.OpenConnectionAsync())
 {

 try
 {
 await CreatePackageAsync(connection);
 Console.WriteLine("Package
created");

 using (var cstmt = new EDBCommand("pkgExtendTest.nestedTableExtendTest", connection))
 {
 cstmt.CommandType =
CommandType.StoredProcedure;

 var tableOfParam = cstmt.Parameters.Add(new EDBParameter()
 {
 Direction = ParameterDirection.Output,
 DataTypeName = "pkgextendtest.emp_tbl_typ" // nested table is always
lowercase
 });

 await cstmt.PrepareAsync();
 await cstmt.ExecuteNonQueryAsync();

 List<object> employees = tableOfParam.Value as List<object>;
 if (employees == null)
 {
 Console.WriteLine($"No employee
found");
 return;
 }

 foreach (var employeeRecord in
employees)
 {
 if (employeeRecord is Employee
employee)
 {
 Console.WriteLine($"Employee {employee.Number}:
{employee.Name}");
 }
 }
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine($"Error: {ex.Message}");
 }
 finally

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 94

 {
 await CleanupAsync(connection);
 Console.WriteLine("Package successfully
deleted");
 }
 }

 }

 // helper methods to create package and cleaning up
 static async Task CreatePackageAsync(EDBConnection connection)
 {

 var createPackage =
 " CREATE OR REPLACE PACKAGE pkgExtendTest IS \n"
+
 " TYPE emp_rec_typ IS RECORD (\n"
+
 " empno NUMBER(4), \n" +
 " ename VARCHAR2(10) \n" +
 "); \n" +
 " TYPE emp_tbl_typ IS TABLE OF emp_rec_typ; \n"
+
 " PROCEDURE nestedTableExtendTest(emp_tbl OUT emp_tbl_typ); \n"
+
 " END pkgExtendTest;
\n";
 using (var com = new EDBCommand(createPackage, connection) { CommandType = CommandType.Text
})
 {
 await
com.ExecuteNonQueryAsync();
 }

 var createPackageBody =
 " CREATE OR REPLACE PACKAGE BODY pkgExtendTest IS \n"
+
 " PROCEDURE nestedTableExtendTest(emp_tbl OUT emp_tbl_typ) IS \n"
+
 " DECLARE \n" +
 " CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10 order by
empno; \n" +
 " i INTEGER := 0; \n"
+
 " BEGIN \n" +
 " emp_tbl := emp_tbl_typ(); \n"
+
 " FOR r_emp IN emp_cur LOOP \n"
+
 " i := i + 1; \n"
+
 " emp_tbl.EXTEND; \n" +
 " emp_tbl(i) := r_emp; \n"
+
 " END LOOP; \n"
+
 " END nestedTableExtendTest; \n"
+
 " END pkgExtendTest;
\n";
 using (var com = new EDBCommand(createPackageBody, connection) { CommandType =
CommandType.Text })
 {
 await
com.ExecuteNonQueryAsync();

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 95

The output should look like this:

Package created
Employee 7499: ALLEN
Employee 7521: WARD
Employee 7566: JONES
Employee 7654: MARTIN
Employee 7698: BLAKE
Employee 7782: CLARK
Employee 7839: KING
Employee 7844: TURNER
Employee 7876: ADAMS
Employee 7900: JAMES
Package successfully deleted

 }

 await connection.ReloadTypesAsync();
 }

 static async Task CleanupAsync(EDBConnection connection)
 {
 var dropPackageBody = "DROP PACKAGE BODY
pkgExtendTest";
 var dropPackage = "DROP PACKAGE
pkgExtendTest";

 using (var com = new EDBCommand(dropPackageBody, connection) { CommandType = CommandType.Text
})
 {
 await
com.ExecuteNonQueryAsync();
 }
 using (var com = new EDBCommand(dropPackage, connection) { CommandType = CommandType.Text
})
 {
 await
com.ExecuteNonQueryAsync();
 }
 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 96

17 Scram compatibility

The EDB .NET driver provides SCRAM-SHA-256 support for EDB Postgres Advanced Server version 10 and later. This support is available in EDB .NET
4.0.2.1 release and later.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 97

18 EDB .NET Connector logging

EDB .NET Connector supports the use of logging to help resolve issues with the .NET Connector when used in your application. EDB .NET Connector
supports logging using the standard .NET Microsoft.Extensions.Logging package. For more information about logging in .Net, see Logging
in C# and .NET in the Microsoft documentation.

Note

For versions earlier than 7.x, EDB .NET Connector had its own, custom logging API.

Console logging provider

The .NET logging API works with a variety of built-in and third-party logging providers. The console logging provider logs output to the console.

To use this provider in your application, make sure you have added a reference to the Microsoft.Extensions.Logging.Console nuget
package.

Console logging with EDBDataSource

Create a Microsoft.Extensions.Logging.LoggerFactory and configure an EDBDataSource with it. Any use of connections opened
through this data source log using this logger factory.

using EnterpriseDB.EDBClient;
using Microsoft.Extensions.Logging;

namespace EnterpriseDB;

internal static class Program
{
 public static async Task Main(string[] args)
 {
 // not for production, move connection string to app
settings
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

 var loggerFactory = LoggerFactory.Create(builder => builder.AddSimpleConsole());

 var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);
 dataSourceBuilder.UseLoggerFactory(loggerFactory);

 await using var dataSource = dataSourceBuilder.Build();
 await using var connection = await dataSource.OpenConnectionAsync();
 await using var command = new EDBCommand("SELECT 1", connection);

 _ = await
command.ExecuteScalarAsync();

 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 98

https://learn.microsoft.com/en-us/dotnet/core/extensions/logging?tabs=command-line

This program should display the following result in the Console :

info: EnterpriseDB.EDBClient.Command[<ID>]
 Command execution completed (duration=761ms): SELECT 1

Console logging without EDBDataSource

Create a Microsoft.Extensions.Logging.LoggerFactory and configure EDB .NET Connector's logger factory globally using
EDBLoggingConfiguration.InitializeLogging . Configure it at the start of your program, before using any other EDB .NET Connector

API.

using
System;
using
System.Threading.Tasks;
using EnterpriseDB.EDBClient;
using Microsoft.Extensions.Logging;

namespace EnterpriseDB
{
 internal static class Program
 {
 public static async Task Main(string[] args)
 {
 // not for production, move connection string to app
settings
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

 var loggerFactory = LoggerFactory.Create(builder => builder.AddSimpleConsole());

 var dataSourceBuilder = new EDBDataSourceBuilder(connectionString);
 dataSourceBuilder.UseLoggerFactory(loggerFactory);

 using (var dataSource = dataSourceBuilder.Build())
 using (var connection = await dataSource.OpenConnectionAsync())
 {
 using (var command = new EDBCommand("SELECT 1", connection))
 {
 _ = await
command.ExecuteScalarAsync();
 }
 }
 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 99

using
System;
using EnterpriseDB.EDBClient;
using Microsoft.Extensions.Logging;

namespace EnterpriseDB
{
 internal static class Program
 {
 public static async Task Main(string[] args)
 {
 // not for production, move connection string to app
settings
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

 var loggerFactory = LoggerFactory.Create(builder => builder.AddSimpleConsole());
 EDBLoggingConfiguration.InitializeLogging(loggerFactory);

 await using var conn = new EDBConnection(connectionString);
 await conn.OpenAsync();

 await using var command = new EDBCommand("SELECT 1", conn);

 _ = await
command.ExecuteScalarAsync();
 }
 }
}

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 100

Log levels

The following log levels are available:

Trace
Debug
Information
Warning
Error
Critical

This example shows how to change the log level to Trace:

using
System;
using
System.Threading.Tasks;
using EnterpriseDB.EDBClient;
using Microsoft.Extensions.Logging;

namespace EnterpriseDB
{
 internal static class Program
 {
 public static async Task Main(string[] args)
 {
 // not for production, move connection string to app
settings
 var connectionString = "Server=127.0.0.1;Port=5444;User
Id=enterprisedb;Password=edb;Database=edb";

 var loggerFactory = LoggerFactory.Create(builder => builder.AddSimpleConsole());
 EDBLoggingConfiguration.InitializeLogging(loggerFactory);

 using (var conn = new EDBConnection(connectionString))
 {
 await conn.OpenAsync();
 using (var command = new EDBCommand("SELECT 1", conn))
 {
 _ = await
command.ExecuteScalarAsync();
 }
 }
 }
 }
}

var loggerFactory = LoggerFactory.Create(builder => builder
 .SetMinimumLevel(LogLevel.Trace)
 .AddSimpleConsole()
);

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 101

Formatting the log output

This example shows how to format your log output. Create a LoggerFactory to restrict each log message to a single line and add a date and time
to the log:

This program should display the following result in the Console. Output may vary depending on your connection settings.

trce: EnterpriseDB.EDBClient.Connection[1000] Opening connection to 127.0.0.1:5444/edb...
trce: EnterpriseDB.EDBClient.Connection[1110] Opening physical connection to 127.0.0.1:5444/edb...
trce: EnterpriseDB.EDBClient.Connection[0] Attempting to connect to 127.0.0.1:5444
trce: EnterpriseDB.EDBClient.Connection[0] Socket connected to 127.0.0.1:5444
trce: EnterpriseDB.EDBClient.Connection[1420024510] Start user action
trce: EnterpriseDB.EDBClient.Connection[534767465] End user action
dbug: EnterpriseDB.EDBClient.Connection[1111] Opened physical connection to 127.0.0.1:5444/edb (in
157ms)
dbug: EnterpriseDB.EDBClient.Connection[1001] Opened connection to 127.0.0.1:5444/edb
trce: EnterpriseDB.EDBClient.Connection[1420024510] Start user action
dbug: EnterpriseDB.EDBClient.Command[2000] Executing command: SELECT 1
trce: EnterpriseDB.EDBClient.Command[1049610950] Cleaning up reader
info: EnterpriseDB.EDBClient.Command[2001] Command execution completed (duration=68ms): SELECT 1
trce: EnterpriseDB.EDBClient.Connection[534767465] End user action
trce: EnterpriseDB.EDBClient.Connection[1003] Closing connection to 127.0.0.1:5444/edb...
trce: EnterpriseDB.EDBClient.Connection[1420024510] Start user action
trce: EnterpriseDB.EDBClient.Connection[534767465] End user action
dbug: EnterpriseDB.EDBClient.Connection[1004] Closed connection to 127.0.0.1:5444/edb
trce: EnterpriseDB.EDBClient.Connection[1112] Closing physical connection to 127.0.0.1:5444/edb...
trce: EnterpriseDB.EDBClient.Connection[0] Cleaning up connector
dbug: EnterpriseDB.EDBClient.Connection[1113] Closed physical connection to 127.0.0.1:5444/edb

var loggerFactory = LoggerFactory.Create(builder =>
builder
.SetMinimumLevel(LogLevel.Trace)
.AddSimpleConsole(
 options =>
 {
 options.SingleLine = true;
 options.TimestampFormat = "yyyy/MM/dd HH:mm:ss
";
 }
));

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 102

19 API reference

For information about using the API, see the Npgsql documentation.

Usage notes:

When using the API, replace references to Npgsql with EnterpriseDB.EDBClient .

When referring to classes, replace Npgsql with EDB . For example, use the EDBBinaryExporter class instead of the
NpgsqlBinaryExporter class.

To find the Npgsql API version that was included with a specific EDB .NET release, see the EDB .NET release notes. The release notes specify the
upstream Npgsql version that was merged. The version information is important because the available API features can vary between versions.

EDB .NET Connector

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 103

http://www.npgsql.org/doc/api/Npgsql.html

	1 EDB .NET Connector
	2 Release notes
	2.1 Version 9.0.3.1
	2.2 Version 8.0.5.1
	2.3 Version 8.0.2.1
	2.4 Version 7.0.6.2
	2.5 Version 7.0.6.1
	2.6 Version 7.0.4.1
	2.7 Version 6.0.2.1
	2.8 Version 5.0.7.1
	2.9 Version 4.1.6.1
	2.10 Version 4.1.5.1
	2.11 Version 4.1.3.1
	2.12 Version 4.0.10.2
	2.13 Version 4.0.10.1
	2.14 Version 4.0.6.1
	3 Product compatibility
	Supported .NET versions
	Supported platforms
	Supported database server versions

	4 EDB .NET Connector overview
	The .NET class hierarchy

	5 Installing and configuring the .NET Connector
	Installing the .NET Connector
	Installing and configuring the .NET Connector from NuGet.org
	Install NuGet package via command line
	Install NuGet package via Visual Studio interface

	Installing the .NET Connector using EDB installer
	Configuring the .NET Connector
	Referencing the library files
	.NET framework setup

	6 Opening a database connection
	Creating an EDBConnection object
	Connection with a data source
	Connection without a data source

	Connection string parameters
	Example: Opening a database connection

	7 Retrieving database records
	Retrieving a single database record

	8 Parameterized queries
	9 Inserting records in a database
	10 Deleting records in a database
	11 Using SPL stored procedures in your .NET application
	Example: Executing a stored procedure without parameters
	Using the EDBCommand object to execute a stored procedure

	Example: Executing a stored procedure with IN parameters
	Passing input values to a stored procedure

	Example: Executing a stored procedure with IN, OUT, and INOUT parameters
	Creating the stored procedure
	Receiving output values from a stored procedure

	12 Using advanced queueing
	Enqueueing or dequeueing a message
	Server-side setup
	Creating a user-defined type
	Creating the queue table
	Creating the queue
	Starting the queue

	Client-side example
	Enqueue a message
	Dequeue a message

	EDBAQ classes
	EDBAQDequeueMode
	EDBAQDequeueOptions
	EDBAQEnqueueOptions
	EDBAQMessage
	EDBAQMessageProperties
	EDBAQMessageState
	EDBAQMessageType
	EDBAQNavigationMode
	EDBAQQueue
	EDBAQVisibility

	13 Using a ref cursor in a .NET application
	Creating the stored procedure

	14 Using plugins
	GeoJSON
	Json.NET
	NetTopologySuite
	NodaTime
	Available plugins on NuGet

	15 Using object types in .NET
	Using an object type

	16 Using nested tables
	Nested table types mapping
	Example: Retrieving nested table output parameter
	Program example

	17 Scram compatibility
	18 EDB .NET Connector logging
	Console logging provider
	Console logging with EDBDataSource
	Console logging without EDBDataSource

	Log levels
	Formatting the log output

	19 API reference

