
EDB Postgres Distributed (PGD)
Version 4.3.8

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. Built at 2026-02-04T12:27:14

5
6
7
8
9

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
28
29
31
33
36
37
40
41
44
53
61
81
99

104
122
136
142
154
157
161
165
168
179
182
188
189
200
212

1 EDB Postgres Distributed (PGD)
2 EDB Postgres Distributed 4 release notes
2.1 EDB Postgres Distributed 4.3.8 release notes
2.2 EDB Postgres Distributed 4.3.7 release notes
2.3 EDB Postgres Distributed 4.3.6 release notes
2.4 Release notes for EDB Postgres Distributed version 4.3.5
2.5 Release notes for EDB Postgres Distributed version 4.3.4
2.6 Release notes for EDB Postgres Distributed version 4.3.3
2.7 Release notes for EDB Postgres Distributed version 4.3.2+p1
2.8 Release notes for EDB Postgres Distributed version 4.3.2
2.9 Release notes for EDB Postgres Distributed version 4.3.1+p2
2.10 Release notes for EDB Postgres Distributed version 4.3.1+p1
2.11 Release notes for EDB Postgres Distributed version 4.3.1
2.12 Release notes for EDB Postgres Distributed version 4.3.0+p1
2.13 Release notes for EDB Postgres Distributed version 4.3.0
2.14 Release notes for EDB Postgres Distributed version 4.2.2
2.15 Release notes for EDB Postgres Distributed version 4.2.1
2.16 Release notes for EDB Postgres Distributed version 4.2.0
2.17 Release notes for EDB Postgres Distributed version 4.1.1
2.18 Release notes for EDB Postgres Distributed version 4.1.0
2.19 Release notes for EDB Postgres Distributed version 4.0.3
2.20 Release notes for EDB Postgres Distributed version 4.0.2
2.21 Release notes for EDB Postgres Distributed version 4.0.1
2.22 Release notes for EDB Postgres Distributed version 4.0.0
3 Known issues
4 Terminology
5 Overview
6 BDR (Bi-Directional Replication)
6.1 Application use
6.2 PostgreSQL configuration for BDR
6.3 Node management
6.4 DDL replication
6.5 Security and roles
6.6 Conflicts
6.7 Sequences
6.8 Column-level conflict detection
6.9 Conflict-free replicated data types
6.10 Transaction streaming
6.11 Durability and performance options
6.12 Group Commit
6.13 Eager Replication
6.14 Commit At Most Once
6.15 Lag control
6.16 AutoPartition
6.17 Timestamp-based snapshots
6.18 Replication sets
6.19 Stream triggers
6.20 Explicit two-phase commit (2PC)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 2

213
242
263
269
271
279
282
284
287
295
299
300
302
303
304
305
306
307
308
309
310
312
313
314
316
320
321
322
324
326
329
335
338
342
346
351
354
356
360
373
375
376
377
379
381
383
384
386

6.21 Catalogs and views
6.22 BDR system functions
7 High Availability Routing for Postgres (HARP)
7.1 Installation
7.2 Configuring HARP for cluster management
7.3 Cluster bootstrapping
7.4 HARP Manager
7.5 HARP Proxy
7.6 harpctl command-line tool
7.7 Consensus layer considerations
7.8 Security and roles
8 Choosing your architecture
8.1 Always On Bronze
8.2 Always On Silver
8.3 Always On Gold
8.4 Always On Platinum
9 Choosing a Postgres distribution
10 Choosing durability
11 Other considerations
Data Consistency
12 Limitations
13 Deployment options
13.1 TPAexec
13.1.1 Installing TPAexec
13.1.2 Using TPAexec
13.1.3 Example: Deploying EDB Postgres Distributed
13.2 Deploying PGD 4 manually
13.2.1 Step 1 - Provisioning hosts
13.2.2 Step 2 - Installing Postgres
13.2.3 Step 3 - Configuring PGD repositories
13.2.4 Step 4 - Installing the PGD software
13.2.5 Step 5 - Creating the PGD cluster
13.2.6 Step 6 - Checking the cluster
13.2.7 Step 7 - Using PGD CLI
14 Upgrading
14.1 In-place Postgres Major Version Upgrades
14.2 Supported BDR upgrade paths
15 Backup and recovery
16 Monitoring
17 EDB Postgres Distributed Command Line Interface
17.1 Installing PGD CLI
17.2 Command reference
17.2.1 check-health
17.2.2 show-camo
17.2.3 show-clockskew
17.2.4 show-events
17.2.5 show-nodes
17.2.6 show-raft

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 3

389
392
394

17.2.7 show-replslots
17.2.8 show-subscriptions
17.2.9 show-version

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 4

1 EDB Postgres Distributed (PGD)

EDB Postgres Distributed provides multi-master replication and data distribution with advanced conflict management, data-loss protection, and
throughput up to 5X faster than native logical replication, and enables distributed PostgreSQL clusters with high availability up to five 9s.

By default EDB Postgres Distributed uses asynchronous replication, applying changes on the peer nodes only after the local commit. Additional levels of
synchronicity can be configured between different nodes, groups of nodes or all nodes by configuring Group Commit, CAMO, or Eager replication.

Compatibility matrix

EDB Postgres
Distributed

BDR
Extension

pgLogical3
Extension HARP

Commmunity
PostgreSQL

EDB Postgres
Extended
Server

EDB Postgres
Advanced
Server

PGD
CLI

4 4 n/a 2 12, 13, 14 12, 13, 14 12, 13, 14 1

3.7 3.7 3.7 2 11, 12, 13 11r2, 12, 13 11, 12, 13 n/a

3.6 3.6 3.6 2 10, 11 11r1 n/a n/a

PGD CLI 1 is supported with BDR 4.1 and later.
BDR DCS in HARP 2 is supported with BDR 3.7.15 and later and 4.0.1 and later.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 5

https://www.enterprisedb.com/blog/performance-improvements-edb-postgres-distributed

2 EDB Postgres Distributed 4 release notes

The EDB Postgres Distributed documentation describes the latest version of EDB Postgres Distributed 4, including minor releases and patches. The release
notes provide information on what was new in each release. For new functionality introduced in a minor or patch release, the content also indicates the
release that introduced the feature.

About version numbers

PGD Version 4 takes its version number from the BDR version bundled with the release. Where HARP, TPA or the CLI have been updated without a
change in BDR version, that new package is shown as +p1 or +p2 and so on appended to the version number.

Release Date EDB Postgres Distributed BDR HARP CLI TPAexec

22 May 2025 4.3.8 4.3.8 2.4.2 1.1.2 23.36.0

25 Feb 2025 4.3.7 4.3.7 2.4.2 1.1.2 23.36.0

15 Oct 2024 4.3.6 4.3.6 2.4.2 1.1.2 23.34.1

16 May 2024 4.3.5 4.3.4 2.4.1 1.1.2 23.32

05 Mar 2024 4.3.4 4.3.4 2.4 1.1.2 23.29

14 Nov 2023 4.3.3 4.3.3 2.3.2 1.1.2 23.24

17 Oct 2023 4.3.2+p1 4.3.2 2.3.2 1.1.1 23.20

31 Aug 2023 4.3.2 4.3.2 2.3.1 1.1.1 23.20

27 Jul 2023 4.3.1+p2 4.3.1 2.3.1 1.1.1 23.19

12 Jul 2023 4.3.1+p1 4.3.1 2.3.0 1.1.1 23.19

17 May 2023 4.3.1 4.3.1 2.2.3 1.1.1 23.17

30 Mar 2023 4.3.0+p1 4.3.0 2.2.2 1.1.0 23.9

14 Feb 2023 4.3.0 4.3.0 2.2.1 1.1.0 23.9

14 Dec 2022 4.2.2 4.2.2 2.2.1 1.1.0 23.9

16 Nov 2022 4.2.1 4.2.1 2.2.1 1.1.0 23.7

22 Aug 2022 4.2.0 4.2.0 2.2.0 1.1.0 23.5

21 Jun 2022 4.1.1 4.1.1 2.1.1 1.0.0 23.2

17 May 2022 4.1.0 4.1.0 2.1.0 1.0.0 23.1

31 Mar 2022 4.0.3 - 2.0.3 - 22.10

24 Feb 2022 4.0.2 4.0.2 2.0.2 - 22.9

31 Jan 2022 4.0.1 4.0.1 2.0.1 - 22.6

01 Dec 2021 4.0.0 4.0.0 2.0.0 - 21.9

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 6

https://www.enterprisedb.com/docs/tpa/latest/rel_notes/tpa_23.36.0_rel_notes
https://www.enterprisedb.com/docs/tpa/latest/rel_notes/tpa_23.36.0_rel_notes
https://www.enterprisedb.com/docs/tpa/latest/rel_notes/tpa_23.34.1_rel_notes
https://www.enterprisedb.com/docs/tpa/latest/rel_notes/tpa_23.32_rel_notes/
https://www.enterprisedb.com/docs/tpa/latest/rel_notes/tpa_23.29_rel_notes/
https://www.enterprisedb.com/docs/tpa/latest/rel_notes/tpa_23.24_rel_notes/
https://www.enterprisedb.com/docs/tpa/latest/rel_notes/tpa_23.20_rel_notes/
https://www.enterprisedb.com/docs/tpa/latest/rel_notes/tpa_23.20_rel_notes/
https://www.enterprisedb.com/docs/tpa/latest/rel_notes/tpa_23.19_rel_notes/
https://www.enterprisedb.com/docs/tpa/latest/rel_notes/tpa_23.19_rel_notes/
https://www.enterprisedb.com/docs/tpa/latest/rel_notes/tpa_23.17_rel_notes/
https://www.enterprisedb.com/docs/tpa/latest/rel_notes/tpa_23.1-11_rel_notes#tpa-239
https://www.enterprisedb.com/docs/tpa/latest/rel_notes/tpa_23.1-11_rel_notes#tpa-239
https://www.enterprisedb.com/docs/tpa/latest/rel_notes/tpa_23.1-11_rel_notes#tpa-239
https://www.enterprisedb.com/docs/tpa/latest/rel_notes/tpa_23.1-11_rel_notes#tpa-237
https://www.enterprisedb.com/docs/tpa/latest/rel_notes/tpa_23.1-11_rel_notes#tpa-235
https://www.enterprisedb.com/docs/tpa/latest/rel_notes/tpa_23.1-11_rel_notes#tpa-232
https://www.enterprisedb.com/docs/tpa/latest/rel_notes/tpa_23.1-11_rel_notes#tpa-231

2.1 EDB Postgres Distributed 4.3.8 release notes

Released: 22 May 2025

EDB Postgres Distributed 4.3.8 is a minor release that includes several bug fixes and enhancements.

Bug Fixes

Component Version Description Addresses

BDR 4.3.8

Addressed CVE-2025-2506, which could enable a user with CONNECT access to obtain read access to
replicated tables.

An issue, CVE-2025-2506, was discovered in pglogical which is present in later versions of BDR and PGD. The
issue could enable a user with CONNECT access to obtain read access to replicated tables.

CVE-2025-
2506

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 7

https://www.enterprisedb.com/docs/security/advisories/cve20252506/

2.2 EDB Postgres Distributed 4.3.7 release notes

Released: 25 February 2025

EDB Postgres Distributed 4.3.7 is a minor release that includes several bug fixes and enhancements.

Bug Fixes

Component Version Description Addresses

BDR 4.3.7

Fixed autopatition task scheduling.

To improve reliability, shuffle the scheduling of autopartition tasks. This way, tasks that are prone to failure
won't consistently impact the success of other tasks.

41998

BDR 4.3.7

Fixed a bug where bdr_init_physical stopped responding when synchronous_commit is set to
remote_write/remote_apply .

bdr_init_physical disables synchronous replication on a new node by resetting
synchronous_standby_names to an empty string. A warning message reminds you to set
synchronous_standby_names as needed.

44760

BDR 4.3.7

Fixed a bug to handle additional replication sets on witness nodes.

The witness node now only cares about the top replication set and thus allows it to miss replications sets and
not error out.

41776,
44527

BDR 4.3.7

Unsupported ALTER TABLE command on materialized views is no longer replicated.

Replication no longer becomes stuck when the command is issued.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 8

2.3 EDB Postgres Distributed 4.3.6 release notes

Released: 15 October 2024

EDB Postgres Distributed 4.3.6 is a minor release that includes several bug fixes and enhancements.

Highlights

HARP proxy settings patches to reduced bloat on consensus request and response journals.
Fix for accidental drop of autopartition rule when a column of the autopartitioned table is dropped.

Enhancements

Component Version Description Addresses

BDR 4.3.6

Add bdr.bdr_show_all_file_settings() and bdr.bdr_file_settings view

Fix: Correct privileges for bdr_superuser. Creating wrapper SECURITY DEFINER functions in the bdr schema
and granting access to bdr_superuser to use those:

bdr.bdr_show_all_file_settings
bdr.bdr_file_settings

Bug Fixes

Component Version Description Addresses

BDR 4.3.6

bdr consensus: Add GUCs to control automatic Raft vacuum

Aggressive HARP proxy settings may face issues due to increased bloat on consensus request and response
journals. This patch adds GUCs to control frequency of automatic vacuum on said catalogs. The
bdr.raft_vacuum_interval GUC controls how frequently the tables are checked for VACUUM and

ANALYZE. The Autovacuum GUCs and table reloptions are used to determine whether VACUUM/ANALYZE is
needed or not. The bdr.raft_vacuum_full_interval triggers VACUUM FULL on the tables. The user
can disable VACUUM FULL if normal VACUUM is sufficient to keep the bloat in control.

40412

BDR 4.3.6

Do not accidentally drop the autopartition rule when a column of the autopartitioned table is dropped.

When ALTER TABLE .. DROP COLUMN is used, the object_access_hook is fired with classId set to
RelationRelationId, but the subId is set to the attribute number to differentiate it from the DROP TABLE
command. Therefore, we need to check the subId field to make sure that we are not performing actions that
should only be triggered when a table is dropped.

40258

BDR 4.3.6

Cleanup unwanted data with drop_node

When we drop the local node we cleanup all the catalog tables internally.

BDR 4.3.6

Delete older logs if we get a snapshot that's already applied

The follower doesn't need the older logs once a snapshot is applied. If we keep those around, the duplicate
request id issue may keep happening. So clear the logs a bit more aggressively once we know they are not
needed.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 9

BDR 4.3.6

Handling duplicate requests in RAFT preventing protocol breakage

When processing RAFT entries, it's crucial to handle duplicate requests properly to prevent Raft protocol
issues. Duplicate requests can occur when a client retries a request that has already been accepted and
applied by the Raft leader. The problem arose when the leader failed to detect the duplicate request due to
historical evidence being pruned.

37725

BDR 4.3.6

Handling Raft Snapshots: Consensus Log

When installing or importing a Raft snapshot, discard the consensus log unless it contains an entry matching
the snapshot's last included entry and term.

37725

BDR 4.3.6

Allow ANALYZE on temp tables

The ANALYZE statement is already not replicated. We dont need to filter if it's analyzing temp tables or not,
we allow the user to analyze anything.

38826

BDR 4.3.6

Re-add function bdr.column_timestamps_enable_internal()

This function was removed as the code can be merged with bdr.column_timestamps_disable() .
However, although that function is deprecated, in a mixed-version cluster it could theoretically be called on
an older node, resulting in bdr.column_timestamps_enable_internal() being replicated and
causing an error on the nodes where it is no longer present.

BDR 4.3.6

Fixed buffer overrun in the writer

Include an extra zero byte at the end of a column value allocation in shared memory queue
insert/update/delete messages.

98966

BDR 4.3.6

Fix duplicate ids generation for snowflakeid

Disallow multiple backends which concurrently increment the sequences to simultaneously initialize the
sequence for same millisecond timestamp value, resulting in duplicate ids both with local seq id component
as 0.

BDR 4.3.6

Adjust bdr.alter_table_conflict_detection() to propagate correctly to all nodes

Ensure that the propagation of bdr.alter_table_conflict_detection() (as well as the related,
deprecated bdr.column_timestamps_(en|dis)able() functions) is carried out correctly to all
logical standbys. Previously, this propagation did not occur if the logical standby was not directly attached to
the node on which the functions were executed.

40258

BDR 4.3.6

Raft-related catalog items

This adds compatibility objects for:

bdr.raft_instances
bdr.get_raft_status(node_group_name text)

These additions ensure that Raft status queries operate correctly in clusters running multiple major versions.

Utilities 4.3.6 bdr_pg_upgrade - Create logical slot with twophase set to true for PG 14+

Component Version Description Addresses

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 10

2.4 Release notes for EDB Postgres Distributed version 4.3.5

Released: 16 May 2024

EDB Postgres Distributed version 4.3.5 is a patch release of EDB Postgres Distributed 4, which includes bug fixes for issues identified in previous versions.

Note

This version is required for EDB Postgres Advanced Server versions 12.15, 13.11, 14.10, 15.5, and later.

Component Version Type Description Ticket

BDR 4.3.5 Enhancement BDR now logs the completion of an extension upgrade.

BDR 4.3.5 Enhancement Each autopartition task is now executed in its own transaction.

BDR 4.3.5 Enhancement DETACH CONCURRENTLY is now used to drop partitions. RT101407/
35476

BDR 4.3.5 Enhancement
bdr_superuser is now granted use of pg_file_settings and
pg_show_all_file_settings() .

BDR 4.3.5 Enhancement bdr_init_physical now stops the initial replication connection and starts it only
when needed.

RT102828/
35305

BDR 4.3.5 Bug Fix Improved handling of node group configuration parameter check_constraints . RT99956/3
1896

BDR 4.3.5 Bug Fix Fixed an issue to prevent potential segfault in bdr.monitor_group_versions() . RT102290/
34051

BDR 4.3.5 Bug Fix BDR now uses bdr.default_sequence_kind when updating sequence kind of
existing sequences upon node creation.

BDR 4.3.5 Bug Fix Manage rights elevation for trusted extensions

HARP 2.4.1 Change Routine security library upgrades.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 11

2.5 Release notes for EDB Postgres Distributed version 4.3.4

Released: 5 Mar 2024

EDB Postgres Distributed version 4.3.4 is a patch release of EDB Postgres Distributed 4, which includes bug fixes for issues identified in previous versions.

Note

This version is required for EDB Postgres Advanced Server versions 12.15, 13.11, 14.10, 15.5 and later.

Component Version Type Description

BDR 4.3.4 Bug fix Change default value of bdr.writers_per_subscription to 1.

BDR 4.3.4 Bug fix Run ANALYZE on the internal raft tables, RT97735.

BDR 4.3.4 Bug fix Fix segfault in I2PC concurrent abort case, RT93962.

BDR 4.3.4 Bug fix Avoid bypassing other extensions in BdrProcessUtility when processing COPY..TO, RT99345.

BDR 4.3.4 Bug fix Ensure that consensus connection are handled correctly, RT97649.

BDR 4.3.4 Bug fix Fix selected memory leaks, RT99231/RT95314.

BDR 4.3.4 Bug fix Add default_table_access_method to replicated GUCs.

BDR 4.3.4 Bug fix Add missing GUCs to DDL replication GUC list.

BDR 4.3.4 Bug fix Improve local node connection failure logging.

BDR 4.3.4 Bug fix Rework raft snapshot group restore algorithm.

BDR 4.3.4 Bug fix Apply node group change to subscription in raft snapshot restore.

BDR 4.3.4 Bug fix Fix commit queue cleanup and flush queueing up for prepared transactions in parallel
apply.

BDR 4.3.4 Bug fix Increase default bdr.raft_keep_min_entries to 1000 for 100.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 12

2.6 Release notes for EDB Postgres Distributed version 4.3.3

Released: 14 Nov 2023 Updated: 18 Jan 2024

EDB Postgres Distributed version 4.3.3 is a patch release of EDB Postgres Distributed 4, which includes bug fixes for issues identified in previous versions.

Note

This version is required for EDB Postgres Advanced Server versions 12.15, 13.11, 14.10, 15.5 and later.

Component Version Type Description

BDR 4.3.3 Bug fix Ensure that the WalSender process does not request locks on the partitions, thus avoiding a deadlock with user
process waiting on sync commit. (RT97952)

BDR 4.3.3 Bug fix Only consider CAMO transactions to be asynchronous when the CAMO setup was degraded to local mode. This
solves the split brain problem when deciding fate of transactions that happened during failover. (RT78928)

BDR 4.3.3 Bug fix Handle partitions with different attribute numbers when batch inserting. (RT99115)

BDR 4.3.3 Bug fix Fix unsafe CAMO decisions in remote_write mode.

BDR 4.3.3 Bug fix Ensure that the taskmgr process does not ignore SIGINT.

BDR 4.3.3 Bug fix Clean up stale records in bdr.taskmgr_local_work_queue during physical join.

BDR 4.3.3 Bug fix Fix a bug in copying bdr.autopartition_rules during logical join.

BDR 4.3.3 Bug fix Override bdr.ddl_replication=off in taskmgr worker.

BDR 4.3.3 Bug fix Avoid a potential deadlock between bdr.autopartition_wait_for_partitions() and taskmgr

BDR 4.3.3 Bug fix Block new EPAS automatic partitioning on PGD cluster.

BDR 4.3.3 Bug fix Allow existing automatically partitioned tables when cluster is created or upgraded.

BDR 4.3.3 Bug fix Block PGD Autopartition on EPAS INTERVAL partitioned table.

BDR 4.3.3 Bug fix Fix memory leak in streaming transaction processing.

BDR 4.3.3 Bug fix Allow force parting of nodes that are already being parted normally.

BDR 4.3.3 Bug fix Fix nodes getting stuck on PART_CATCHUP due to replication slot conflict.

BDR 4.3.3 Bug fix Fix nodes getting stuck on PART_CATCHUP due to node_catchup_info conflict.

BDR 4.3.3 Bug fix Fix row filter failure for partitions created after a table column was dropped (RT95149)

BDR 4.3.3 Bug fix Ensure that replication receiver worker reloads configuration correctly when pg_reload_conf() is called.

BDR 4.3.3 Bug fix Prevent duplicate Raft request ID generation which could break replication.

BDR 4.3.3 Bug fix Fix several rare memory access issues that could potentially cause crashes of workers.

CLI 1.1.2 Bug fix Fixed connect_timeout issue when sslmode=allow or sslmode=prefer by upgrading database
driver library version.

Utilities 1.2.0 Bug fix Remove the pre-upgrade step which sets the CONNECTION LIMIT to 0 at database level in bdr_pg_upgrade

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 13

2.7 Release notes for EDB Postgres Distributed version 4.3.2+p1

Released: 17 Oct 2023

EDB Postgres Distributed version 4.3.2+p1 is a patch release of EDB Postgres Distributed 4, which includes bug fixes for issues identified in previous
versions.

If you are using any previous release of HARP, we recommend that you upgrade to HARP 2.3.2.

Note

This version is required for EDB Postgres Advanced Server versions 12.15, 13.11, 14.8 and later.

Component Version Type Description

HARP 2.3.2 Bug fix Multiple fixes related to network partition in BDR DCS.

HARP 2.3.2 Bug fix Fix intermittent harp-manager hang issue.

HARP 2.3.2 Bug fix In Go driver calls, ensure rows.Err() is checked every time after rows.Next() returns
false.

HARP 2.3.2 Change Improve the BDR DCS's List method performance.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 14

2.8 Release notes for EDB Postgres Distributed version 4.3.2

Released: 31 Aug 2023

Updated: 04 Sep 2023

EDB Postgres Distributed version 4.3.2 is a minor release of EDB Postgres Distributed 4, which includes bug fixes for issues identified in previous versions.

Note

This version is required for EDB Postgres Advanced Server versions 12.15, 13.11, 14.8 and later.

Component Version Type Description

BDR 4.3.2 Bug fix Fixed a crash in conflict triggers during bulk inserts.

BDR 4.3.2 Bug fix Prevented the overflow in group commit transaction tracking on large clusters.

BDR 4.3.2 Bug fix Added a missing columns to the bdr.sequence_alloc catalog.

BDR 4.3.2 Bug fix Added a validatation in node connection strings in bdr.create_node() . (RT95453)

BDR 4.3.2 Bug fix Fixed a memory leak in group commit and camo caused by transaction tracking.

BDR 4.3.2 Bug fix Added check for conflicting node names.

BDR 4.3.2 Bug fix Fixed the consensus snapshot compatibility with PGD 3.7. (RT93022)

BDR 4.3.2 Bug fix When joining a node, don’t check foreign keys to match the behavior of replication. (RT91745)

BDR 4.3.2 Bug fix Improved consumption of replication queue on busy subscriptions.

BDR 4.3.2 Bug fix Fixed a deadlock on autopartition catalogs when a concurrent DROP EXTENSION is being
executed.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 15

2.9 Release notes for EDB Postgres Distributed version 4.3.1+p2

Released: 27 Jul 2023

EDB Postgres Distributed version 4.3.1+p2 is a patch release of EDB Postgres Distributed 4, which includes bug fixes for issues identified in previous
versions.

If you are using any previous release of HARP, we recommend that you upgrade to HARP 2.3.1.

Note

This version is required for EDB Postgres Advanced Server versions 12.15, 13.11, 14.8, and later.

Component Version Type Description

HARP 2.3.1 Bug fix HARP Proxy cannot determine the leader after an extended outage - (BDR-3768).

HARP 2.3.1 Bug fix
Upgrade database driver library version which fixes connect_timeout issue when sslmode=allow or
sslmode=prefer .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 16

2.10 Release notes for EDB Postgres Distributed version 4.3.1+p1

Released: 12 Jul 2023

EDB Postgres Distributed version 4.3.1+p1 is a minor release of EDB Postgres Distributed 4, which includes bug fixes for issues identified in previous
versions.

If you are using any previous release of HARP, we recommend that you upgrade to HARP 2.3.0.

Note

This version is required for EDB Postgres Advanced Server versions 12.15, 13.11, 14.8, and later.

Component Version Type Description

HARP 2.3.0 Bug fix Fix the CAMO lag computation issue - (BDR-3341).

HARP 2.3.0 Bug fix Fix the Etcd TLS issue when only ssl_ca_file is set - (BDR-
3582).

HARP 2.3.0 Feature Add HTTP(S) health check probes for HARP.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 17

2.11 Release notes for EDB Postgres Distributed version 4.3.1

Released: 17 May 2023

EDB Postgres Distributed version 4.3.1 is a minor release of EDB Postgres Distributed 4, which includes bug fixes for issues identified in previous versions.

Note

This version is required for EDB Postgres Advanced Server versions 12.15, 13.11, 14.8, and later.

Component Version Type Description

BDR 4.3.1 Feature Added pid to the log message emitted upon writer process death.

BDR 4.3.1 Feature Made Raft leader step down on loss of quorum (isolated).

BDR 4.3.1 Bug fix Fixed memory leak in consensus process (RT91830).

BDR 4.3.1 Bug fix
Fixed issue where a node can be inconsistent with the group after rejoining. If a node was part of a
subgroup, parted, and then rejoined to the group, it might be inconsistent with the group. The changes from
some nodes of the group would be replayed from a wrong starting point, resulting in potential data loss.

BDR 4.3.1 Bug fix Fixed join and replication when SDW and standby_slot_names are set (RT89702, RT89536).

BDR 4.3.1 Bug fix Fixed spurious warnings when processing sequence options (RT90668).

BDR 4.3.1 Bug fix Fixed upgrades for nodes with CRDTs.

BDR 4.3.1 Bug fix
Fixed replication for subgroup nodes (RT89814). If a node was part of a subgroup, parted, and then rejoined
to the group, it might be inconsistent with the group. The changes from some nodes of the group would be
replayed from a wrong starting point, resulting in potential data loss.

BDR 4.3.1 Bug fix Adjusted lag tracking parameters for LCRs from pg_stat_replication .

BDR 4.3.1 Bug fix Converted all sequences to distributed during create node.

BDR 4.3.1 Bug fix Fixed streaming transactions with standby_slot_names. This might have led to a subscriber-only node
getting ahead of a data node.

BDR 4.3.1 Bug fix Reload configuration for the pglogical receiver. Reload and apply the configuration changes when the
server receives reload signal.

BDR 4.3.1 Enhancement Avoid restarting sync workers. This enhancement is to prevent the node join from failing when config
changes are made that signal the restart of subscription workers.

CLI 1.1.1 Change Upgraded third-party dependencies to fix Github dependabot alerts.

HARP 2.2.3 Bug fix Updated consensus check to use bdr.get_raft_status instead of bdr.monitor_group_raft .

Utilities 1.1.0 Bug fix Fixed handle uninitialized physical replication slots issue.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 18

2.12 Release notes for EDB Postgres Distributed version 4.3.0+p1

Released: 30 Mar 2023

EDB Postgres Distributed version 4.3.0+p1 is a patch release of EDB Postgres Distributed 4, which includes bug fixes for issues identified in previous
versions.

It includes a patch to HARP 2.2.1 to address a security vulnerability. If you are using HARP 2.2.1 or earlier, we recommend that you upgrade to HARP 2.2.2.

Note

This version is required for EDB Postgres Advanced Server versions 12.14.18, 13.10.14, 14.7.0 and later.

Component Version Type Description

HARP 2.2.2 Change Upgrade 3rd party dependencies to fix Github dependabot alerts

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 19

2.13 Release notes for EDB Postgres Distributed version 4.3.0

Released: 14 Feb 2023

EDB Postgres Distributed version 4.3.0 is a patch release of EDB Postgres Distributed 4, which includes bug fixes for issues identified in previous versions.

Note

This version is required for EDB Postgres Advanced Server versions 12.14.18, 13.10.14, 14.7.0 and later.

Component Version Type Description

BDR 4.3.0 Bug fix

Handle ALTER TABLE...ALTER COLUMN...TYPE...on a non-data node (BDR-2768 RT86808)

A global DML lock is required if a table rewrite is needed, however this cannot be taken if the query is executed on
a non-data node (logical standby or subscriber-only).

BDR 4.3.0 Bug fix

Separate autopartition leader from Raft leader (BDR-2721)

Raft leader can be a witness node but autopartitioning can only be managed on data nodes. This change ensures
that autopartition leader is always a data node.

BDR 4.3.0 Feature

Implement bdr.alter node_kind()

Function to change a node kind, the kind can also be checked in bdr.node now.

BDR 4.3.0 Bug fix

Replicate bdr admin functions to standbys (BDR-1575, RT72698)

Always replicate the function call also for the writter process.

BDR 4.3.0 Bug fix

Fix watermark handling on clusters with multiple sub-groups

Watermark is used to ensure data consistency during join. Previously, this didn't work correctly in the presence of
multiple data sub-groups.

BDR 4.3.0 Bug fix

Don't allow switching to CAMO Local Mode if the node is not a write lead

In CAMO only one node should be allowed to switch to the Local Mode at given time. We now require the node to
be the HARP write leader in order to ensure that rule.

HARP 2.2.1 Bug fix Fix connection leak issue (BDR-2530).

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 20

2.14 Release notes for EDB Postgres Distributed version 4.2.2

Released: 14 Dec 2022

EDB Postgres Distributed version 4.2.2 is a patch release of EDB Postgres Distributed 4, which includes bug fixes for issues identified in previous versions.

Component Version Type Description

BDR 4.2.2 Bug fix

Fix timeout issue related to global lock handling (BDR-2836)

Correctly lock Raft maintained tables when needed

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 21

2.15 Release notes for EDB Postgres Distributed version 4.2.1

Released: 16 Nov 2022

EDB Postgres Distributed version 4.2.1 is a patch release of EDB Postgres Distributed 4, which includes bug fixes for issues identified in previous versions.

Component Version Typ
e

Description

BDR 4.2.1 Bug
fix

Grant bdr.replication_status to bdr_read_all_stats (BDR-2523)

Alllow the read_all_stats role to check BDR replication information.

BDR 4.2.1
Bug
fix

Resolve hang related to bdr.standby_slots_min_confirmed (BDR-2445, RT80692)

Allow the WAl sender to proceed without the need to wait for the timeout after a Subscriber Only node is parted, while
using standby_slot_names .

BDR 4.2.1 Bug
fix

Use two_phase slots in bdr_init_physical on PG14+

Improve prepared transaction handling during bdr_init_physical .

BDR 4.2.1 Bug
fix

Add schema name to relation name in on all error messages (BDR-765)

BDR 4.2.1 Bug
fix

Allow parting a node only if the node didn't already start the part process (BDR-2629)

Return with an error if a node is already in at least PART_START state.

BDR 4.2.1
Bug
fix

Don't wait for ADD CONSTRAINT progress if DDL replication is off (BDR-2645, RT86043)

The constraint validation from all nodes is not needed if DDL is not replicated, nor do PARTED or STANDBY nodes
need to validate.

BDR 4.2.1 Bug
fix

Adjust replication_set_add_ddl_filter (BDR-2755, RT86825)

Replicate all the columns needed for the ddl_filter.

BDR 4.2.1 Bug
fix

Add maintenance to bdr.queue catalog table (BDR-2475, RT84105)

Automatically remove rows older than the bdr.max_queue_days (default disabled) on bdr.queue.

BDR 4.2.1
Bug
fix

Add timeout option to bdr_init_physical (RT8277)

The timeout does not take the time spent in other activities of bdr_init_physical such as creating a base
backup and sending the join request.

BDR 4.2.1
Bug
fix

Abort unresolved commit scope transactions on node part (BDR-2597)

Add a new peer state PART_TX_RESOLVE. This state will abort any remaining unresolved group commit transactions
from the node that's parting on the current raft leader and replicates that to the rest of the cluster.

HARP 2.2.1
Bug
fix Fix connection leak issue (BDR-2530)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 22

2.16 Release notes for EDB Postgres Distributed version 4.2.0

Released: 22 Aug 2022

EDB Postgres Distributed version 4.2.0 is a minor release of EDB Postgres Distributed 4, which includes new features as well as fixes for issues identified in
previous versions.

Component Version Type Description

BDR 4.2.0 Enhancement

Allow consumption of the reserved galloc sequence slot (BDR-2367, RT83437, RT68255)

The galloc sequence slot reserved for future use by background allocator can be consumed in the presence
of consensus failure.

BDR 4.2.0 Bug fix

Fix spurious pglogical receiver timeouts on idle connections (RT82315)

When there is nothing to replicate and apply, the pglogical receiver may misinterpret the state as timeout
and exit with error "ERROR: 08006: terminating pglogical receiver due to timeout". Correct this
misinterpretation.

BDR 4.2.0 Bug fix

Fix "insufficient privileges" error for non-superuser trusted extensions (BDR-2350)

A CREATE EXTENSION command executed by a non-superuser on PostgreSQL 13+ may succeed on the BDR
node where it is executed but will fail to be replicated to other nodes breaking replication. Fix this by
allowing such commands to be applied on non-origin nodes.

BDR 4.2.0 Bug fix

Avoid a race condition when reconstructing global_locks upon restart if Parallel Apply is enabled
(RT83435, BDR-2383)

When parallel apply is enabled, multiple writers may try to recover the same global lock causing a
deadlock. The BDR node where this happens will be rendered unrecoverable. Fix this by letting a single
writer recover all the global locks.

BDR 4.2.0 Bug fix

Fix spurious segmentation faults when conflicts are logged to bdr.conflict_history (BDR-2403, RT83436,
RT83928)

When conflicts are logged to the catalog bdr.conflict_history, the pglogical writer process may crash
because of a segmentation fault due to an invalid pointer being used. Fix this usage.

BDR 4.2.0 Bug fix

Clean up the replication slot when bdr_init_physical fails (BDR-2364, RT74789)

If bdr_init_physical aborts without being able to join the node, it will leave behind an inactive replication
slot. Remove such a replication slot when it is inactive before an irregular exit.

HARP 2.2.0 Enhancement Add support for sslpassword in a connection string, including processing hook (HNG-626)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 23

2.17 Release notes for EDB Postgres Distributed version 4.1.1

Released: 21 Jun 2022

EDB Postgres Distributed version 4.1.1 includes bug fixes for BDR 4.1.1 and HARP 2.1.1. See the TPAexec Release Notes for version 23.1 for information on
the changes and bug fixes in TPAexec.

Component Version Type Description

BDR 4.1.1 Feature Add generic function bdr.is_node_connected returns true if the walsender for a given peer is active.

BDR 4.1.1 Feature Add generic function bdr.is_node_ready returns boolean if the lag is under a specific span.

BDR 4.1.1 Bug fix Add support for a --link argument to bdr_pg_upgrade for using hard-links.

BDR 4.1.1 Bug fix Prevent removing a bdr.remove_commit_scope if still referenced by any bdr.node_group as the
default commit scope.

BDR 4.1.1 Bug fix Correct Raft based switching to Local Mode for CAMO pairs of nodes (RT78928)

BDR 4.1.1 Bug fix Prevent a potential segfault in bdr.drop_node for corner cases (RT81900)

BDR 4.1.1 Bug fix

Prevent use of CAMO or Eager All Node transactions in combination with transaction streaming.
Transaction streaming turned out to be problematic in combination with CAMO and Eager All Node
transactions. Until this is resolved, BDR now prevents its combined use. This may require CAMO
deployments to adjust their configuration to disable transaction streaming, see Transaction Streaming
Configuration.

HARP 2.1.1 Enhancement Log a warning on loss of DCS connection

HARP 2.1.1 Enhancement Log a warning when metadata refresh is taking too long - usually due to high latency network

HARP 2.1.1 Bug fix Restart harp_proxy.service on a failure

HARP 2.1.1 Bug fix Fix concurrency issue with connection management in harpctl

HARP 2.1.1 Bug fix Don't try to proxy connections to previous leader on unmanaged cluster

HARP 2.1.1 Bug fix Don't panic in haprctl when location is empty

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 24

https://techsupport.enterprisedb.com/customer_portal/sw/tpa/trunk/231/

2.18 Release notes for EDB Postgres Distributed version 4.1.0

Released: 17 May 2022

EDB Postgres Distributed version 4.1.0 includes the following:

Component Version Type Description

CLI 1.0.0 Feature Ability to gather information such as the current state of replication, consensus, and nodes for an EDB Postgres
Distributed cluster using new command-line interface (CLI).

BDR 4.1.0 Feature
Support in-place major upgrades of Postgres on a data node with a new command-line utility, bdr_pg_upgrade.
This utility uses the standard pg_upgrade command, and reduces the time and network bandwidth needed to do
major version upgrades of a EDB Postgres Distributed cluster.

BDR 4.1.0 Feature
Enable the ability to configure a replication lag threshold. After the threshold is met, the transaction commits get
throttled. This threshold allows limiting RPO without incurring the latency impact on every transaction that comes
with synchronous replication.

BDR 4.1.0 Feature
Global sequences are automatically configured based on data type replacing the need to set up custom sequence
handling configuration on every node. The new SnowflakeID algorithm replaces Timeshard, which had
limitations.

BDR 4.1.0 Feature
Add a new SQL-level interface for configuring synchronous replication durability and visibility options by group
rather than by node. This approach allows you to configure all nodes consistently from a single place instead of
using config files.

BDR 4.1.0 Feature Add a new synchronous replication option, Group Commit, which allows a quorum to be required before
committing a transaction in a EDB Postgres Distributed group.

BDR 4.1.0 Feature
Allow a Raft request to be required for CAMO switching to Local Mode. Add a require_raft flag to the CAMO
pairing configuration which controls the behavior of switching from CAMO protected to Local Mode, introducing
the option to require a majority of nodes to be connected to allow to switch to Local Mode. (RT78928)

BDR 4.1.0 Feature

Allow replication to continue on ALTER TABLE ... DETACH PARTITION CONCURRENTLY of already
detached partition. Similarly to how BDR 4 handles CREATE INDEX CONCURRENTLY when same index
already exists, we now allow replication to continue when ALTER TABLE ... DETACH PARTITION
CONCURRENTLY is receiver for partition that has been already detached. (RT78362)

BDR 4.1.0 Feature

Add additional filtering options to DDL filters. DDL filters allow for replication of different DDL statements to
different replication sets. Similar to how table membership in replication set allows DML on different tables to be
replicated via different replication sets. This release adds new controls that make it easier to use the DDL filters:
- query_match - if defined query must match this regex
- exclusive - if true, other matched filters are not taken into consideration (i.e. only the exclusive filter is applied),
when multiple exclusive filters match, we throw error

BDR 4.1.0 Feature
Add bdr.lock_table_locking configuration variable. When enabled this changes behavior of LOCK
TABLE command to take take a global DML lock

BDR 4.1.0 Feature Implement buffered write for LCR segment file. This should reduce I/O and improve CPU usage of the Decoding
Worker.

BDR 4.1.0 Feature Add support for partial unique index lookups for conflict detection. Indexes on expression are however still not
supported for conflict detection. (RT78368)

BDR 4.1.0 Feature

Add additional statistics to bdr.stat_subscription :
- nstream_insert => the count of INSERTs on streamed transactions
- nstream_update => the count of UPDATEs on streamed transactions
- nstream_delete => the count of DELETEs on streamed transactions
- nstream_truncate => the count of TRUNCATEs on streamed transactions
- npre_commit_confirmations => the count pre-commit confirmations, when using CAMO
- npre_commit => the count of pre-commits
- ncommit_prepared => the count of prepared commits with 2PC
- nabort_prepared => the count of aborts of prepared transactions with 2PC

BDR 4.1.0 Feature Add execute_locally option to bdr.replicate_ddl_command.This allows optional queueing of ddl commands for
replication to other groups without executing it locally. (RT73533)

BDR 4.1.0 Feature
Add fast argument to bdr.alter_subscription_disable() . The argument only influences the
behavior of immediate . When set to true (default) it will stop the workers without letting them finish the
current work. (RT79798)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 25

BDR 4.1.0 Feature Simplify bdr.{add,remove}_camo_pair functions to return void.

BDR 4.1.0 Feature
Add connectivity/lag check before taking global lock so that application or user does not have to wait for minutes
to get lock timeout when there are obvious connectivity issues. Can be set to DEBUG, LOG, WARNING (default) or
ERROR.

BDR 4.1.0 Feature Only log conflicts to conflict log table by default. They are no longer logged to the server log file by default, but
this can be overridden.

BDR 4.1.0 Feature Improve reporting of remote errors during node join.

BDR 4.1.0 Feature Make autopartition worker's max naptime configurable.

BDR 4.1.0 Feature Add ability to request partitions upto the given upper bound with autopartition.

BDR 4.1.0 Feature Don't try replicate DDL run on subscribe-only node. It has nowhere to replicate so any attempt to do so will fail.
This is same as how logical standbys behave.

BDR 4.1.0 Feature
Add bdr.accept_connections configuration variable. When false , walsender connections to
replication slots using BDR output plugin will fail. This is useful primarily during restore of single node from
backup.

BDR 4.1.0 Bug fix

Keep the lock_timeout as configured on non-CAMO-partner BDR nodes. A CAMO partner uses a low
lock_timeout when applying transactions from its origin node. This was inadvertently done for all BDR nodes

rather than just the CAMO partner, which may have led to spurious lock_timeout errors on pglogical writer
processes on normal BDR nodes.

BDR 4.1.0 Bug fix
Show a proper wait event for CAMO / Eager confirmation waits. Show correct "BDR Prepare Phase"/"BDR Commit
Phase" in bdr.stat_activity instead of the default “unknown wait event”. (RT75900)

BDR 4.1.0 Bug fix Reduce log for bdr.run_on_nodes. Don't log when setting bdr.ddl_replication to off if it's done with the
"run_on_nodes" variants of function. This eliminates the flood of logs for monitoring functions. (RT80973)

BDR 4.1.0 Bug fix Fix replication of arrays of composite types and arrays of builtin types that don't support binary network encoding

BDR 4.1.0 Bug fix Fix replication of data types created during bootstrap

BDR 4.1.0 Bug fix Confirm end LSN of the running transactions record processed by WAL decoder so that the WAL decoder slot
remains up to date and WAL sender get the candidate in timely manner.

BDR 4.1.0 Bug fix Don't wait for autopartition tasks to complete on parting nodes

BDR 4.1.0 Bug fix
Limit the bdr.standby_slot_names check when reporting flush position only to physical slots. Otherwise
flush progress is not reported in presence of disconnected nodes when using bdr.standby_slot_names .
(RT77985, RT78290)

BDR 4.1.0 Bug fix Request feedback reply from walsender if we are close to wal_receiver_timeout

BDR 4.1.0 Bug fix

Don't record dependency of auto-paritioned table on BDR extension more than once. This resulted in "ERROR:
unexpected number of extension dependency records" errors from auto-partition and broken replication on
conflicts when this happens.

Note that existing broken tables need to still be fixed manually by removing the double dependency from
pg_depend

.

BDR 4.1.0 Bug fix
Improve keepalive handling in receiver. Don't update position based on keepalive when in middle of streaming
transaction as we might lose data on crash if we do that. There is also new flush and signalling logic that should
improve latency in low TPS scenarios.

BDR 4.1.0 Bug fix Only do post CREATE commands processing when BDR node exists in the database.

BDR 4.1.0 Bug fix Don't try to log ERROR conflicts to conflict history table.

BDR 4.1.0 Bug fix Fixed segfault where a conflict_slot was being used after it was released during multi-insert (COPY) (RT76439).

BDR 4.1.0 Bug fix
Prevent walsender processes spinning when facing lagging standby slots. Correct signaling to reset a latch so
that a walsender process does consume 100% of a CPU in case one of the standby slots is lagging behind.
(RT80295, RT78290)

BDR 4.1.0 Bug fix Fix handling of wal_sender_timeout when bdr.standby_slot_names are used (RT78290)

BDR 4.1.0 Bug fix Fix reporting of disconnected slots in bdr.monitor_local_replslots . They could have been previously
reported as missing instead of disconnected.

BDR 4.1.0 Bug fix
Fix apply timestamp reporting for down subscriptions in bdr.get_subscription_progress() function
and in the bdr.subscription_summary that uses that function. It would report garbage value before.

Component Version Type Description

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 26

BDR 4.1.0 Bug fix Fix snapshot handling in various places in BDR workers.

BDR 4.1.0 Bug fix Be more consistent about reporting timestamps and LSNs as NULLs in monitoring functions when there is no
available value for those.

BDR 4.1.0 Bug fix Reduce log information when switching between writer processes.

BDR 4.1.0 Bug fix Don't do superuser check when configuration parameter was specified on PG command-line. We can't do
transactions there yet and it's guaranteed to be superuser changed at that stage.

BDR 4.1.0 Bug fix Use 64 bits for calculating lag size in bytes. To eliminate risk of overflow with large lag.

HARP 2.1.0 Feature
The BDR DCS now uses a push notification from the consensus rather than through polling nodes. This change
reduces the time for new leader selection and the load that HARP does on the BDR DCS since it doesn't need to
poll in short intervals anymore.

HARP 2.1.0 Feature TPA now restarts each HARP Proxy one by one and wait until they come back to reduce any downtime incurred by
the application during software upgrades.

HARP 2.1.0 Feature
The support for embedding PGBouncer directly into HARP Proxy is now deprecated and will be removed in the
next major release of HARP. It's now possible to configure TPA to put PGBouncer on the same node as HARP
Proxy and point to that HARP Proxy.

HARP 2.1.0 Bug fix harpctl promote <node_name> would occasionally promote a different node than the one specified. This
has been fixed. (RT75406)

HARP 2.1.0 Bug fix Fencing would sometimes fail when using BDR as the Distributed Consensus Service. This has been corrected.

HARP 2.1.0 Bug fix harpctl apply no longer turns off routing for leader after the cluster has been established. (RT80790)

HARP 2.1.0 Bug fix Harp-manager no longer exits if it cannot start a failed database. Harp-manager will keep retrying with randomly
increasing periods. (RT78516)

HARP 2.1.0 Bug fix The internal pgbouncer proxy implementation had a memory leak. This has been remediated.

Component Version Type Description

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 27

2.19 Release notes for EDB Postgres Distributed version 4.0.3

Released: 31 Mar 2022

This is a patch release of HARP 2 that includes fixes for issues identified in previous versions.

Component Version Type Description

HARP 2.0.3 Enhancement HARP Proxy supports read-only user dedicated TLS Certificate (RT78516)

HARP 2.0.3 Bug fix HARP Proxy continues to try and connect to DCS instead of exiting after 50 seconds.
(RT75406)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 28

2.20 Release notes for EDB Postgres Distributed version 4.0.2

Released: 24 Feb 2022

This is a maintenance release for BDR 4.0 and HARP 2.0 which includes minor improvements as well as fixes for issues identified in previous versions.

Component Version Type Description

BDR 4.0.2 Enhancement

Add bdr.max_worker_backoff_delay (BDR-1767)

This changes the handling of the backoff delay to exponentially increase from
bdr.min_worker_backoff_delay to bdr.max_worker_backoff_delay in presence of

repeated errors. This reduces log spam and in some cases also prevents unnecessary connection attempts.

BDR 4.0.2 Enhancement

Add execute_locally option to bdr.replicate_ddl_command() (RT73533)

This allows optional queueing of ddl commands for replication to other groups without executing it locally.

BDR 4.0.2 Enhancement

Change ERROR on consensus issue during JOIN to WARNING

The reporting of these transient errors was confusing as they were also shown in bdr.worker_errors. These
are now changed to WARNINGs.

BDR 4.0.2 Bug fix

WAL decoder confirms end LSN of the running transactions record (BDR-1264)

Confirm end LSN of the running transactions record processed by WAL decoder so that the WAL decoder
slot remains up to date and WAL senders get the candidate in timely manner.

BDR 4.0.2 Bug fix

Don't wait for autopartition tasks to complete on parting nodes (BDR-1867)

When a node has started parting process, it makes no sense to wait for autopartition tasks on such nodes to
finish since it's not part of the group anymore.

BDR 4.0.2 Bug fix

Improve handling of node name reuse during parallel join (RT74789)

Nodes now have a generation number so that it's easier to identify the name reuse even if the node record is
received as part of a snapshot.

BDR 4.0.2 Bug fix

Fix locking and snapshot use during node management in the BDR manager process (RT74789)

When processing multiple actions in the state machine, make sure to reacquire the lock on the processed
node and update the snapshot to make sure all updates happening through consensus are taken into
account.

BDR 4.0.2 Bug fix

Improve cleanup of catalogs on local node drop

Drop all groups, not only the primary one and drop all the node state history info as well.

BDR 4.0.2 Bug fix

Improve error checking for join request in bdr_init_physical

Previously bdr_init_physical would simply wait forever when there was any issue with the consensus
request, now we do same checking as the logical join does.

BDR 4.0.2 Bug fix

Improve handling of various timeouts and sleeps in consensus

This reduces the amount of new consensus votes needed when processing many consensus requests or
time consuming consensus requests, for example during join of a new node.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 29

BDR 4.0.2 Bug fix

Fix handling of wal_receiver_timeout (BDR-1848)

The wal_receiver_timeout has not been triggered correctly due to a regression in BDR 3.7 and 4.0.

BDR 4.0.2 Bug fix

Limit the bdr.standby_slot_names check when reporting flush position only to physical slots
(RT77985, RT78290)

Otherwise flush progress is not reported in presence of disconnected nodes when using
bdr.standby_slot_names .

BDR 4.0.2 Bug fix Fix replication of data types created during bootstrap (BDR-1784)

BDR 4.0.2 Bug fix Fix replication of arrays of builtin types that don't have binary transfer support (BDR-1042)

BDR 4.0.2 Bug fix Prevent CAMO configuration warnings if CAMO is not being used (BDR-1825)

HARP 2.0.2 Enhancement

BDR consensus now generally available.

HARP offers multiple options for Distributed Consensus Service (DCS) source: etcd and BDR. The BDR
consensus option can be used in deployments where etcd isn't present. Use of the BDR consensus option is
no longer considered beta and is now supported for use in production environments.

HARP 2.0.2 Enhancement

Transport layer proxy now generally available.

HARP offers multiple proxy options for routing connections between the client application and database:
application layer (L7) and transport layer (L4). The network layer 4 or transport layer proxy simply forwards
network packets, and layer 7 terminates network traffic. The transport layer proxy, previously called simple
proxy, is no longer considered beta and is now supported for use in production environments.

Component Version Type Description

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 30

2.21 Release notes for EDB Postgres Distributed version 4.0.1

Released: 31 Jan 2022

This is a maintenance release for BDR 4.0 and HARP 2.0 which includes minor Enhancements as well as fixes for issues identified in previous versions.

Component Version Type Description

BDR 4.0.1 Enhancement

Reduce frequency of CAMO partner connection attempts.

In case of a failure to connect to a CAMO partner to verify its configuration and check the status of
transactions, do not retry immediately (leading to a fully busy pglogical manager process), but throttle
down repeated attempts to reconnect and checks to once per minute.

BDR 4.0.1 Enhancement

Implement buffered read for LCR segment file (BDR-1422)

Implement LCR segment file buffering so that multiple LCR chunks can be read at a time. This should
reduce I/O and improve CPU usage of Wal Senders when using the Decoding Worker.

BDR 4.0.1 Enhancement

Avoid unnecessary LCR segment reads (BDR-1426)

BDR now attempts to only read new LCR segments when there is at least one available. This reduces I/O
load when Decoding Worker is enabled.

BDR 4.0.1 Enhancement

Performance of COPY replication including the initial COPY during join has been greatly improved for
partitioned tables (BDR-1479)

For large tables this can improve the load times by order of magnitude or more.

BDR 4.0.1 Bug fix

Fix the parallel apply worker selection (BDR-1761)

This makes parallel apply work again. In 4.0.0 parallel apply was never in effect due to this bug.

BDR 4.0.1 Bug fix

Fix Raft snapshot handling of bdr.camo_pairs (BDR-1753)

The previous release would not correctly propagate changes to the CAMO pair configuration when they
were received via Raft snapshot.

BDR 4.0.1 Bug fix Correctly handle Raft snapshots from BDR 3.7 after upgrades (BDR-1754)

BDR 4.0.1 Bug fix
Upgrading a CAMO configured cluster taking into account the bdr.camo_pairs in the snapshot
while still excluding the ability to perform in place upgrade of a cluster (due to upgrade limitations
unrelated to CAMO).

BDR 4.0.1 Bug fix

Switch from CAMO to Local Mode only after timeouts (RT74892)

Do not use the catchup_interval estimate when switching from CAMO protected to Local Mode,
as that could induce inadvertent switching due to load spikes. Use the estimate only when switching
from Local Mode back to CAMO protected (to prevent toggling forth and back due to lag on the CAMO
partner).

BDR 4.0.1 Bug fix

Fix replication set cache invalidation when published replication set list have changed (BDR-1715)

In previous versions we could use stale information about which replication sets (and as a result which
tables) should be published until the subscription has reconnected.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 31

BDR 4.0.1 Bug fix

Prevent duplicate values generated locally by galloc sequence in high concurrency situations when the
new chunk is used (RT76528)

The galloc sequence could have temporarily produce duplicate value when switching which chunk is
used locally (but not across nodes) if there were multiple sessions waiting for the new value. This is now
fixed.

BDR 4.0.1 Bug fix

Address memory leak on streaming transactions (BDR-1479)

For large transaction this reduces memory usage and I/O considerably when using the streaming
transactions feature. This primarily improves performance of COPY replication.

BDR 4.0.1 Bug fix

Don't leave slot behind after PART_CATCHUP phase of node parting when the catchup source has
changed while the node was parting (BDR-1716)

When node is being removed (parted) from BDR group, we do so called catchup in order to forward any
missing changes from that node between remaining nodes in order to keep the data on all nodes
consistent. This requires an additional replication slot to be created temporarily. Normally this
replication slot is removed at the end of the catchup phase, however in certain scenarios where we have
to change the source node for the changes, this slot could have previously been left behind. From this
version, this slot is always correctly removed.

BDR 4.0.1 Bug fix

Ensure that the group slot is moved forward when there is only one node in the BDR group

This prevents disk exhaustion due to WAL accumulation when the group is left running with just single
BDR node for a prolonged period of time. This is not recommended setup but the WAL accumulation
was not intentional.

BDR 4.0.1 Bug fix

Advance Raft protocol version when there is only one node in the BDR group

Single node clusters would otherwise always stay on oldest support protocol until another node was
added. This could limit available feature set on that single node.

HARP 2.0.1 Enhancement
Support for selecting a leader per location rather than relying on DCS like etcd to have separate setup in
different locations. This still requires a majority of nodes to survive loss of a location, so an odd number
of both locations and database nodes is recommended.

HARP 2.0.1 Enhancement
The BDR DCS now uses a push notification from the consensus rather than through polling nodes. This
change reduces the time for new leader selection and the load that HARP does on the BDR DCS since it
doesn't need to poll in short intervals anymore.

HARP 2.0.1 Enhancement TPA now restarts each HARP Proxy one by one and wait until they come back to reduce any downtime
incurred by the application during software upgrades.

HARP 2.0.1 Enhancement
The support for embedding PGBouncer directly into HARP Proxy is now deprecated and will be removed
in the next major release of HARP. It's now possible to configure TPA to put PGBouncer on the same
node as HARP Proxy and point to that HARP Proxy.

HARP 2.0.1 Bug fix harpctl promote <node_name> would occasionally promote a different node than the one
specified. This has been fixed. [Support Ticket #75406]

HARP 2.0.1 Bug fix Fencing would sometimes fail when using BDR as the Distributed Consensus Service. This has been
corrected.

HARP 2.0.1 Bug fix harpctl apply no longer turns off routing for leader after the cluster has been established.
[Support Ticket #80790]

HARP 2.0.1 Bug fix Harp-manager no longer exits if it cannot start a failed database. Harp-manager will keep retrying with
randomly increasing periods. [Support Ticket #78516]

HARP 2.0.1 Bug fix The internal pgbouncer proxy implementation had a memory leak. This has been remediated.

Component Version Type Description

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 32

2.22 Release notes for EDB Postgres Distributed version 4.0.0

Released: 01 Dec 2021

EDB Postgres Distributed version 4.0.0 contains BDR 34.0 and HARP 2.0. BDR 4.0 is a new major version of BDR and adopted with this release number is
semantic versioning (for details see semver.org). The two previous major versions are 3.7 and 3.6.

Component Version Type Description

BDR 4.0.0 Feature

BDR on EDB Postgres Advanced 14 now supports following features which were previously only available on EDB
Postgres Extended:
- Commit At Most Once - a consistency feature helping an application to commit each transaction only once, even
in the presence of node failures
- Eager Replication - synchronizes between the nodes of the cluster before committing a transaction to provide
conflict free replication
- Decoding Worker - separation of decoding into separate worker from wal senders allowing for better scalability
with many nodes
- Estimates for Replication Catch-up times
- Timestamp-based Snapshots - providing consistent reads across multiple nodes for retrieving data as they
appeared or will appear at a given time
- Automated dynamic configuration of row freezing to improve consistency of UPDATE/DELETE conflicts
resolution in certain corner cases
- Assesment checks
- Support for handling missing partitions as conflicts rather than errors
- Advanced DDL Handling for NOT VALID constraints and ALTER TABLE

BDR 4.0.0 Feature

BDR on community version of PostgreSQL 12-14 now supports following features which were previously only
available on EDB Postgres Advanced or EDB Postgres Extended:
- Conflict-free Replicated Data Types - additional data types which provide mathematically proven consistency in
asynchronous multi-master update scenarios
- Column Level Conflict Resolution - ability to use per column last-update wins resolution so that UPDATEs on
different fields can be "merged" without losing either of them
- Transform Triggers - triggers that are executed on the incoming stream of data providing ability to modify it or to
do advanced programmatic filtering
- Conflict triggers - triggers which are called when conflict is detected, providing a way to use custom conflict
resolution techniques
- CREATE TABLE AS replication
- Parallel Apply - allow multiple writers to apply the incoming changes

BDR 4.0.0 Feature

Support streaming of large transactions.

This allows BDR to stream a large transaction (greater than logical_decoding_work_mem in size) either to
a file on the downstream or to a writer process. This ensures that the transaction is decoded even before it's
committed, thus improving parallelism. Further, the transaction can even be applied concurrently if streamed
straight to a writer. This improves parallelism even more.

When large transactions are streamed to files, they are decoded and the decoded changes are sent to the
downstream even before they are committed. The changes are written to a set of files and applied when the
transaction finally commits. If the transaction aborts, the changes are discarded, thus wasting resources on both
upstream and downstream.

Sub-transactions are also handled automatically.

This feature is available on PostgreSQL 14, EDB Postgres Extended 13+ and EDB Postgres Advanced 14, see
Choosing a Postgres distribution appendix for more details on which features can be used on which versions of
Postgres.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 33

https://semver.org/

BDR 4.0.0 Feature

The differences that existed in earlier versions of BDR between standard and enterprise edition have been
removed. With BDR 4.0 there is one extension for each supported Postgres distribution and version, i.e.,
PostgreSQL v12-14, EDB Postgres Extended v12-14, and EDB Postgres Advanced 12-14.

Not all features are available on all versions of PostgreSQL, the available features are reported via feature flags
using either bdr_config command line utility or bdr.bdr_features() database function. See Choosing
a Postgres distribution for more details.

BDR 4.0.0 Feature

There is no pglogical 4.0 extension that corresponds to the BDR 4.0 extension. BDR no longer has a requirement
for pglogical.

This means also that only BDR extension and schema exist and any configuration parameters were renamed from
pglogical. to bdr. .

BDR 4.0.0 Feature

Some configuration options have change defaults for better post-install experience:
- Parallel apply is now enabled by default (with 2 writers). Allows for better performance, especially with
streaming enabled.
- COPY and CREATE INDEX CONCURRENTLY are now streamed directly to writer in parallel (on Postgres
versions where streaming is supported) to all available nodes by default, eliminating or at least reducing
replication lag spikes after these operations.
- The timeout for global locks have been increased to 10 minutes
- The bdr.min_worker_backoff_delay now defaults to 1s so that subscriptions retry connection only
once per second on error

BDR 4.0.0 Feature Greatly reduced the chance of false positives in conflict detection during node join for table that use origin based
conflict detection

BDR 4.0.0 Feature

Move configuration of CAMO pairs to SQL catalogs

To reduce chances of misconfiguration and make CAMO pairs within the BDR cluster known globally, move the
CAMO configuration from the individual node's postgresql.conf to BDR system catalogs managed by Raft. This for
example can prevent against inadvertently dropping a node that's still configured to be a CAMO partner for
another active node.

Please see the Upgrades chapter for details on the upgrade process.

This deprecates GUCs bdr.camo_partner_of and bdr.camo_origin_for and replaces the functions
bdr.get_configured_camo_origin_for() and get_configured_camo_partner_of with
bdr.get_configured_camo_partner .

HARP 2.0.0 Change Complete rewrite of system in golang to optimize all operations

HARP 2.0.0 Change Cluster state can now be bootstrapped or revised via YAML

HARP 2.0.0 Feature Configuration now in YAML, configuration file changed from harp.ini to config.yml

HARP 2.0.0 Feature

HARP Proxy deprecates need for HAProxy in supported architecture.

The use of HARP Router to translate DCS contents into appropriate online or offline states for HTTP-based URI
requests meant a load balancer or HAProxy was necessary to determine the lead master. HARP Proxy now does
this automatically without periodic iterative status checks.

HARP 2.0.0 Feature

Utilizes DCS key subscription to respond directly to state changes.

With relevant cluster state changes, the cluster responds immediately, resulting in improved failover and
switchover times.

HARP 2.0.0 Feature

Compatibility with etcd SSL settings.

It is now possible to communicate with etcd through SSL encryption.

Component Version Type Description

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 34

HARP 2.0.0 Feature

Zero transaction lag on switchover.

Transactions are not routed to the new lead node until all replicated transactions are replayed, thereby reducing
the potential for conflicts.

HARP 2.0.0 Feature

Experimental BDR Consensus layer.

Using BDR Consensus as the Distributed Consensus Service (DCS) reduces the amount of change needed for
implementations.

HARP 2.0.0 Feature

Experimental built-in proxy.

Proxy implementation for increased session control.

Component Version Type Description

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 35

3 Known issues

This section discusses currently known issues in EDB Postgres Distributed 4. These issues are tracked in BDR's ticketing system and are expected to be
resolved in a future release.

Performance of HARP in terms of failover and switchover time depends non-linearly on the latencies between DCS nodes. Which is why we currently
recommend using etcd cluster per region for HARP in case of EDB Postgres Distributed deployment over multiple regions (typically the Gold and
Platinum layouts). TPAexec already sets up the etcd do run per region cluster for these when harp_consensus_protocol option is set to
etcd in the config.yml . It's recommended to increase the leader_lease_duration HARP option

(harp_leader_lease_duration in TPAexec) for DCS deployments across higher latency network.

If the resolver for the update_origin_change conflict is set to skip , synchronous_commit=remote_apply is used, and concurrent
updates of the same row are repeatedly applied on two different nodes, then one of the update statements might hang due to a deadlock with the
BDR writer. As mentioned in the Conflicts chapter, skip is not the default resolver for the update_origin_change conflict, and this
combination isn't intended to be used in production. It discards one of the two conflicting updates based on the order of arrival on that node, which
is likely to cause a divergent cluster. In the rare situation that you do choose to use the skip conflict resolver, note the issue with the use of the
remote_apply mode.

The Decoding Worker feature doesn't work with CAMO/EAGER/Group Commit. Installations using CAMO/Eager/Group Commit must keep
enable_wal_decoder disabled.

Decoding Worker works only with the default replication sets.

Lag control doesn't adjust commit delay in any way on a fully isolated node, that is, in case all other nodes are unreachable or not operational. As
soon as at least one node is connected, replication lag control picks up its work and adjusts the BDR commit delay again.

For time-based lag control, BDR currently uses the lag time (measured by commit timestamps) rather than the estimated catchup time that's based
on historic apply rate.

Changing the CAMO partners in a CAMO pair isn't currently possible. It's possible only to add or remove a pair. Adding or removing a pair doesn't
need a restart of Postgres or even a reload of the configuration.

Group Commit cannot be combined with CAMO or Eager All Node replication. Eager Replication currently only works by using the "global" BDR
commit scope.

Neither Eager replication nor Group Commit support synchronous_replication_availability = 'async' .

Group Commit doesn't support a timeout of the commit after bdr.global_commit_timeout .

Transactions using Eager Replication can't yet execute DDL. The TRUNCATE command is allowed.

Not all DDL can be run when either CAMO or Group Commit is used.

Parallel apply is not currently supported in combination with Group Commit, please make sure to disable it when using Group Commit by either
setting num_writers to 1 for the node group (using bdr.alter_node_group_config) or via the GUC
bdr.writers_per_subscription (see Configuration of Generic Replication).

There currently is no protection against altering or removing a commit scope. Running transactions in a commit scope that is concurrently being
altered or removed can lead to the transaction blocking or replication stalling completely due to an error on the downstream node attempting to
apply the transaction. Ensure that any transactions using a specific commit scope have finished before altering or removing it.

Details of other design or implementation limitations are also available.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 36

4 Terminology

The terminology that follows is important for understanding EDB Postgres Distributed functionality and the requirements that it addresses in the realms of
high availability, replication, and clustering.

Asynchronous replication

Copies data to cluster members after the transaction completes on the origin node. Asynchronous replication can provide higher performance and lower
latency than synchronous replication. However, it introduces the potential for conflicts because of multiple concurrent changes. You must manage any
conflicts that arise.

Availability

The probability that a system will operate satisfactorily at a given time when used in a stated environment. For many people, this is the overall amount of
uptime versus downtime for an application. (See also Nines)

CAMO or commit-at-most-once

Wraps Eager Replication with additional transaction management at the application level to guard against a transaction being executed more than once.
This is critical for high-value transactions found in payments solutions. It is roughly equivalent to the Oracle feature Transaction Guard.

Clustering

An approach for high availability in which multiple redundant systems are managed to avoid single points of failure. It appears to the end user as one
system.

Data sharding

Enables scaling out a database by breaking up data into chunks called shards and distributing them across separate nodes.

Eager Replication for BDR

Conflict-free replication with all cluster members; technically, this is synchronous logical replication using two phase-commit (2PC).

Eventual consistency

A distributed computing consistency model stating changes to the same item in different cluster members will converge to the same value. With BDR this is
achieved through asynchronous logical replication with conflict resolution and conflict-free replicated data types.

Failover

The automated process that recognizes a failure in a highly available database cluster and takes action to connect the application to another active
database. The goal is to minimize downtime and data loss.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 37

Horizontal scaling** or **scale out

A modern distributed computing approach that manages workloads across multiple nodes, such as scaling out a web server to handle increased traffic.

Logical replication

Provides more flexibility than physical replication in terms of selecting the data replicated between databases in a cluster. Also important is that cluster
members can be on different versions of the database software.

Nines

A measure of availability expressed as a percentage of uptime in a given year. Three nines (99.9%) allows for 43.83 minutes of downtime per month. Four
nines (99.99%) allows for 4.38 minutes of downtime per month. Five nines (99.999%) allows for 26.3 seconds of downtime per month.

Node

One database server in a cluster. A term "node" differs from the term "database server" because there is more than one node in a cluster. A node includes
the database server, the OS, and the physical hardware, which is always separate from other nodes in a high-availability context.

Physical replication

Copies all changes from a database to one or more standby cluster members by copying an exact copy of database disk blocks. While fast, this method has
downsides. For example, only one master node can run write transactions. Also, you can use this method only where all cluster members are on the same
major version of the database software, in addition to several other more complex restrictions.

Read scalability

Can be achieved by introducing one or more read replica nodes to a cluster and have the application direct writes to the primary node and reads to the
replica nodes. As the read workload grows, you can increase the number of read replica nodes to maintain performance.

Recovery point objective (RPO)

The maximum targeted period in which data might be lost due to a disruption in delivery of an application. A very low or minimal RPO is a driver for very
high availability.

Recovery time objective (RTO)

The targeted length of time for restoring the disrupted application. A very low or minimal RTO is a driver for very high availability.

Single point of failure (SPOF)

The identification of a component in a deployed architecture that has no redundancy and therefore prevents you from achieving higher levels of
availability.

Switchover

A planned change in connection between the application and the active database node in a cluster, typically done for maintenance.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 38

Synchronous replication

When changes are updated at all participating nodes at the same time, typically leveraging two-phase commit. While this approach delivers immediate
consistency and avoids conflicts, a performance cost in latency occurs due to the coordination required across nodes.

Two-phase commit (2PC)

A multi-step process for achieving consistency across multiple database nodes.

Vertical scaling** or **scale up

A traditional computing approach of increasing a resource (CPU, memory, storage, network) to support a given workload until the physical limits of that
architecture are reached, e.g., Oracle Exadata.

Write scalability

Occurs when replicating the writes from the original node to other cluster members becomes less expensive. In vertical-scaled architectures, write
scalability is possible due to shared resources. However, in horizontal scaled (or nothing-shared) architectures, this is possible only in very limited
scenarios.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 39

5 Overview

EDB Postgres Distributed provides loosely-coupled multi-master logical replication using a mesh topology. This means that you can write to any server and
the changes are sent directly, row-by-row to all the other servers that are part of the same mesh.

EDB Postgres Distributed consists of several components that make the whole cluster work.

Postgres server

Three different Postgres distributions can be used:

PostgreSQL - open source
EDB Postgres Extended Server - PostgreSQL compatible and optimized for replication
EDB Postgres Advanced Server - Oracle compatible, optimized for replication, and additional enterprise features

What Postgres distribution and version is right for you depends on the features you need. See the feature matrix in Choosing a Postgres distribution for
detailed comparison.

BDR

A Postgres server with the BDR extension installed is referred to as a BDR node. BDR nodes can be either data nodes or witness nodes.

Witness nodes don't participate in data replication and are only used as a tie-breaker for consensus.

HARP

HARP is connection management tool for a EDB Postgres Distributed cluster.

It leverages consensus-driven quorum to determine the correct connection end-point in a semi-exclusive manner to prevent unintended multi-node writes
from an application. This reduces the potential for data conflicts.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 40

https://www.postgresql.org/
https://www.enterprisedb.com/docs/pge/latest
https://www.enterprisedb.com/docs/epas/latest

6 BDR (Bi-Directional Replication)

BDR is a PostgreSQL extension providing multi-master replication and data distribution with advanced conflict management, data-loss protection, and
throughput up to 5X faster than native logical replication, and enables distributed Postgres clusters with high availability up to five 9s.

BDR provides loosely coupled, multi-master logical replication using a mesh topology. This means that you can write to any server and the changes are sent
directly, row-by-row, to all the other servers that are part of the same BDR group.

By default, BDR uses asynchronous replication, applying changes on the peer nodes only after the local commit. Multiple synchronous replication options
are also available.

Basic architecture

Multiple groups

A BDR node is a member of at least one node group, and in the most basic architecture there is a single node group for the whole BDR cluster.

Multiple masters

Each node (database) participating in a BDR group both receives changes from other members and can be written to directly by the user.

This is distinct from hot or warm standby, where only one master server accepts writes, and all the other nodes are standbys that replicate either from the
master or from another standby.

You don't have to write to all the masters all of the time. A frequent configuration directs writes mostly to just one master.

Asynchronous, by default

Changes made on one BDR node aren't replicated to other nodes until they're committed locally. As a result, the data isn't exactly the same on all nodes at
any given time. Some nodes have data that hasn't yet arrived at other nodes. PostgreSQL's block-based replication solutions default to asynchronous
replication as well. In BDR, because there are multiple masters and, as a result, multiple data streams, data on different nodes might differ even when
synchronous_commit and synchronous_standby_names are used.

Mesh topology

BDR is structured around a mesh network where every node connects to every other node and all nodes exchange data directly with each other. There's no
forwarding of data in BDR except in special circumstances such as adding and removing nodes. Data can arrive from outside the EDB Postgres Distributed
cluster or be sent onwards using native PostgreSQL logical replication.

Logical replication

Logical replication is a method of replicating data rows and their changes based on their replication identity (usually a primary key). We use the term
logical in contrast to physical replication, which uses exact block addresses and byte-by-byte replication. Index changes aren't replicated, thereby avoiding
write amplification and reducing bandwidth.

Logical replication starts by copying a snapshot of the data from the source node. Once that is done, later commits are sent to other nodes as they occur in
real time. Changes are replicated without re-executing SQL, so the exact data written is replicated quickly and accurately.

Nodes apply data in the order in which commits were made on the source node, ensuring transactional consistency is guaranteed for the changes from any
single node. Changes from different nodes are applied independently of other nodes to ensure the rapid replication of changes.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 41

https://www.enterprisedb.com/blog/performance-improvements-edb-postgres-distributed

Replicated data is sent in binary form, when it's safe to do so.

High availability

Each master node can be protected by one or more standby nodes, so any node that goes down can be quickly replaced and continue. Each standby node
can be either a logical or a physical standby node.

Replication continues between currently connected nodes even if one or more nodes are currently unavailable. When the node recovers, replication can
restart from where it left off without missing any changes.

Nodes can run different release levels, negotiating the required protocols to communicate. As a result, EDB Postgres Distributed clusters can use rolling
upgrades, even for major versions of database software.

DDL is replicated across nodes by default. DDL execution can be user controlled to allow rolling application upgrades, if desired.

Architectural options and performance

Always On architectures

A number of different architectures can be configured, each of which has different performance and scalability characteristics.

The group is the basic building block consisting of 2+ nodes (servers). In a group, each node is in a different availability zone, with dedicated router and
backup, giving immediate switchover and high availability. Each group has a dedicated replication set defined on it. If the group loses a node, you can
easily repair or replace it by copying an existing node from the group.

The Always On architectures are built from either one group in a single location or two groups in two separate locations. Each group provides HA and IS.
When two groups are leveraged in remote locations, they together also provide disaster recovery (DR).

Tables are created across both groups, so any change goes to all nodes, not just to nodes in the local group.

One node in each group is the target for the main application. All other nodes are described as shadow nodes (or "read-write replica"), waiting to take over
when needed. If a node loses contact, we switch immediately to a shadow node to continue processing. If a group fails, we can switch to the other group.
Scalability isn't the goal of this architecture.

Since we write mainly to only one node, the possibility of contention between is reduced to almost zero. As a result, performance impact is much reduced.

Secondary applications might execute against the shadow nodes, although these are reduced or interrupted if the main application begins using that node.

In the future, one node will be elected as the main replicator to other groups, limiting CPU overhead of replication as the cluster grows and minimizing the
bandwidth to other groups.

Supported PostgreSQL database servers

BDR is compatible with Postgres, EDB Postgres Extended Server, and EDB Postgres Advanced Server distributions and can be deployed as a standard
Postgres extension. See the Compatibility matrix for details of supported version combinations.

Some key BDR features depend on certain core capabilities being available in the targeted Postgres database server. Therefore, BDR users must also adopt
the Postgres database server distribution that's best suited to their business needs. For example, if having the BDR feature Commit At Most Once (CAMO) is
mission critical to your use case, don't adopt the community PostgreSQL distribution because it doesn't have the core capability required to handle CAMO.
See the full feature matrix compatibility in Choosing a Postgres distribution.

BDR offers close to native Postgres compatibility. However, some access patterns don't necessarily work as well in multi-node setup as they do on a single
instance. There are also some limitations in what can be safely replicated in multi-node setting. Application usage goes into detail on how BDR behaves
from an application development perspective.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 42

Characteristics affecting BDR performance

By default, BDR keeps one copy of each table on each node in the group, and any changes propagate to all nodes in the group.

Since copies of data are everywhere, SELECTs need only ever access the local node. On a read-only cluster, performance on any one node isn't affected by
the number of nodes and is immune to replication conflicts on other nodes caused by long-running SELECT queries. Thus, adding nodes increases linearly
the total possible SELECT throughput.

If an INSERT, UPDATE, and DELETE (DML) is performed locally, then the changes propagate to all nodes in the group. The overhead of DML apply is less
than the original execution, so if you run a pure write workload on multiple nodes concurrently, a multi-node cluster can handle more TPS than a single
node.

Conflict handling has a cost that acts to reduce the throughput. The throughput then depends on how much contention the application displays in practice.
Applications with very low contention perform better than a single node. Applications with high contention can perform worse than a single node. These
results are consistent with any multi-master technology. They aren't particular to BDR.

Synchronous replilcation options can send changes concurrently to multiple nodes so that the replication lag is minimized. Adding more nodes means
using more CPU for replication, so peak TPS reduces slightly as each node is added.

If the workload tries to use all CPU resources, then this resource constrains replication, which can then affect the replication lag.

In summary, adding more master nodes to a BDR group doesn't result in significant write throughput increase when most tables are replicated because all
the writes will be replayed on all nodes. Because BDR writes are in general more effective than writes coming from Postgres clients by way of SQL, some
performance increase can be achieved. Read throughput generally scales linearly with the number of nodes.

Deployment

BDR is intended to be deployed in one of a small number of known-good configurations, using either TPAexec or a configuration management approach
and deployment architecture approved by Technical Support.

Manual deployment isn't recommended and might not be supported.

Refer to the TPAexec Architecture User Manual for your architecture.

Log messages and documentation are currently available only in English.

Clocks and timezones

BDR is designed to operate with nodes in multiple timezones, allowing a truly worldwide database cluster. Individual servers don't need to be configured
with matching timezones, although we do recommend using log_timezone = UTC to ensure the human-readable server log is more accessible and
comparable.

Synchronize server clocks using NTP or other solutions.

Clock synchronization isn't critical to performance, as it is with some other solutions. Clock skew can impact origin conflict detection, although BDR
provides controls to report and manage any skew that exists. BDR also provides row-version conflict detection, as described in Conflict detection.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 43

6.1 Application use

Learn about the application from a user perspective.

Application behavior

BDR supports replicating changes made on one node to other nodes.

BDRs, by default, replicate all changes from INSERT, UPDATE, DELETE and TRUNCATE operations from the source node to other nodes. Only the final
changes are sent, after all triggers and rules are processed. For example, INSERT ... ON CONFLICT UPDATE sends either an insert or an update
depending on what occurred on the origin. If an update or delete affects zero rows, then no changes are sent.

INSERT can be replicated without any preconditions.

For updates and deletes to replicate on other nodes, we must be able to identify the unique rows affected. BDR requires that a table have either a PRIMARY
KEY defined, a UNIQUE constraint, or an explicit REPLICA IDENTITY defined on specific columns. If one of those isn't defined, a warning is generated, and
later updates or deletes are explicitly blocked. If REPLICA IDENTITY FULL is defined for a table, then a unique index isn't required. In that case, updates and
deletes are allowed and use the first non-unique index that is live, valid, not deferred, and doesn't have expressions or WHERE clauses. Otherwise, a
sequential scan is used.

You can use TRUNCATE even without a defined replication identity. Replication of TRUNCATE commands is supported, but take care when truncating
groups of tables connected by foreign keys. When replicating a truncate action, the subscriber truncates the same group of tables that was truncated on
the origin, either explicitly specified or implicitly collected by CASCADE, except in cases where replication sets are defined. See Replication sets for further
details and examples. This works correctly if all affected tables are part of the same subscription. But if some tables to be truncated on the subscriber have
foreign-key links to tables that aren't part of the same (or any) replication set, then applying the truncate action on the subscriber fails.

Row-level locks taken implicitly by INSERT, UPDATE, and DELETE commands are replicated as the changes are made. Table-level locks taken implicitly by
INSERT, UPDATE, DELETE, and TRUNCATE commands are also replicated. Explicit row-level locking (SELECT ... FOR UPDATE/FOR SHARE) by user
sessions isn't replicated, nor are advisory locks. Information stored by transactions running in SERIALIZABLE mode isn't replicated to other nodes. The
transaction isolation level of SERIALIAZABLE is supported, but transactions aren't serialized across nodes in the presence of concurrent transactions on
multiple nodes.

If DML is executed on multiple nodes concurrently, then potential conflicts might occur if executing with asynchronous replication. These must be either
handled or avoided. Various avoidance mechanisms are possible, discussed in Conflicts.

Sequences need special handling, described in Sequences.

Binary data in BYTEA columns is replicated normally, allowing "blobs" of data up to 1 GB in size. Use of the PostgreSQL "large object" facility isn't
supported in BDR.

Rules execute only on the origin node so aren't executed during apply, even if they're enabled for replicas.

Replication is possible only from base tables to base tables. That is, the tables on the source and target on the subscription side must be tables, not views,
materialized views, or foreign tables. Attempts to replicate tables other than base tables result in an error. DML changes that are made through updatable
views are resolved to base tables on the origin and then applied to the same base table name on the target.

BDR supports partitioned tables transparently, meaning that a partitioned table can be added to a replication set and changes that involve any of the
partitions are replicated downstream.

By default, triggers execute only on the origin node. For example, an INSERT trigger executes on the origin node and is ignored when you apply the change
on the target node. You can specify for triggers to execute on both the origin node at execution time and on the target when it's replicated ("apply time") by
using ALTER TABLE ... ENABLE ALWAYS TRIGGER , or use the REPLICA option to execute only at apply time: ALTER TABLE ... ENABLE
REPLICA TRIGGER .

Some types of trigger aren't executed on apply, even if they exist on a table and are currently enabled. Trigger types not executed are:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 44

Statement-level triggers (FOR EACH STATEMENT)
Per-column UPDATE triggers (UPDATE OF column_name [, ...])

BDR replication apply uses the system-level default search_path. Replica triggers, stream triggers, and index expression functions can assume other
search_path settings that then fail when they execute on apply. To prevent this from occurring, resolve object references clearly using either only the
default search_path, always use fully qualified references to objects, e.g., schema.objectname, or set the search path for a function using ALTER
FUNCTION ... SET search_path = ... for the functions affected.

BDR assumes that there are no issues related to text or other collatable datatypes, i.e., all collations in use are available on all nodes, and the default
collation is the same on all nodes. Replication of changes uses equality searches to locate Replica Identity values, so this does't have any effect except
where unique indexes are explicitly defined with nonmatching collation qualifiers. Row filters might be affected by differences in collations if collatable
expressions were used.

BDR handling of very long "toasted" data in PostgreSQL is transparent to the user. The TOAST "chunkid" values likely differ between the same row on
different nodes, but that doesn't cause any problems.

BDR can't work correctly if Replica Identity columns are marked as external.

PostgreSQL allows CHECK() constraints that contain volatile functions. Since BDR re-executes CHECK() constraints on apply, any subsequent re-execution
that doesn't return the same result as previously causes data divergence.

BDR doesn't restrict the use of foreign keys. Cascading FKs are allowed.

Nonreplicated statements

None of the following user commands are replicated by BDR, so their effects occur on the local/origin node only:

Cursor operations (DECLARE, CLOSE, FETCH)
Execution commands (DO, CALL, PREPARE, EXECUTE, EXPLAIN)
Session management (DEALLOCATE, DISCARD, LOAD)
Parameter commands (SET, SHOW)
Constraint manipulation (SET CONSTRAINTS)
Locking commands (LOCK)
Table maintenance commands (VACUUM, ANALYZE, CLUSTER, REINDEX)
Async operations (NOTIFY, LISTEN, UNLISTEN)

Since the NOTIFY SQL command and the pg_notify() functions aren't replicated, notifications aren't reliable in case of failover. This means that
notifications can easily be lost at failover if a transaction is committed just when the server crashes. Applications running LISTEN might miss
notifications in case of failover. This is true in standard PostgreSQL replication, and BDR doesn't yet improve on this. CAMO and Eager Replication options
don't allow the NOTIFY SQL command or the pg_notify() function.

DML and DDL replication

BDR doesn't replicate the DML statement. It replicates the changes caused by the DML statement. For example, an UPDATE that changed two rows
replicates two changes, whereas a DELETE that didn't remove any rows doesn't replicate anything. This means that the results of executing volatile
statements are replicated, ensuring there's no divergence between nodes as might occur with statement-based replication.

DDL replication works differently to DML. For DDL, BDR replicates the statement, which then executes on all nodes. So a DROP TABLE IF EXISTS
might not replicate anything on the local node, but the statement is still sent to other nodes for execution if DDL replication is enabled. Full details are
covered in DDL replication.

BDR works to ensure that intermixed DML and DDL statements work correctly, even in the same transaction.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 45

Replicating between different release levels

BDR is designed to replicate between nodes that have different major versions of PostgreSQL. This feature is designed to allow major version upgrades
without downtime.

BDR is also designed to replicate between nodes that have different versions of BDR software. This feature is designed to allow version upgrades and
maintenance without downtime.

However, while it's possible to join a node with a major version in a cluster, you can't add a node with a minor version if the cluster uses a newer protocol
version. This returns an error.

Both of these features might be affected by specific restrictions. See Release notes for any known incompatibilities.

Replicating between nodes with differences

By default, DDL is automatically sent to all nodes. You can control this manually, as described in DDL Replication, and you could use it to create differences
between database schemas across nodes. BDR is designed to allow replication to continue even with minor differences between nodes. These features are
designed to allow application schema migration without downtime or to allow logical standby nodes for reporting or testing.

Currently, replication requires the same table name on all nodes. A future feature might allow a mapping between different table names.

It is possible to replicate between tables with dissimilar partitioning definitions, such as a source that is a normal table replicating to a partitioned table,
including support for updates that change partitions on the target. It can be faster if the partitioning definition is the same on the source and target since
dynamic partition routing doesn't need to execute at apply time. For details, see Replication sets.

By default, all columns are replicated. BDR replicates data columns based on the column name. If a column has the same name but a different datatype, we
attempt to cast from the source type to the target type, if casts were defined that allow that.

BDR supports replicating between tables that have a different number of columns.

If the target has missing columns from the source, then BDR raises a target_column_missing conflict, for which the default conflict resolver is
ignore_if_null . This throws an error if a non-NULL value arrives. Alternatively, you can also configure a node with a conflict resolver of ignore .

This setting doesn't throw an error but silently ignores any additional columns.

If the target has additional columns not seen in the source record, then BDR raises a source_column_missing conflict, for which the default conflict
resolver is use_default_value . Replication proceeds if the additional columns have a default, either NULL (if nullable) or a default expression, but
throws an error and halts replication if not.

Transform triggers can also be used on tables to provide default values or alter the incoming data in various ways before apply.

If the source and the target have different constraints, then replication is attempted, but it might fail if the rows from source can't be applied to the target.
Row filters can help here.

Replicating data from one schema to a more relaxed schema won't cause failures. Replicating data from a schema to a more restrictive schema can be a
source of potential failures. The right way to solve this is to place a constraint on the more relaxed side, so bad data can't be entered. That way, no bad data
ever arrives by replication, so it never fails the transform into the more restrictive schema. For example, if one schema has a column of type TEXT and
another schema defines the same column as XML, add a CHECK constraint onto the TEXT column to enforce that the text is XML.

You can define a table with different indexes on each node. By default, the index definitions are replicated. See DDL replication to specify how to create an
index only on a subset of nodes or just locally.

Storage parameters, such as fillfactor and toast_tuple_target , can differ between nodes for a table without problems. An exception to that
is the value of a table's storage parameter user_catalog_table must be identical on all nodes.

A table being replicated must be owned by the same user/role on each node. See Security and roles for further discussion.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 46

Roles can have different passwords for connection on each node, although by default changes to roles are replicated to each node. See DDL replication to
specify how to alter a role password only on a subset of nodes or locally.

Comparison between nodes with differences

LiveCompare is a tool for data comparison on a database, against BDR and non-BDR nodes. It needs a minimum of two connections to compare against and
reach a final result.

Since LiveCompare 1.3, you can configure with all_bdr_nodes set. This saves you from clarifying all the relevant DSNs for each separate node in the
cluster. A EDB Postgres Distributed cluster has N amount of nodes with connection information, but it's only the initial and output connection that
LiveCompare 1.3+ needs to complete its job. Setting logical_replication_mode states how all the nodes are communicating.

All the configuration is done in a .ini file, named bdrLC.ini , for example. Find templates for this configuration file in /etc/2ndq-
livecompare/ .

While LiveCompare executes, you see N+1 progress bars, N being the number of processes. Once all the tables are sourced, a time displays, as the
transactions per second (tps) was measured. This continues to count the time, giving you an estimate and then a total execution time at the end.

This tool offers a lot of customization and filters, such as tables, schemas, and replication_sets. LiveCompare can use stop-start without losing context
information, so it can run at convenient times. After the comparison, a summary and a DML script are generated so you can review it. Apply the DML to fix
the any differences found.

General rules for applications

BDR uses replica identity values to identify the rows to change. Applications can cause difficulties if they insert, delete, and then later reuse the same
unique identifiers. This is known as the ABA problem. BDR can't know whether the rows are the current row, the last row, or much older rows.

Similarly, since BDR uses table names to identify the table against which changes are replayed, a similar ABA problem exists with applications that create,
drop, and then later reuse the same object names.

These issues give rise to some simple rules for applications to follow:

Use unique identifiers for rows (INSERT).
Avoid modifying unique identifiers (UPDATE).
Avoid reusing deleted unique identifiers.
Avoid reusing dropped object names.

In the general case, breaking those rules can lead to data anomalies and divergence. Applications can break those rules as long as certain conditions are
met, but use caution: while anomalies are unlikely, they aren't impossible. For example, a row value can be reused as long as the DELETE was replayed on
all nodes, including down nodes. This might normally occur in less than a second but can take days if a severe issue occurred on one node that prevented it
from restarting correctly.

Timing considerations and synchronous replication

Being asynchronous by default, peer nodes might lag behind, making it possible for a client connected to multiple BDR nodes or switching between them to
read stale data.

A queue wait function is provided for clients or proxies to prevent such stale reads.

The synchronous replication features of Postgres are available to BDR as well. In addition, BDR provides multiple variants for more synchronous replication.
See Durability and performance options for an overview and comparison of all variants available and its different modes.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 47

https://en.wikipedia.org/wiki/ABA_problem

Application testing

You can test BDR applications using the following programs, in addition to other techniques.

TPAexec
pgbench with CAMO/Failover options
isolationtester with multi-node access

TPAexec

TPAexec is the system used by EDB to deploy reference TPA architectures, including those based on EDB Postgres Distributed.

TPAexec includes test suites for each reference architecture. It also simplifies creating and managing a local collection of tests to run against a TPA
cluster, using a syntax like the following:

tpaexec test mycluster mytest

We strongly recommend that developers write their own multi-node suite of TPAexec tests that verify the main expected properties of the application.

pgbench with CAMO/Failover options

In EDB Postgres Extended, the pgbench was extended to allow users to run failover tests while using CAMO or regular BDR deployments. The following
options were added:

-m, --mode=regular|camo|failover
mode in which pgbench should run (default: regular)

--retry
retry transactions on failover

In addition to these options, the connection information about the peer node for failover must be specified in DSN form.

Use -m camo or -m failover to specify the mode for pgbench. You can use The -m failover specification to test failover in regular BDR
deployments.

Use --retry to specify whether to retry transactions when failover happens with -m failover mode. This option is enabled by default for -m
camo mode.

Here's an example in a CAMO environment:

This command runs in camo mode. It connects to node1 and runs the tests. If the connection to node1 is lost, then pgbench connects to node2. It queries
node2 to get the status of in-flight transactions. Aborted and in-flight transactions are retried in camo mode.

In failover mode, if --retry is specified, then in-flight transactions are retried. In this scenario there's no way to find the status of in-flight transactions.

 pgbench -m camo -p $node1_port -h $node1_host bdrdemo \
 "host=$node2_host user=postgres port=$node2_port dbname=bdrdemo"

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 48

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

isolationtester with multi-node access

isolationtester was extended to allow users to run tests on multiple sessions and on multiple nodes. This is used for internal BDR testing, although it's also
available for use with user application testing.

$ isolationtester \
 --outputdir=./iso_output \
 --create-role=logical \
 --dbname=postgres \
 --server 'd1=dbname=node1' \
 --server 'd2=dbname=node2' \
 --server 'd3=dbname=node3'

Isolation tests are a set of tests for examining concurrent behaviors in PostgreSQL. These tests require running multiple interacting transactions, which
requires managing multiple concurrent connections and therefore can't be tested using the normal pg_regress program. The name "isolation" comes
from the fact that the original motivation was to test the serializable isolation level. Tests for other sorts of concurrent behaviors were added as well.

It's built using PGXS as an external module. On installation, it creates the isolationtester binary file, which is run by pg_isolation_regress
to perform concurrent regression tests and observe results.

pg_isolation_regress is a tool similar to pg_regress , but instead of using psql to execute a test, it uses isolationtester. It accepts all the same
command-line arguments as pg_regress . It was modified to accept multiple hosts as parameters. It then passes the host conninfo along with server
names to the isolationtester binary. Isolation tester compares these server names with the names specified in each session in the spec files and
runs given tests on respective servers.

To define tests with overlapping transactions, we use test specification files with a custom syntax. To add a new test, place a spec file in the specs/
subdirectory, add the expected output in the expected/ subdirectory, and add the test's name to the makefile.

Isolationtester is a program that uses libpq to open multiple connections and executes a test specified by a spec file. A libpq connection string specifies the
server and database to connect to. Defaults derived from environment variables are used otherwise.

Specification consists of five parts, tested in this order:

server "<name>"

This defines the name of the servers for the sessions to run on. There can be zero or more server "<name>" specifications. The conninfo corresponding to
the names is provided by the command to run isolationtester. This is described in quickstart_isolationtest.md . This part is optional.

setup { <SQL> }

The given SQL block is executed once, in one session only, before running the test. Create any test tables or other required objects here. This part is
optional. Multiple setup blocks are allowed if needed. Each is run separately, in the given order. The reason for allowing multiple setup blocks is that each
block is run as a single PQexec submission, and some statements such as VACUUM can't be combined with others in such a block.

teardown { <SQL> }

The teardown SQL block is executed once after the test is finished. Use this to clean up in preparation for the next permutation, such as dropping any test
tables created by setup. This part is optional.

session "<name>"

There are normally several "session" parts in a spec file. Each session is executed in its own connection. A session part consists of three parts: setup,
teardown, and one or more "steps." The per-session setup and teardown parts have the same syntax as the per-test setup and teardown, but they are
executed in each session. The setup part typically contains a BEGIN command to begin a transaction.

A session part also consists of connect_to specification. This points to a server name specified in the beginning that indicates the server on which this
session runs.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 49

connect_to "<name>"

Each step has the syntax:

step "<name>" { <SQL> }

where <name> is a name identifying this step, and SQL is a SQL statement (or statements, separated by semicolons) that's executed in the step. Step
names must be unique across the whole spec file.

permutation "<step name>"

A permutation line specifies a list of steps that are run in that order. Any number of permutation lines can appear. If no permutation lines are given, the test
program automatically generates all possible orderings of the steps from each session (running the steps of any one session in order). The list of steps in a
manually specified "permutation" line doesn't actually have to be a permutation of the available steps. It can, for instance, repeat some steps more than
once or leave others out.

Lines beginning with a # are comments.

For each permutation of the session steps (whether these are manually specified in the spec file or automatically generated), the isolation tester runs:

1. The main setup part
2. Per-session setup parts
3. The selected session steps
4. Per-session teardown
5. The main teardown script

Each selected step is sent to the connection associated with its session.

To run isolation tests in a BDR environment that ran all prerequisite make commands:

1. Run make isolationcheck-install to install the isolationtester submodule.

2. You can run isolation regression tests using either of the following commands from the bdr-private repo:

make isolationcheck-installcheck make isolationcheck-makecheck

To run isolationcheck-installcheck , you need to have two or more postgresql servers running. Pass the conninfo of each server to
pg_isolation_regress in the BDR makefile. Ex: pg_isolation_regress --server 'd1=host=myhost dbname=mydb port=5434'
--server 'd2=host=myhost1 dbname=mydb port=5432'

Next, add a .spec file containing tests in the specs/isolation directory of the bdr-private/ repo. Add a .out file in
expected/isolation directory of the n bdr-private/ repo.

Then run make isolationcheck-installcheck

Isolationcheck-makecheck currently supports running isolation tests on a single instance by setting up BDR between multiple databases.

You need to pass appropriate database names and the conninfo of bdr instances to pg_isolation_regress in the BDR makefile as follows:
pg_isolation_regress --dbname=db1,db2 --server 'd1=dbname=db1' --server 'd2=dbname=db2'

Then run make isolationcheck-makecheck

Each step can contain commands that block until further action has been taken (most likely, some other session runs a step that unblocks it or causes a
deadlock). A test that uses this ability must manually specify valid permutations, that is, those that don'tt expect a blocked session to execute a command.
If a test doesn't follow that rule, isolationtester cancels it after 300 seconds. If the cancel doesn't work, isolationtester exits uncleanly after 375 seconds of
wait time. Avoid testing invalid permutations because they can make the isolation tests take a very long time to run, and they serve no useful testing
purpose.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 50

isolationtester recognizes that a command has blocked by checking whether it is shown as waiting in the pg_locks view. Therefore, only blocks on
heavyweight locks are detected.

Performance testing and tuning

BDR allows you to issue write transactions onto multiple master nodes. Bringing those writes back together onto each node has a cost in performance.

First, replaying changes from another node has a CPU cost, an I/O cost, and it generates WAL records. The resource use is usually less than in the original
transaction since CPU overheads are lower as a result of not needing to reexecute SQL. In the case of UPDATE and DELETE transactions, there might be I/O
costs on replay if data isn't cached.

Second, replaying changes holds table-level and row-level locks that can produce contention against local workloads. The conflict-free replicated data
types (CRDT) and column-level conflict detection (CLCD) features ensure you get the correct answers even for concurrent updates, but they don't remove
the normal locking overheads. If you get locking contention, try to avoid conflicting updates or keep transactions as short as possible. A heavily updated
row in a larger transaction causes a bottleneck on performance for that transaction. Complex applications require some thought to maintain scalability.

If you think you're having performance problems, develop performance tests using the benchmarking tools. pgbench allows you to write custom test scripts
specific to your use case so you can understand the overheads of your SQL and measure the impact of concurrent execution.

If BDR is running slow, then we suggest the following:

1. Write a custom test script for pgbench, as close as you can make it to the production system's problem case.
2. Run the script on one node to give you a baseline figure.
3. Run the script on as many nodes as occurs in production, using the same number of sessions in total as you did on one node. This shows you the

effect of moving to multiple nodes.
4. Increase the number of sessions for these two tests so you can plot the effect of increased contention on your application.
5. Make sure your tests are long enough to account for replication delays.
6. Ensure that replication delay isn't growing during your tests.

Use all of the normal Postgres tuning features to improve the speed of critical parts of your application.

Assessing suitability

BDR is compatible with PostgreSQL, but not all PostgreSQL applications are suitable for use on distributed databases. Most applications are already or can
easily be modified to become BDR compliant. You can undertake an assessment activity in which you can point your application to a BDR-enabled setup.
BDR provides a few knobs that can be set during the assessment period. These aid in the process of deciding suitability of your application in a BDR-enabled
environment.

Assessing updates of primary key/replica identity

BDR can't currently perform conflict resolution where the PRIMARY KEY is changed by an UPDATE operation. You can update the primary key, but you must
ensure that no conflict with existing values is possible.

BDR provides the following configuration parameter to assess how frequently the primary key/replica identity of any table is being subjected to update
operations.

Use these configuration parameters only for assessment. You can use them on a single node BDR instance, but don't use them on a production EDB
Postgres Distributed cluster with two or more nodes replicating to each other. In fact, a node might fail to start or a new node fail to join the cluster if any of
the assessment parameters are set to anything other than IGNORE .

By enabling this parameter during the assessment period, you can log updates to the key/replica identity values of a row. You can also potentially block
such updates, if desired. For example:

bdr.assess_update_replica_identity = IGNORE (default) | LOG | WARNING |
ERROR

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 51

Apply worker processes always ignore any settings for this parameter.

Assessing use of LOCK on tables or in SELECT queries

Because BDR writer processes operate much like normal user sessions, they're subject to the usual rules around row and table locking. This can sometimes
lead to BDR writer processes waiting on locks held by user transactions or even by each other.

BDR provides the following configuration parameter to assess if the application is taking explicit locks:

Two types of locks that you can track are:

Explicit table-level locking (LOCK TABLE ...) by user sessions
Explicit row-level locking (SELECT ... FOR UPDATE/FOR SHARE) by user sessions

By enabling this parameter during the assessment period, you can track (or block) such explicit locking activity. For example:

CREATE TABLE public.test(g int primary key, h
int);
INSERT INTO test VALUES (1,
1);

SET bdr.assess_update_replica_identity TO
'error';
UPDATE test SET g = 4 WHERE g =
1;
ERROR: bdr_assess: update of key/replica identity of table
public.test

bdr.assess_lock_statement = IGNORE (default) | LOG | WARNING |
ERROR

CREATE TABLE public.test(g int primary key, h
int);
INSERT INTO test VALUES (1,
1);

SET bdr.assess_lock_statement TO 'error';
SELECT * FROM test FOR UPDATE;
ERROR: bdr_assess: "SELECT FOR UPDATE" invoked on a BDR
node

SELECT * FROM test FOR SHARE;
ERROR: bdr_assess: "SELECT FOR SHARE" invoked on a BDR
node

SET bdr.assess_lock_statement TO 'warning';
LOCK TABLE test IN ACCESS SHARE MODE;
WARNING: bdr_assess: "LOCK STATEMENT" invoked on a BDR
node

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 52

6.2 PostgreSQL configuration for BDR

Several PostgreSQL configuration parameters affect BDR nodes. You can set these parameters differently on each node, although that isn't generally
recommended.

PostgreSQL settings for BDR

BDR requires these PostgreSQL settings to run correctly:

wal_level — Must be set to logical , since BDR relies on logical decoding.
shared_preload_libraries — Must contain bdr , although it can contain other entries before or after, as needed. However, don't include
pglogical .
track_commit_timestamp — Must be set to on for conflict resolution to retrieve the timestamp for each conflicting row.

BDR requires these PostgreSQL settings to be set to appropriate values, which vary according to the size and scale of the cluster.

logical_decoding_work_mem — Memory buffer size used by logical decoding. Transactions larger than this overflow the buffer and are
stored temporarily on local disk. Default is 64 MB, but you can set it much higher.
max_worker_processes — BDR uses background workers for replication and maintenance tasks, so you need enough worker slots for it to

work correctly. The formula for the correct minimal number of workers, for each database, is:
One per PostgreSQL instance plus
One per database on that instance plus
Four per BDR-enabled database plus
One per peer node in the BDR group plus
One for each writer-enabled per peer node in the BDR group You might need more worker processes temporarily when a node is being
removed from a BDR group.

max_wal_senders — Two needed per every peer node.
max_replication_slots — Same as max_wal_senders .
wal_sender_timeout and wal_receiver_timeout — Determines how quickly a node considers its CAMO partner as disconnected or

reconnected. See CAMO failure scenarios for details.

In normal running for a group with N peer nodes, BDR requires N slots and WAL senders. During synchronization, BDR temporarily uses another N - 1 slots
and WAL senders, so be careful to set the parameters high enough for this occasional peak demand.

max_replication_slots sets the maximum number of replication origins. Some of the functionality of parallel apply uses an extra origin per writer.
Hence, when parallel apply is enabled, you must set the max_replication_slots to N * (number of writers) plus the number of slots
needed for peak demand as described in the previous paragraph.

When the decoding worker is enabled, this process requires one extra replication slot per BDR group.

Changing these parameters requires restarting the local node: max_worker_processes , max_wal_senders , max_replication_slots .

You might also want your applications to set these parameters. See Durability and performance options for details.

synchronous_commit — Affects the durability and performance of BDR replication. in a similar way to physical replication.
synchronous_standby_names — Same as above.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 53

https://www.postgresql.org/docs/11/runtime-config-wal.html#GUC-SYNCHRONOUS-COMMIT

BDR-specific settings

You can also set BDR-specific configuration settings. Unless noted otherwise, you can set the values at any time.

Conflict handling

bdr.default_conflict_detection — Sets the default conflict detection method for newly created tables. Accepts same values as
bdr.alter_table_conflict_detection().

Global sequence parameters

bdr.default_sequence_kind — Sets the default sequence kind. The default value is distributed , which means snowflakeid is used
for int8 sequences (i.e., bigserial) and galloc sequence for int4 (i.e., serial) and int2 sequences.

DDL handling

bdr.default_replica_identity — Sets the default value for REPLICA IDENTITY on newly created tables. The REPLICA IDENTITY
defines the information written to the write-ahead log to identify rows that are updated or deleted.

The accepted values are:

DEFAULT — Records the old values of the columns of the primary key, if any (this is the default PostgreSQL behavior).
FULL — Records the old values of all columns in the row.
NOTHING — Records no information about the old row.

See PostgreSQL documentation for more details.

BDR can't replicate UPDATE and DELETE operations on tables without a PRIMARY KEY or UNIQUE constraint. The exception is when the
replica identity for the table is FULL , either by table-specific configuration or by bdr.default_replica_identity .

If bdr.default_replica_identity is DEFAULT and there is a UNIQUE constraint on the table, it isn't automatically picked up as
REPLICA IDENTITY . You need to set it explicitly when creating the table or after, as described above.

Setting the replica identity of tables to FULL increases the volume of WAL written and the amount of data replicated on the wire for the table.

bdr.ddl_replication — Automatically replicate DDL across nodes (default is on).

This parameter can be set only by bdr_superuser or superuser roles.

Running DDL or calling BDR administration functions with bdr.ddl_replication = off can create situations where replication stops until
an administrator can intervene. See DDL replication for details.

A LOG -level log message is emitted to the PostgreSQL server logs whenever bdr.ddl_replication is set to off . Additionally, a
WARNING-level message is written whenever replication of captured DDL commands or BDR replication functions is skipped due to this setting.

bdr.role_replication — Automatically replicate ROLE commands across nodes (default is on). Only a superuser can set this parameter.
This setting works only if bdr.ddl_replication is turned on as well.

Turning this off without using external methods to ensure roles are in sync across all nodes might cause replicated DDL to interrupt replication until
the administrator intervenes.

See Role manipulation statements for details.

bdr.ddl_locking — Configures the operation mode of global locking for DDL.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 54

https://www.postgresql.org/docs/current/sql-altertable.html#SQL-CREATETABLE-REPLICA-IDENTITY

bdr.ddl_locking — Configures the operation mode of global locking for DDL.

This parameter can be set only by bdr_superuser or superuser roles.

Possible options are:

off — Don't use global locking for DDL operations.
on — Use global locking for all DDL operations.
dml — Use global locking only for DDL operations that need to prevent writes by taking the global DML lock for a relation.

A LOG -level log message is emitted to the PostgreSQL server logs whenever bdr.ddl_replication is set to off . Additionally, a WARNING
message is written whenever any global locking steps are skipped due to this setting. It's normal for some statements to result in two WARNING
messages: one for skipping the DML lock and one for skipping the DDL lock.

bdr.truncate_locking — False by default, this configuration option sets the TRUNCATE command's locking behavior. Determines whether
(when true) TRUNCATE obeys the bdr.ddl_locking setting.

Global locking

bdr.ddl_locking — Described above.
bdr.global_lock_max_locks — Maximum number of global locks that can be held on a node (default 1000). Can be set only at Postgres

server start.
bdr.global_lock_timeout — Sets the maximum allowed duration of any wait for a global lock (default 10 minutes). A value of zero disables

this timeout.
bdr.global_lock_statement_timeout — Sets the maximum allowed duration of any statement holding a global lock (default 60 minutes).

A value of zero disables this timeout.
bdr.global_lock_idle_timeout — Sets the maximum allowed duration of idle time in transaction holding a global lock (default 10

minutes). A value of zero disables this timeout.
bdr.predictive_checks — Log level for predictive checks (currently used only by global locks). Can be DEBUG , LOG , WARNING (default),

or ERROR . Predictive checks are early validations for expected cluster state when doing certain operations. You can use them for those operations
for fail early rather than wait for timeouts. In global lock terms, BDR checks that there are enough nodes connected and withing reasonable lag limit
for getting quorum needed by the global lock.

Node management

bdr.replay_progress_frequency — Interval for sending replication position info to the rest of the cluster (default 1 minute).

bdr.standby_slot_names — Require these slots to receive and confirm replication changes before any other ones. This setting is useful
primarily when using physical standbys for failover or when using subscribe-only nodes.

Generic replication

bdr.writers_per_subscription — Default number of writers per subscription (in BDR, you can also change this with
bdr.alter_node_group_config for a group).

bdr.max_writers_per_subscription — Maximum number of writers per subscription (sets upper limit for the setting above).

bdr.xact_replication — Replicate current transaction (default is on).

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 55

bdr.xact_replication — Replicate current transaction (default is on).

Turning this off makes the whole transaction local only, which means the transaction isn't visible to logical decoding by BDR and all other
downstream targets of logical decoding. Data isn't transferred to any other node, including logical standby nodes.

This parameter can be set only by the bdr_superuser or superuser roles.

This parameter can be set only inside the current transaction using the SET LOCAL command unless bdr.permit_unsafe_commands =
on .

Note

Even with transaction replication disabled, WAL is generated, but those changes are filtered away on the origin.

Warning

Turning off bdr.xact_replication leads to data inconsistency between nodes. Use it only to recover from data divergence between nodes
or in replication situations where changes on single nodes are required for replication to continue. Use at your own risk.

bdr.permit_unsafe_commands — Option to override safety check on commands that are deemed unsafe for general use.

Requires bdr_superuser or PostgreSQL superuser.

Warning

The commands that are normally not considered safe can either produce inconsistent results or break replication altogether. Use at your own
risk.

bdr.batch_inserts — Number of consecutive inserts to one table in a single transaction turns on batch processing of inserts for that table.

This option allows replication of large data loads as COPY internally, rather than set of inserts. It is also how the initial data during node join is
copied.

bdr.maximum_clock_skew

This option specifies the maximum difference between the incoming transaction commit timestamp and the current time on the subscriber before
triggering bdr.maximum_clock_skew_action .

It checks if the timestamp of the currently replayed transaction is in the future compared to the current time on the subscriber. If it is, and the
difference is larger than bdr.maximum_clock_skew , it performs the action specified by the bdr.maximum_clock_skew_action setting.

The default is -1 , which means ignore clock skew (the check is turned off). It's valid to set 0 as when the clock on all servers are synchronized. The
fact that we are replaying the transaction means it has been committed in the past.

bdr.maximum_clock_skew_action

This specifies the action to take if a clock skew higher than bdr.maximum_clock_skew is detected.

There are two possible values for this option:

WARN — Log a warning about this fact. The warnings are logged once per minute (the default) at the maximum to prevent flooding the server
log.
WAIT — Wait until the current local timestamp is no longer older than remote commit timestamp minus the
bdr.maximum_clock_skew .

bdr.accept_connections — Option to enable or disable connections to BDR. Defaults to on .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 56

bdr.accept_connections — Option to enable or disable connections to BDR. Defaults to on .

Requires bdr_superuser or PostgreSQL superuser.

bdr.standby_slot_names

This option is typically used in failover configurations to ensure that the failover-candidate streaming physical replicas for this BDR node have received and
flushed all changes before they ever become visible to subscribers. That guarantees that a commit can't vanish on failover to a standby for the provider.

Replication slots whose names are listed in the comma-separated bdr.standby_slot_names list are treated specially by the walsender on a BDR
node.

BDR's logical replication walsenders ensures that all local changes are sent and flushed to the replication slots in bdr.standby_slot_names before
the node sends those changes to any other BDR replication clients. Effectively, it provides a synchronous replication barrier between the named list of slots
and all other replication clients.

Any replication slot can be listed in bdr.standby_slot_names . Both logical and physical slots work, but it's generally used for physical slots.

Without this safeguard, two anomalies are possible where a commit can be received by a subscriber and then vanish from the provider on failover because
the failover candidate hadn't received it yet:

For 1+ subscribers, the subscriber might have applied the change but the new provider might execute new transactions that conflict with the
received change, as it never happened as far as the provider is concerned.

For 2+ subscribers, at the time of failover, not all subscribers have applied the change. The subscribers now have inconsistent and irreconcilable
states because the subscribers that didn't receive the commit have no way to get it.

Setting bdr.standby_slot_names by design causes other subscribers not listed in there to lag behind the provider if the required number of listed
nodes are not keeping up. Monitoring is thus essential.

Another use case where bdr.standby_slot_names is useful is when using a subscriber-only node, to ensure that it does not move ahead of any of
the regular BDR nodes. This can best be achieved by listing the logical slots of all regular BDR peer nodes in combination with setting
bdr.standby_slots_min_confirmed to at least one.

bdr.standby_slots_min_confirmed

Controls how many of the bdr.standby_slot_names have to confirm before we send data to BDR subscribers.

bdr.writer_input_queue_size

This option specifies the size of the shared memory queue used by the receiver to send data to the writer process. If the writer process is stalled or making
slow progress, then the queue might get filled up, stalling the receiver process too. So it's important to provide enough shared memory for this queue. The
default is 1 MB, and the maximum allowed size is 1 GB. While any storage size specifier can be used to set the GUC, the default is KB.

bdr.writer_output_queue_size

This option specifies the size of the shared memory queue used by the receiver to receive data from the writer process. Since the writer isn't expected to
send a large amount of data, a relatively smaller sized queue is enough. The default is 32 KB, and the maximum allowed size is 1 MB. While any storage size
specifier can be used to set the GUC, the default is KB.

bdr.min_worker_backoff_delay

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 57

bdr.min_worker_backoff_delay

Rate limit BDR background worker launches by preventing a given worker from being relaunched more often than every
bdr.min_worker_backoff_delay milliseconds. On repeated errors, the backoff increases exponentially with added jitter up to maximum of
bdr.max_worker_backoff_delay .

Time-unit suffixes are supported.

Note

This setting currently affects only receiver worker, which means it primarily affects how fast a subscription tries to reconnect on error or
connection failure.

The default for bdr.min_worker_backoff_delay is 1 second. For bdr.max_worker_backoff_delay , it is 1 minute.

If the backoff delay setting is changed and the PostgreSQL configuration is reloaded, then all current backoff waits for reset. Additionally, the
bdr.worker_task_reset_backoff_all() function is provided to allow the administrator to force all backoff intervals to immediately expire.

A tracking table in shared memory is maintained to remember the last launch time of each type of worker. This tracking table isn't persistent. It is cleared
by PostgreSQL restarts, including soft restarts during crash recovery after an unclean backend exit.

You can use the view bdr.worker_tasks to inspect this state so the administrator can see any backoff rate limiting currently in effect.

For rate limiting purposes, workers are classified by task. This key consists of the worker role, database OID, subscription ID, subscription writer ID,
extension library name and function name, extension-supplied worker name, and the remote relation ID for sync writers. NULL is used where a given
classifier doesn't apply, for example, manager workers don't have a subscription ID and receivers don't have a writer ID.

CRDTs

bdr.crdt_raw_value — Sets the output format of CRDT data types. The default output (when this setting is off) is to return only the current
value of the base CRDT type (for example, a bigint for crdt_pncounter). When set to on , the returned value represents the full representation
of the CRDT value, which can, for example, include the state from multiple nodes.

Max prepared transactions

max_prepared_transactions — Needs to be set high enough to cope with the maximum number of concurrent prepared transactions across
the cluster due to explicit two-phase commits, CAMO, or Eager transactions. Exceeding the limit prevents a node from running a local two-phase
commit or CAMO transaction and prevents all Eager transactions on the cluster. You can set this only at Postgres server start.

Eager Replication

bdr.commit_scope — Setting the commit scope to global enables eager all node replication (default local).

bdr.global_commit_timeout — Timeout for both stages of a global two-phase commit (default 60s) as well as for CAMO-protected
transactions in their commit phase, as a limit for how long to wait for the CAMO partner.

Commit At Most Once

bdr.enable_camo — Used to enable and control the CAMO feature. Defaults to off . CAMO can be switched on per transaction by setting this
to remote_write , remote_commit_async , or remote_commit_flush . For backward-compatibility, the values on , true , and 1 set
the safest remote_commit_flush mode, while false or 0 also disable CAMO.
bdr.standby_dsn — Allows manual override of the connection string (DSN) to reach the CAMO partner, in case it has changed since the crash

of the local node. Is usually unset. You can set it only at Postgres server start.

bdr.camo_local_mode_delay — The commit delay that applies in CAMO's local mode to emulate the overhead that normally occurs with the

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 58

bdr.camo_local_mode_delay — The commit delay that applies in CAMO's local mode to emulate the overhead that normally occurs with the
CAMO partner having to confirm transactions. Defaults to 5 ms. Set to 0 to disable this feature.
bdr.camo_enable_client_warnings — Emit warnings if an activity is carried out in the database for which CAMO properties can't be

guaranteed. This is enabled by default. Well-informed users can choose to disable this to reduce the amount of warnings going into their logs.
synchronous_replication_availability — Can optionally be async for increased availability by allowing a node to continue and

commit after its CAMO partner got disconnected. Under the default value of wait , the node waits indefinitely and proceeds to commit only after
the CAMO partner reconnects and sends confirmation.

Transaction streaming

bdr.default_streaming_mode — Used to control transaction streaming by the subscriber node. Permissible values are: off , writer ,
file , and auto . Defaults to auto . If set to off , the subscriber doesn't request transaction streaming. If set to one of the other values, the

subscriber requests transaction streaming and the publisher provides it if it supports them and if configured at group level. For more details, see
Transaction streaming.

Lag control

bdr.lag_control_max_commit_delay — Maximum acceptable post commit delay that can be tolerated, in fractional milliseconds.

bdr.lag_control_max_lag_size — Maximum acceptable lag size that can be tolerated, in kilobytes.

bdr.lag_control_max_lag_time — Maximum acceptable lag time that can be tolerated, in milliseconds.

bdr.lag_control_min_conforming_nodes — Minimum number of nodes required to stay below acceptable lag measures.

bdr.lag_control_commit_delay_adjust — Commit delay micro adjustment measured as a fraction of the maximum commit delay time. At
a default value of 0.01%, it takes 100 net increments to reach the maximum commit delay.

bdr.lag_control_sample_interval — Minimum time between lag samples and commit delay micro adjustments, in milliseconds.

bdr.lag_control_commit_delay_start — The lag threshold at which commit delay increments start to be applied, expressed as a fraction
of acceptable lag measures. At a default value of 1.0%, commit delay increments don't begin until acceptable lag measures are breached.

By setting a smaller fraction, it might be possible to prevent a breach by "bending the lag curve" earlier so that it's asymptotic with the acceptable
lag measure.

Timestamp-based snapshots

snapshot_timestamp — Turns on the use of timestamp-based snapshots and sets the timestamp to use.
bdr.timestamp_snapshot_keep — Time to keep valid snapshots for the timestamp-based snapshot use (default is 0 , meaning don't keep

past snapshots).

Monitoring and logging

bdr.debug_level — Defines the log level that BDR uses to write its debug messages. The default value is debug2 . If you want to see detailed
BDR debug output, set bdr.debug_level = 'log' .

bdr.trace_level — Similar to the above, this defines the log level to use for BDR trace messages. Enabling tracing on all nodes of a EDB
Postgres Distributed cluster might help EDB Support to diagnose issues. You can set this only at Postgres server start.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 59

Warning

Setting bdr.debug_level or bdr.trace_level to a value >= log_min_messages can produce a very large volume of log output, so
don't enabled it long term in production unless plans are in place for log filtering, archival, and rotation to prevent disk space exhaustion.

bdr.track_subscription_apply — Track apply statistics for each subscription with bdr.stat_subscription . The default value is
on .
bdr.track_relation_apply — Track apply statistics for each relation with bdr.stat_relation . The default value is off .
bdr.track_apply_lock_timing — Track lock timing when tracking statistics for relations with bdr.stat_relation . The default value

is off .

Internals

bdr.raft_keep_min_entries — The minimum number of entries to keep in the Raft log when doing log compaction (default 100). The value
of 0 disables log compaction. You can set this only at Postgres server start.

Warning

If log compaction is disabled, the log grows in size forever.

bdr.raft_response_timeout — To account for network failures, the Raft consensus protocol implemented times out requests after a certain
amount of time. This timeout defaults to 30 seconds.
bdr.raft_log_min_apply_duration — To move the state machine forward, Raft appends entries to its internal log. During normal

operation, appending takes only a few milliseconds. This poses an upper threshold on the duration of that append action, above which an INFO
message is logged. This can indicate a problem. Default value of this parameter is 3000 ms.
bdr.raft_log_min_message_duration — When to log a consensus request. Measure roundtrip time of a bdr consensus request and log an
INFO message if the time exceeds this parameter. Default value of this parameter is 5000 ms.
bdr.raft_group_max_connections — The maximum number of connections across all BDR groups for a Postgres server. These connections

carry bdr consensus requests between the groups' nodes. Default value of this parameter is 100 connections. You can set it only at Postgres server
start.
bdr.backwards_compatibility — Specifies the version to be backward compatible to, in the same numerical format as used by
bdr.bdr_version_num , e.g., 30618 . Enables exact behavior of a former BDR version, even if this has generally unwanted effects. Defaults to

the current BDR version. Since this changes from release to release, we advise against explicit use in the configuration file unless the value is
different from the current version.
bdr.track_replication_estimates — Track replication estimates in terms of apply rates and catchup intervals for peer nodes. Protocols

like CAMO can use this information to estimate the readiness of a peer node. This parameter is enabled by default.
bdr.lag_tracker_apply_rate_weight — We monitor how far behind peer nodes are in terms of applying WAL from the local node and

calculate a moving average of the apply rates for the lag tracking. This parameter specifies how much contribution newer calculated values have in
this moving average calculation. Default value is 0.1.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 60

6.3 Node management

Each database that's member of a BDR group must be represented by its own node. A node is a unique identifier of a database in a BDR group.

At present, each node can be a member of just one node group. (This might be extended in later releases.) Each node can subscribe to one or more
replication sets to give fine-grained control over replication.

A BDR group might also contain zero or more subgroups, allowing you to create a variety of different architectures.

Creating and joining a BDR group

For BDR, every node must connect to every other node. To make configuration easy, when a new node joins, it configures all existing nodes to connect to it.
For this reason, every node, including the first BDR node created, must know the PostgreSQL connection string, sometimes referred to as a data source
name (DSN), that other nodes can use to connect to it. Both formats of connection string are supported. So you can use either key-value format, like
host=myhost port=5432 dbname=mydb , or URI format, like postgresql://myhost:5432/mydb .

The SQL function bdr.create_node_group() creates the BDR group from the local node. Doing so activates BDR on that node and allows other
nodes to join the BDR group, which consists of only one node at that point. At the time of creation, you must specify the connection string for other nodes to
use to connect to this node.

Once the node group is created, every further node can join the BDR group using the bdr.join_node_group() function.

Alternatively, use the command line utility bdr_init_physical to create a new node, using pg_basebackup (or a physical standby) of an existing
node. If using pg_basebackup , the bdr_init_physical utility can optionally specify the base backup of only the target database. The earlier
behavior was to back up the entire database cluster. With this utility, the activity completes faster and also uses less space because it excludes unwanted
databases. If you specify only the target database, then the excluded databases get cleaned up and removed on the new node.

When a new BDR node is joined to an existing BDR group or a node subscribes to an upstream peer, before replication can begin the system must copy the
existing data from the peer nodes to the local node. This copy must be carefully coordinated so that the local and remote data starts out identical. It's not
enough to use pg_dump yourself. The BDR extension provides built-in facilities for making this initial copy.

During the join process, the BDR extension synchronizes existing data using the provided source node as the basis and creates all metadata information
needed for establishing itself in the mesh topology in the BDR group. If the connection between the source and the new node disconnects during this initial
copy, restart the join process from the beginning.

The node that is joining the cluster must not contain any schema or data that already exists on databases in the BDR group. We recommend that the newly
joining database be empty except for the BDR extension. However, it's important that all required database users and roles are created.

Optionally, you can skip the schema synchronization using the synchronize_structure parameter of the bdr.join_node_group() function. In
this case, the schema must already exist on the newly joining node.

We recommend that you select the source node that has the best connection (the closest) as the source node for joining. Doing so lowers the time needed
for the join to finish.

Coordinate the join procedure using the Raft consensus algorithm, which requires most existing nodes to be online and reachable.

The logical join procedure (which uses the bdr.join_node_group() function) performs data sync doing COPY operations and uses multiple writers
(parallel apply) if those are enabled.

Node join can execute concurrently with other node joins for the majority of the time taken to join. However, only one regular node at a time can be in either
of the states PROMOTE or PROMOTING, which are typically fairly short if all other nodes are up and running. Otherwise the join is serialized at this stage.
The subscriber-only nodes are an exception to this rule, and they can be concurrently in PROMOTE and PROMOTING states as well, so their join process is
fully concurrent.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 61

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

The join process uses only one node as the source, so it can be executed when nodes are down if a majority of nodes are available. This can cause a
complexity when running logical join. During logical join, the commit timestamp of rows copied from the source node is set to the latest commit timestamp
on the source node. Committed changes on nodes that have a commit timestamp earlier than this (because nodes are down or have significant lag) can
conflict with changes from other nodes. In this case, the newly joined node can be resolved differently to other nodes, causing a divergence. As a result, we
recommend not running a node join when significant replication lag exists between nodes. If this is necessary, run LiveCompare on the newly joined node
to correct any data divergence once all nodes are available and caught up.

pg_dump can fail when there is concurrent DDL activity on the source node because of cache-lookup failures. Since bdr.join_node_group() uses
pg_dump internally, it might fail if there's concurrent DDL activity on the source node. Retrying the join works in that case.

Joining a heterogeneous cluster

BDR 4.0 node can join a EDB Postgres Distributed cluster running 3.7.x at a specific minimum maintenance release (such as 3.7.6) or a mix of 3.7 and 4.0
nodes. This procedure is useful when you want to upgrade not just the BDR major version but also the underlying PostgreSQL major version. You can
achieve this by joining a 3.7 node running on PostgreSQL 12 or 13 to a EDB Postgres Distributed cluster running 3.6.x on PostgreSQL 11. The new node can
also run on the same PostgreSQL major release as all of the nodes in the existing cluster.

BDR ensures that the replication works correctly in all directions even when some nodes are running 3.6 on one PostgreSQL major release and other nodes
are running 3.7 on another PostgreSQL major release. But we recommend that you quickly bring the cluster into a homogenous state by parting the older
nodes once enough new nodes join the cluster. Don't run any DDLs that might not be available on the older versions and vice versa.

A node joining with a different major PostgreSQL release can't use physical backup taken with bdr_init_physical , and the node must join using the
logical join method. This is necessary because the major PostgreSQL releases aren't on-disk compatible with each other.

When a 3.7 node joins the cluster using a 3.6 node as a source, certain configurations, such as conflict resolution, aren't copied from the source node. The
node must be configured after it joins the cluster.

Connection DSNs and SSL (TLS)

The DSN of a node is simply a libpq connection string, since nodes connect using libpq . As such, it can contain any permitted libpq connection
parameter, including those for SSL. The DSN must work as the connection string from the client connecting to the node in which it's specified. An example
of such a set of parameters using a client certificate is:

With this setup, the files bdr_client.crt , bdr_client.key , and root.crt must be present in the data directory on each node, with the
appropriate permissions. For verify-full mode, the server's SSL certificate is checked to ensure that it's directly or indirectly signed with the
root.crt certificate authority and that the host name or address used in the connection matches the contents of the certificate. In the case of a name,

this can match a Subject Alternative Name or, if there are no such names in the certificate, the Subject's Common Name (CN) field. Postgres doesn't
currently support subject alternative names for IP addresses, so if the connection is made by address rather than name, it must match the CN field.

The CN of the client certificate must be the name of the user making the BDR connection. This is usually the user postgres. Each node requires matching
lines permitting the connection in the pg_hba.conf file. For example:

Another setup might be to use SCRAM-SHA-256 passwords instead of client certificates and not verify the server identity as long as the certificate is
properly signed. Here the DSN parameters might be:

The corresponding pg_hba.conf lines are:

sslmode=verify-full sslcert=bdr_client.crt
sslkey=bdr_client.key
sslrootcert=root.crt

hostssl all postgres 10.1.2.3/24
cert
hostssl replication postgres 10.1.2.3/24
cert

sslmode=verify-ca sslrootcert=root.crt

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 62

The corresponding pg_hba.conf lines are:

In such a scenario, the postgres user needs a .pgpass file containing the correct password.

Witness nodes

If the cluster has an even number of nodes, it might be useful to create an extra node to help break ties in the event of a network split (or network partition,
as it is sometimes called).

Rather than create an additional full-size node, you can create a micro node, sometimes called a witness node. This is a normal BDR node that is
deliberately set up not to replicate any tables or data to it.

Logical standby nodes

BDR allows you to create a logical standby node, also known as an offload node, a read-only node, receive-only node, or logical-read replicas. A master
node can have zero, one, or more logical standby nodes.

With a physical standby node, the node never comes up fully, forcing it to stay in continual recovery mode. BDR allows something similar.
bdr.join_node_group has the pause_in_standby option to make the node stay in half-way-joined as a logical standby node. Logical standby

nodes receive changes but don't send changes made locally to other nodes.

Later, if you want, use bdr.promote_node() to move the logical standby into a full, normal send/receive node.

A logical standby is sent data by one source node, defined by the DSN in bdr.join_node_group . Changes from all other nodes are received from this
one source node, minimizing bandwidth between multiple sites.

There are multiple options for high availability:

If the source node dies, one physical standby can be promoted to a master. In this case, the new master can continue to feed any or all logical
standby nodes.

If the source node dies, one logical standby can be promoted to a full node and replace the source in a failover operation similar to single-master
operation. If there are multiple logical standby nodes, the other nodes can't follow the new master, so the effectiveness of this technique is limited to
one logical standby.

In case a new standby is created from an existing BDR node, the needed replication slots for operation aren't synced to the new standby until at least 16
MB of LSN has elapsed since the group slot was last advanced. In extreme cases, this might require a full 16 MB before slots are synced or created on the
streaming replica. If a failover or switchover occurs during this interval, the streaming standby can't be promoted to replace its BDR node, as the group slot
and other dependent slots don't exist yet.

The slot sync-up process on the standby solves this by invoking a function on the upstream. This function moves the group slot in the entire EDB Postgres
Distributed cluster by performing WAL switches and requesting all BDR peer nodes to replay their progress updates. This causes the group slot to move
ahead in a short time span. This reduces the time required by the standby for the initial slot's sync-up, allowing for faster failover to it, if required.

On PostgreSQL, it's important to ensure that the slot's sync-up completes on the standby before promoting it. You can run the following query on the
standby in the target database to monitor and ensure that the slots synced up with the upstream. The promotion can go ahead when this query returns
true .

hostssl all postgres 10.1.2.3/24 scram-sha-
256
hostssl replication postgres 10.1.2.3/24 scram-sha-
256

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 63

You can also nudge the slot sync-up process in the entire BDR cluster by manually performing WAL switches and by requesting all BDR peer nodes to replay
their progress updates. This activity causes the group slot to move ahead in a short time and also hastens the slot sync-up activity on the standby. You can
run the following queries on any BDR peer node in the target database for this:

Use the monitoring query on the standby to check that these queries do help in faster slot sync-up on that standby.

Logical standby nodes can be protected using physical standby nodes, if desired, so Master->LogicalStandby->PhysicalStandby. You can't cascade from
LogicalStandby to LogicalStandby.

A logical standby does allow write transactions, so the restrictions of a physical standby don't apply. You can use this to great benefit, since it allows the
logical standby to have additional indexes, longer retention periods for data, intermediate work tables, LISTEN/NOTIFY, temp tables, materialized views,
and other differences.

Any changes made locally to logical standbys that commit before the promotion aren't sent to other nodes. All transactions that commit after promotion are
sent onwards. If you perform writes to a logical standby, take care to quiesce the database before promotion.

You might make DDL changes to logical standby nodes but they aren't replicated and they don't attempt to take global DDL locks. BDR functions that act
similarly to DDL also aren't replicated. See DDL replication. If you made incompatible DDL changes to a logical standby, then the database is a divergent
node. Promotion of a divergent node currently results in replication failing. As a result, plan to either ensure that a logical standby node is kept free of
divergent changes if you intend to use it as a standby, or ensure that divergent nodes are never promoted.

Physical standby nodes

BDR also enables you to create traditional physical standby failover nodes. These are commonly intended to directly replace a BDR node in the cluster after
a short promotion procedure. As with any standard Postgres cluster, a node can have any number of these physical replicas.

There are, however, some minimal prerequisites for this to work properly due to the use of replication slots and other functional requirements in BDR:

The connection between BDR primary and standby uses streaming replication through a physical replication slot.
The standby has:

postgresql.conf :
primary_conninfo pointing to the primary
primary_slot_name naming a physical replication slot on the primary to be used only by this standby
shared_preload_libraries = 'bdr' , there can be other plugins in the list as well, but don't include pglogical
hot_standby = on
hot_standby_feedback = on

The primary has:
postgresql.conf :

bdr.standby_slot_names specifies the physical replication slot used for the standby's primary_slot_name .

While this is enough to produce a working physical standby of a BDR node, you need to address some additional concerns.

Once established, the standby requires enough time and WAL traffic to trigger an initial copy of the primary's other BDR-related replication slots, including
the BDR group slot. At minimum, slots on a standby are live and can survive a failover only if they report a nonzero confirmed_flush_lsn as reported
by pg_replication_slots .

SELECT true FROM pg_catalog.pg_replication_slots
WHERE
 slot_type = 'logical' AND confirmed_flush_lsn IS NOT
NULL;

SELECT bdr.run_on_all_nodes('SELECT
pg_catalog.pg_switch_wal()');
SELECT bdr.run_on_all_nodes('SELECT
bdr.request_replay_progress_update()');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 64

As a consequence, check physical standby nodes in newly initialized BDR clusters with low amounts of write activity before assuming a failover will work
normally. Failing to take this precaution can result in the standby having an incomplete subset of required replication slots needed to function as a BDR
node, and thus an aborted failover.

The protection mechanism that ensures physical standby nodes are up to date and can be promoted (as configured bdr.standby_slot_names)
affects the overall replication latency of the BDR group. This is because the group replication happens only when the physical standby nodes are up to date.

For these reasons, we generally recommend to use either logical standby nodes or a subscribe-only group instead of physical standby nodes. They both
have better operational characteristics in comparison.

You can manually ensure the group slot is advanced on all nodes (as much as possible), which helps hasten the creation of BDR-related replication slots on
a physical standby using the following SQL syntax:

Upon failover, the standby must perform one of two actions to replace the primary:

Assume control of the same IP address or hostname as the primary.
Inform the EDB Postgres Distributed cluster of the change in address by executing the bdr.alter_node_interface function on all other BDR nodes.

Once this is done, the other BDR nodes reestablish communication with the newly promoted standby -> primary node. Since replication slots are
synchronized only periodically, this new primary might reflect a lower LSN than expected by the existing BDR nodes. If this is the case, BDR fast forwards
each lagging slot to the last location used by each BDR node.

Take special note of the bdr.standby_slot_names parameter as well. It's important to set it in a EDB Postgres Distributed cluster where there is a
primary -> physical standby relationship or when using subscriber-only groups.

BDR maintains a group slot that always reflects the state of the cluster node showing the most lag for any outbound replication. With the addition of a
physical replica, BDR must be informed that there is a nonparticipating node member that, regardless, affects the state of the group slot.

Since the standby doesn't directly communicate with the other BDR nodes, the standby_slot_names parameter informs BDR to consider named slots
as needed constraints on the group slot as well. When set, the group slot is held if the standby shows lag, even if the group slot is normally advanced.

As with any physical replica, this type of standby can also be configured as a synchronous replica. As a reminder, this requires:

On the standby:
Specifying a unique application_name in primary_conninfo

On the primary:
Enabling synchronous_commit
Including the standby application_name in synchronous_standby_names

It's possible to mix physical standby and other BDR nodes in synchronous_standby_names . CAMO and Eager All-Node Replication use different
synchronization mechanisms and don't work with synchronous replication. Make sure synchronous_standby_names doesn't include the CAMO
partner (if CAMO is used) or any BDR node at all (if Eager All-Node Replication is used). Instead use only non-BDR nodes, for example, a physical standby.

Subgroups

A group can also contain zero or more subgroups. Each subgroup can be allocated to a specific purpose in the top-level parent group. The node_group_type
specifies the type when the subgroup is created.

SELECT bdr.move_group_slot_all_nodes();

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 65

Subscriber-only groups

As the name suggests, this type of node subscribes only to replication changes from other nodes in the cluster. However, no other nodes receive replication
changes from subscriber-only nodes. This is somewhat similar to logical standby nodes. But in contrast to logical standby, the subscriber-
only nodes are fully joined to the cluster. They can receive replication changes from all other nodes in the cluster and hence aren't affected by
unavailability or parting of any one node in the cluster.

A subscriber-only node is a fully joined BDR node and hence it receives all replicated DDLs and acts on those. It also uses Raft to consistently report
its status to all nodes in the cluster. The subscriber-only node doesn't have Raft voting rights and hence can't become a Raft leader or participate in
the leader election. Also, while it receives replicated DDLs, it doesn't participate in DDL or DML lock acquisition. In other words, a currently down
subscriber-only node doesn't stop a DML lock from being acquired.

The subscriber-only node forms the building block for BDR Tree topology. In this topology, a small number of fully active nodes are replicating
changes in all directions. A large number of subscriber-only nodes receive only changes but never send any changes to any other node in the cluster.
This topology avoids connection explosion due to a large number of nodes, yet provides an extremely large number of leaf nodes that you can use to
consume the data.

To make use of subscriber-only nodes, first create a BDR group of type subscriber-only . Make it a subgroup of the group from which the
member nodes receive the replication changes. Once you create the subgroup, all nodes that intend to become subscriber-only nodes must join the
subgroup. You can create more than one subgroup of subscriber-only type, and they can have different parent groups.

Once a node successfully joins the subscriber-only subgroup, it becomes a subscriber-only node and starts receiving replication changes for
the parent group. Any changes made directly on the subscriber-only node aren't replicated.

See bdr.create_node_group() to know how to create a subgroup of a specific type and belonging to a specific parent group.

Notes

Since a subscriber-only node doesn't replicate changes to any node in the cluster, it can't act as a source for syncing replication changes when a
node is parted from the cluster. But if the subscriber-only node already received and applied replication changes from the parted node that no other
node in the cluster currently has, then that causes inconsistency between the nodes.

For now, you can solve this by setting bdr.standby_slot_names and bdr.standby_slots_min_confirmed so that there is always a fully
active BDR node that is ahead of the subscriber-only nodes.

This might be improved in a future release. We might either allow subscriber-only nodes to be ahead in the replication and then use them as
replication source for sync or simply provide ways to optionally remove the inconsistent subscriber-only nodes from the cluster when another fully
joined node is parted.

Decoding worker

BDR4 provides an option to enable a decoding worker process that performs decoding once, no matter how many nodes are sent data. This introduces a
new process, the WAL decoder, on each BDR node. One WAL sender process still exists for each connection, but these processes now just perform the task
of sending and receiving data. Taken together, these changes reduce the CPU overhead of larger BDR groups and also allow higher replication throughput
since the WAL sender process now spends more time on communication.

enable_wal_decoder is an option for each BDR group, which is currently disabled by default. You can use bdr.alter_node_group_config()
to enable or disable the decoding worker for a BDR group.

When the decoding worker is enabled, BDR stores logical change record (LCR) files to allow buffering of changes between decoding and when all
subscribing nodes received data. LCR files are stored under the pg_logical directory in each local node's data directory. The number and size of the
LCR files varies as replication lag increases, so this also needs monitoring. The LCRs that aren't required by any of the BDR nodes are cleaned periodically.
The interval between two consecutive cleanups is controlled by bdr.lcr_cleanup_interval , which defaults to 3 minutes. The cleanup is disabled
when bdr.lcr_cleanup_interval is zero.

When disabled, logical decoding is performed by the WAL sender process for each node subscribing to each node. In this case, no LCR files are written.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 66

Even though the decoding worker is enabled for a BDR group, following GUCs control the production and use of LCR per node. By default these are
false . For production and use of LCRs, enable the decoding worker for the BDR group and set these GUCs to to true on each of the nodes in the BDR

group.

bdr.enable_wal_decoder — When turned false , all WAL senders using LCRs restart to use WAL directly. When true along with the BDR
group config, a decoding worker process is started to produce LCR and WAL Senders use LCR.
bdr.receive_lcr — When true on the subscribing node, it requests WAL sender on the publisher node to use LCRs if available.

Notes

As of now, a decoding worker decodes changes corresponding to the node where it's running. A logical standby is sent changes from all the nodes in the
BDR group through a single source. Hence a WAL sender serving a logical standby can't use LCRs right now.

A subscriber-only node receives changes from respective nodes directly. Hence a WAL sender serving a subscriber-only node can use LCRs.

Even though LCRs are produced, the corresponding WALs are still retained similar to the case when a decoding worker isn't enabled. In the future, it might
be possible to remove WAL corresponding the LCRs, if they aren't otherwise required.

For reference, the first 24 characters of an LCR file name are similar to those in a WAL file name. The first 8 characters of the name are all '0' right now. In
the future, they are expected to represent the TimeLineId similar to the first 8 characters of a WAL segment file name. The following sequence of 16
characters of the name is similar to the WAL segment number, which is used to track LCR changes against the WAL stream.

However, logical changes are reordered according to the commit order of the transactions they belong to. Hence their placement in the LCR segments
doesn't match the placement of corresponding WAL in the WAL segments.

The set of last 16 characters represents the subsegment number in an LCR segment. Each LCR file corresponds to a subsegment. LCR files are binary and
variable sized. The maximum size of an LCR file can be controlled by bdr.max_lcr_segment_file_size , which defaults to 1 GB.

Node restart and down node recovery

BDR is designed to recover from node restart or node disconnection. The disconnected node rejoins the group by reconnecting to each peer node and then
replicating any missing data from that node.

When a node starts up, each connection begins showing bdr.node_slots.state = catchup and begins replicating missing data. Catching up
continues for a period of time that depends on the amount of missing data from each peer node and will likely increase over time, depending on the server
workload.

If the amount of write activity on each node isn't uniform, the catchup period from nodes with more data can take significantly longer than other nodes.
Eventually, the slot state changes to bdr.node_slots.state = streaming .

Nodes that are offline for longer periods, such as hours or days, can begin to cause resource issues for various reasons. Don't plan on extended outages
without understanding the following issues.

Each node retains change information (using one replication slot for each peer node) so it can later replay changes to a temporarily unreachable node. If a
peer node remains offline indefinitely, this accumulated change information eventually causes the node to run out of storage space for PostgreSQL
transaction logs (WAL in pg_wal), and likely causes the database server to shut down with an error similar to this:

PANIC: could not write to file "pg_wal/xlogtemp.559": No space left on device

Or, it might report other out-of-disk related symptoms.

In addition, slots for offline nodes also hold back the catalog xmin, preventing vacuuming of catalog tables.

On EDB Postgres Extended Server and EDB Postgres Advanced Server, offline nodes also hold back freezing of data to prevent losing conflict-resolution
data (see Origin conflict detection).

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 67

https://www.postgresql.org/docs/current/logicaldecoding-explanation.html

Administrators must monitor for node outages (see monitoring) and make sure nodes have enough free disk space. If the workload is predictable, you might
be able to calculate how much space is used over time, allowing a prediction of the maximum time a node can be down before critical issues arise.

Don't manually remove replication slots created by BDR. If you do, the cluster becomes damaged and the node that was using the slot must be parted from
the cluster, as described in Replication slots created by BDR.

While a node is offline, the other nodes might not yet have received the same set of data from the offline node, so this might appear as a slight divergence
across nodes. The parting process corrects this imbalance across nodes. (Later versions might do this earlier.)

Replication slots created by BDR

On a BDR master node, the following replication slots are created by BDR:

One group slot, named bdr_<database name>_<group name>
N-1 node slots, named bdr_<database name>_<group name>_<node name> , where N is the total number of BDR nodes in the cluster,
including direct logical standbys, if any

Warning

Don't drop those slots. BDR creates and manages them and drops them when or if necessary.

On the other hand, you can create or drop replication slots required by software like Barman or logical replication using the appropriate commands for the
software without any effect on BDR. Don't start slot names used by other software with the prefix bdr_ .

For example, in a cluster composed of the three nodes alpha , beta , and gamma , where BDR is used to replicate the mydb database and the BDR
group is called mygroup :

Node alpha has three slots:
One group slot named bdr_mydb_mygroup
Two node slots named bdr_mydb_mygroup_beta and bdr_mydb_mygroup_gamma

Node beta has three slots:
One group slot named bdr_mydb_mygroup
Two node slots named bdr_mydb_mygroup_alpha and bdr_mydb_mygroup_gamma

Node gamma has three slots:
One group slot named bdr_mydb_mygroup
Two node slots named bdr_mydb_mygroup_alpha and bdr_mydb_mygroup_beta

Group replication slot

The group slot is an internal slot used by BDR primarily to track the oldest safe position that any node in the BDR group (including all logical standbys) has
caught up to, for any outbound replication from this node.

The group slot name is given by the function bdr.local_group_slot_name() .

The group slot can:

Join new nodes to the BDR group without having all existing nodes up and running (although the majority of nodes should be up), without incurring
data loss in case the node that was down during join starts replicating again.
Part nodes from the cluster consistently, even if some nodes haven't caught up fully with the parted node.
Hold back the freeze point to avoid missing some conflicts.
Keep the historical snapshot for timestamp-based snapshots.

The group slot is usually inactive and is fast forwarded only periodically in response to Raft progress messages from other nodes.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 68

Warning

Don't drop the group slot. Although usually inactive, it's still vital to the proper operation of the EDB Postgres Distributed cluster. If you drop it,
then some or all of the features can stop working or have incorrect outcomes.

Hashing long identifiers

The name of a replication slot—like any other PostgreSQL identifier—can't be longer than 63 bytes. BDR handles this by shortening the database name, the
BDR group name, and the name of the node in case the resulting slot name is too long for that limit. Shortening an identifier is carried out by replacing the
final section of the string with a hash of the string itself.

For example, consider a cluster that replicates a database named db20xxxxxxxxxxxxxxxx (20 bytes long) using a BDR group named
group20xxxxxxxxxxxxx (20 bytes long). The logical replication slot associated to node a30xxxxxxxxxxxxxxxxxxxxxxxxxxx (30 bytes long) is

called since 3597186 , be9cbd0 , and 7f304a2 are respectively the hashes of db20xxxxxxxxxxxxxxxx , group20xxxxxxxxxxxxx , and
a30xxxxxxxxxxxxxxxxxxxxxxxxxx .

bdr_db20xxxx3597186_group20xbe9cbd0_a30xxxxxxxxxxxxx7f304a2

Removing a node from a BDR group

Since BDR is designed to recover from extended node outages, you must explicitly tell the system if you're removing a node permanently. If you
permanently shut down a node and don't tell the other nodes, then performance suffers and eventually the whole system stops working.

Node removal, also called parting, is done using the bdr.part_node() function. You must specify the node name (as passed during node creation) to
remove a node. You can call the bdr.part_node() function from any active node in the BDR group, including the node that you're removing.

Just like the join procedure, parting is done using Raft consensus and requires a majority of nodes to be online to work.

The parting process affects all nodes. The Raft leader manages a vote between nodes to see which node has the most recent data from the parting node.
Then all remaining nodes make a secondary, temporary connection to the most-recent node to allow them to catch up any missing data.

A parted node still is known to BDR but won't consume resources. A node might be added again under the same name as a parted node. In rare cases, you
might want to clear all metadata of a parted node by using the function bdr.drop_node() .

Uninstalling BDR

Dropping the BDR extension removes all the BDR objects in a node, including metadata tables. You can do this with the following command:

If the database depends on some BDR-specific objects, then you can't drop the BDR extension. Examples include:

Tables using BDR-specific sequences such as SnowflakeId or galloc
Column using CRDT data types
Views that depend on some BDR catalog tables

Remove those dependencies before dropping the BDR extension. For example, drop the dependent objects, alter the column type to a non-BDR equivalent,
or change the sequence type back to local .

Warning

You can drop the BDR extension only if the node was successfully parted from its BDR node group or if it's the last node in the group. Dropping
BDR metadata breaks replication to and from the other nodes.

DROP EXTENSION bdr;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 69

Warning

When dropping a local BDR node or the BDR extension in the local database, any preexisting session might still try to execute a BDR-specific
workflow and therefore fail. You can solve the problem by disconnecting the session and then reconnecting the client or by restarting the
instance.

There's also a bdr.drop_node() function. Use this function only in emergencies, such as if there's a problem with parting.

Listing BDR topology

Listing BDR groups

The following simple query lists all the BDR node groups of which the current node is a member. It currently returns only one row.

You can display the configuration of each node group using a more complex query:

Listing nodes in a BDR group

You can extract the list of all nodes in a given node group (such as mygroup) from the bdr.node_summary view as shown in the following example:

The read-only state of a node, as shown in the current_state or in the target_state query columns, is indicated as STANDBY .

SELECT node_group_name
FROM bdr.local_node_summary;

SELECT g.node_group_name
,
ns.pub_repsets
,
ns.sub_repsets
, g.node_group_default_repset AS
default_repset
, node_group_check_constraints AS check_constraints
FROM bdr.local_node_summary ns
JOIN bdr.node_group g USING
(node_group_name);

SELECT node_name AS name
, node_seq_id AS
ord
, peer_state_name AS current_state
, peer_target_state_name AS target_state
, interface_connstr AS
dsn
FROM
bdr.node_summary
WHERE node_group_name = 'mygroup';

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 70

List of node states

NONE : Node state is unset when the worker starts, expected to be set quickly to the current known state.
CREATED : bdr.create_node() was executed, but the node isn't a member of any EDB Postgres Distributed cluster yet.
JOIN_START : bdr.join_node_group() begins to join the local node to an existing EDB Postgres Distributed cluster.
JOINING : The node join has started and is currently at the initial sync phase, creating the schema and data on the node.
CATCHUP : Initial sync phase is completed. Now the join is at the last step of retrieving and applying transactions that were performed on the

upstream peer node since the join started.
STANDBY : Node join finished, but hasn't yet started to broadcast changes. All joins spend some time in this state, but if defined as a logical

standby, the node continues in this state.
PROMOTE : Node was a logical standby and we just called bdr.promote_node to move the node state to ACTIVE . These two
PROMOTE states have to be coherent to the fact that only one node can be with a state higher than STANDBY but lower than ACTIVE .
PROMOTING : Promotion from logical standby to full BDR node is in progress.
ACTIVE : The node is a full BDR node and is currently ACTIVE . This is the most common node status.
PART_START : Node was ACTIVE or STANDBY and we just called bdr.part_node to remove the node from the EDB Postgres Distributed

cluster.
PARTING : Node disconnects from other nodes and plays no further part in consensus or replication.
PART_CATCHUP : Nonparting nodes synchronize any missing data from the recently parted node.
PARTED : Node parting operation is now complete on all nodes.

Only one node at a time can be in either of the states PROMOTE or PROMOTING.

Node management interfaces

You can add and remove nodes dynamically using the SQL interfaces.

bdr.create_node

This function creates a node.

Synopsis

Parameters

node_name — Name of the new node. Only one node is allowed per database. Valid node names consist of lowercase letters, numbers, hyphens,
and underscores.
local_dsn — Connection string to the node.

Notes

This function creates a record for the local node with the associated public connection string. There can be only one local record, so once it's created, the
function reports an error if run again.

This function is a transactional function. You can roll it back and the changes made by it are visible to the current transaction.

The function holds lock on the newly created bdr node until the end of the transaction.

bdr.create_node(node_name text, local_dsn text)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 71

bdr.drop_node

Drops a node.

Warning

This function isn't intended for regular use. Execute it only if instructed by Technical Support.

This function removes the metadata for a given node from the local database. The node can be either:

The local node, in which case all the node metadata is removed, including information about remote nodes.
A remote node, in which case only metadata for that specific node is removed.

Synopsis

Parameters

node_name — Name of an existing node.
cascade — Deprecated, will be removed in the future.
force — Circumvents all sanity checks and forces the removal of all metadata for the given BDR node despite a possible danger of causing

inconsistencies. Only Technical Support uses a forced node drop in case of emergencies related to parting.

Notes

Before you run this, part the node using bdr.part_node() .

This function removes metadata for a given node from the local database. The node can be the local node, in which case all the node metadata are removed,
including information about remote nodes. Or it can be the remote node, in which case only metadata for that specific node is removed.

Note

BDR4 can have a maximum of 1024 node records (both ACTIVE and PARTED) at one time because each node has a unique sequence number
assigned to it, for use by snowflakeid and timeshard sequences. PARTED nodes aren't automatically cleaned up. If this becomes a problem, you
can use this function to remove those records.

bdr.create_node_group

This function creates a BDR group with the local node as the only member of the group.

Synopsis

bdr.drop_node(node_name text, cascade boolean DEFAULT false, force boolean DEFAULT false)

bdr.create_node_group(node_group_name text,
 parent_group_name text DEFAULT NULL,
 join_node_group boolean DEFAULT true,
 node_group_type text DEFAULT NULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 72

Parameters

node_group_name — Name of the new BDR group. As with the node name, valid group names must consist of only lowercase letters, numbers,
and underscores.
parent_group_name — The name of the parent group for the subgroup.
join_node_group — This parameter helps a node to decide whether to join the group being created by it. The default value is true . This is

used when a node is creating a shard group that it doesn't want to join. This can be false only if you specify parent_group_name .
node_group_type — The valid values are NULL , subscriber-only , datanode , read coordinator , and write coordinator .
subscriber-only type is used to create a group of nodes that receive changes only from the fully joined nodes in the cluster, but they never

send replication changes to other nodes. See Subscriber-only groups for more details. Datanode implies that the group represents a shard,
whereas the other values imply that the group represents respective coordinators. Except subscriber-only , the other values are reserved for
future use. NULL implies a normal general-purpose node group is created.

Notes

This function passes a request to the local consensus worker that's running for the local node.

The function isn't transactional. The creation of the group is a background process, so once the function finishes, you can't roll back the changes. Also, the
changes might not be immediately visible to the current transaction. You can call bdr.wait_for_join_completion to wait until they are.

The group creation doesn't hold any locks.

bdr.alter_node_group_config

This function changes the configuration parameters of an existing BDR group. Options with NULL value (default for all of them) aren't modified.

Synopsis

Parameters

node_group_name — Name of an existing BDR group. The local node must be part of the group.

insert_to_update — Reserved for backward compatibility.

update_to_insert — Reserved for backward compatibility.

bdr.alter_node_group_config(node_group_name text,
 insert_to_update boolean DEFAULT
NULL,
 update_to_insert boolean DEFAULT
NULL,
 ignore_redundant_updates boolean DEFAULT
NULL,
 check_full_tuple boolean DEFAULT
NULL,
 apply_delay interval DEFAULT
NULL,
 check_constraints boolean DEFAULT NULL,
 num_writers int DEFAULT
NULL,
 enable_wal_decoder boolean DEFAULT NULL,
 streaming_mode text DEFAULT
NULL,
 default_commit_scope text DEFAULT NULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 73

update_to_insert — Reserved for backward compatibility.

 versions of BDR. Use `bdr.alter_node_set_conflict_resolver` instead.

ignore_redundant_updates — Reserved for backward compatibility.

check_full_tuple — Reserved for backward compatibility.

apply_delay — Reserved for backward compatibility.

check_constraints — Whether the apply process checks the constraints when writing replicated data.

num_writers — Number of parallel writers for subscription backing this node group. -1 means the default (as specified by the GUC
bdr.writers_per_subscription) is used. Valid values are either -1 or a positive integer.

enable_wal_decoder — Enables/disables the decoding worker process. You can't enable the decoding worker process if streaming_mode
is already enabled.

streaming_mode — Enables/disables streaming of large transactions. When set to off , streaming is disabled. When set to any other value,
large transactions are decoded while they're still in progress, and the changes are sent to the downstream. If the value is set to file , then the
incoming changes of streaming transactions are stored in a file and applied only after the transaction is committed on upstream. If the value is set to
writer , then the incoming changes are directly sent to one of the writers, if available. If parallel apply is disabled or no writer is free to handle

streaming transaction, then the changes are written to a file and applied after the transaction is committed. If the value is set to auto , BDR tries to
intelligently pick between file and writer , depending on the transaction property and available resources. You can't enable
streaming_mode if the WAL decoder is already enabled.

For more details, see Transaction streaming.

default_commit_scope — The commit scope to use by default, initially the local commit scope. This applies only to the top-level node
group. You can use individual rules for different origin groups of the same commit scope. See Origin groups for more details.

Notes

This function passes a request to the group consensus mechanism to change the defaults. The changes made are replicated globally using the consensus
mechanism.

The function isn't transactional. The request is processed in the background so you can't roll back the function call. Also, the changes might not be
immediately visible to the current transaction.

This function doesn't hold any locks.

Warning

When you use this function to change the apply_delay value, the change doesn't apply to nodes that are already members of the group. This
restriction has little consequence on production use because this value normally isn't used outside of testing.

bdr.join_node_group

This function joins the local node to an already existing BDR group.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 74

Synopsis

Parameters

join_target_dsn — Specifies the connection string to an existing (source) node in the BDR group you want to add the local node to.
node_group_name — Optional name of the BDR group. Defaults to NULL, which tries to detect the group name from information present on the

source node.
pause_in_standby — Optionally tells the join process to join only as a logical standby node, which can be later promoted to a full member.
wait_for_completion — Wait for the join process to complete before returning. Defaults to true .
synchronize_structure — Set the kind of structure (schema) synchronization to do during the join. Valid options are all , which

synchronizes the complete database structure, and none , which doesn't synchronize any structure. However, it still synchronizes data.

If wait_for_completion is specified as false , this is an asynchronous call that returns as soon as the joining procedure starts. You can see
progress of the join in logs and the bdr.state_journal_details information view or by calling the bdr.wait_for_join_completion()
function after bdr.join_node_group() returns.

Notes

This function passes a request to the group consensus mechanism by way of the node that the join_target_dsn connection string points to. The
changes made are replicated globally by the consensus mechanism.

The function isn't transactional. The joining process happens in the background and you can't roll it back. The changes are visible only to the local
transaction if wait_for_completion was set to true or by calling bdr.wait_for_join_completion later.

Node can be part of only a single group, so you can call this function only once on each node.

Node join doesn't hold any locks in the BDR group.

bdr.promote_node

This function promotes a local logical standby node to a full member of the BDR group.

Synopsis

Notes

This function passes a request to the group consensus mechanism to change the defaults. The changes made are replicated globally by the consensus
mechanism.

bdr.join_node_group
(
 join_target_dsn text,
 node_group_name text DEFAULT NULL,
 pause_in_standby boolean DEFAULT
false,
 wait_for_completion boolean DEFAULT
true,
 synchronize_structure text DEFAULT
'all'
)

bdr.promote_node(wait_for_completion boolean DEFAULT true)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 75

The function isn't transactional. The promotion process happens in the background, and you can't roll it back. The changes are visible only to the local
transaction if wait_for_completion was set to true or by calling bdr.wait_for_join_completion later.

The promotion process holds lock against other promotions. This lock doesn't block other bdr.promote_node calls but prevents the background
process of promotion from moving forward on more than one node at a time.

bdr.wait_for_join_completion

This function waits for the join procedure of a local node to finish.

Synopsis

Parameters

verbose_progress — Optionally prints information about individual steps taken during the join procedure.

Notes

This function waits until the checks state of the local node reaches the target state, which was set by bdr.create_node_group ,
bdr.join_node_group , or bdr.promote_node .

bdr.part_node

Removes (parts) the node from the BDR group but doesn't remove data from the node.

You can call the function from any active node in the BDR group, including the node that you're removing. However, once the node is parted, it can't part
other nodes in the cluster.

Note

If you're parting the local node, you must set wait_for_completion to false . Otherwise, it reports an error.

Warning

This action is permanent. If you want to temporarily halt replication to a node, see bdr.alter_subscription_disable() .

Synopsis

bdr.wait_for_join_completion(verbose_progress boolean DEFAULT false)

bdr.part_node
(
 node_name text,

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 76

Parameters

node_name — Name of an existing node to part.
wait_for_completion — If true , the function doesn't return until the node is fully parted from the cluster. Otherwise the function starts the

parting procedure and returns immediately without waiting. Always set to false when executing on the local node or when using force .
force — Forces removal of the node on the local node. This sets the node state locally if consensus can't be reached or if the node parting process

is stuck.

Warning

Using force = true can leave the BDR group in an inconsistent state. Use it only to recover from failures in which you can't remove the node
any other way.

Notes

This function passes a request to the group consensus mechanism to part the given node. The changes made are replicated globally by the consensus
mechanism. The parting process happens in the background, and you can't roll it back. The changes made by the parting process are visible only to the local
transaction if wait_for_completion was set to true .

With force set to true , on consensus failure, this function sets the state of the given node only on the local node. In such a case, the function is
transactional (because the function changes the node state) and you can roll it back. If the function is called on a node that is already in process of parting
with force set to true , it also marks the given node as parted locally and exits. This is useful only when the consensus can't be reached on the cluster
(that is, the majority of the nodes are down) or if the parting process is stuck. But it's important to take into account that when the parting node that was
receiving writes, the parting process can take a long time without being stuck. The other nodes need to resynchronize any missing data from the given node.
The force parting completely skips this resynchronization and can leave the other nodes in an inconsistent state.

The parting process doesn't hold any locks.

bdr.alter_node_interface

This function changes the connection string (DSN) of a specified node.

Synopsis

Parameters

node_name — Name of an existing node to alter.
interface_dsn — New connection string for a node.

Notes

Run this function and make the changes only on the local node. This means that you normally execute it on every node in the BDR group, including the node
that is being changed.

This function is transactional. You can roll it back, and the changes are visible to the current transaction.

 wait_for_completion boolean DEFAULT
true,
 force boolean DEFAULT false
)

bdr.alter_node_interface(node_name text, interface_dsn text)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 77

The function holds lock on the local node.

bdr.alter_subscription_enable

This function enables either the specified subscription or all the subscriptions of the local BDR node. This is also known as resume subscription. No error is
thrown if the subscription is already enabled. Returns the number of subscriptions affected by this operation.

Synopsis

Parameters

subscription_name — Name of the subscription to enable. If NULL (the default), all subscriptions on the local node are enabled.
immediate — This currently has no effect.

Notes

This function isn't replicated and affects only local node subscriptions (either a specific node or all nodes).

This function is transactional. You can roll it back, and the current transaction can see any catalog changes. The subscription workers are started by a
background process after the transaction has committed.

bdr.alter_subscription_disable

This function disables either the specified subscription or all the subscriptions of the local BDR node. Optionally, it can also immediately stop all the
workers associated with the disabled subscriptions. This is also known as pause subscription. No error is thrown if the subscription is already disabled.
Returns the number of subscriptions affected by this operation.

Synopsis

Parameters

subscription_name — Name of the subscription to disable. If NULL (the default), all subscriptions on the local node are disabled.
immediate — Used to force the action immediately, stopping all the workers associated with the disabled subscription. When this option is
true , you can't run this function inside of the transaction block.
fast — This argument influences the behavior of immediate . If set to true (the default) it stops all the workers associated with the disabled

subscription without waiting for them to finish current work.

bdr.alter_subscription_enable(
 subscription_name name DEFAULT NULL,
 immediate boolean DEFAULT false
)

bdr.alter_subscription_disable(
 subscription_name name DEFAULT NULL,
 immediate boolean DEFAULT false,
 fast boolean DEFAULT true
)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 78

Notes

This function isn't replicated and affects only local node subscriptions (either a specific subscription or all subscriptions).

This function is transactional. You can roll it back, and the current transaction can see any catalog changes. However, the timing of the subscription worker
stopping depends on the value of immediate . If set to true , the workers receive the stop without waiting for the COMMIT . If the fast argument is
set to true , the interruption of the workers doesn't wait for current work to finish.

Node-management commands

BDR also provides a command-line utility for adding nodes to the BDR group using physical copy (pg_basebackup) of an existing node and for
converting a physical standby of an existing node to a new node in the BDR group.

bdr_init_physical

Version requirement

bdr_init_physical requires that both the source node and the joining node have exactly the same PGD version. You can't use this
command to join a node with a different PGD version to an existing cluster. This means that you can't use bdr_init_physical for rolling
upgrades using the node join method. For rolling upgrades, use logical join instead. See Rolling upgrade using node join for more details.

This is a regular command that's added to PostgreSQL's bin directory.

You must specify a data directory. If this data directory is empty, use the pg_basebackup -X stream to fill the directory using a fast block-level copy
operation.

If the specified data directory isn't empty, this is used as the base for the new node. If the data directory is already active as a physical standby node, you
need to stop the standby before running bdr_init_physical , which manages Postgres. Initially it waits for catchup and then promotes to a master
node before joining the BDR group. The --standby option, if used, turns the existing physical standby into a logical standby node. It refers to the end
state of the new BDR node, not the starting state of the specified data directory.

This command drops all PostgreSQL-native logical replication subscriptions from the database (or disables them when the -S option is used) as well as
any replication origins and slots.

Synopsis

bdr_init_physical [OPTION] ...

Options

General options

-D, --pgdata=DIRECTORY — The data directory to use for the new node. It can be either an empty or nonexistent directory or a directory
populated using the pg_basebackup -X stream command (required).
-l, --log-file=FILE — Use FILE for logging. The default is bdr_init_physical_postgres.log .
-n, --node-name=NAME — The name of the newly created node (required).
--replication-sets=SETS — The name of a comma-separated list of replication set names to use. All replication sets are used if not

specified.
--standby — Create a logical standby (receive-only node) rather than full send/receive node.
--node-group-name — Group to join. Defaults to the same group as source node.
-s, --stop — Stop the server once the initialization is done.
-v — Increase logging verbosity.

-L — Perform selective pg_basebackup when used with an empty/nonexistent data directory (-D option). This is a feature of EDB Postgres

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 79

-L — Perform selective pg_basebackup when used with an empty/nonexistent data directory (-D option). This is a feature of EDB Postgres
Extended Server only.
-S — Instead of dropping logical replication subscriptions, disable them.

Connection options

-d, --remote-dsn=CONNSTR — Connection string for remote node (required).
--local-dsn=CONNSTR — Connection string for local node (required).

Configuration files override

--hba-conf — Path to the new pg_hba.conf .
--postgresql-conf — Path to the new postgresql.conf .
--postgresql-auto-conf — Path to the new postgresql.auto.conf .

Notes

The replication set names specified in the command don't affect the data that exists in the data directory before the node joins the BDR group. This is true
whether bdr_init_physical makes its own base backup or an existing base backup is being promoted to a new BDR node. Thus the --
replication-sets option affects only the data published and subscribed to after the node joins the BDR node group. This behavior is different from the
way replication sets are used in a logical join, as when using bdr.join_node_group() .

The operator can truncate unwanted tables after the join completes. Refer to the bdr.tables catalog to determine replication set membership and
identify tables that aren't members of any subscribed-to replication set. We strongly recommend that you truncate the tables rather than drop them,
because:

DDL replication sets aren't necessarily the same as row (DML) replication sets, so you might inadvertently drop the table on other nodes.
If you later want to add the table to a replication set and you dropped it on some subset of nodes, you need to re-create it only on those nodes
without creating DDL conflicts before you can add it to any replication sets.

It's simpler and safer to truncate your nonreplicated tables, leaving them present but empty.

A future version of BDR might automatically omit or remove tables that aren't part of the selected replication sets for a physical join, so your application
should not rely on details of the behavior documented here.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 80

6.4 DDL replication

DDL stands for data definition language, the subset of the SQL language that creates, alters, and drops database objects.

For operational convenience and correctness, BDR replicates most DDL actions, with these exceptions:

Temporary or unlogged relations
Certain DDL statements (mostly long running)
Locking commands (LOCK)
Table maintenance commands (VACUUM , ANALYZE , CLUSTER , REINDEX)
Actions of autovacuum
Operational commands (CHECKPOINT , ALTER SYSTEM)
Actions related to databases or tablespaces

Automatic DDL replication makes certain DDL changes easier without having to manually distribute the DDL change to all nodes and ensure that they are
consistent.

In the default replication set, DDL is replicated to all nodes by default. To replicate DDL, you must add a DDL replication filter to the replication set. See
DDL replication filtering.

BDR is significantly different from standalone PostgreSQL when it comes to DDL replication. Treating it the same is the most common issue with BDR.

The main difference from table replication is that DDL replication doesn't replicate the result of the DDL but the statement itself. This works very well in
most cases, although it introduces the requirement that the DDL must execute similarly on all nodes. A more subtle point is that the DDL must be
immutable with respect to all datatype-specific parameter settings, including any datatypes introduced by extensions (not built-in). For example, the DDL
statement must execute correctly in the default encoding used on each node.

DDL replication options

The bdr.ddl_replication parameter specifies replication behavior.

bdr.ddl_replication = on is the default and replicates DDL to the default replication set, which by default means all nodes. Nondefault
replication sets don't replicate DDL unless they have a DDL filter defined for them.

You can also replicate DDL to specific replication sets using the function bdr.replicate_ddl_command() . This can be helpful if you want to run DDL
commands when a node is down or if you want to have indexes or partitions that exist on a subset of nodes or rep sets, for example, all nodes at site1.

SELECT bdr.replicate_ddl_command(
 'CREATE INDEX CONCURRENTLY ON foo (col7);',
 ARRAY['site1'], -- the replication sets
 'on'); -- ddl_locking to apply

While we don't recommend it, you can skip automatic DDL replication and execute it manually on each node using bdr.ddl_replication
configuration parameters.

SET bdr.ddl_replication = off;

When set, it makes BDR skip both the global locking and the replication of executed DDL commands. You must then run the DDL manually on all nodes.

Warning

Executing DDL manually on each node without global locking can cause the whole BDR group to stop replicating if conflicting DDL or DML
executes concurrently.

The bdr.ddl_replication parameter can be set only by the bdr_superuser, by superuser, or in the config file.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 81

The bdr.ddl_replication parameter can be set only by the bdr_superuser, by superuser, or in the config file.

Executing DDL on BDR systems

A BDR group isn't the same as a standalone PostgreSQL server. It's based on asynchronous multi-master replication without central locking and without a
transaction coordinator. This has important implications when executing DDL.

DDL that executes in parallel continues to do so with BDR. DDL execution respects the parameters that affect parallel operation on each node as it
executes, so you might notice differences in the settings between nodes.

Prevent the execution of conflicting DDL, otherwise DDL replication causes errors and the replication stops.

BDR offers three levels of protection against those problems:

ddl_locking = 'dml' is the best option for operations, usable when you execute DDL from only one node at a time. This isn't the default, but we
recommend that you use this setting if you can control where DDL is executed from. Doing so ensures that there are no inter-node conflicts. Intra-node
conflicts are already handled by PostgreSQL.

ddl_locking = on is the strictest option and is best when DDL might execute from any node concurrently and you want to ensure correctness.

ddl_locking = off is the least strict option and is dangerous in general use. This option skips locks altogether, avoiding any performance overhead,
which makes it a useful option when creating a new and empty database schema.

These options can be set only by the bdr_superuser, by the superuser, or in the config file .

When using the bdr.replicate_ddl_command , you can set this parameter directly with the third argument, using the specified
bdr.ddl_locking setting only for the DDL commands passed to that function.

DDL locking details

Two kinds of locks enforce correctness of replicated DDL with BDR.

The first kind is known as a global DDL lock and is used only when ddl_locking = on . A global DDL lock prevents any other DDL from executing on
the cluster while each DDL statement runs. This ensures full correctness in the general case but is too strict for many simple cases. BDR acquires a global
lock on DDL operations the first time in a transaction where schema changes are made. This effectively serializes the DDL-executing transactions in the
cluster. In other words, while DDL is running, no other connection on any node can run another DDL command, even if it affects different tables.

To acquire a lock on DDL operations, the BDR node executing DDL contacts the other nodes in a BDR group and asks them to grant it the exclusive right to
execute DDL. The lock request is sent by the regular replication stream, and the nodes respond by the replication stream as well. So it's important that
nodes (or at least a majority of the nodes) run without much replication delay. Otherwise it might take a long time for the node to acquire the DDL lock.
Once the majority of nodes agrees, the DDL execution is carried out.

The ordering of DDL locking is decided using the Raft protocol. DDL statements executed on one node are executed in the same sequence on all other
nodes.

To ensure that the node running a DDL has seen effects of all prior DDLs run in the cluster, it waits until it has caught up with the node that ran the previous
DDL. If the node running the current DDL is lagging behind in replication with respect to the node that ran the previous DDL, then it might take a long time
to acquire the lock. Hence it's preferable to run DDLs from a single node or the nodes that have nearly caught up with replication changes originating at
other nodes.

The second kind is known as a relation DML lock. This kind of lock is used when either ddl_locking = on or ddl_locking = dml , and the DDL
statement might cause in-flight DML statements to fail. These failures can occur when you add or modify a constraint such as a unique constraint, check
constraint, or NOT NULL constraint. Relation DML locks affect only one relation at a time. Relation DML locks ensure that no DDL executes while there are
changes in the queue that might cause replication to halt with an error.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 82

To acquire the global DML lock on a table, the BDR node executing the DDL contacts all other nodes in a BDR group, asking them to lock the table against
writes and waiting while all pending changes to that table are drained. Once all nodes are fully caught up, the originator of the DML lock is free to perform
schema changes to the table and replicate them to the other nodes.

The global DML lock holds an EXCLUSIVE LOCK on the table on each node, so it blocks DML, other DDL, VACUUM, and index commands against that table
while it runs. This is true even if the global DML lock is held for a command that normally doesn't take an EXCLUSIVE LOCK or higher.

Waiting for pending DML operations to drain can take a long time and even longer if replication is currently lagging. This means that schema changes
affecting row representation and constraints, unlike with data changes, can be performed only while all configured nodes can be reached and are keeping
up reasonably well with the current write rate. If such DDL commands must be performed while a node is down, first remove the down node from the
configuration.

If a DDL statement isn't replicated, no global locks are acquired.

Locking behavior is specified by the bdr.ddl_locking parameter, as explained in Executing DDL on BDR systems:

ddl_locking = on takes global DDL lock and, if needed, takes relation DML lock.
ddl_locking = dml skips global DDL lock and, if needed, takes relation DML lock.
ddl_locking = off skips both global DDL lock and relation DML lock.

Some BDR functions make DDL changes. For those functions, DDL locking behavior applies. This is noted in the docs for each function.

Thus, ddl_locking = dml is safe only when you can guarantee that no conflicting DDL is executed from other nodes. With this setting, the
statements that require only the global DDL lock don't use the global locking at all.

ddl_locking = off is safe only when you can guarantee that there are no conflicting DDL and no conflicting DML operations on the database objects
DDL executes on. If you turn locking off and then experience difficulties, you might lose in-flight changes to data. The user application team needs to
resolve any issues caused.

In some cases, concurrently executing DDL can properly be serialized. If these serialization failures occur, the DDL might reexecute.

DDL replication isn't active on logical standby nodes until they are promoted.

Some BDR management functions act like DDL, meaning that they attempt to take global locks, and their actions are replicated if DDL replication is active.
The full list of replicated functions is listed in BDR functions that behave like DDL.

DDL executed on temporary tables never need global locks.

ALTER or DROP of an object created in the current transaction doesn't required global DML lock.

Monitoring of global DDL locks and global DML locks is shown in Monitoring.

Minimizing the impact of DDL

Good operational advice for any database, these points become even more important with BDR:

To minimize the impact of DDL, make transactions performing DDL short, don't combine them with lots of row changes, and avoid long running
foreign key or other constraint rechecks.

For ALTER TABLE , use ADD CONSTRAINT NOT VALID followed by another transaction with VALIDATE CONSTRAINT rather than using
ADD CONSTRAINT alone. VALIDATE CONSTRAINT waits until replayed on all nodes, which gives a noticeable delay to receive confirmations.

When indexing, use the CONCURRENTLY option whenever possible.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 83

An alternate way of executing long-running DDL is to disable DDL replication and then to execute the DDL statement separately on each node. You can still
do this using a single SQL statement, as shown in the following example. Global locking rules still apply, so be careful not to lock yourself out with this type
of usage, which is more of a workaround.

We recommend using the bdr.run_on_all_nodes() technique with CREATE INDEX CONCURRENTLY , noting that DDL replication must be
disabled for the whole session because CREATE INDEX CONCURRENTLY is a multi-transaction command. Avoid CREATE INDEX on production
systems since it prevents writes while it executes. REINDEX is replicated in versions up to 3.6 but not with BDR 3.7 or later. Avoid using REINDEX
because of the AccessExclusiveLocks it holds.

Instead, use REINDEX CONCURRENTLY (or reindexdb --concurrently), which is available in PG12+ or 2QPG11+.

You can disable DDL replication when using command-line utilities like this:

Multiple DDL statements might benefit from bunching into a single transaction rather than fired as individual statements, so take the DDL lock only once.
This might not be desirable if the table-level locks interfere with normal operations.

If DDL is holding up the system for too long, you can safely cancel the DDL on the originating node with Control-C in psql or with
pg_cancel_backend() . You can't cancel a DDL lock from any other node.

You can control how long the global lock takes with optional global locking timeout settings. bdr.global_lock_timeout limits how long the wait for
acquiring the global lock can take before it's canceled. bdr.global_lock_statement_timeout limits the runtime length of any statement in
transaction that holds global locks, and bdr.global_lock_idle_timeout sets the maximum allowed idle time (time between statements) for a
transaction holding any global locks. You can disable all of these timeouts by setting their values to zero.

Once the DDL operation has committed on the originating node, you can't cancel or abort it. The BDR group must wait for it to apply successfully on other
nodes that confirmed the global lock and for them to acknowledge replay. For this reason, keep DDL transactions short and fast.

Handling DDL with down nodes

If the node initiating the global DDL lock goes down after it acquired the global lock (either DDL or DML), the lock stays active. The global locks don't time
out, even if timeouts were set. In case the node comes back up, it releases all the global locks that it holds.

If it stays down for a long time (or indefinitely), remove the node from the BDR group to release the global locks. This is one reason for executing emergency
DDL using the SET command as the bdr_superuser to update the bdr.ddl_locking value.

If one of the other nodes goes down after it confirmed the global lock but before the command acquiring it executed, the execution of that command
requesting the lock continues as if the node were up.

As mentioned earlier, the global DDL lock requires only a majority of the nodes to respond, and so it works if part of the cluster is down, as long as a
majority is running and reachable. But the DML lock can't be acquired unless the whole cluster is available.

With global DDL or global DML lock, if another node goes down, the command continues normally, and the lock is released.

SELECT
bdr.run_on_all_nodes(ddl
 CREATE INDEX CONCURRENTLY index_a ON
table_a(i);
ddl);

$ export PGOPTIONS="-c
bdr.ddl_replication=off"
$ pg_restore --section=post-data

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 84

Statement-specific DDL replication concerns

Not all commands can be replicated automatically. Such commands are generally disallowed, unless DDL replication is turned off by turning
bdr.ddl_replication off.

BDR prevents some DDL statements from running when it's active on a database. This protects the consistency of the system by disallowing statements
that can't be replicated correctly or for which replication isn't yet supported.

If a statement isn't permitted under BDR, you can often find another way to do the same thing. For example, you can't do an ALTER TABLE , which adds a
column with a volatile default value. But generally you can rephrase that as a series of independent ALTER TABLE and UPDATE statements that work.

Generally unsupported statements are prevented from being executed, raising a feature_not_supported (SQLSTATE 0A000) error.

Any DDL that references or relies on a temporary object can't be replicated by BDR and throws an error if executed with DDL replication enabled.

BDR DDL command handling matrix

The following table describes the utility or DDL commands that are allowed, the ones that are replicated, and the type of global lock they take when they're
replicated.

For some more complex statements like ALTER TABLE , these can differ depending on the subcommands executed. Every such command has detailed
explanation under the following table.

Command Allowed Replicated Lock

ALTER AGGREGATE Y Y DDL

ALTER CAST Y Y DDL

ALTER COLLATION Y Y DDL

ALTER CONVERSION Y Y DDL

ALTER DATABASE Y N N

ALTER DATABASE LINK Y Y DDL

ALTER DEFAULT PRIVILEGES Y Y DDL

ALTER DIRECTORY Y Y DDL

ALTER DOMAIN Y Y DDL

ALTER EVENT TRIGGER Y Y DDL

ALTER EXTENSION Y Y DDL

ALTER FOREIGN DATA WRAPPER Y Y DDL

ALTER FOREIGN TABLE Y Y DDL

ALTER FUNCTION Y Y DDL

ALTER INDEX Y Y DDL

ALTER LANGUAGE Y Y DDL

ALTER LARGE OBJECT N N N

ALTER MATERIALIZED VIEW Y N N

ALTER OPERATOR Y Y DDL

ALTER OPERATOR CLASS Y Y DDL

ALTER OPERATOR FAMILY Y Y DDL

ALTER PACKAGE Y Y DDL

ALTER POLICY Y Y DDL

ALTER PROCEDURE Y Y DDL

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 85

ALTER PROFILE Y Y Details

ALTER PUBLICATION Y Y DDL

ALTER QUEUE Y Y DDL

ALTER QUEUE TABLE Y Y DDL

ALTER REDACTION POLICY Y Y DDL

ALTER RESOURCE GROUP Y N N

ALTER ROLE Y Y DDL

ALTER ROUTINE Y Y DDL

ALTER RULE Y Y DDL

ALTER SCHEMA Y Y DDL

ALTER SEQUENCE Details Y DML

ALTER SERVER Y Y DDL

ALTER SESSION Y N N

ALTER STATISTICS Y Y DDL

ALTER SUBSCRIPTION Y Y DDL

ALTER SYNONYM Y Y DDL

ALTER SYSTEM Y N N

ALTER TABLE Details Y Details

ALTER TABLESPACE Y N N

ALTER TEXT SEARCH CONFIGURATION Y Y DDL

ALTER TEXT SEARCH DICTIONARY Y Y DDL

ALTER TEXT SEARCH PARSER Y Y DDL

ALTER TEXT SEARCH TEMPLATE Y Y DDL

ALTER TRIGGER Y Y DDL

ALTER TYPE Y Y DDL

ALTER USER MAPPING Y Y DDL

ALTER VIEW Y Y DDL

ANALYZE Y N N

BEGIN Y N N

CHECKPOINT Y N N

CLOSE Y N N

CLOSE CURSOR Y N N

CLOSE CURSOR ALL Y N N

CLUSTER Y N N

COMMENT Y Details DDL

COMMIT Y N N

COMMIT PREPARED Y N N

COPY Y N N

COPY FROM Y N N

CREATE ACCESS METHOD Y Y DDL

CREATE AGGREGATE Y Y DDL

CREATE CAST Y Y DDL

CREATE COLLATION Y Y DDL

CREATE CONSTRAINT Y Y DDL

CREATE CONVERSION Y Y DDL

Command Allowed Replicated Lock

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 86

CREATE DATABASE Y N N

CREATE DATABASE LINK Y Y DDL

CREATE DIRECTORY Y Y DDL

CREATE DOMAIN Y Y DDL

CREATE EVENT TRIGGER Y Y DDL

CREATE EXTENSION Y Y DDL

CREATE FOREIGN DATA WRAPPER Y Y DDL

CREATE FOREIGN TABLE Y Y DDL

CREATE FUNCTION Y Y DDL

CREATE INDEX Y Y DML

CREATE LANGUAGE Y Y DDL

CREATE MATERIALIZED VIEW Y N N

CREATE OPERATOR Y Y DDL

CREATE OPERATOR CLASS Y Y DDL

CREATE OPERATOR FAMILY Y Y DDL

CREATE PACKAGE Y Y DDL

CREATE PACKAGE BODY Y Y DDL

CREATE POLICY Y Y DML

CREATE PROCEDURE Y Y DDL

CREATE PROFILE Y Y Details

CREATE PUBLICATION Y Y DDL

CREATE QUEUE Y Y DDL

CREATE QUEUE TABLE Y Y DDL

CREATE REDACTION POLICY Y Y DDL

CREATE RESOURCE GROUP Y N N

CREATE ROLE Y Y DDL

CREATE ROUTINE Y Y DDL

CREATE RULE Y Y DDL

CREATE SCHEMA Y Y DDL

CREATE SEQUENCE Details Y DDL

CREATE SERVER Y Y DDL

CREATE STATISTICS Y Y DDL

CREATE SUBSCRIPTION Y Y DDL

CREATE SYNONYM Y Y DDL

CREATE TABLE Details Y DDL

CREATE TABLE AS Details Y DDL

CREATE TABLESPACE Y N N

CREATE TEXT SEARCH CONFIGURATION Y Y DDL

CREATE TEXT SEARCH DICTIONARY Y Y DDL

CREATE TEXT SEARCH PARSER Y Y DDL

CREATE TEXT SEARCH TEMPLATE Y Y DDL

CREATE TRANSFORM Y Y DDL

CREATE TRIGGER Y Y DDL

CREATE TYPE Y Y DDL

CREATE TYPE BODY Y Y DDL

Command Allowed Replicated Lock

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 87

CREATE USER MAPPING Y Y DDL

CREATE VIEW Y Y DDL

DEALLOCATE Y N N

DEALLOCATE ALL Y N N

DECLARE CURSOR Y N N

DISCARD Y N N

DISCARD ALL Y N N

DISCARD PLANS Y N N

DISCARD SEQUENCES Y N N

DISCARD TEMP Y N N

DO Y N N

DROP ACCESS METHOD Y Y DDL

DROP AGGREGATE Y Y DDL

DROP CAST Y Y DDL

DROP COLLATION Y Y DDL

DROP CONSTRAINT Y Y DDL

DROP CONVERSION Y Y DDL

DROP DATABASE Y N N

DROP DATABASE LINK Y Y DDL

DROP DIRECTORY Y Y DDL

DROP DOMAIN Y Y DDL

DROP EVENT TRIGGER Y Y DDL

DROP EXTENSION Y Y DDL

DROP FOREIGN DATA WRAPPER Y Y DDL

DROP FOREIGN TABLE Y Y DDL

DROP FUNCTION Y Y DDL

DROP INDEX Y Y DDL

DROP LANGUAGE Y Y DDL

DROP MATERIALIZED VIEW Y N N

DROP OPERATOR Y Y DDL

DROP OPERATOR CLASS Y Y DDL

DROP OPERATOR FAMILY Y Y DDL

DROP OWNED Y Y DDL

DROP PACKAGE Y Y DDL

DROP PACKAGE BODY Y Y DDL

DROP POLICY Y Y DDL

DROP PROCEDURE Y Y DDL

DROP PROFILE Y Y DDL

DROP PUBLICATION Y Y DDL

DROP QUEUE Y Y DDL

DROP QUEUE TABLE Y Y DDL

DROP REDACTION POLICY Y Y DDL

DROP RESOURCE GROUP Y N N

DROP ROLE Y Y DDL

DROP ROUTINE Y Y DDL

Command Allowed Replicated Lock

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 88

DROP RULE Y Y DDL

DROP SCHEMA Y Y DDL

DROP SEQUENCE Y Y DDL

DROP SERVER Y Y DDL

DROP STATISTICS Y Y DDL

DROP SUBSCRIPTION Y Y DDL

DROP SYNONYM Y Y DDL

DROP TABLE Y Y DML

DROP TABLESPACE Y N N

DROP TEXT SEARCH CONFIGURATION Y Y DDL

DROP TEXT SEARCH DICTIONARY Y Y DDL

DROP TEXT SEARCH PARSER Y Y DDL

DROP TEXT SEARCH TEMPLATE Y Y DDL

DROP TRANSFORM Y Y DDL

DROP TRIGGER Y Y DDL

DROP TYPE Y Y DDL

DROP TYPE BODY Y Y DDL

DROP USER MAPPING Y Y DDL

DROP VIEW Y Y DDL

EXECUTE Y N N

EXPLAIN Y Details Details

FETCH Y N N

GRANT Y Details DDL

GRANT ROLE Y Y DDL

IMPORT FOREIGN SCHEMA Y Y DDL

LISTEN Y N N

LOAD Y N N

LOAD ROW DATA Y Y DDL

LOCK TABLE Y N Details

MOVE Y N N

NOTIFY Y N N

PREPARE Y N N

PREPARE TRANSACTION Y N N

REASSIGN OWNED Y Y DDL

REFRESH MATERIALIZED VIEW Y N N

REINDEX Y N N

RELEASE Y N N

RESET Y N N

REVOKE Y Details DDL

REVOKE ROLE Y Y DDL

ROLLBACK Y N N

ROLLBACK PREPARED Y N N

SAVEPOINT Y N N

SECURITY LABEL Y Details DDL

SELECT INTO Details Y DDL

Command Allowed Replicated Lock

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 89

SET Y N N

SET CONSTRAINTS Y N N

SHOW Y N N

START TRANSACTION Y N N

TRUNCATE TABLE Y Details Details

UNLISTEN Y N N

VACUUM Y N N

Command Allowed Replicated Lock

ALTER SEQUENCE

Generally ALTER SEQUENCE is supported, but when using global sequences, some options have no effect.

ALTER SEQUENCE ... RENAME isn't supported on galloc sequences (only). ALTER SEQUENCE ... SET SCHEMA isn't supported on galloc
sequences (only).

ALTER TABLE

Generally, ALTER TABLE commands are allowed. However, several subcommands aren't supported.

ALTER TABLE disallowed commands

Some variants of ALTER TABLE currently aren't allowed on a BDR node:

ADD COLUMN ... DEFAULT (non-immutable expression) — This is not allowed because it currently results in different data on
different nodes. See Adding a column for a suggested workaround.
ADD CONSTRAINT ... EXCLUDE — Exclusion constraints aren't supported for now. Exclusion constraints don't make much sense in an

asynchronous system and lead to changes that can't be replayed.
ALTER TABLE ... SET WITH[OUT] OIDS — Isn't supported for the same reasons as in CREATE TABLE .
ALTER COLUMN ... SET STORAGE external — Is rejected if the column is one of the columns of the replica identity for the table.
RENAME — Can't rename an Autopartitioned table.
SET SCHEMA — Can't set the schema of an Autopartitioned table.
ALTER COLUMN ... TYPE — Changing a column's type isn't supported if the command causes the whole table to be rewritten, which occurs

when the change isn't binary coercible. Binary coercible changes might be allowed only one way. For example, the change from VARCHAR(128) to
VARCHAR(256) is binary coercible and therefore allowed, whereas the change VARCHAR(256) to VARCHAR(128) isn't binary coercible and

therefore normally disallowed. Nonreplicated ALTER COLUMN ... TYPE , can be allowed if the column is automatically castable to the new
type (it doesn't contain the USING clause). An example follows. Table rewrites hold an AccessExclusiveLock for extended periods on larger tables,
so such commands are likely to be infeasible on highly available databases in any case. See Changing a column's type for a suggested workaround.
ALTER TABLE ... ADD FOREIGN KEY — Isn't supported if current user doesn't have permission to read the referenced table or if the

referenced table has RLS restrictions enabled that the current user can't bypass.

The following example fails because it tries to add a constant value of type timestamp onto a column of type timestamptz . The cast between
timestamp and timestamptz relies on the time zone of the session and so isn't immutable.

Starting in BDR 3.7.4, you can add certain types of constraints, such as CHECK and FOREIGN KEY constraints, without taking a DML lock. But this
requires a two-step process of first creating a NOT VALID constraint and then validating the constraint in a separate transaction with the ALTER
TABLE ... VALIDATE CONSTRAINT command. See Adding a CONSTRAINT for more details.

ALTER TABLE
foo
 ADD expiry_date timestamptz DEFAULT timestamp '2100-01-01 00:00:00' NOT
NULL;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 90

ALTER TABLE locking

The following variants of ALTER TABLE take only DDL lock and not a DML lock:

ALTER TABLE ... ADD COLUMN ... (immutable) DEFAULT
ALTER TABLE ... ALTER COLUMN ... SET DEFAULT expression
ALTER TABLE ... ALTER COLUMN ... DROP DEFAULT
ALTER TABLE ... ALTER COLUMN ... TYPE if it doesn't require rewrite
ALTER TABLE ... ALTER COLUMN ... SET STATISTICS
ALTER TABLE ... VALIDATE CONSTRAINT
ALTER TABLE ... ATTACH PARTITION
ALTER TABLE ... DETACH PARTITION
ALTER TABLE ... ENABLE TRIGGER (ENABLE REPLICA TRIGGER still takes a DML lock)
ALTER TABLE ... CLUSTER ON
ALTER TABLE ... SET WITHOUT CLUSTER
ALTER TABLE ... SET (storage_parameter = value [, ...])
ALTER TABLE ... RESET (storage_parameter = [, ...])
ALTER TABLE ... OWNER TO

All other variants of ALTER TABLE take a DML lock on the table being modified. Some variants of ALTER TABLE have restrictions, noted below.

ALTER TABLE examples

This next example works because the type change is binary coercible and so doesn't cause a table rewrite. It executes as a catalog-only change.

However, making this change to reverse the command isn't possible because the change from VARCHAR(128) to VARCHAR(20) isn't binary coercible.

For workarounds, see Restricted DDL workarounds.

It's useful to provide context for different types of ALTER TABLE ... ALTER COLUMN TYPE (ATCT) operations that are possible in general and in
nonreplicated environments.

Some ATCT operations update only the metadata of the underlying column type and don't require a rewrite of the underlying table data. This is typically the
case when the existing column type and the target type are binary coercible. For example:

You can also change the column type to VARCHAR or TEXT data types because of binary coercibility. Again, this is just a metadata update of the
underlying column type.

However, if you want to reduce the size of col2, then that leads to a rewrite of the underlying table data. Rewrite of a table is normally restricted.

CREATE TABLE foo (id BIGINT PRIMARY KEY, description
VARCHAR(20));
ALTER TABLE foo ALTER COLUMN description TYPE
VARCHAR(128);

ALTER TABLE foo ALTER COLUMN description TYPE
VARCHAR(20);

CREATE TABLE sample (col1 BIGINT PRIMARY KEY, col2 VARCHAR(128), col3
INT);
ALTER TABLE sample ALTER COLUMN col2 TYPE VARCHAR(256);

ALTER TABLE sample ALTER COLUMN col2 TYPE VARCHAR;
ALTER TABLE sample ALTER COLUMN col2 TYPE TEXT;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 91

To give an example with nontext types, consider col3 above with type INTEGER. An ATCT operation that tries to convert to SMALLINT or BIGINT fails in a
similar manner as above.

In both of these failing cases, there's an automatic assignment cast from the current types to the target types. However, there's no binary coercibility,
which ends up causing a rewrite of the underlying table data.

In such cases, in controlled DBA environments, you can change the type of a column to an automatically castable one by adopting a rolling upgrade for the
type of this column in a nonreplicated environment on all the nodes, one by one. Suppose the DDL isn't replicated and the change of the column type is to
an automatically castable one. You can then allow the rewrite locally on the node performing the alter, along with concurrent activity on other nodes on
this same table. You can then repeat this nonreplicated ATCT operation on all the nodes one by one to bring about the desired change of the column type
across the entire EDB Postgres Distributed cluster. Because this involves a rewrite, the activity still takes the DML lock for a brief period and thus requires
that the whole cluster is available. With these specifics in place, you can carry out the rolling upgrade of the nonreplicated alter activity like this:

Due to automatic assignment casts being available for many data types, this local nonreplicated ATCT operation supports a wide variety of conversions.
Also, ATCT operations that use a USING clause are likely to fail because of the lack of automatic assignment casts. This example shows a few common
conversions with automatic assignment casts:

This example isn't an exhaustive list of possibly allowable ATCT operations in a nonreplicated environment. Not all ATCT operations work. The cases where
no automatic assignment is possible fail even if you disable DDL replication. So, while conversion from numeric types to text types works in a nonreplicated
environment, conversion back from text type to numeric types fails.

ALTER TABLE sample ALTER COLUMN col2 TYPE VARCHAR(64);
ERROR: ALTER TABLE ... ALTER COLUMN TYPE that rewrites table data may not affect replicated tables on a BDR
node

ALTER TABLE sample ALTER COLUMN col3 TYPE bigint;
ERROR: ALTER TABLE ... ALTER COLUMN TYPE that rewrites table data may not affect replicated tables on a BDR
node

-- foreach node in EDB Postgres Distributed cluster
do:
SET bdr.ddl_replication TO
FALSE;
ALTER TABLE sample ALTER COLUMN col2 TYPE VARCHAR(64);
ALTER TABLE sample ALTER COLUMN col3 TYPE BIGINT;
RESET bdr.ddl_replication;
-- done

-- foreach node in EDB Postgres Distributed cluster
do:
SET bdr.ddl_replication TO
FALSE;
ATCT operations to-from {INTEGER, SMALLINT,
BIGINT}
ATCT operations to-from {CHAR(n), VARCHAR(n), VARCHAR,
TEXT}
ATCT operations from numeric types to text types
RESET bdr.ddl_replication;
-- done

SET bdr.ddl_replication TO
FALSE;
-- conversion from BIGINT to TEXT
works
ALTER TABLE sample ALTER COLUMN col3 TYPE TEXT;
-- conversion from TEXT back to BIGINT
fails
ALTER TABLE sample ALTER COLUMN col3 TYPE BIGINT;
ERROR: ALTER TABLE ... ALTER COLUMN TYPE which cannot be automatically cast to new type may not affect
replicated tables on a BDR node
RESET bdr.ddl_replication;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 92

While the ATCT operations in nonreplicated environments support a variety of type conversions, the rewrite can still fail if the underlying table data
contains values that you can't assign to the new data type. For example, suppose the current type for a column is VARCHAR(256) and you try a
nonreplicated ATCT operation to convert it into VARCHAR(128) . If there's any existing data in the table that's wider than 128 bytes, then the rewrite
operation fails locally.

If underlying table data meets the characteristics of the new type, then the rewrite succeeds. However, replication might fail if other nodes that haven't yet
performed the nonreplicated rolling data type upgrade introduce new data that is wider than 128 bytes concurrently to this local ATCT operation. This
brings replication to a halt in the cluster. So be aware of the data type restrictions and characteristics at the database and application levels while
performing these nonreplicated rolling data type upgrade operations. We strongly recommend that you perform and test such ATCT operations in
controlled and fully aware DBA environments. These ATCT operations are asymmetric, and backing out certain changes that fail can lead to table rewrites
that take a long time.

Also, you can't perform the implicit castable ALTER activity in transaction blocks.

ALTER TYPE

ALTER TYPE is replicated, but a global DML lock isn't applied to all tables that use that data type, since PostgreSQL doesn't record those dependencies.
See Restricted DDL workarounds.

COMMENT ON

All variants of COMMENT ON are allowed, but COMMENT ON TABLESPACE/DATABASE/LARGE OBJECT isn't replicated.

CREATE PROFILE or ALTER PROFILE

The PASSWORD_VERIFY_FUNCTION associated with the profile should be IMMUTABLE if the function is SECURITY DEFINER . Such a CREATE
PROFILE or ALTER PROFILE command will be replicated but subsequent CREATE USER or ALTER USER commands using this profile will break
the replication due to the writer worker throwing the error: cannot change current role within security-restricted operation .

CREATE SEQUENCE

Generally CREATE SEQUENCE is supported, but when using global sequences, some options have no effect.

CREATE TABLE

Generally CREATE TABLE is supported, but CREATE TABLE WITH OIDS isn't allowed on a BDR node.

INSERT INTO sample VALUES (1, repeat('a', 200),
10);
SET bdr.ddl_replication TO
FALSE;
ALTER TABLE sample ALTER COLUMN col2 TYPE VARCHAR(128);
INFO: in rewrite
ERROR: value too long for type character
varying(128)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 93

CREATE TABLE AS and SELECT INTO

CREATE TABLE AS and SELECT INTO are allowed only if all subcommands are also allowed.

EXPLAIN

Generally EXPLAIN is allowed, but because EXPLAIN ANALYZE can have side effects on the database, there are some restrictions on it.

EXPLAIN ANALYZE Replication

EXPLAIN ANALYZE follows replication rules of the analyzed statement.

EXPLAIN ANALYZE Locking

EXPLAIN ANALYZE follows locking rules of the analyzed statement.

GRANT and REVOKE

Generally GRANT and REVOKE statements are supported, however GRANT/REVOKE ON TABLESPACE/LARGE OBJECT aren't replicated.

LOCK TABLE

LOCK TABLE isn't replicated, but it might acquire the global DML lock when bdr.lock_table_locking is set on .

You can also use The bdr.global_lock_table() function to explicitly request a global DML lock.

SECURITY LABEL

All variants of SECURITY LABEL are allowed, but SECURITY LABEL ON TABLESPACE/DATABASE/LARGE OBJECT isn't replicated.

TRUNCATE Replication

TRUNCATE command is replicated as DML, not as a DDL statement. Whether the TRUNCATE on table is replicated depends on replication settings for
each affected table.

TRUNCATE Locking

Even though TRUNCATE isn't replicated the same way as other DDL, it can acquire the global DML lock when bdr.truncate_locking is set to on .

Role manipulation statements

Users are global objects in a PostgreSQL instance, which means they span multiple databases while BDR operates on an individual database level. This
means that role manipulation statement handling needs extra thought.

BDR requires that any roles that are referenced by any replicated DDL must exist on all nodes. The roles don't have to have the same grants, password, and
so on, but they must exist.

BDR replicates role manipulation statements if bdr.role_replication is enabled (default) and role manipulation statements are run in a BDR-

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 94

BDR replicates role manipulation statements if bdr.role_replication is enabled (default) and role manipulation statements are run in a BDR-
enabled database.

The role manipulation statements include the following:

CREATE ROLE
ALTER ROLE
DROP ROLE
GRANT ROLE
CREATE USER
ALTER USER
DROP USER
CREATE GROUP
ALTER GROUP
DROP GROUP

In general, either:

Configure the system with bdr.role_replication = off and deploy all role changes (user and group) by external orchestration tools like
Ansible, Puppet, and Chef or explicitly replicated by bdr.replicate_ddl_command(...) .

Configure the system so that exactly one BDR-enabled database on the PostgreSQL instance has bdr.role_replication = on and run all
role management DDL on that database.

We recommended that you run all role management commands in one database.

If role replication is turned off, then the administrator must ensure that any roles used by DDL on one node also exist on the other nodes. Otherwise BDR
apply stalls with an error until the role is created on the other nodes.

Note

BDR doesn't capture and replicate role management statements when they run on a non-BDR-enabled database in a BDR-enabled PostgreSQL
instance. For example, if you have DBs 'bdrdb' (bdr group member) and 'postgres' (bare db), and bdr.role_replication = on , then a
CREATE USER run in bdrdb is replicated, but a CREATE USER run in postgres isn't.

Restricted DDL workarounds

Some of the limitations of BDR DDL operation handling can be worked around. Often splitting up the operation into smaller changes can produce the
desired result that either isn't allowed as a single statement or requires excessive locking.

Adding a CONSTRAINT

You can add CHECK and FOREIGN KEY constraints without requiring a DML lock. This involves a two-step process.

ALTER TABLE ... ADD CONSTRAINT ... NOT VALID
ALTER TABLE ... VALIDATE CONSTRAINT

Execute these steps in two different transactions. Both these steps take DDL lock only on the table and hence can be run even when one or more nodes are
down. But to validate a constraint, BDR must ensure that:

All nodes in the cluster see the ADD CONSTRAINT command.
The node validating the constraint applied replication changes from all other nodes prior to creating the NOT VALID constraint on those nodes.

So even though the new mechanism doesn't need all nodes to be up while validating the constraint, it still requires that all nodes applied the ALTER
TABLE .. ADD CONSTRAINT ... NOT VALID command and made enough progress. BDR waits for a consistent state to be reached before
validating the constraint.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 95

The new facility requires the cluster to run with Raft protocol version 24 and beyond. If the Raft protocol isn't yet upgraded, the old mechanism is used,
resulting in a DML lock request.

Adding a column

To add a column with a volatile default, run these commands in separate transactions:

This approach splits schema changes and row changes into separate transactions that BDR can execute and results in consistent data across all nodes in a
BDR group.

For best results, batch the update into chunks so that you don't update more than a few tens or hundreds of thousands of rows at once. You can do this
using a PROCEDURE with embedded transactions.

The last batch of changes must run in a transaction that takes a global DML lock on the table. Otherwise you can miss rows that are inserted concurrently
into the table on other nodes.

If required, you can run ALTER TABLE mytable ALTER COLUMN newcolumn NOT NULL; after the UPDATE has finished.

Changing a column's type

PostgreSQL causes a table rewrite in some cases where it could be avoided, for example:

You can rewrite this statement to avoid a table rewrite by making the restriction a table constraint rather than a datatype change. The constraint can then
be validated in a subsequent command to avoid long locks, if you want.

If the validation fails, then you can UPDATE just the failing rows. You can use this technique for TEXT and VARCHAR using length() or with
NUMERIC datatype using scale() .

In the general case for changing column type, first add a column of the desired type:

 ALTER TABLE mytable ADD COLUMN newcolumn coltype; -- Note the lack of DEFAULT or NOT
NULL

 ALTER TABLE mytable ALTER COLUMN newcolumn DEFAULT
volatile-expression;

 BEGIN;
 SELECT bdr.global_lock_table('mytable');
 UPDATE mytable SET newcolumn = default-expression;
 COMMIT;

CREATE TABLE foo (id BIGINT PRIMARY KEY, description
VARCHAR(128));
ALTER TABLE foo ALTER COLUMN description TYPE
VARCHAR(20);

CREATE TABLE foo (id BIGINT PRIMARY KEY, description
VARCHAR(128));
ALTER TABLE
foo
 ALTER COLUMN description TYPE
varchar,
 ADD CONSTRAINT description_length_limit CHECK (length(description) <= 20) NOT
VALID;
ALTER TABLE foo VALIDATE CONSTRAINT
description_length_limit;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 96

ALTER TABLE mytable ADD COLUMN newcolumn newtype;

Create a trigger defined as BEFORE INSERT OR UPDATE ON mytable FOR EACH ROW .. , which assigns NEW.newcolumn to
NEW.oldcolumn so that new writes to the table update the new column automatically.

UPDATE the table in batches to copy the value of oldcolumn to newcolumn using a PROCEDURE with embedded transactions. Batching the work
helps reduce replication lag if it's a big table. Updating by range of IDs or whatever method you prefer is fine. Alternatively, you can update the whole table
in one pass for smaller tables.

CREATE INDEX ... any required indexes on the new column. It's safe to use CREATE INDEX ... CONCURRENTLY run individually without DDL
replication on each node to reduce lock durations.

ALTER the column to add a NOT NULL and CHECK constraints, if required.

1. BEGIN a transaction.
2. DROP the trigger you added.
3. ALTER TABLE to add any DEFAULT required on the column.
4. DROP the old column.
5. ALTER TABLE mytable RENAME COLUMN newcolumn TO oldcolumn .
6. COMMIT .

Note

Because you're dropping a column, you might have to re-create views, procedures, and so on that depend on the table. Be careful if you
CASCADE drop the column, as you must be sure you re-create everything that referred to it.

Changing other types

The ALTER TYPE statement is replicated, but affected tables aren't locked.

When this DDL is used, ensure that the statement has successfully executed on all nodes before using the new type. You can achieve this using the
bdr.wait_slot_confirm_lsn() function.

This example ensures that the DDL is written to all nodes before using the new value in DML statements:

ALTER TYPE contact_method ADD VALUE 'email';
SELECT bdr.wait_slot_confirm_lsn(NULL, NULL);

BDR functions that behave like DDL

The following BDR management functions act like DDL. This means that, if DDL replication is active and DDL filter settings allow it, they attempt to take
global locks and their actions are replicate. For detailed information, see the documentation for the individual functions.

Replication set management

bdr.create_replication_set
bdr.alter_replication_set
bdr.drop_replication_set
bdr.replication_set_add_table
bdr.replication_set_remove_table
bdr.replication_set_add_ddl_filter
bdr.replication_set_remove_ddl_filter

Conflict management

bdr.alter_table_conflict_detection

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 97

bdr.alter_table_conflict_detection
bdr.column_timestamps_enable (deprecated; use bdr.alter_table_conflict_detection())
bdr.column_timestamps_disable (deprecated; use bdr.alter_table_conflict_detection())

Sequence management

bdr.alter_sequence_set_kind

Stream triggers

bdr.create_conflict_trigger
bdr.create_transform_trigger
bdr.drop_trigger

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 98

6.5 Security and roles

Only superusers can create the BDR extension. However, if you want, you can set up the pgextwlist extension and configure it to allow a non-
superuser to create a BDR extension.

Configuring and managing BDR doesn't require superuser access, nor is that recommended. The privileges required by BDR are split across the following
default/predefined roles, named similarly to the PostgreSQL default/predefined roles:

bdr_superuser — The highest-privileged role, having access to all BDR tables and functions.
bdr_read_all_stats — The role having read-only access to the tables, views, and functions, sufficient to understand the state of BDR.
bdr_monitor — At the moment, the same as bdr_read_all_stats . To be extended later.
bdr_application — The minimal privileges required by applications running BDR.
bdr_read_all_conflicts — Can view all conflicts in bdr.conflict_history .

These BDR roles are created when the BDR extension is installed. See BDR default roles for more details.

Managing BDR doesn't require that administrators have access to user data.

Arrangements for securing conflicts are discussed in Logging conflicts to a table.

You can monitor conflicts using the BDR.conflict_history_summary view.

Catalog tables

System catalog and Information Schema tables are always excluded from replication by BDR.

In addition, tables owned by extensions are excluded from replication.

BDR functions and operators

All BDR functions are exposed in the bdr schema. Any calls to these functions must be schema qualified, rather than putting bdr in the search_path.

All BDR operators are available by way of the pg_catalog schema to allow users to exclude the public schema from the search_path without
problems.

Granting privileges on catalog objects

Administrators must not grant explicit privileges on catalog objects such as tables, views, and functions. Manage access to those objects by granting one of
the roles described in BDR default roles.

This requirement is a consequence of the flexibility that allows joining a node group even if the nodes on either side of the join don't have the exact same
version of BDR (and therefore of the BDR catalog).

More precisely, if privileges on individual catalog objects were explicitly granted, then the bdr.join_node_group() procedure might fail because the
corresponding GRANT statements extracted from the node being joined might not apply to the node that is joining.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 99

Role management

Users are global objects in a PostgreSQL instance. CREATE USER and CREATE ROLE commands are replicated automatically if they are executed in
the database where BDR is running and the bdr.role_replication is turned on. However, if these commands are executed in other databases in the
same PostgreSQL instance, then they aren't replicated, even if those users have rights on the BDR database.

When a new BDR node joins the BDR group, existing users aren't automatically copied unless the node is added using bdr_init_physical . This is
intentional and is an important security feature. PostgreSQL allows users to access multiple databases, with the default being to access any database. BDR
doesn't know which users access which database and so can't safely decide which users to copy across to the new node.

PostgreSQL allows you to dump all users with the command:

pg_dumpall --roles-only > roles.sql

The file roles.sql can then be edited to remove unwanted users before reexecuting that on the newly created node. Other mechanisms are possible,
depending on your identity and access management solution (IAM) but aren't automated at this time.

Roles and replication

DDL changes executed by a user are applied as that same user on each node.

DML changes to tables are replicated as the table-owning user on the target node. We recommend but do not enforce that a table be owned by the same
user on each node.

Suppose table A is owned by user X on node1 and owned by user Y on node2. If user Y has higher privileges than user X, this might be viewed as a privilege
escalation. Since some nodes have different use cases, we allow this but warn against it to allow the security administrator to plan and audit this situation.

On tables with row-level security policies enabled, changes are replicated without reenforcing policies on apply. This is equivalent to the changes being
applied as NO FORCE ROW LEVEL SECURITY , even if FORCE ROW LEVEL SECURITY is specified. If this isn't what you want, specify a row_filter
that avoids replicating all rows. We recommend but don't enforce that the row security policies on all nodes be identical or at least compatible.

The user bdr_superuser controls replication for BDR and can add or remove any table from any replication set. bdr_superuser doesn't need any privileges
over individual tables, nor is this recommended. If you need to restrict access to replication set functions, restricted versions of these functions can be
implemented as SECURITY DEFINER functions and granted to the appropriate users.

Connection role

When allocating a new BDR node, the user supplied in the DSN for the local_dsn argument of bdr.create_node and the join_target_dsn of
bdr.join_node_group are used frequently to refer to, create, and manage database objects.

BDR is carefully written to prevent privilege escalation attacks even when using a role with SUPERUSER rights in these DSNs.

To further reduce the attack surface, you can specify a more restricted user in the above DSNs. At a minimum, such a user must be granted permissions on
all nodes, such that following stipulations are satisfied:

The user has the REPLICATION attribute.
It is granted the CREATE permission on the database.
It inherits the bdr_superuser role.
It owns all database objects to replicate, either directly or from permissions from the owner roles.

Once all nodes are joined, the permissions can be further reduced to just the following to still allow DML and DDL replication:

The user has the REPLICATION attribute.

It inherits the bdr_superuser role.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 100

It inherits the bdr_superuser role.

Privilege restrictions

BDR enforces additional restrictions, effectively preventing the use of DDL that relies solely on TRIGGER or REFERENCES privileges.

GRANT ALL still grants both TRIGGER and REFERENCES privileges, so we recommend that you state privileges explicitly. For example, use GRANT
SELECT, INSERT, UPDATE, DELETE, TRUNCATE instead of ALL .

Foreign key privileges

ALTER TABLE ... ADD FOREIGN KEY is supported only if the user has SELECT privilege on the referenced table or if the referenced table has RLS
restrictions enabled that the current user can't bypass.

Thus, the REFERENCES privilege isn't sufficient to allow creating a foreign key with BDR. Relying solely on the REFERENCES privilege isn't typically useful
since it makes the validation check execute using triggers rather than a table scan. It is typically too expensive to use successfully.

Triggers

In PostgreSQL, both the owner of a table and anyone who was granted the TRIGGER privilege can create triggers. Triggers granted by the non-table owner
execute as the table owner in BDR, which might cause a security issue. The TRIGGER privilege is seldom used and PostgreSQL Core Team has said "The
separate TRIGGER permission is something we consider obsolescent."

BDR mitigates this problem by using stricter rules on who can create a trigger on a table:

superuser
bdr_superuser
Owner of the table can create triggers according to same rules as in PostgreSQL (must have EXECUTE privilege on the function used by the trigger).
Users who have TRIGGER privilege on the table can create a trigger only if they create the trigger using a function that is owned by the same owner
as the table and they satisfy standard PostgreSQL rules (again must have EXECUTE privilege on the function). So if both table and function have the
same owner and the owner decided to give a user both TRIGGER privilege on the table and EXECUTE privilege on the function, it is assumed that it is
okay for that user to create a trigger on that table using this function.
Users who have TRIGGER privilege on the table can create triggers using functions that are defined with the SECURITY DEFINER clause if they have
EXECUTE privilege on them. This clause makes the function always execute in the context of the owner of the function both in standard PostgreSQL
and BDR.

This logic is built on the fact that, in PostgreSQL, the owner of the trigger isn't the user who created it but the owner of the function used by that trigger.

The same rules apply to existing tables, and if the existing table has triggers that aren't owned by the owner of the table and don't use SECURITY DEFINER
functions, you can't add it to a replication set.

These checks were added with BDR 3.6.19. An application that relies on the behavior of previous versions can set bdr.backwards_compatibility
to 30618 (or lower) to behave like earlier versions.

BDR replication apply uses the system-level default search_path only. Replica triggers, stream triggers, and index expression functions might assume
other search_path settings which then fail when they execute on apply. To ensure this doesn't occur, resolve object references clearly using either the
default search_path only (always use fully qualified references to objects, e.g., schema.objectname), or set the search path for a function using ALTER
FUNCTION ... SET search_path = ... for the functions affected.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 101

BDR default/predefined roles

BDR predefined roles are created when the BDR extension is installed. After BDR extension is dropped from a database, the roles continue to exist and
need to be dropped manually if required. This allows BDR to be used in multiple databases on the same PostgreSQL instance without problem.

The GRANT ROLE DDL statement doesn't participate in BDR replication. Thus, execute this on each node of a cluster.

bdr_superuser

ALL PRIVILEGES ON ALL TABLES IN SCHEMA BDR
ALL PRIVILEGES ON ALL ROUTINES IN SCHEMA BDR

bdr_read_all_stats

SELECT privilege on

bdr.conflict_history_summary
bdr.ddl_epoch
bdr.ddl_replication
bdr.global_consensus_journal_details
bdr.global_lock
bdr.global_locks
bdr.local_consensus_state
bdr.local_node_summary
bdr.node
bdr.node_catchup_info
bdr.node_conflict_resolvers
bdr.node_group
bdr.node_local_info
bdr.node_peer_progress
bdr.node_slots
bdr.node_summary
bdr.replication_sets
bdr.sequences
bdr.state_journal_details
bdr.stat_relation
bdr.stat_subscription
bdr.subscription
bdr.subscription_summary
bdr.tables
bdr.worker_errors

EXECUTE privilege on

bdr.bdr_version
bdr.bdr_version_num
bdr.decode_message_payload
bdr.get_global_locks
bdr.get_raft_status
bdr.get_relation_stats
bdr.get_slot_flush_timestamp
bdr.get_sub_progress_timestamp
bdr.get_subscription_stats
bdr.peer_state_name
bdr.show_subscription_status

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 102

bdr_monitor

All privileges from bdr_read_all_stats , plus

EXECUTE privilege on

bdr.monitor_group_versions
bdr.monitor_group_raft
bdr.monitor_local_replslots

bdr_application

EXECUTE privilege on

All functions for column_timestamps datatypes
All functions for CRDT datatypes
bdr.alter_sequence_set_kind
bdr.create_conflict_trigger
bdr.create_transform_trigger
bdr.drop_trigger
bdr.get_configured_camo_partner
bdr.global_lock_table
bdr.is_camo_partner_connected
bdr.is_camo_partner_ready
bdr.logical_transaction_status
bdr.ri_fkey_trigger
bdr.seq_nextval
bdr.seq_currval
bdr.seq_lastval
bdr.trigger_get_committs
bdr.trigger_get_conflict_type
bdr.trigger_get_origin_node_id
bdr.trigger_get_row
bdr.trigger_get_type
bdr.trigger_get_xid
bdr.wait_for_camo_partner_queue
bdr.wait_slot_confirm_lsn

Many of these functions have additional privileges required before you can use them. For example, you must be the table owner to successfully execute
bdr.alter_sequence_set_kind . These additional rules are described with each specific function.

bdr_read_all_conflicts

BDR logs conflicts into the bdr.conflict_history table. Conflicts are visible to table owners only, so no extra privileges are required to read the
conflict history. If it's useful to have a user that can see conflicts for all tables, you can optionally grant the role bdr_read_all_conflicts to that user.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 103

6.6 Conflicts

BDR is an active/active or multi-master DBMS. If used asynchronously, writes to the same or related rows from multiple different nodes can result in data
conflicts when using standard data types.

Conflicts aren't errors. In most cases, they are events that BDR can detect and resolve as they occur. Resolution depends on the nature of the application
and the meaning of the data, so it's important that BDR provides the application a range of choices as to how to resolve conflicts.

By default, conflicts are resolved at the row level. When changes from two nodes conflict, either the local or remote tuple is picked and the other is
discarded. For example, the commit timestamps might be compared for the two conflicting changes and the newer one kept. This approach ensures that all
nodes converge to the same result and establishes commit-order-like semantics on the whole cluster.

Conflict handling is configurable, as described in Conflict resolution. Conflicts can be detected and handled differently for each table using conflict
triggers, described in Stream triggers.

Column-level conflict detection and resolution is available with BDR, described in CLCD.

If you want to avoid conflicts, you can use these features in BDR.

Conflict-free data types (CRDTs), described in CRDT.
Eager Replication, described in Eager Replication.

By default, all conflicts are logged to bdr.conflict_history . If conflicts are possible, then table owners must monitor for them and analyze how to
avoid them or make plans to handle them regularly as an application task. The LiveCompare tool is also available to scan regularly for divergence.

Some clustering systems use distributed lock mechanisms to prevent concurrent access to data. These can perform reasonably when servers are very close
to each other but can't support geographically distributed applications where very low latency is critical for acceptable performance.

Distributed locking is essentially a pessimistic approach. BDR advocates an optimistic approach, which is to avoid conflicts where possible but allow some
types of conflicts to occur and resolve them when they arise.

Upgrade Notes

All the SQL-visible interfaces are in the bdr schema. All the previously deprecated interfaces in the bdr_conflicts or bdr_crdt schema
were removed and don't work on 3.7+ nodes or in groups that contain at least one 3.7+ node. Use the ones in the bdr schema that are already
present in all BDR versions.

How conflicts happen

Inter-node conflicts arise as a result of sequences of events that can't happen if all the involved transactions happen concurrently on the same node.
Because the nodes exchange changes only after the transactions commit, each transaction is individually valid on the node it committed on. It isn't valid if
applied on another node that did other conflicting work at the same time.

Since BDR replication essentially replays the transaction on the other nodes, the replay operation can fail if there's a conflict between a transaction being
applied and a transaction that was committed on the receiving node.

Most conflicts can't happen when all transactions run on a single node because Postgres has inter-transaction communication mechanisms to prevent it
such as UNIQUE indexes, SEQUENCE operations, row and relation locking, and SERIALIZABLE dependency tracking. All of these mechanisms are
ways to communicate between ongoing transactions to prevent undesirable concurrency issues.

BDR doesn't have a distributed transaction manager or lock manager. That's part of why it performs well with latency and network partitions. As a result,
transactions on different nodes execute entirely independently from each other when using the default, lazy replication. Less independence between nodes
can avoid conflicts altogether, which is why BDR also offers Eager Replication for when this is important.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 104

https://www.enterprisedb.com/docs/livecompare/latest

Types of conflict

PRIMARY KEY or UNIQUE conflicts

The most common conflicts are row conflicts, where two operations affect a row with the same key in ways they can't on a single node. BDR can detect most
of those and applies the update_if_newer conflict resolver.

Row conflicts include:

INSERT versus INSERT
UPDATE versus UPDATE
UPDATE versus DELETE
INSERT versus UPDATE
INSERT versus DELETE
DELETE versus DELETE

The view bdr.node_conflict_resolvers provides information on how conflict resolution is currently configured for all known conflict types.

INSERT/INSERT conflicts

The most common conflict, INSERT / INSERT , arises where INSERT operations on two different nodes create a tuple with the same PRIMARY KEY
values (or if no PRIMARY KEY exists, the same values for a single UNIQUE constraint).

BDR handles this situation by retaining the most recently inserted tuple of the two according to the originating node's timestamps, unless this behavior is
overridden by a user-defined conflict handler.

This conflict generates the insert_exists conflict type, which is by default resolved by choosing the newer (based on commit time) row and keeping
only that one (update_if_newer resolver). You can configure other resolvers. See Conflict resolution for details.

To resolve this conflict type, you can also use column-level conflict resolution and user-defined conflict triggers.

You can effectively eliminate this type of conflict by using global sequences.

INSERT operations that violate multiple UNIQUE constraints

An INSERT / INSERT conflict can violate more than one UNIQUE constraint (of which one might be the PRIMARY KEY). If a new row violates more
than one UNIQUE constraint and that results in a conflict against more than one other row, then the apply of the replication change produces a
multiple_unique_conflicts conflict.

In case of such a conflict, you must remove some rows for replication to continue. Depending on the resolver setting for
multiple_unique_conflicts , the apply process either exits with error, skips the incoming row, or deletes some of the rows. The deletion tries to

preserve the row with the correct PRIMARY KEY and delete the others.

Warning

In case of multiple rows conflicting this way, if the result of conflict resolution is to proceed with the insert operation, some of the data is always
deleted.

It's also possible to define a different behavior using a conflict trigger.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 105

UPDATE/UPDATE conflicts

Where two concurrent UPDATE operations on different nodes change the same tuple (but not its PRIMARY KEY), an UPDATE / UPDATE conflict can
occur on replay.

These can generate different conflict kinds based on the configuration and situation. If the table is configured with row version conflict detection, then the
original (key) row is compared with the local row. If they're different, the update_differing conflict is generated. When using Origin conflict
detection, the origin of the row is checked (the origin is the node that the current local row came from). If that changed, the update_origin_change
conflict is generated. In all other cases, the UPDATE is normally applied without generating a conflict.

Both of these conflicts are resolved the same way as insert_exists , described in INSERT/INSERT conflicts.

UPDATE conflicts on the PRIMARY KEY

BDR can't currently perform conflict resolution where the PRIMARY KEY is changed by an UPDATE operation. You can update the primary key, but you
must ensure that no conflict with existing values is possible.

Conflicts on the update of the primary key are Divergent conflicts and require manual intervention.

Updating a primary key is possible in Postgres, but there are issues in both Postgres and BDR.

A simple schema provides an example that explains:

Updating the Primary Key column is possible, so this SQL succeeds:

However, suppose there are multiple rows in the table:

Some UPDATEs succeed:

Other UPDATEs fail with constraint errors:

CREATE TABLE pktest (pk integer primary key, val
integer);
INSERT INTO pktest VALUES
(1,1);

UPDATE pktest SET pk=2 WHERE
pk=1;

INSERT INTO pktest VALUES
(3,3);

UPDATE pktest SET pk=4 WHERE
pk=3;

SELECT * FROM pktest;
 pk |
val
----+-----
 2 |
1
 4 |
3
(2 rows)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 106

So for Postgres applications that update primary keys, be careful to avoid runtime errors, even without BDR.

With BDR, the situation becomes more complex if UPDATEs are allowed from multiple locations at same time.

Executing these two changes concurrently works:

Executing these next two changes concurrently causes a divergent error, since both changes are accepted. But applying the changes on the other node
results in update_missing conflicts.

This scenario leaves the data different on each node:

You can identify and resolve this situation using LiveCompare.

UPDATE pktest SET pk=4 WHERE
pk=2;
ERROR: duplicate key value violates unique constraint
"pktest_pkey"
DETAIL: Key (pk)=(4) already exists

node1: UPDATE pktest SET pk=pk+1 WHERE pk =
2;
node2: UPDATE pktest SET pk=pk+1 WHERE pk =
4;

SELECT * FROM pktest;
 pk |
val
----+-----
 3 |
1
 5 |
3
(2 rows)

node1: UPDATE pktest SET pk=1 WHERE pk =
3;
node2: UPDATE pktest SET pk=2 WHERE pk =
3;

node1:
SELECT * FROM pktest;
 pk |
val
----+-----
 1 |
1
 5 |
3
(2 rows)

node2:
SELECT * FROM pktest;
 pk |
val
----+-----
 2 |
1
 5 |
3
(2 rows)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 107

https://www.enterprisedb.com/docs/livecompare/latest

Concurrent conflicts present problems. Executing these two changes concurrently isn't easy to resolve:

Both changes are applied locally, causing a divergence between the nodes. But then apply on the target fails on both nodes with a duplicate key-value
violation error, which causes the replication to halt and requires manual resolution.

This duplicate key violation error can now be avoided, and replication doesn't break if you set the conflict_type update_pkey_exists to skip ,
update , or update_if_newer . This can still lead to divergence depending on the nature of the update.

You can avoid divergence in cases where the same old key is being updated by the same new key concurrently by setting update_pkey_exists to
update_if_newer . However, in certain situations, divergence occurs even with update_if_newer , namely when two different rows both are

updated concurrently to the same new primary key.

As a result, we recommend strongly against allowing primary key UPDATE operations in your applications, especially with BDR. If parts of your application
change primary keys, then to avoid concurrent changes, make those changes using Eager Replication.

Warning

In case the conflict resolution of update_pkey_exists conflict results in update, one of the rows is always deleted.

UPDATE operations that violate multiple UNIQUE constraints

Like INSERT operations that violate multiple UNIQUE constraints, where an incoming UPDATE violates more than one UNIQUE index (or the PRIMARY
KEY), BDR raises a multiple_unique_conflicts conflict.

BDR supports deferred unique constraints. If a transaction can commit on the source, then it applies cleanly on target, unless it sees conflicts. However, a
deferred primary key can't be used as a REPLICA IDENTITY, so the use cases are already limited by that and the warning about using multiple unique
constraints.

UPDATE/DELETE conflicts

It's possible for one node to update a row that another node simultaneously deletes. In this case an UPDATE / DELETE conflict can occur on replay.

If the deleted row is still detectable (the deleted row wasn't removed by VACUUM), the update_recently_deleted conflict is generated. By default
the UPDATE is skipped, but you can configure the resolution for this. See Conflict resolution for details.

The deleted row can be cleaned up from the database by the time the UPDATE is received in case the local node is lagging behind in replication. In this
case, BDR can't differentiate between UPDATE / DELETE conflicts and INSERT/UPDATE conflicts and generates the update_missing conflict.

Another type of conflicting DELETE and UPDATE is a DELETE that comes after the row was updated locally. In this situation, the outcome depends on
the type of conflict detection used. When using the default, origin conflict detection, no conflict is detected at all, leading to the DELETE being applied
and the row removed. If you enable row version conflict detection, a delete_recently_updated conflict is generated. The default resolution for a
delete_recently_updated conflict is to skip the deletion. However, you can configure the resolution or a conflict trigger can be configured to

handle it.

INSERT/UPDATE conflicts

When using the default asynchronous mode of operation, a node might receive an UPDATE of a row before the original INSERT was received. This can
happen only with three or more nodes being active (see Conflicts with three or more nodes).

When this happens, the update_missing conflict is generated. The default conflict resolver is insert_or_skip , though you can use

node1: UPDATE pktest SET pk=6, val=8 WHERE pk =
5;
node2: UPDATE pktest SET pk=6, val=9 WHERE pk =
5;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 108

When this happens, the update_missing conflict is generated. The default conflict resolver is insert_or_skip , though you can use
insert_or_error or skip instead. Resolvers that do insert-or-action first try to INSERT a new row based on data from the UPDATE when

possible (when the whole row was received). For the reconstruction of the row to be possible, the table either needs to have REPLICA IDENTITY FULL
or the row must not contain any toasted data.

See TOAST support details for more info about toasted data.

INSERT/DELETE conflicts

Similar to the INSERT / UPDATE conflict, the node might also receive a DELETE operation on a row for which it didn't yet receive an INSERT . This is
again possible only with three or more nodes set up (see Conflicts with three or more nodes).

BDR can't currently detect this conflict type. The INSERT operation doesn't generate any conflict type and the INSERT is applied.

The DELETE operation always generates a delete_missing conflict, which is by default resolved by skipping the operation.

DELETE/DELETE conflicts

A DELETE / DELETE conflict arises when two different nodes concurrently delete the same tuple.

This always generates a delete_missing conflict, which is by default resolved by skipping the operation.

This conflict is harmless since both DELETE operations have the same effect. One of them can be safely ignored.

Conflicts with three or more nodes

If one node inserts a row that is then replayed to a second node and updated there, a third node can receive the UPDATE from the second node before it
receives the INSERT from the first node. This scenario is an INSERT / UPDATE conflict.

These conflicts are handled by discarding the UPDATE . This can lead to different data on different nodes. These are [divergent conflicts](#divergent
conflicts).

This conflict type can happen only with three or more masters, of which at least two must be actively writing.

Also, the replication lag from node 1 to node 3 must be high enough to allow the following sequence of actions:

1. node 2 receives INSERT from node 1
2. node 2 performs UPDATE
3. node 3 receives UPDATE from node 2
4. node 3 receives INSERT from node 1

Using insert_or_error (or in some cases the insert_or_skip conflict resolver for the update_missing conflict type) is a viable mitigation
strategy for these conflicts. However, enabling this option opens the door for INSERT / DELETE conflicts:

1. node 1 performs UPDATE
2. node 2 performs DELETE
3. node 3 receives DELETE from node 2
4. node 3 receives UPDATE from node 1, turning it into an INSERT

If these are problems, we recommend tuning freezing settings for a table or database so that they are correctly detected as
update_recently_deleted .

Another alternative is to use Eager Replication to prevent these conflicts.

INSERT / DELETE conflicts can also occur with three or more nodes. Such a conflict is identical to INSERT / UPDATE except with the UPDATE

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 109

INSERT / DELETE conflicts can also occur with three or more nodes. Such a conflict is identical to INSERT / UPDATE except with the UPDATE
replaced by a DELETE . This can result in a delete_missing conflict.

BDR could choose to make each INSERT into a check-for-recently deleted, as occurs with an update_missing conflict. However, the cost of doing this
penalizes the majority of users, so at this time it simply logs delete_missing .

Later releases will automatically resolve INSERT / DELETE anomalies via rechecks using LiveCompare when delete_missing conflicts occur.
These can be performed manually by applications by checking the bdr.conflict_history_summary view.

These conflicts can occur in two main problem use cases:

INSERT followed rapidly by a DELETE , as can be used in queuing applications
Any case where the primary key identifier of a table is reused

Neither of these cases is common. We recommend not replicating the affected tables if these problem use cases occur.

BDR has problems with the latter case because BDR relies on the uniqueness of identifiers to make replication work correctly.

Applications that insert, delete, and then later reuse the same unique identifiers can cause difficulties. This is known as the ABA problem. BDR has no way
of knowing whether the rows are the current row, the last row, or much older rows.

Unique identifier reuse is also a business problem, since it is prevents unique identification over time, which prevents auditing, traceability, and sensible
data quality. Applications don't need to reuse unique identifiers.

Any identifier reuse that occurs in the time interval it takes for changes to pass across the system causes difficulties. Although that time might be short in
normal operation, down nodes can extend that interval to hours or days.

We recommend that applications don't reuse unique identifiers, but if they do, take steps to avoid reuse within a period of less than a year.

This problem doesn't occur in applications that use sequences or UUIDs.

Foreign key constraint conflicts

Conflicts between a remote transaction being applied and existing local data can also occur for FOREIGN KEY (FK) constraints.

BDR applies changes with session_replication_role = 'replica' , so foreign keys aren't rechecked when applying changes. In an
active/active environment, this can result in FK violations if deletes occur to the referenced table at the same time as inserts into the referencing table. This
is similar to an INSERT / DELETE conflict.

In single-master Postgres, any INSERT / UPDATE that refers to a value in the referenced table must wait for DELETE operations to finish before they
can gain a row-level lock. If a DELETE removes a referenced value, then the INSERT / UPDATE fails the FK check.

In multi-master BDR. there are no inter-node row-level locks. An INSERT on the referencing table doesn't wait behind a DELETE on the referenced
table, so both actions can occur concurrently. Thus an INSERT / UPDATE on one node on the referencing table can use a value at the same time as a
DELETE on the referenced table on another node. This then results in a value in the referencing table that's no longer present in the referenced table.

In practice, this occurs if the DELETE operations occurs on referenced tables in separate transactions from DELETE operations on referencing tables.
This isn't a common operation.

In a parent-child relationship such as Orders -> OrderItems, it isn't typical to do this. It's more likely to mark an OrderItem as canceled than to remove it
completely. For reference/lookup data, it's unusual to completely remove entries at the same time as using those same values for new fact data.

While there's a possibility of dangling FKs, the risk of this in general is very low and so BDR doesn't impose a generic solution to cover this case. Once you
understand the situation in which this occurs, two solutions are possible.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 110

https://www.enterprisedb.com/docs/livecompare/latest
https://en.wikipedia.org/wiki/ABA_problem

The first solution is to restrict the use of FKs to closely related entities that are generally modified from only one node at a time, are infrequently modified,
or where the modification's concurrency is application-mediated. This avoids any FK violations at the application level.

The second solution is to add triggers to protect against this case using the BDR-provided functions bdr.ri_fkey_trigger() and
bdr.ri_fkey_on_del_trigger() . When called as BEFORE triggers, these functions use FOREIGN KEY information to avoid FK anomalies by

setting referencing columns to NULL, much as if you had a SET NULL constraint. This rechecks all FKs in one trigger, so you need to add only one trigger per
table to prevent FK violation.

As an example, suppose you have two tables: Fact and RefData. Fact has an FK that references RefData. Fact is the referencing table and RefData is the
referenced table. You need to add one trigger to each table.

Add a trigger that sets columns to NULL in Fact if the referenced row in RefData was already deleted.

Add a trigger that sets columns to NULL in Fact at the time a DELETE occurs on the RefData table.

Adding both triggers avoids dangling foreign keys.

TRUNCATE conflicts

TRUNCATE behaves similarly to a DELETE of all rows but performs this action by physically removing the table data rather than row-by-row deletion. As
a result, row-level conflict handling isn't available, so TRUNCATE commands don't generate conflicts with other DML actions, even when there's a clear
conflict.

As a result, the ordering of replay can cause divergent changes if another DML is executed concurrently on other nodes to the TRUNCATE .

You can take one of the following actions:

Ensure TRUNCATE isn't executed alongside other concurrent DML. Rely on LiveCompare to highlight any such inconsistency.

Replace TRUNCATE with a DELETE statement with no WHERE clause. This approach is likely to have very poor performance on larger tables.

Set bdr.truncate_locking = 'on' to set the TRUNCATE command’s locking behavior. This setting determines whether TRUNCATE
obeys the bdr.ddl_locking setting. This isn't the default behavior for TRUNCATE since it requires all nodes to be up. This configuration might
not be possible or wanted in all cases.

CREATE TRIGGER
bdr_replica_fk_iu_trg
 BEFORE INSERT OR UPDATE ON fact
 FOR EACH ROW
 EXECUTE PROCEDURE bdr.ri_fkey_trigger();

ALTER TABLE fact
 ENABLE REPLICA TRIGGER bdr_replica_fk_iu_trg;

CREATE TRIGGER bdr_replica_fk_d_trg
 BEFORE DELETE ON refdata
 FOR EACH ROW
 EXECUTE PROCEDURE
bdr.ri_fkey_on_del_trigger();

ALTER TABLE refdata
 ENABLE REPLICA TRIGGER
bdr_replica_fk_d_trg;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 111

https://www.enterprisedb.com/docs/livecompare/latest

Exclusion constraint conflicts

BDR doesn't support exclusion constraints and prevents their creation.

If an existing standalone database is converted to a BDR database, then drop all exclusion constraints manually.

In a distributed asynchronous system, you can't ensure that no set of rows that violate the constraint exists, because all transactions on different nodes are
fully isolated. Exclusion constraints lead to replay deadlocks where replay can't progress from any node to any other node because of exclusion constraint
violations.

If you force BDR to create an exclusion constraint, or you don't drop existing ones when converting a standalone database to BDR, expect replication to
break. To get it to progress again, remove or alter the local tuples that an incoming remote tuple conflicts with so that the remote transaction can be
applied.

Data conflicts for roles and tablespace differences

Conflicts can also arise where nodes have global (Postgres-system-wide) data, like roles, that differ. This can result in operations—mainly DDL —that can
run successfully and commit on one node but then fail to apply to other nodes.

For example, node1 might have a user named fred, and that user wasn't created on node2. If fred on node1 creates a table, the table is replicated with its
owner set to fred. When the DDL command is applied to node2, the DDL fails because there's no user named fred. This failure emits an error in the Postgres
logs.

Administrator intervention is required to resolve this conflict by creating the user fred in the database where BDR is running. You can set
bdr.role_replication = on to resolve this in future.

Lock conflicts and deadlock aborts

Because BDR writer processes operate much like normal user sessions, they're subject to the usual rules around row and table locking. This can sometimes
lead to BDR writer processes waiting on locks held by user transactions or even by each other.

Relevant locking includes:

Explicit table-level locking (LOCK TABLE ...) by user sessions
Explicit row-level locking (SELECT ... FOR UPDATE/FOR SHARE) by user sessions
Implicit locking because of row UPDATE , INSERT , or DELETE operations, either from local activity or from replication from other nodes

A BDR writer process can deadlock with a user transaction, where the user transaction is waiting on a lock held by the writer process and vice versa. Two
writer processes can also deadlock with each other. Postgres's deadlock detector steps in and terminates one of the problem transactions. If the BDR writer
process is terminated, it retries and generally succeeds.

All these issues are transient and generally require no administrator action. If a writer process is stuck for a long time behind a lock on an idle user session,
the administrator can terminate the user session to get replication flowing again, but this is no different from a user holding a long lock that impacts
another user session.

Use of the log_lock_waits facility in Postgres can help identify locking related replay stalls.

Divergent conflicts

Divergent conflicts arise when data that should be the same on different nodes differs unexpectedly. Divergent conflicts should not occur, but not all such
conflicts can be reliably prevented at the time of writing.

Changing the PRIMARY KEY of a row can lead to a divergent conflict if another node changes the key of the same row before all nodes have replayed the
change. Avoid changing primary keys, or change them only on one designated node.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 112

https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-LOCK-WAITS

Divergent conflicts involving row data generally require administrator action to manually adjust the data on one of the nodes to be consistent with the
other one. Such conflicts don't arise so long as you use BDR as documented and avoid settings or functions marked as unsafe.

The administrator must manually resolve such conflicts. You might need to use the advanced options such as bdr.ddl_replication and
bdr.ddl_locking depending on the nature of the conflict. However, careless use of these options can make things much worse and create a conflict

that generic instructions can't address.

TOAST support details

Postgres uses out-of-line storage for larger columns called TOAST.

The TOAST values handling in logical decoding (which BDR is built on top of) and logical replication is different from inline data stored as part of the main
row in the table.

The TOAST value is logged into the transaction log (WAL) only if the value has changed. This can cause problems, especially when handling UPDATE
conflicts because an UPDATE statement that didn't change a value of a toasted column produces a row without that column. As mentioned in
INSERT/UPDATE conflicts, BDR reports an error if an update_missing conflict is resolved using insert_or_error and there are missing TOAST
columns.

However, there are more subtle issues than this one in case of concurrent workloads with asynchronous replication (Eager transactions aren't affected).
Imagine, for example, the following workload on a EDB Postgres Distributed cluster with three nodes called A, B, and C:

1. On node A: txn A1 does an UPDATE SET col1 = 'toast data...' and commits first.
2. On node B: txn B1 does UPDATE SET other_column = 'anything else'; and commits after A1.
3. On node C: the connection to node A lags behind.
4. On node C: txn B1 is applied first, it misses the TOASTed column in col1, but gets applied without conflict.
5. On node C: txn A1 conflicts (on update_origin_change) and is skipped.
6. Node C misses the toasted data from A1 forever.

This scenario isn't usually a problem when using BDR. (It is when using either built-in logical replication or plain pglogical for multi-master.) BDR adds its
own logging of TOAST columns when it detects a local UPDATE to a row that recently replicated a TOAST column modification and the local UPDATE isn't
modifying the TOAST. Thus BDR prevents any inconsistency for toasted data across different nodes. This situation causes increased WAL logging when
updates occur on multiple nodes (that is, when origin changes for a tuple). Additional WAL overhead is zero if all updates are made from a single node, as is
normally the case with BDR AlwaysOn architecture.

Note

Running VACUUM FULL or CLUSTER on just the TOAST table without also doing same on the main table removes metadata needed for the
extra logging to work. This means that, for a short period of time after such a statement, the protection against these concurrency issues isn't be
present.

Warning

The additional WAL logging of TOAST is done using the BEFORE UPDATE trigger on standard Postgres. This trigger must be sorted
alphabetically last (based on trigger name) among all BEFORE UPDATE triggers on the table. It's prefixed with zzzz_bdr_ to make this
easier, but make sure you don't create any trigger with a name that sorts after it. Otherwise you won't have the protection against the
concurrency issues.

For the insert_or_error conflict resolution, the use of REPLICA IDENTITY FULL is, however, still required.

None of these problems associated with toasted columns affect tables with REPLICA IDENTITY FULL . This setting always logs a toasted value as part
of the key since the whole row is considered to be part of the key. BDR can reconstruct the new row, filling the missing data from the key row. As a result,
using REPLICA IDENTITY FULL can increase WAL size significantly.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 113

https://www.postgresql.org/docs/current/storage-toast.html

Avoiding or tolerating conflicts

In most cases, you can design the application to avoid or tolerate conflicts.

Conflicts can happen only if things are happening at the same time on multiple nodes. The simplest way to avoid conflicts is to only ever write to one node
or to only ever write to a specific row in a specific way from one specific node at a time.

This happens naturally in many applications. For example, many consumer applications allow data to be changed only by the owning user, such as changing
the default billing address on your account. Such data changes seldom have update conflicts.

You might make a change just before a node goes down, so the change seems to be lost. You might then make the same change again, leading to two
updates on different nodes. When the down node comes back up, it tries to send the older change to other nodes, but it's rejected because the last update
of the data is kept.

For INSERT / INSERT conflicts, use global sequences to prevent this type of conflict.

For applications that assign relationships between objects, such as a room booking application, applying update_if_newer might not give an
acceptable business outcome. That is, it isn't useful to confirm to two people separately that they have booked the same room. The simplest resolution is to
use Eager Replication to ensure that only one booking succeeds. More complex ways might be possible depending on the application. For example, you can
assign 100 seats to each node and allow those to be booked by a writer on that node. But if none are available locally, use a distributed locking scheme or
Eager Replication once most seats are reserved.

Another technique for ensuring certain types of updates occur only from one specific node is to route different types of transactions through different
nodes. For example:

Receiving parcels on one node but delivering parcels using another node
A service application where orders are input on one node, work is prepared on a second node, and then served back to customers on another

Frequently, the best course is to allow conflicts to occur and design the application to work with BDR's conflict resolution mechanisms to cope with the
conflict.

Conflict detection

BDR provides these mechanisms for conflict detection:

Origin conflict detection (default)
Row version conflict detection
Column-level conflict detection

Origin conflict detection

Origin conflict detection uses and relies on commit timestamps as recorded on the node the transaction originates from. This requires clocks to be in sync
to work correctly or to be within a tolerance of the fastest message between two nodes. If this isn't the case, conflict resolution tends to favor the node
that's further ahead. You can manage clock skew between nodes using the parameters bdr.maximum_clock_skew and
bdr.maximum_clock_skew_action .

Row origins are available only if track_commit_timestamp = on .

Conflicts are initially detected based on whether the replication origin changed, so conflict triggers are called in situations that might turn out not to be
conflicts. Hence, this mechanism isn't precise, since it can generate false-positive conflicts.

Origin info is available only up to the point where a row is frozen. Updates arriving for a row after it was frozen don't raise a conflict so are applied in all
cases. This is the normal case when adding a new node by bdr_init_physical , so raising conflicts causes many false-positive results in that case.

When a node that was offline reconnects and begins sending data changes, this can cause divergent errors if the newly arrived updates are older than the
frozen rows that they update. Inserts and deletes aren't affected by this situation.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 114

We suggest that you don't leave down nodes for extended outages, as discussed in Node restart and down node recovery.

On EDB Postgres Extended Server and EDB Postgres Advanced Server, BDR holds back the freezing of rows while a node is down. This mechanism handles
this situation gracefully so you don't need to change parameter settings.

On other variants of Postgres, you might need to manage this situation with some care.

Freezing normally occurs when a row being vacuumed is older than vacuum_freeze_min_age xids from the current xid, which means that you need to
configure suitably high values for these parameters:

vacuum_freeze_min_age
vacuum_freeze_table_age
autovacuum_freeze_max_age

Choose values based on the transaction rate, giving a grace period of downtime before removing any conflict data from the database node. For example,
when vacuum_freeze_min_age is set to 500 million, a node performing 1000 TPS can be down for just over 5.5 days before conflict data is removed.
The CommitTS data structure takes on-disk space of 5 GB with that setting, so lower transaction rate systems can benefit from lower settings.

Initially recommended settings are:

Note that:

You can set autovacuum_freeze_max_age only at node start.
You can set vacuum_freeze_min_age , so using a low value freezes rows early and can result in conflicts being ignored. You can also set
autovacuum_freeze_min_age and toast.autovacuum_freeze_min_age for individual tables.

Running the CLUSTER or VACUUM FREEZE commands also freezes rows early and can result in conflicts being ignored.

Row version conflict detection

Alternatively, BDR provides the option to use row versioning and make conflict detection independent of the nodes' system clock.

Row version conflict detection requires that you enable three things. If any of these steps aren't performed correctly then origin conflict detection is used.

1. REPLICA IDENTITY FULL must be enabled on all tables that use row version conflict detection.

2. Row Version Tracking must be enabled on the table by using bdr.alter_table_conflict_detection . This function adds a column (with a
name you specify) and an UPDATE trigger that manages the new column value. The column is created as INTEGER type.

Although the counter is incremented only on UPDATE , this technique allows conflict detection for both UPDATE and DELETE .

This approach resembles Lamport timestamps and fully prevents the ABA problem for conflict detection.

Note

The row-level conflict resolution is still handled based on the conflict resolution configuration even with row versioning. The way the row version
is generated is useful only for detecting conflicts. Don't rely on it as authoritative information about which version of row is newer.

To determine the current conflict resolution strategy used for a specific table, refer to the column conflict_detection of the view bdr.tables .

1 billion = 10GB
autovacuum_freeze_max_age = 1000000000

vacuum_freeze_min_age = 500000000

90% of autovacuum_freeze_max_age
vacuum_freeze_table_age = 900000000

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 115

To determine the current conflict resolution strategy used for a specific table, refer to the column conflict_detection of the view bdr.tables .

bdr.alter_table_conflict_detection

Allows the table owner to change how conflict detection works for a given table.

Synopsis

Parameters

relation — Name of the relation for which to set the new conflict detection method.
method — The conflict detection method to use.
column_name — The column to use for storing the column detection data. This can be skipped, in which case the column name is chosen based on

the conflict detection method. The row_origin method doesn't require an extra column for metadata storage.

The recognized methods for conflict detection are:

row_origin — Origin of the previous change made on the tuple (see Origin conflict detection). This is the only method supported that doesn't
require an extra column in the table.
row_version — Row version column (see Row version conflict detection).
column_commit_timestamp — Per-column commit timestamps (described in CLCD).
column_modify_timestamp — Per-column modification timestamp (described in CLCD).

Notes

For more information about the difference between column_commit_timestamp and column_modify_timestamp conflict detection methods,
see Current versus commit timestamp.

This function uses the same replication mechanism as DDL statements. This means the replication is affected by the ddl filters configuration.

The function takes a DML global lock on the relation for which column-level conflict resolution is being enabled.

This function is transactional. You can roll back the effects back with the ROLLBACK of the transaction, and the changes are visible to the current
transaction.

The bdr.alter_table_conflict_detection function can be executed only by the owner of the relation , unless
bdr.backwards_compatibility is set to 30618 or below.

Warning

When changing the conflict detection method from one that uses an extra column to store metadata, that column is dropped.

Warning

This function disables CAMO (together with a warning, as long as these aren't disabled with bdr.camo_enable_client_warnings).

bdr.alter_table_conflict_detection(relation regclass,
 method text,
 column_name name DEFAULT
NULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 116

List of conflict types

BDR recognizes the following conflict types, which can be used as the conflict_type parameter:

insert_exists — An incoming insert conflicts with an existing row via a primary key or a unique key/index.
update_differing — An incoming update's key row differs from a local row. This can happen only when using row version conflict detection.
update_origin_change — An incoming update is modifying a row that was last changed by a different node.
update_missing — An incoming update is trying to modify a row that doesn't exist.
update_recently_deleted — An incoming update is trying to modify a row that was recently deleted.
update_pkey_exists — An incoming update has modified the PRIMARY KEY to a value that already exists on the node that's applying the

change.
multiple_unique_conflicts — The incoming row conflicts with multiple UNIQUE constraints/indexes in the target table.
delete_recently_updated — An incoming delete with an older commit timestamp than the most recent update of the row on the current

node, or when using [Row version conflict detection].
delete_missing — An incoming delete is trying to remove a row that doesn't exist.
target_column_missing — The target table is missing one or more columns present in the incoming row.
source_column_missing — The incoming row is missing one or more columns that are present in the target table.
target_table_missing — The target table is missing.
apply_error_ddl — An error was thrown by Postgres when applying a replicated DDL command.

Conflict resolution

Most conflicts can be resolved automatically. BDR defaults to a last-update-wins mechanism or, more accurately, the update_if_newer conflict
resolver. This mechanism retains the most recently inserted or changed row of the two conflicting ones based on the same commit timestamps used for
conflict detection. The behavior in certain corner-case scenarios depends on the settings used for bdr.create_node_group and alternatively for
bdr.alter_node_group.

BDR lets you override the default behavior of conflict resolution by using the following function:

bdr.alter_node_set_conflict_resolver

This function sets the behavior of conflict resolution on a given node.

Synopsis

Parameters

node_name — Name of the node that's being changed.
conflict_type — Conflict type for which to apply the setting (see List of conflict types).
conflict_resolver — Resolver to use for the given conflict type (see List of conflict resolvers).

Notes

Currently you can change only the local node. The function call isn't replicated. If you want to change settings on multiple nodes, you must run the function
on each of them.

The configuration change made by this function overrides any default behavior of conflict resolutions specified by bdr.create_node_group or
bdr.alter_node_group .

bdr.alter_node_set_conflict_resolver(node_name text,
 conflict_type text,
 conflict_resolver text)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 117

This function is transactional. You can roll back the changes, and they are visible to the current transaction.

List of conflict resolvers

Several conflict resolvers are available in BDR, with differing coverages of the conflict types they can handle:

error — Throws error and stops replication. Can be used for any conflict type.
skip — Skips processing the remote change and continues replication with the next change. Can be used for insert_exists ,
update_differing , update_origin_change , update_missing , update_recently_deleted , update_pkey_exists ,
delete_recently_updated , delete_missing , target_table_missing , target_column_missing , and
source_column_missing conflict types.
skip_if_recently_dropped — Skip the remote change if it's for a table that doesn't exist downstream because it was recently (within one

day) dropped on the downstream; throw an error otherwise. Can be used for the target_table_missing conflict type.
skip_if_recently_dropped conflict resolver can pose challenges if a table with the same name is re-created shortly after it's dropped. In

that case, one of the nodes might see the DMLs on the re-created table before it sees the DDL to re-create the table. It then incorrectly skips the
remote data, assuming that the table is recently dropped, and causes data loss. We hence recommend that you don't reuse the object namesq
immediately after they are dropped along with this conflict resolver.
skip_transaction — Skips the whole transaction that generated the conflict. Can be used for apply_error_ddl conflict.
update_if_newer — Update if the remote row was committed later (as determined by the wall clock of the originating node) than the

conflicting local row. If the timestamps are same, the node id is used as a tie-breaker to ensure that same row is picked on all nodes (higher nodeid
wins). Can be used for insert_exists , update_differing , update_origin_change , and update_pkey_exists conflict types.
update — Always perform the replicated action. Can be used for insert_exists (turns the INSERT into UPDATE),
update_differing , update_origin_change , update_pkey_exists , and delete_recently_updated (performs the delete).
insert_or_skip — Try to build a new row from available information sent by the origin and INSERT it. If there isn't enough information available

to build a full row, skip the change. Can be used for update_missing and update_recently_deleted conflict types.
insert_or_error — Try to build new row from available information sent by origin and insert it. If there isn't enough information available to

build full row, throw an error and stop the replication. Can be used for update_missing and update_recently_deleted conflict types.
ignore — Ignore any missing target column and continue processing. Can be used for the target_column_missing conflict type.
ignore_if_null — Ignore a missing target column if the extra column in the remote row contains a NULL value. Otherwise, throw an error and

stop replication. Can be used for the target_column_missing conflict type.
use_default_value — Fill the missing column value with the default (including NULL if that's the column default) and continue processing.

Any error while processing the default or violation of constraints (i.e., NULL default on NOT NULL column) stops replication. Can be used for the
source_column_missing conflict type.

The insert_exists , update_differing , update_origin_change , update_missing , multiple_unique_conflicts ,
update_recently_deleted , update_pkey_exists , delete_recently_updated, and delete_missing` conflict types can also be

resolved by user-defined logic using Conflict triggers.

This matrix helps you individuate the conflict types the conflict resolvers can handle.

insert_exists

upd
ate_
diff
erin
g

updat
e_orig
in_cha
nge

upd
ate
_mi
ssin
g

update
_recen
tly_del
eted

upda
te_pk
ey_e
xists

delete_
recentl
y_upda
ted

del
ete
_mi
ssi
ng

target_
colum
n_miss
ing

source
_colum
n_miss
ing

target
_table
_missi
ng

multiple
_unique
_conflic
ts

error X X X X X X X X X X X X

skip X X X X X X X X X X X X

skip_if_recently_dropped X

update_if_newer X X X X

update X X X X X X

insert_or_skip X X

insert_or_error X X

ignore X

ignore_if_null X

use_default_value X

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 118

conflict_trigger X X X X X X X X X

insert_exists

upd
ate_
diff
erin
g

updat
e_orig
in_cha
nge

upd
ate
_mi
ssin
g

update
_recen
tly_del
eted

upda
te_pk
ey_e
xists

delete_
recentl
y_upda
ted

del
ete
_mi
ssi
ng

target_
colum
n_miss
ing

source
_colum
n_miss
ing

target
_table
_missi
ng

multiple
_unique
_conflic
ts

Default conflict resolvers

Conflict type Resolver

insert_exists update_if_newer

update_differing update_if_newer

update_origin_change update_if_newer

update_missing insert_or_skip

update_recently_deleted skip

update_pkey_exists update_if_newer

multiple_unique_conflicts error

delete_recently_updated skip

delete_missing skip

target_column_missing ignore_if_null

source_column_missing use_default_value

target_table_missing skip_if_recently_dropped

apply_error_ddl error

List of conflict resolutions

The conflict resolution represents the kind of resolution chosen by the conflict resolver and corresponds to the specific action that was taken to resolve the
conflict.

The following conflict resolutions are currently supported for the conflict_resolution parameter:

apply_remote — The remote (incoming) row was applied.
skip — Processing of the row was skipped (no change was made locally).
merge — A new row was created, merging information from remote and local row.
user — User code (a conflict trigger) produced the row that was written to the target table.

Conflict logging

To ease the diagnosis and handling of multi-master conflicts, BDR, by default, logs every conflict into the bdr.conflict_history table. You can
change this behavior with more granularity with the following functions.

bdr.alter_node_set_log_config

Set the conflict logging configuration for a node.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 119

Synopsis

Parameters

node_name — Name of the node that's being changed.
log_to_file — Whether to log to the node log file.
log_to_table — Whether to log to the bdr.conflict_history table.
conflict_type — Conflict types to log. NULL (the default) means all.
conflict_resolution — Conflict resolutions to log. NULL (the default) means all.

Notes

Only the local node can be changed. The function call isn't replicated. If you want to change settings on multiple nodes, you must run the function on each
of them.

This function is transactional. You can roll back the changes, and they are visible to the current transaction.

Listing conflict logging configurations

The view bdr.node_log_config shows all the logging configurations. It lists the name of the logging configuration, where it logs, and the conflict
type and resolution it logs.

Logging conflicts to a table

Conflicts are logged to a table if log_to_table is set to true. The target table for conflict logging is bdr.conflict_history .

This table is range partitioned on the column local_time . The table is managed by Autopartition. By default, a new partition is created for every day,
and conflicts of the last one month are maintained. After that, the old partitions are dropped automatically. Autopartition creates between 7 and 14
partitions in advance. bdr_superuser can change these defaults.

Since conflicts generated for all tables managed by BDR are logged to this table, it's important to ensure that only legitimate users can read the conflicted
data. BDR does this by defining ROW LEVEL SECURITY policies on the bdr.conflict_history table. Only owners of the tables are allowed to read
conflicts on the respective tables. If the underlying tables have RLS policies defined, enabled, and enforced, then even owners can't read the conflicts. RLS
policies created with the FORCE option also apply to owners of the table. In that case, some or all rows in the underlying table might not be readable even
to the owner. So BDR also enforces a stricter policy on the conflict log table.

The default role bdr_read_all_conflicts can be granted to users who need to see all conflict details logged to the bdr.conflict_history
table without also granting them bdr_superuser role.

The default role bdr_read_all_stats has access to a catalog view called bdr.conflict_history_summary , which doesn't contain user data,
allowing monitoring of any conflicts logged.

bdr.alter_node_set_log_config(node_name text,
 log_to_file bool DEFAULT
true,
 log_to_table bool DEFAULT true,
 conflict_type text[] DEFAULT
NULL,
 conflict_resolution text[] DEFAULT
NULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 120

Conflict reporting

Conflicts logged to tables can be summarized in reports. Reports allow application owners to identify, understand, and resolve conflicts and introduce
application changes to prevent them.

Data verification with LiveCompare

LiveCompare is a utility program designed to compare any two databases to verify that they are identical.

LiveCompare is included as part of the BDR stack and can be aimed at any pair of BDR nodes. By default, it compares all replicated tables and reports
differences. LiveCompare also works with non-BDR data sources such as Postgres and Oracle.

You can also use LiveCompare to continuously monitor incoming rows. You can stop and start it without losing context information, so you can run it at
convenient times.

LiveCompare allows concurrent checking of multiple tables. You can configure it to allow checking of a few tables or just a section of rows within a table.
Checks are performed by first comparing whole row hashes. If different, LiveCompare then compares whole rows. LiveCompare avoids overheads by
comparing rows in useful-sized batches.

If differences are found, they can be rechecked over a period, allowing for the delays of eventual consistency.

Refer to the LiveCompare documentation for further details.

SELECT nspname,
relname
, date_trunc('day', local_time) :: date AS
date
, count(*)
FROM bdr.conflict_history
WHERE local_time > date_trunc('day',
current_timestamp)
GROUP BY 1,2,3
ORDER BY 1,2;

 nspname | relname | date |
count
---------+---------+------------+-------
 my_app | test | 2019-04-05 |
1
(1 row)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 121

https://www.enterprisedb.com/docs/livecompare/latest/

6.7 Sequences

Many applications require that unique surrogate ids be assigned to database entries. Often the database SEQUENCE object is used to produce these. In
PostgreSQL, these can be either:

A manually created sequence using the CREATE SEQUENCE command and retrieved by calling the nextval() function
serial and bigserial columns or, alternatively, GENERATED BY DEFAULT AS IDENTITY columns

However, standard sequences in PostgreSQL aren't multi-node aware and produce values that are unique only on the local node. This is important because
unique ids generated by such sequences cause conflict and data loss (by means of discarded INSERT actions) in multi-master replication.

BDR global sequences

For this reason, BDR provides an application-transparent way to generate unique ids using sequences on bigint or bigserial datatypes across the whole BDR
group, called global sequences.

BDR global sequences provide an easy way for applications to use the database to generate unique synthetic keys in an asynchronous distributed system
that works for most—but not necessarily all—cases.

Using BDR global sequences allows you to avoid the problems with insert conflicts. If you define a PRIMARY KEY or UNIQUE constraint on a column
that's using a global sequence, no node can ever get the same value as any other node. When BDR synchronizes inserts between the nodes, they can never
conflict.

BDR global sequences extend PostgreSQL sequences, so they are crash-safe. To use them, you must be granted the bdr_application role.

There are various possible algorithms for global sequences:

SnowflakeId sequences
Globally allocated range sequences

SnowflakeId sequences generate values using an algorithm that doesn't require inter-node communication at any point. It's faster and more robust and has
the useful property of recording the timestamp at which the values were created.

SnowflakeId sequences have the restriction that they work only for 64-bit BIGINT datatypes and produce values up to 19 digits long, which might be too
long for use in some host language datatypes such as Javascript Integer types. Globally allocated sequences allocate a local range of values that can be
replenished as needed by inter-node consensus, making them suitable for either BIGINT or INTEGER sequences.

You can create a global sequence using the bdr.alter_sequence_set_kind() function. This function takes a standard PostgreSQL sequence and
marks it as a BDR global sequence. It can also convert the sequence back to the standard PostgreSQL sequence.

BDR also provides the configuration variable bdr.default_sequence_kind , which determines the kind of sequence to create when the CREATE
SEQUENCE command is executed or when a serial , bigserial , or GENERATED BY DEFAULT AS IDENTITY column is created. Valid settings
are:

local , meaning that newly created sequences are the standard PostgreSQL (local) sequences.
galloc , which always creates globally allocated range sequences.
snowflakeid , which creates global sequences for BIGINT sequences that consist of time, nodeid, and counter components. You can't use it with

INTEGER sequences (so you can use it for bigserial but not for serial).
timeshard , which is the older version of SnowflakeId sequence and is provided for backward compatibility only. The SnowflakeId is preferred.
distributed (the default), which is a special value that you can use only for bdr.default_sequence_kind . It selects snowflakeid

for int8 sequences (i.e., bigserial) and galloc sequence for int4 (i.e., serial) and int2 sequences.

The bdr.sequences view shows information about individual sequence kinds.

currval() and lastval() work correctly for all types of global sequence.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 122

SnowflakeId sequences

The ids generated by SnowflakeId sequences are loosely time ordered so you can use them to get the approximate order of data insertion, like standard
PostgreSQL sequences. Values generated within the same millisecond might be out of order, even on one node. The property of loose time ordering means
they are suitable for use as range partition keys.

SnowflakeId sequences work on one or more nodes and don't require any inter-node communication after the node join process completes. So you can
continue to use them even if there's the risk of extended network partitions. They aren't affected by replication lag or inter-node latency.

SnowflakeId sequences generate unique ids in a different way from standard sequences. The algorithm uses three components for a sequence number. The
first component of the sequence is a timestamp at the time of sequence number generation. The second component of the sequence number is the unique
id assigned to each BDR node, which ensures that the ids from different nodes are always different. The third component is the number generated by the
local sequence.

While adding a unique node id to the sequence number is enough to ensure there are no conflicts, we also want to keep another useful property of
sequences. The ordering of the sequence numbers roughly corresponds to the order in which data was inserted into the table. Putting the timestamp first
ensures this.

A few limitations and caveats apply to SnowflakeId sequences.

SnowflakeId sequences are 64 bits wide and need a bigint or bigserial . Values generated are up to 19 digits long. There's no practical 32-bit
integer version, so you can't use it with serial sequences. Use globally allocated range sequences instead.

For SnowflakeId there's a limit of 4096 sequence values generated per millisecond on any given node (about 4 million sequence values per second). In case
the sequence value generation wraps around within a given millisecond, the SnowflakeId sequence waits until the next millisecond and gets a fresh value
for that millisecond.

Since SnowflakeId sequences encode timestamps into the sequence value, you can generate new sequence values only within the given time frame
(depending on the system clock). The oldest timestamp that you can use is 2016-10-07, which is the epoch time for the SnowflakeId. The values wrap to
negative values in the year 2086 and completely run out of numbers by 2156.

Since timestamp is an important part of a SnowflakeId sequence, there's additional protection from generating sequences with a timestamp older than the
latest one used in the lifetime of a postgres process (but not between postgres restarts).

The INCREMENT option on a sequence used as input for SnowflakeId sequences is effectively ignored. This might be relevant for applications that do
sequence ID caching, like many object-relational mapper (ORM) tools, notably Hibernate. Because the sequence is time based, this has little practical effect
since the sequence advances to a new noncolliding value by the time the application can do anything with the cached values.

Similarly, you might change the START , MINVALUE , MAXVALUE , and CACHE settings on the underlying sequence, but there's no benefit to doing so.
The sequence's low 14 bits are used and the rest is discarded, so the value range limits don't affect the function's result. For the same reason, setval()
isn't useful for SnowflakeId sequences.

Timeshard sequences

Timeshard sequences are provided for backward compatibility with existing installations but aren't recommended for new application use. We recommend
using the SnowflakeId sequence instead.

Timeshard is very similar to SnowflakeId but has different limits and fewer protections and slower performance.

The differences between timeshard and SnowflakeId are as following:

Timeshard can generate up to 16384 per millisecond (about 16 million per second), which is more than SnowflakeId. However, there's no protection
against wraparound within a given millisecond. Schemas using the timeshard sequence must protect the use of the UNIQUE constraint when using
timeshard values for given column.
The timestamp component of timeshard sequence runs out of values in the year 2050 and, if used in combination with bigint, the values wrap to
negative numbers in the year 2033. This means that sequences generated after 2033 have negative values. This is a considerably shorter time span
than SnowflakeId and is the main reason why SnowflakeId is preferred.
Timeshard sequences require occasional disk writes (similar to standard local sequences). SnowflakeIds are calculated in memory so the
SnowflakeId sequences are in general a little faster than timeshard sequences.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 123

Globally allocated range sequences

The globally allocated range (or galloc) sequences allocate ranges (chunks) of values to each node. When the local range is used up, a new range is
allocated globally by consensus amongst the other nodes. This uses the key space efficiently but requires that the local node be connected to a majority of
the nodes in the cluster for the sequence generator to progress when the currently assigned local range is used up.

Unlike SnowflakeId sequences, galloc sequences support all sequence data types provided by PostgreSQL: smallint , integer , and bigint .
This means that you can use galloc sequences in environments where 64-bit sequences are problematic. Examples include using integers in javascript,
since that supports only 53-bit values, or when the sequence is displayed on output with limited space.

The range assigned by each voting is currently predetermined based on the datatype the sequence is using:

smallint — 1 000 numbers
integer — 1 000 000 numbers
bigint — 1 000 000 000 numbers

Each node allocates two chunks of seq_chunk_size, one for the current use plus a reserved chunk for future usage, so the values generated from any one
node increase monotonically. However, viewed globally, the values generated aren't ordered at all. This might cause a loss of performance due to the
effects on b-tree indexes and typically means that generated values aren't useful as range partition keys.

The main downside of the galloc sequences is that once the assigned range is used up, the sequence generator has to ask for consensus about the next
range for the local node that requires inter-node communication. This could lead to delays or operational issues if the majority of the BDR group isn't
accessible. This might be avoided in later releases.

The CACHE , START , MINVALUE , and MAXVALUE options work correctly with galloc sequences. However, you need to set them before
transforming the sequence to the galloc kind. The INCREMENT BY option also works correctly. However, you can't assign an increment value that's
equal to or more than the above ranges assigned for each sequence datatype. setval() doesn't reset the global state for galloc sequences; don't use
it.

A few limitations apply to galloc sequences. BDR tracks galloc sequences in a special BDR catalog bdr.sequence_alloc. This catalog is required to
track the currently allocated chunks for the galloc sequences. The sequence name and namespace is stored in this catalog. Since the sequence chunk
allocation is managed by Raft, whereas any changes to the sequence name/namespace is managed by the replication stream, BDR currently doesn't
support renaming galloc sequences or moving them to another namespace or renaming the namespace that contains a galloc sequence. Be mindful
of this limitation while designing application schema.

Converting a local sequence to a galloc sequence

Before transforming a local sequence to galloc, you need to take care of several prerequisites.

1. Verify that sequence and column data type match

Check that the sequence's data type matches the data type of the column with which it will be used. For example, you can create a bigint sequence and
assign an integer column's default to the nextval() returned by that sequence. With galloc sequences, which for bigint are allocated in blocks
of 1 000 000 000, this quickly results in the values returned by nextval() exceeding the int4 range if more than two nodes are in use.

The following example shows what can happen:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 124

After executing INSERT INTO seqtest VALUES(DEFAULT) on two nodes, the table contains the following values:

However, attempting the same operation on a third node fails with an integer out of range error, as the sequence generated the value
4000000002 .

Tip

You can retrieve the current data type of a sequence from the PostgreSQL pg_sequences view. You can modify the data type of a sequence with
ALTER SEQUENCE ... AS ... , for example, ALTER SEQUENCE public.sequence AS integer , as long as its current value

doesn't exceed the maximum value of the new data type.

2. Set a new start value for the sequence

When the sequence kind is altered to galloc , it's rewritten and restarts from the defined start value of the local sequence. If this happens on an existing
sequence in a production database, you need to query the current value and then set the start value appropriately. To assist with this use case, BDR allows
users to pass a starting value with the function bdr.alter_sequence_set_kind() . If you're already using offset and you have writes from multiple
nodes, you need to check what is the greatest used value and restart the sequence at least to the next value.

CREATE SEQUENCE int8_seq;

SELECT sequencename, data_type FROM pg_sequences;
 sequencename |
data_type
--------------+-----------
 int8_seq |
bigint
(1 row)

CREATE TABLE seqtest (id INT NOT NULL PRIMARY
KEY);

ALTER SEQUENCE int8_seq OWNED BY
seqtest.id;

SELECT bdr.alter_sequence_set_kind('public.int8_seq'::regclass, 'galloc', 1);
 alter_sequence_set_kind

(1 row)

ALTER TABLE seqtest ALTER COLUMN id SET DEFAULT
nextval('int8_seq'::regclass);

SELECT * FROM
seqtest;
 id

 2
 2000000002
(2 rows)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 125

https://www.postgresql.org/docs/current/view-pg-sequences.html

Since users can't lock a sequence, you must leave a $MARGIN value to allow operations to continue while the max() value is queried.

The bdr.sequence_alloc table gives information on the chunk size and the ranges allocated around the whole cluster. In this example, we started our
sequence from 333 , and we have two nodes in the cluster. We can see that we have a number of allocation 4, which is 2 per node, and the chunk size is
1000000 that's related to an integer sequence.

To see the ranges currently assigned to a given sequence on each node, use these queries:

Node Node1 is using range from 333 to 2000333 .

Node Node2 is using range from 2000004 to 4000003 .

-- determine highest sequence value across all
nodes
SELECT max((x->'response'->'command_tuples'->0->>'nextval')::bigint)
 FROM json_array_elements(

bdr.run_on_all_nodes(
 E'SELECT
nextval(\'public.sequence\');'
)::jsonb AS x;

-- turn into a galloc
sequence
SELECT bdr.alter_sequence_set_kind('public.sequence'::regclass, 'galloc', $MAX + $MARGIN);

SELECT * FROM bdr.sequence_alloc
 WHERE seqid = 'public.categories_category_seq'::regclass;
 seqid | seq_chunk_size | seq_allocated_up_to | seq_nallocs |
seq_last_alloc
-------------------------+----------------+---------------------+-------------+-----------------------------
 categories_category_seq | 1000000 | 4000333 | 4 | 2020-05-21
20:02:15.957835+00
(1 row)

SELECT last_value AS range_start, log_cnt AS range_end
 FROM categories_category_seq WHERE ctid = '(0,2)'; -- first range
 range_start |
range_end
-------------+-----------
 334 |
1000333
(1 row)

SELECT last_value AS range_start, log_cnt AS range_end
 FROM categories_category_seq WHERE ctid = '(0,3)'; -- second
range
 range_start |
range_end
-------------+-----------
 1000334 |
2000333
(1 row)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 126

Note

You can't combine it to a single query (like WHERE ctid IN ('(0,2)', '(0,3)')) as that still shows only the first range.

When a node finishes a chunk, it asks a consensus for a new one and gets the first available. In the example, it's from 4000334 to 5000333. This is the new
reserved chunk and starts to consume the old reserved chunk.

UUIDs, KSUUIDs, and other approaches

There are other ways to generate globally unique ids without using the global sequences that can be used with BDR. For example:

UUIDs and their BDR variant, KSUUIDs
Local sequences with a different offset per node (i.e., manual)
An externally coordinated natural key

BDR applications can't use other methods safely: counter-table-based approaches relying on SELECT ... FOR UPDATE , UPDATE ...
RETURNING ... or similar for sequence generation doesn't work correctly in BDR because BDR doesn't take row locks between nodes. The same values
are generated on more than one node. For the same reason, the usual strategies for "gapless" sequence generation don't work with BDR. In most cases, the
application coordinates generation of sequences that must be gapless from some external source using two-phase commit. Or it generates them only on
one node in the BDR group.

UUIDs and KSUUIDs

UUID keys instead avoid sequences entirely and use 128-bit universal unique identifiers. These are random or pseudorandom values that are so large that
it's nearly impossible for the same value to be generated twice. There's no need for nodes to have continuous communication when using UUID keys.

In the unlikely event of a collision, conflict detection chooses the newer of the two inserted records to retain. Conflict logging, if enabled, records such an
event. However, it's exceptionally unlikely to ever occur, since collisions become practically likely only after about 2^64 keys are generated.

The main downside of UUID keys is that they're somewhat inefficient in terms of space and the network. They consume more space not only as a primary
key but also where referenced in foreign keys and when transmitted on the wire. Also, not all applications cope well with UUID keys.

BDR provides functions for working with a K-Sortable variant of UUID data, known as KSUUID, which generates values that can be stored using the
PostgreSQL standard UUID data type. A KSUUID value is similar to UUIDv1 in that it stores both timestamp and random data, following the UUID
standard. The difference is that KSUUID is K-Sortable, meaning that it's weakly sortable by timestamp. This makes it more useful as a database key as it
produces more compact btree indexes, which improves the effectiveness of search, and allows natural time-sorting of result data. Unlike UUIDv1 ,
KSUUID values don't include the MAC of the computer on which they were generated, so there are no security concerns from using them.

KSUUID v2 is now recommended in all cases. You can directly sort values generated with regular comparison operators.

SELECT last_value AS range_start, log_cnt AS range_end
 FROM categories_category_seq WHERE ctid = '(0,2)'; -- first range
 range_start |
range_end
-------------+-----------
 2000334 |
3000333
(1 row)

SELECT last_value AS range_start, log_cnt AS range_end
 FROM categories_category_seq WHERE ctid = '(0,3)'; -- second
range
 range_start |
range_end
-------------+-----------
 3000334 |
4000333

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 127

KSUUID v2 is now recommended in all cases. You can directly sort values generated with regular comparison operators.

There are two versions of KSUUID in BDR: v1 and v2. The legacy KSUUID v1 is deprecated but is kept in order to support existing installations. Don't use
it for new installations. The internal contents of v1 and v2 aren't compatible. As such, the functions to manipulate them also aren't compatible. The v2 of
KSUUID also no longer stores the UUID version number.

Step and offset sequences

In offset-step sequences, a normal PostgreSQL sequence is used on each node. Each sequence increments by the same amount and starts at differing
offsets. For example, with step 1000, node1's sequence generates 1001, 2001, 3001, and so on. node2's sequence generates 1002, 2002, 3002, and so on.
This scheme works well even if the nodes can't communicate for extended periods. However, the designer must specify a maximum number of nodes when
establishing the schema, and it requires per-node configuration. Mistakes can easily lead to overlapping sequences.

It's relatively simple to configure this approach with BDR by creating the desired sequence on one node, like this:

CREATE TABLE some_table (
 generated_value bigint primary key
);

CREATE SEQUENCE some_seq INCREMENT 1000 OWNED BY some_table.generated_value;

ALTER TABLE some_table ALTER COLUMN generated_value SET DEFAULT nextval('some_seq');

Then, on each node calling setval() , give each node a different offset starting value, for example:

-- On node 1
SELECT setval('some_seq', 1);

-- On node 2
SELECT setval('some_seq', 2);

 -- ... etc

Be sure to allow a large enough INCREMENT to leave room for all the nodes you might ever want to add, since changing it in future is difficult and
disruptive.

If you use bigint values, there's no practical concern about key exhaustion, even if you use offsets of 10000 or more. It would take hundreds of years,
with hundreds of machines, doing millions of inserts per second, to have any chance of approaching exhaustion.

BDR doesn't currently offer any automation for configuration of the per-node offsets on such step/offset sequences.

Composite keys

A variant on step/offset sequences is to use a composite key composed of PRIMARY KEY (node_number, generated_value) , where the node
number is usually obtained from a function that returns a different number on each node. You can create such a function by temporarily disabling DDL
replication and creating a constant SQL function. Alternatively, you can use a one-row table that isn't part of a replication set to store a different value in
each node.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 128

Global sequence management interfaces

BDR provides an interface for converting between a standard PostgreSQL sequence and the BDR global sequence.

The following functions are considered to be DDL , so DDL replication and global locking applies to them.

bdr.alter_sequence_set_kind

Allows the owner of a sequence to set the kind of a sequence. Once set, seqkind is visible only by way of the bdr.sequences view. In all other ways,
the sequence appears as a normal sequence.

BDR treats this function as DDL , so DDL replication and global locking applies, if it's currently active. See DDL Replication.

Synopsis

Parameters

seqoid — Name or Oid of the sequence to alter.
seqkind — local for a standard PostgreSQL sequence, snowflakeid or galloc for globally unique BDR sequences, or timeshard for

legacy globally unique sequence.

Notes

When changing the sequence kind to galloc , the first allocated range for that sequence uses the sequence start value as the starting point. When there
are existing values that were used by the sequence before it was changed to galloc , we recommend moving the starting point so that the newly
generated values don't conflict with the existing ones using the following command:

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration.

The function takes a global DDL lock. It also locks the sequence locally.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Only the owner of the sequence can execute the bdr.alter_sequence_set_kind function unless bdr.backwards_compatibility is set is
set to 30618 or lower.

bdr.extract_timestamp_from_snowflakeid

This function extracts the timestamp component of the snowflakeid sequence. The return value is of type timestamptz.

bdr.alter_sequence_set_kind(seqoid regclass, seqkind text)

ALTER SEQUENCE seq_name START starting_value
RESTART

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 129

Synopsis

Parameters

snowflakeid — Value of a snowflakeid sequence.

Notes

This function executes only on the local node.

bdr.extract_nodeid_from_snowflakeid

This function extracts the nodeid component of the snowflakeid sequence.

Synopsis

Parameters

snowflakeid — Value of a snowflakeid sequence.

Notes

This function executes only on the local node.

bdr.extract_localseqid_from_snowflakeid

This function extracts the local sequence value component of the snowflakeid sequence.

Synopsis

Parameters

snowflakeid — Value of a snowflakeid sequence.

Notes

This function executes only on the local node.

bdr.extract_timestamp_from_snowflakeid(snowflakeid bigint)

bdr.extract_nodeid_from_snowflakeid(snowflakeid bigint)

bdr.extract_localseqid_from_snowflakeid(snowflakeid bigint)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 130

bdr.timestamp_to_snowflakeid

This function converts a timestamp value to a dummy snowflakeid sequence value.

This is useful for doing indexed searches or comparisons of values in the snowflakeid column and for a specific timestamp.

For example, given a table foo with a column id that's using a snowflakeid sequence, we can get the number of changes since yesterday midnight
like this:

SELECT count(1) FROM foo WHERE id > bdr.timestamp_to_snowflakeid('yesterday')

A query formulated this way uses an index scan on the column id .

Synopsis

Parameters

ts — Timestamp to use for the snowflakeid sequence generation.

Notes

This function executes only on the local node.

bdr.extract_timestamp_from_timeshard

This function extracts the timestamp component of the timeshard sequence. The return value is of type timestamptz.

Synopsis

Parameters

timeshard_seq — Value of a timeshard sequence.

Notes

This function executes only on the local node.

bdr.timestamp_to_snowflakeid(ts timestamptz)

bdr.extract_timestamp_from_timeshard(timeshard_seq bigint)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 131

bdr.extract_nodeid_from_timeshard

This function extracts the nodeid component of the timeshard sequence.

Synopsis

Parameters

timeshard_seq — Value of a timeshard sequence.

Notes

This function executes only on the local node.

bdr.extract_localseqid_from_timeshard

This function extracts the local sequence value component of the timeshard sequence.

Synopsis

Parameters

timeshard_seq — Value of a timeshard sequence.

Notes

This function executes only on the local node.

bdr.timestamp_to_timeshard

This function converts a timestamp value to a dummy timeshard sequence value.

This is useful for doing indexed searches or comparisons of values in the timeshard column and for a specific timestamp.

For example, given a table foo with a column id that's using a timeshard sequence, we can get the number of changes since yesterday midnight
like this:

SELECT count(1) FROM foo WHERE id > bdr.timestamp_to_timeshard('yesterday')

A query formulated this way uses an index scan on the column id .

bdr.extract_nodeid_from_timeshard(timeshard_seq bigint)

bdr.extract_localseqid_from_timeshard(timeshard_seq bigint)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 132

Synopsis

Parameters

ts — Timestamp to use for the timeshard sequence generation.

Notes

This function executes only on the local node.

KSUUID v2 Functions

Functions for working with KSUUID v2 data, K-Sortable UUID data.

bdr.gen_ksuuid_v2

This function generates a new KSUUID v2 value using the value of timestamp passed as an argument or current system time if NULL is passed. If you want
to generate KSUUID automatically using the system time, pass a NULL argument.

The return value is of type UUID.

Synopsis

Notes

This function executes only on the local node.

bdr.ksuuid_v2_cmp

This function compares the KSUUID v2 values.

It returns 1 if the first value is newer, -1 if the second value is lower, or zero if they are equal.

Synopsis

bdr.timestamp_to_timeshard(ts timestamptz)

bdr.gen_ksuuid_v2(timestamptz)

bdr.ksuuid_v2_cmp(uuid, uuid)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 133

Parameters

UUID — KSUUID v2 to compare.

Notes

This function executes only on the local node.

bdr.extract_timestamp_from_ksuuid_v2

This function extracts the timestamp component of KSUUID v2. The return value is of type timestamptz.

Synopsis

Parameters

UUID — KSUUID v2 value to extract timestamp from.

Notes

This function executes only on the local node.

KSUUID v1 functions

Functions for working with KSUUID v1 data, K-Sortable UUID data(v1).

bdr.gen_ksuuid

This function generates a new KSUUID v1 value, using the current system time. The return value is of type UUID.

Synopsis

Notes

This function executes only on the local node.

bdr.extract_timestamp_from_ksuuid_v2(uuid)

bdr.gen_ksuuid()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 134

bdr.uuid_v1_cmp

This function compares the KSUUID v1 values.

It returns 1 if the first value is newer, -1 if the second value is lower, or zero if they are equal.

Synopsis

Notes

This function executes only on the local node.

Parameters

UUID — KSUUID v1 to compare.

bdr.extract_timestamp_from_ksuuid

This function extracts the timestamp component of KSUUID v1 or UUIDv1 values. The return value is of type timestamptz.

Synopsis

Parameters

UUID — KSUUID v1 value to extract timestamp from.

Notes

This function executes on the local node.

bdr.uuid_v1_cmp(uuid, uuid)

bdr.extract_timestamp_from_ksuuid(uuid)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 135

6.8 Column-level conflict detection

By default, conflicts are resolved at row level. That is, when changes from two nodes conflict, we pick either the local or remote tuple and discard the other
one. For example, we might compare commit timestamps for the two conflicting changes and keep the newer one. This ensures that all nodes converge to
the same result and establishes commit-order-like semantics on the whole cluster.

However, in some cases it might be appropriate to resolve conflicts at the column level rather than the row level.

Consider a simple example, where we have a table t with two integer columns a and b and a single row (1,1) . Assume that on one node we execute:

On another node we concurrently (before receiving the preceding UPDATE) execute:

This results in an UPDATE-UPDATE conflict. With the update_if_newer conflict resolution, we compare the commit timestamps and keep the new
row version. Assuming the second node committed last, we end up with (1,100) , effectively discarding the change to column a.

For many use cases, this is the desired and expected behavior, but for some this might be an issue. Consider, for example, a multi-node cluster where each
part of the application is connected to a different node, updating a dedicated subset of columns in a shared table. In that case, the different components
might step on each other's toes, overwriting their changes.

For such use cases, it might be more appropriate to resolve conflicts on a given table at the column level. To achieve that, BDR tracks the timestamp of the
last change for each column separately and uses that to pick the most recent value (essentially update_if_newer).

Applied to the previous example, we'll end up with (100,100) on both nodes, despite neither of the nodes ever seeing such a row.

When thinking about column-level conflict resolution, it can be useful to see tables as vertically partitioned, so that each update affects data in only one
slice. This approach eliminates conflicts between changes to different subsets of columns. In fact, vertical partitioning can even be a practical alternative
to column-level conflict resolution.

Column-level conflict resolution requires the table to have REPLICA IDENTITY FULL . The bdr.alter_table_conflict_detection function
does check that and fails with an error otherwise.

Enabling and disabling column-level conflict resolution

The column-level conflict resolution is managed by the bdr.alter_table_conflict_detection() function.

Example

To see how the bdr.alter_table_conflict_detection() is used, consider this example that creates a trivial table test_table and then
enables column-level conflict resolution on it:

UPDATE t SET a =
100

UPDATE t SET b =
100

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 136

The function adds a new cts column (as specified in the function call), but it also created two triggers (BEFORE INSERT and BEFORE UPDATE) that
are responsible for maintaining timestamps in the new column before each change.

Also, the new column specifies NOT NULL with a default value, which means that ALTER TABLE ... ADD COLUMN doesn't perform a table rewrite.

Note

We discourage using columns with the bdr.column_timestamps data type for other purposes as it can have negative effects. For example,
it switches the table to column-level conflict resolution, which doesn't work correctly without the triggers.

Listing table with column-level conflict resolution

You can list tables having column-level conflict resolution enabled with the following query. This query detects the presence of a column of type
bdr.column_timestamp .

bdr.column_timestamps_create

This function creates column-level conflict resolution. It's called within column_timestamp_enable .

db=# CREATE TABLE my_app.test_table (id SERIAL PRIMARY KEY, val
INT);
CREATE TABLE

db=# ALTER TABLE my_app.test_table REPLICA IDENTITY
FULL;
ALTER TABLE

db=# SELECT bdr.alter_table_conflict_detection(
db(# 'my_app.test_table'::regclass, 'column_modify_timestamp', 'cts');
 alter_table_conflict_detection

t

db=# \d my_app.test_table

SELECT nc.nspname,
c.relname
FROM pg_attribute
a
JOIN (pg_class c JOIN pg_namespace nc ON c.relnamespace =
nc.oid)
 ON a.attrelid = c.oid
JOIN (pg_type t JOIN pg_namespace nt ON t.typnamespace =
nt.oid)
 ON a.atttypid = t.oid
WHERE NOT pg_is_other_temp_schema(nc.oid)
 AND nt.nspname = 'bdr'
 AND t.typname = 'column_timestamps'
 AND NOT
a.attisdropped
 AND c.relkind IN ('r', 'v', 'f',
'p');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 137

Synopsis

Parameters

p_source — The two options are current or commit .
p_timestamp — Timestamp depends on the source chosen. If commit , then TIMESTAMP_SOURCE_COMMIT . If current , then
TIMESTAMP_SOURCE_CURRENT .

DDL locking

When enabling or disabling column timestamps on a table, the code uses DDL locking to ensure that there are no pending changes from before the switch.
This approach ensures we see only conflicts with timestamps in both tuples or in neither of them. Otherwise, the code might unexpectedly see timestamps
in the local tuple and NULL in the remote one. It also ensures that the changes are resolved the same way (column-level or row-level) on all nodes.

Current versus commit timestamp

An important decision is the timestamp to assign to modified columns.

If column_modify_timestamp is selected as the conflict detection method, the timestamp assigned to modified columns is the current timestamp, as
if obtained from clock_timestamp . This is simple, and for many cases it is perfectly correct (for example, when the conflicting rows modify non-
overlapping subsets of columns).

It can, however, have various unexpected effects:

The timestamp changes during statement execution, so if an UPDATE affects multiple rows, each gets a slightly different timestamp. This means
that the effects of concurrent changes might get "mixed" in various ways (depending on how exactly the changes performed on different nodes
interleave).

The timestamp is unrelated to the commit timestamp, and using it to resolve conflicts means that the result isn't equivalent to the commit order,
which means it likely can't be serialized.

You can also use the actual commit timestamp, specified with column_commit_timestamp as the conflict detection method.

Commit timestamps currently have restrictions that are explained in Notes.

Note

We might add statement and transaction timestamps in the future, which would address issues with mixing effects of concurrent statements or
transactions. Still, neither of these options can ever produce results equivalent to commit order.

Inspecting column timestamps

The column storing timestamps for modified columns is maintained automatically by triggers. Don't modify it directly. It can be useful to inspect the current
timestamps value, for example, while investigating how a conflict was resolved.

Three functions are useful for this purpose:

bdr.column_timestamps_to_text(bdr.column_timestamps)

bdr.column_timestamps_create(p_source cstring, p_timestamp
timestampstz)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 138

bdr.column_timestamps_to_text(bdr.column_timestamps)

This function returns a human-readable representation of the timestamp mapping and is used when casting the value to text :

bdr.column_timestamps_to_jsonb(bdr.column_timestamps)

This function turns a JSONB representation of the timestamps mapping and is used when casting the value to jsonb :

bdr.column_timestamps_resolve(bdr.column_timestamps, xid)

This function updates the mapping with the commit timestamp for the attributes modified by the most recent transaction (if it already committed).
This matters only when using the commit timestamp. For example, in this case, the last transaction updated the second attribute (with attnum =
2):

db=# select cts::text from
test_table;

cts

 {source: current, default: 2018-09-23 19:24:52.118583+02, map: [2 : 2018-09-23
19:25:02.590677+02]}
(1 row)

db=# select jsonb_pretty(cts::jsonb) from
test_table;
 jsonb_pretty

 {
+
 "map": {
+
 "2": "2018-09-23T19:24:52.118583+02:00" +
 }, +
 "source": "current", +
 "default": "2018-09-23T19:24:52.118583+02:00"+

}
(1 row)

test=# select cts::jsonb from
test_table;

cts
--

 {"map": {"2": "2018-09-23T19:29:55.581823+02:00"}, "source": "commit", "default": "2018-09-
23T19:29:55.581823+02:00", "modified": [2]}
(1 row)

db=# select bdr.column_timestamps_resolve(cts, xmin)::jsonb from
test_table;
 column_timestamps_resolve
--

 {"map": {"2": "2018-09-23T19:29:55.581823+02:00"}, "source": "commit", "default": "2018-09-
23T19:29:55.581823+02:00"}
(1 row)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 139

Handling column conflicts using CRDT data types

By default, column-level conflict resolution picks the value with a higher timestamp and discards the other one. You can, however, reconcile the conflict in
different, more elaborate ways. For example, you can use CRDT types that allow merging the conflicting values without discarding any information.

Notes

The attributes modified by an UPDATE are determined by comparing the old and new row in a trigger. This means that if the attribute doesn't
change a value, it isn't detected as modified even if it's explicitly set. For example, UPDATE t SET a = a doesn't mark a as modified for any
row. Similarly, UPDATE t SET a = 1 doesn't mark a as modified for rows that are already set to 1 .

For INSERT statements, we don't have any old row to compare the new one to, so we consider all attributes to be modified and assign them a new
timestamp. This applies even for columns that weren't included in the INSERT statement and received default values. We can detect which
attributes have a default value but can't know if it was included automatically or specified explicitly.

This effectively means column-level conflict resolution doesn't work for INSERT-INSERT conflicts even if the INSERT statements specify
different subsets of columns. The newer row has timestamps that are all newer than the older row.

By treating the columns independently, it's easy to violate constraints in a way that isn't possible when all changes happen on the same node.
Consider, for example, a table like this:

Assume one node does:

Another node concurrently does:

Each of those updates is valid when executed on the initial row and so passes on each node. But when replicating to the other node, the resulting row
violates the CHECK (A > b) constraint, and the replication stops until the issue is resolved manually.

The column storing timestamp mapping is managed automatically. Don't specify or override the value in your queries, as it can result in
unpredictable effects. (We do ignore the value where possible anyway.)

The timestamp mapping is maintained by triggers, but the order in which triggers execute matters. So if you have custom triggers that modify tuples
and are executed after the pgl_clcd_ triggers, the modified columns aren't detected correctly.

When using regular timestamps to order changes/commits, it's possible that the conflicting changes have exactly the same timestamp (because two
or more nodes happened to generate the same timestamp). This risk isn't unique to column-level conflict resolution, as it can happen even for
regular row-level conflict resolution. We use node id as a tie-breaker in this situation (the higher node id wins), which ensures that the same changes
are applied on all nodes.

It is possible that there is a clock skew between different nodes. While it can induce somewhat unexpected behavior (discarding seemingly newer
changes because the timestamps are inverted), you can manage clock skew between nodes using the parameters bdr.maximum_clock_skew
and bdr.maximum_clock_skew_action .

CREATE TABLE t (id INT PRIMARY KEY, a INT, b INT, CHECK (a >
b));
INSERT INTO t VALUES (1, 1000,
1);

UPDATE t SET a =
100;

UPDATE t SET b =
500;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 140

SELECT bdr.alter_node_group_config('group', ignore_redundant_updates :=
false);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 141

6.9 Conflict-free replicated data types

Conflict-free replicated data types (CRDT) support merging values from concurrently modified rows instead of discarding one of the rows as traditional
resolution does.

Each CRDT type is implemented as a separate PostgreSQL data type with an extra callback added to the bdr.crdt_handlers catalog. The merge
process happens inside the BDR writer on the apply side without any user action needed.

CRDTs require the table to have column-level conflict resolution enabled, as documented in CLCD.

The only action you need to take is to use a particular data type in CREATE/ALTER TABLE rather than standard built-in data types such as integer. For
example, consider the following table with one regular integer counter and a single row:

CREATE TABLE non_crdt_example (
 id integer PRIMARY KEY,
 counter integer NOT NULL DEFAULT 0
);

INSERT INTO non_crdt_example (id) VALUES (1);

Suppose you issue the following SQL on two nodes at same time:

UPDATE non_crdt_example
 SET counter = counter + 1 -- "reflexive" update
 WHERE id = 1;

After both updates are applied, you can see the resulting values using this query:

SELECT * FROM non_crdt_example WHERE id = 1;
 id | counter
 -----+-----------
 1 | 1
(1 row)

This code shows that you lost one of the increments due to the update_if_newer conflict resolver. If you use the CRDT counter data type instead, the
result looks like this:

CREATE TABLE crdt_example (
 id integer PRIMARY KEY,
 counter bdr.crdt_gcounter NOT NULL DEFAULT 0
);

ALTER TABLE crdt_example REPLICA IDENTITY FULL;

SELECT bdr.alter_table_conflict_detection('crdt_example',
 'column_modify_timestamp', 'cts');

INSERT INTO crdt_example (id) VALUES (1);

Again issue the following SQL on two nodes at same time, and then wait for the changes to be applied:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 142

UPDATE crdt_example
 SET counter = counter + 1 -- "reflexive" update
 WHERE id = 1;

SELECT id, counter FROM crdt_example WHERE id = 1;
 id | counter
 -----+-----------
 1 | 2
(1 row)

This example shows that CRDTs correctly allow accumulator columns to work, even in the face of asynchronous concurrent updates that otherwise conflict.

The crdt_gcounter type is an example of state-based CRDT types that work only with reflexive UPDATE SQL, such as x = x + 1 , as the example
shows.

The bdr.crdt_raw_value configuration option determines whether queries return the current value or the full internal state of the CRDT type. By
default, only the current numeric value is returned. When set to true , queries return representation of the full state. You can use the special hash
operator (#) to request only the current numeric value without using the special operator (the default behavior). If the full state is dumped using
bdr.crdt_raw_value = on , then the value can reload only with bdr.crdt_raw_value = on .

Note

The bdr.crdt_raw_value applies formatting only of data returned to clients, that is, simple column references in the select list. Any column
references in other parts of the query (such as WHERE clause or even expressions in the select list) might still require use of the # operator.

Another class of CRDT data types is referred to delta CRDT types. These are a special subclass of operation-based CRDTs.

With delta CRDTs, any update to a value is compared to the previous value on the same node. Then a change is applied as a delta on all other nodes.

CREATE TABLE crdt_delta_example (
 id integer PRIMARY KEY,
 counter bdr.crdt_delta_counter NOT NULL DEFAULT 0
);

ALTER TABLE crdt_delta_example REPLICA IDENTITY FULL;

SELECT bdr.alter_table_conflict_detection('crdt_delta_example',
 'column_modify_timestamp', 'cts');

INSERT INTO crdt_delta_example (id) VALUES (1);

Suppose you issue the following SQL on two nodes at same time:

UPDATE crdt_delta_example
 SET counter = 2 -- notice NOT counter = counter + 2
 WHERE id = 1;

After both updates are applied, you can see the resulting values using this query:

SELECT id, counter FROM crdt_delta_example WHERE id = 1;
 id | counter
 -----+---------
 1 | 4
(1 row)

With a regular integer column, the result is 2 . But when you update the row with a delta CRDT counter, you start with the OLD row version, make a

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 143

With a regular integer column, the result is 2 . But when you update the row with a delta CRDT counter, you start with the OLD row version, make a
NEW row version, and send both to the remote node. There, compare them with the version found there (e.g., the LOCAL version). Standard CRDTs merge
the NEW and the LOCAL version, while delta CRDTs compare the OLD and NEW versions and apply the delta to the LOCAL version.

The CRDT types are installed as part of bdr into the bdr schema. For convenience, the basic operators (+ , # and !) and a number of common
aggregate functions (min , max , sum , and avg) are created in pg_catalog . This makes them available without having to tweak search_path .

An important question is how query planning and optimization works with these new data types. CRDT types are handled transparently. Both ANALYZE
and the optimizer work, so estimation and query planning works fine without having to do anything else.

State-based and operation-based CRDTs

Following the notation from [1], both operation-based and state-based CRDTs are implemented.

Operation-based CRDT types (CmCRDT)

The implementation of operation-based types is trivial because the operation isn't transferred explicitly but computed from the old and new row received
from the remote node.

Currently, these operation-based CRDTs are implemented:

crdt_delta_counter — bigint counter (increments/decrements)
crdt_delta_sum — numeric sum (increments/decrements)

These types leverage existing data types (for example, crdt_delta_counter is a domain on a bigint) with a little bit of code to compute the delta.

This approach is possible only for types for which the method for computing the delta is known, but the result is simple and cheap (both in terms of space
and CPU) and has a couple of additional benefits. For example, it can leverage operators/syntax for the underlying data type.

The main disadvantage is that you can't reset this value reliably in an asynchronous and concurrent environment.

Note

Implementing more complicated operation-based types by creating custom data types is possible, storing the state and the last operation. (Every
change is decoded and transferred, so multiple operations aren't needed). But at that point, the main benefits (simplicity, reuse of existing data
types) are lost without gaining any advantage compared to state-based types (for example, still no capability to reset) except for the space
requirements. (A per-node state isn't needed.)

State-based CRDT types (CvCRDT)

State-based types require a more complex internal state and so can't use the regular data types directly the way operation-based types do.

Currently, four state-based CRDTs are implemented:

crdt_gcounter — bigint counter (increment-only)
crdt_gsum — numeric sum/counter (increment-only)
crdt_pncounter — bigint counter (increments/decrements)
crdt_pnsum — numeric sum/counter (increments/decrements)

The internal state typically includes per-node information, increasing the on-disk size but allowing added benefits. The need to implement custom data
types implies more code (in/out functions and operators).

The advantage is the ability to reliably reset the values, a somewhat self-healing nature in the presence of lost changes (which doesn't happen in a cluster
that operates properly), and the ability to receive changes from other than source nodes.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 144

Consider, for example, that a value is modified on node A, and the change gets replicated to B but not C due to network issue between A and C. If B modifies
the value and this change gets replicated to C, it includes even the original change from A. With operation-based CRDTs, node C doesn't receive the change
until the A-C network connection starts working again.

The main disadvantages of CvCRDTs are higher costs in terms of disk space and CPU usage. A bit of information for each node is needed, including nodes
that were already removed from the cluster. The complex nature of the state (serialized into varlena types) means increased CPU use.

Disk-space requirements

An important consideration is the overhead associated with CRDT types, particularly the on-disk size.

For operation-based types, this is trivial, because the types are merely domains on top of other types and so have the same disk space requirements no
matter how many nodes are there.

crdt_delta_counter — Same as bigint (8 bytes)
crdt_delta_sum — Same as numeric (variable, depending on precision and scale)

There's no dependency on the number of nodes because operation-based CRDT types don't store any per-node information.

For state-based types, the situation is more complicated. All the types are variable-length (stored essentially as a bytea column) and consist of a header
and a certain amount of per-node information for each node that modified the value.

For the bigint variants, formulas computing approximate size are (N denotes the number of nodes that modified this value):

crdt_gcounter — 32B (header) + N * 12B (per-node)
crdt_pncounter -— 48B (header) + N * 20B (per-node)

For the numeric variants, there's no exact formula because both the header and per-node parts include numeric variable-length values. To give you
an idea of how many such values you need to keep:

crdt_gsum
fixed: 20B (header) + N * 4B (per-node)
variable: (2 + N) numeric values

crdt_pnsum
fixed: 20B (header) + N * 4B (per-node)
variable: (4 + 2 * N) numeric values

Note

It doesn't matter how many nodes are in the cluster if the values are never updated on multiple nodes. It also doesn't matter whether the updates
were concurrent (causing a conflict).

In addition, it doesn't matter how many of those nodes were already removed from the cluster. There's no way to compact the state yet.

CRDT types versus conflicts handling

As tables can contain both CRDT and non-CRDT columns (most columns are expected to be non-CRDT), you need to do both the regular conflict resolution
and CRDT merge.

The conflict resolution happens first and is responsible for deciding the tuple to keep (applytuple) and the one to discard. The merge phase happens next,
merging data for CRDT columns from the discarded tuple into the applytuple.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 145

Note

This handling makes CRDT types somewhat more expensive compared to plain conflict resolution because the merge needs to happen every time.
This is the case even when the conflict resolution can use one of the fast-paths (such as those modified in the current transaction).

CRDT types versus conflict reporting

By default, detected conflicts are individually reported. Without CRDT types, this makes sense because the conflict resolution essentially throws away one
half of the available information (local or remote row, depending on configuration). This presents a data loss.

CRDT types allow both parts of the information to be combined without throwing anything away, eliminating the data loss issue. This makes the conflict
reporting unnecessary.

For this reason, conflict reporting is skipped when the conflict can be fully resolved by CRDT merge, that is, if each column meets at least one of these two
conditions:

The values in local and remote tuple are the same (NULL or equal).
It uses a CRDT data type and so can be merged.

Note

This means that the conflict reporting is also skipped when there are no CRDT columns but all values in local/remote tuples are equal.

Resetting CRDT values

Resetting CRDT values is possible but requires special handling. The asynchronous nature of the cluster means that different nodes might see the reset
operation at different places in the change stream no matter how it's implemented. Different nodes might also initiate a reset concurrently, that is, before
observing the reset from the other node.

In other words, to make the reset operation behave correctly, it needs to be commutative with respect to the regular operations. Many naive ways to reset a
value that might work well on a single-node fail for this reason.

For example, the simplest approach to resetting a value might be:

UPDATE crdt_table SET cnt = 0 WHERE id = 1;

With state-based CRDTs this doesn't work. It throws away the state for the other nodes but only locally. It's added back by merge functions on remote
nodes, causing diverging values and eventually receiving it back due to changes on the other nodes.

With operation-based CRDTs, this might seem to work because the update is interpreted as a subtraction of -cnt . But it works only in the absence of
concurrent resets. Once two nodes attempt to do a reset at the same time, the delta is applied twice, getting a negative value (which isn't expected from a
reset).

It might also seem that you can use DELETE + INSERT as a reset, but this approach has a couple of weaknesses, too. If the row is reinserted with the
same key, it's not guaranteed that all nodes see it at the same position in the stream of operations with respect to changes from other nodes. BDR
specifically discourages reusing the same primary key value since it can lead to data anomalies in concurrent cases.

State-based CRDT types can reliably handle resets using a special ! operator like this:

UPDATE tab SET counter = !counter WHERE ...;

"Reliably" means the values don't have the two issues of multiple concurrent resets and divergence.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 146

Operation-based CRDT types can be reset reliably only using Eager Replication, since this avoids multiple concurrent resets. You can also use Eager
Replication to set either kind of CRDT to a specific value.

Implemented CRDT data types

Currently, there are six CRDT data types implemented:

Grow-only counter and sum
Positive-negative counter and sum
Delta counter and sum

The counters and sums behave mostly the same, except that the counter types are integer-based (bigint), while the sum types are decimal-based
(numeric).

Additional CRDT types, described at [1], might be implemented later.

You can list the currently implemented CRDT data types with the following query:

grow-only counter (crdt_gcounter)

Supports only increments with nonnegative values (value + int and counter + bigint operators).

You can obtain the current value of the counter either using # operator or by casting it to bigint .

Isn't compatible with simple assignments like counter = value (which is common pattern when the new value is computed somewhere in the
application).

Allows simple reset of the counter using the ! operator (counter = !counter).

You can inspect the internal state using crdt_gcounter_to_text .

SELECT n.nspname, t.typname
FROM bdr.crdt_handlers
c
JOIN (pg_type t JOIN pg_namespace n ON t.typnamespace =
n.oid)
 ON t.oid = c.crdt_type_id;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 147

CREATE TABLE crdt_test (
 id INT PRIMARY KEY,
 cnt bdr.crdt_gcounter NOT NULL DEFAULT 0
);

INSERT INTO crdt_test VALUES (1, 0); -- initialized to 0
INSERT INTO crdt_test VALUES (2, 129824); -- initialized to 129824
INSERT INTO crdt_test VALUES (3, -4531); -- error: negative value

-- enable CLCD on the table
ALTER TABLE crdt_test REPLICA IDENTITY FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment counters
UPDATE crdt_test SET cnt = cnt + 1 WHERE id = 1;
UPDATE crdt_test SET cnt = cnt + 120 WHERE id = 2;

-- error: minus operator not defined
UPDATE crdt_test SET cnt = cnt - 1 WHERE id = 1;

-- error: increment has to be non-negative
UPDATE crdt_test SET cnt = cnt + (-1) WHERE id = 1;

-- reset counter
UPDATE crdt_test SET cnt = !cnt WHERE id = 1;

-- get current counter value
SELECT id, cnt::bigint, cnt FROM crdt_test;

-- show internal structure of counters
SELECT id, bdr.crdt_gcounter_to_text(cnt) FROM crdt_test;

grow-only sum (crdt_gsum)

Supports only increments with nonnegative values (sum + numeric).

You can obtain the current value of the sum either by using the # operator or by casting it to numeric .

Isn't compatible with simple assignments like sum = value (which is the common pattern when the new value is computed somewhere in the
application).

Allows simple reset of the sum using the ! operator (sum = !sum).

Can inspect internal state using crdt_gsum_to_text .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 148

CREATE TABLE crdt_test (
 id INT PRIMARY KEY,
 gsum bdr.crdt_gsum NOT NULL DEFAULT 0.0
);

INSERT INTO crdt_test VALUES (1, 0.0); -- initialized to 0
INSERT INTO crdt_test VALUES (2, 1298.24); -- initialized to 1298.24
INSERT INTO crdt_test VALUES (3, -45.31); -- error: negative value

-- enable CLCD on the table
ALTER TABLE crdt_test REPLICA IDENTITY FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment sum
UPDATE crdt_test SET gsum = gsum + 11.5 WHERE id = 1;
UPDATE crdt_test SET gsum = gsum + 120.33 WHERE id = 2;

-- error: minus operator not defined
UPDATE crdt_test SET gsum = gsum - 15.2 WHERE id = 1;

-- error: increment has to be non-negative
UPDATE crdt_test SET gsum = gsum + (-1.56) WHERE id = 1;

-- reset sum
UPDATE crdt_test SET gsum = !gsum WHERE id = 1;

-- get current sum value
SELECT id, gsum::numeric, gsum FROM crdt_test;

-- show internal structure of sums
SELECT id, bdr.crdt_gsum_to_text(gsum) FROM crdt_test;

positive-negative counter (crdt_pncounter)

Supports increments with both positive and negative values (through counter + int and counter + bigint operators).

You can obtain the current value of the counter either by using the # operator or by casting to bigint .

Isn't compatible with simple assignments like counter = value (which is the common pattern when the new value is computed somewhere in
the application).

Allows simple reset of the counter using the ! operator (counter = !counter).

You can inspect the internal state using crdt_pncounter_to_text .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 149

CREATE TABLE crdt_test (
 id INT PRIMARY KEY,
 cnt bdr.crdt_pncounter NOT NULL DEFAULT 0
);

INSERT INTO crdt_test VALUES (1, 0); -- initialized to 0
INSERT INTO crdt_test VALUES (2, 129824); -- initialized to 129824
INSERT INTO crdt_test VALUES (3, -4531); -- initialized to -4531

-- enable CLCD on the table
ALTER TABLE crdt_test REPLICA IDENTITY FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment counters
UPDATE crdt_test SET cnt = cnt + 1 WHERE id = 1;
UPDATE crdt_test SET cnt = cnt + 120 WHERE id = 2;
UPDATE crdt_test SET cnt = cnt + (-244) WHERE id = 3;

-- decrement counters
UPDATE crdt_test SET cnt = cnt - 73 WHERE id = 1;
UPDATE crdt_test SET cnt = cnt - 19283 WHERE id = 2;
UPDATE crdt_test SET cnt = cnt - (-12) WHERE id = 3;

-- get current counter value
SELECT id, cnt::bigint, cnt FROM crdt_test;

-- show internal structure of counters
SELECT id, bdr.crdt_pncounter_to_text(cnt) FROM crdt_test;

-- reset counter
UPDATE crdt_test SET cnt = !cnt WHERE id = 1;

-- get current counter value after the reset
SELECT id, cnt::bigint, cnt FROM crdt_test;

positive-negative sum (crdt_pnsum)

Supports increments with both positive and negative values (through sum + numeric).

You can obtain the current value of the sum either by using then # operator or by casting to numeric .

Isn't compatible with simple assignments like sum = value (which is the common pattern when the new value is computed somewhere in the
application).

Allows simple reset of the sum using the ! operator (sum = !sum).

You can inspect the internal state using crdt_pnsum_to_text .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 150

CREATE TABLE crdt_test (
 id INT PRIMARY KEY,
 pnsum bdr.crdt_pnsum NOT NULL DEFAULT 0
);

INSERT INTO crdt_test VALUES (1, 0); -- initialized to 0
INSERT INTO crdt_test VALUES (2, 1298.24); -- initialized to 1298.24
INSERT INTO crdt_test VALUES (3, -45.31); -- initialized to -45.31

-- enable CLCD on the table
ALTER TABLE crdt_test REPLICA IDENTITY FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment sums
UPDATE crdt_test SET pnsum = pnsum + 1.44 WHERE id = 1;
UPDATE crdt_test SET pnsum = pnsum + 12.20 WHERE id = 2;
UPDATE crdt_test SET pnsum = pnsum + (-24.34) WHERE id = 3;

-- decrement sums
UPDATE crdt_test SET pnsum = pnsum - 7.3 WHERE id = 1;
UPDATE crdt_test SET pnsum = pnsum - 192.83 WHERE id = 2;
UPDATE crdt_test SET pnsum = pnsum - (-12.22) WHERE id = 3;

-- get current sum value
SELECT id, pnsum::numeric, pnsum FROM crdt_test;

-- show internal structure of sum
SELECT id, bdr.crdt_pnsum_to_text(pnsum) FROM crdt_test;

-- reset sum
UPDATE crdt_test SET pnsum = !pnsum WHERE id = 1;

-- get current sum value after the reset
SELECT id, pnsum::numeric, pnsum FROM crdt_test;

delta counter (crdt_delta_counter)

Is defined a bigint domain, so works exactly like a bigint column.

Supports increments with both positive and negative values.

Is compatible with simple assignments like counter = value (common when the new value is computed somewhere in the application).

There's no simple way to reset the value reliably.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 151

CREATE TABLE crdt_test (
 id INT PRIMARY KEY,
 cnt bdr.crdt_delta_counter NOT NULL DEFAULT 0
);

INSERT INTO crdt_test VALUES (1, 0); -- initialized to 0
INSERT INTO crdt_test VALUES (2, 129824); -- initialized to 129824
INSERT INTO crdt_test VALUES (3, -4531); -- initialized to -4531

-- enable CLCD on the table
ALTER TABLE crdt_test REPLICA IDENTITY FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment counters
UPDATE crdt_test SET cnt = cnt + 1 WHERE id = 1;
UPDATE crdt_test SET cnt = cnt + 120 WHERE id = 2;
UPDATE crdt_test SET cnt = cnt + (-244) WHERE id = 3;

-- decrement counters
UPDATE crdt_test SET cnt = cnt - 73 WHERE id = 1;
UPDATE crdt_test SET cnt = cnt - 19283 WHERE id = 2;
UPDATE crdt_test SET cnt = cnt - (-12) WHERE id = 3;

-- get current counter value
SELECT id, cnt FROM crdt_test;

delta sum (crdt_delta_sum)

Is defined as a numeric domain so works exactly like a numeric column.

Supports increments with both positive and negative values.

Is compatible with simple assignments like sum = value (common when the new value is computed somewhere in the application).

There's no simple way to reset the value reliably.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 152

CREATE TABLE crdt_test (
 id INT PRIMARY KEY,
 dsum bdr.crdt_delta_sum NOT NULL DEFAULT 0
);

INSERT INTO crdt_test VALUES (1, 0); -- initialized to 0
INSERT INTO crdt_test VALUES (2, 129.824); -- initialized to 129824
INSERT INTO crdt_test VALUES (3, -4.531); -- initialized to -4531

-- enable CLCD on the table
ALTER TABLE crdt_test REPLICA IDENTITY FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment counters
UPDATE crdt_test SET dsum = dsum + 1.32 WHERE id = 1;
UPDATE crdt_test SET dsum = dsum + 12.01 WHERE id = 2;
UPDATE crdt_test SET dsum = dsum + (-2.4) WHERE id = 3;

-- decrement counters
UPDATE crdt_test SET dsum = dsum - 7.33 WHERE id = 1;
UPDATE crdt_test SET dsum = dsum - 19.83 WHERE id = 2;
UPDATE crdt_test SET dsum = dsum - (-1.2) WHERE id = 3;

-- get current counter value
SELECT id, cnt FROM crdt_test;

[1] https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 153

https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type

6.10 Transaction streaming

With logical replication, transactions are decoded concurrently on the publisher but aren't sent to subscribers until the transaction is committed. If the
changes exceed logical_decoding_work_mem (PostgreSQL 13 and later), they're spilled to disk. This means that, particularly with large
transactions, there's some delay before they reach subscribers and might entail additional I/O on the publisher.

Beginning with PostgreSQL 14, transactions can optionally be decoded and sent to subscribers before they're committed on the publisher. The subscribers
save the incoming changes to a staging file (or set of files) and apply them when the transaction commits (or discard them if the transaction aborts). This
makes it possible to apply transactions on subscribers as soon as the transaction commits.

BDR enhancements

PostgreSQL's built-in transaction streaming has the following limitations:

While you no longer need to spill changes to disk on the publisher, you must write changes to disk on each subscriber.
If the transaction aborts, the work (changes received by each subscriber and the associated storage I/O) is wasted.

However, starting with version 3.7, BDR supports parallel apply, enabling multiple writer processes on each subscriber. This capability is leveraged to
provide the following enhancements:

Decoded transactions can be streamed directly to a writer on the subscriber.
Decoded transactions don't need to be stored on disk on subscribers.
You don't need to wait for the transaction to commit before starting to apply the transaction on the subscriber.

Caveats

You must enable parallel apply.
Workloads consisting of many small and conflicting transactions can lead to frequent deadlocks between writers.

Note

Direct streaming to writer is still an experimental feature. Use it with caution. Specifically, it might not work well with conflict resolutions since
the commit timestamp of the streaming might not be available. (The transaction might not yet have committed on the origin.)

Configuration

Configure transaction streaming in two locations:

At node level, using the GUC bdr.default_streaming_mode
At group level, using the function bdr.alter_node_group_config()

Node configuration using bdr.default_streaming_mode

Permitted values are:

off
writer
file
auto

Default value is auto .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 154

Changing this setting requires a restart of the pglogical receiver process for each subscription for the setting to take effect. You can achieve this with a
server restart.

If bdr.default_streaming_mode is set any value other than off , the subscriber requests transaction streaming from the publisher. How this is
provided can also depend on the group configuration setting. See Node configuration using bdr.default_streaming_mode for details.

Group configuration using bdr.alter_node_group_config()

You can use the parameter streaming_mode in the function bdr.alter_node_group_config() to set the group transaction streaming configuration.

Permitted values are:

off
writer
file
auto
default

The default value is default .

The value of the current setting is contained in the column node_group_streaming_mode from the view bdr.node_group. The value returned is a
single char type, and the possible values are D (default), W (writer), F (file), A (auto), and O (off).

Configuration setting effects

Transaction streaming is controlled at the subscriber level by the GUC bdr.default_streaming_mode . Unless set to off (which disables
transaction streaming), the subscriber requests transaction streaming.

If the publisher can provide transaction streaming, it streams transactions whenever the transaction size exceeds the threshold set in
logical_decoding_work_mem . The publisher usually has no control over whether the transactions is streamed to a file or to a writer. Except for

some situations (such as COPY), it might hint for the subscriber to stream the transaction to a writer (if possible).

The subscriber can stream transactions received from the publisher to either a writer or a file. The decision is based on several factors:

If parallel apply is off (num_writers = 1), then it's streamed to a file. (writer 0 is always reserved for non-streamed transactions.)
If parallel apply is on but all writers are already busy handling streamed transactions, then the new transaction is streamed to a file. See bdr.writers
to check BDR writer status.

If streaming to a writer is possible (that is, a free writer is available), then the decision whether to stream the transaction to a writer or a file is based on the
combination of group and node settings as per the following table:

Group Node Streamed to

off (any) (none)

(any) off (none)

writer file file

file writer file

default writer writer

default file file

default auto writer

auto (any) writer

If the group configuration is set to auto , or the group configuration is default and the node configuration is auto , then the transaction is streamed

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 155

If the group configuration is set to auto , or the group configuration is default and the node configuration is auto , then the transaction is streamed
to a writer only if the publisher hinted to do this.

Currently the publisher hints for the subscriber to stream to the writer for the following transaction types. These are known to be conflict free and can be
safely handled by the writer.

COPY
CREATE INDEX CONCURRENTLY

Monitoring

You can monitor the use of transaction streaming using the bdr.stat_subscription function on the subscriber node.

nstream_writer — Number of transactions streamed to a writer.
nstream_file — Number of transactions streamed to file.
nstream_commit — Number of committed streamed transactions.
nstream_abort — Number of aborted streamed transactions.
nstream_start — Number of streamed transactions that were started.
nstream_stop — Number of streamed transactions that were fully received.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 156

6.11 Durability and performance options

Overview

Synchronous or Eager Replication synchronizes between at least two nodes of the cluster before committing a transaction. This synchronization provides
three properties of interest to applications that are related but can all be implemented individually:

Durability: Writing to multiple nodes increases crash resilience and allows you to recover the data after a crash and restart.
Visibility: With the commit confirmation to the client, the database guarantees immediate visibility of the committed transaction on some sets of
nodes.
No conflicts after commit: The client can rely on the transaction to eventually be applied on all nodes without further conflicts or get an abort
directly informing the client of an error.

BDR provides a Group Commit feature to guarantee durability and visibility by providing a variant of synchronous replication. This feature is similar to the
Postgres synchronous_commit feature for physical standbys but provides more flexibility for large-scale distributed systems.

In addition to Group Commit, BDR also offers two other modes that can't currently be combined with Group Commit:

Commit At Most Once (CAMO). This feature solves the problem with knowing whether your transaction has committed (and replicated) in case of
node or network failures COMMIT. Normally, it might be hard to know whether the COMMIT was processed in. With this feature, your application can
find out what happened, even if your new database connection is to a node different from your previous connection. For more information about this
feature, see Commit At Most Once.
Eager Replication. This is an optional feature to check for conflicts prior to the commit. Every transaction is applied and prepared on all nodes
simultaneously and commits only if no replication conflicts are detected. This feature reduces performance but provides strong consistency
guarantees. For more information about this feature, see Eager All-Node Replication.

Postgres provides Physical Streaming Replication (PSR), which is unidirectional but offers a synchronous variant. For backward compatibility, BDR still
supports configuring synchronous replication with synchronous_commit and synchronous_standby_names . See Legacy synchronous
replication, but consider using Group Commit instead.

WARNING

This only works when using a single database per node. When using multiple BDR enabled databases per node, which is not generally
recommended, the LSN based confirmations may originate from any one of the databases from a node specified in
synchronous_standby_names and thus not assure the data is really flushed to disk.

Terms and definitions

BDR nodes can take different roles. These are implicitly assigned per transaction and are unrelated even for concurrent transactions.

The origin is the node that receives the transaction from the client or application. It's the node processing the transaction first, initiating replication
to other BDR nodes, and responding back to the client with a confirmation or an error.

A partner node is a BDR node expected to confirm transactions either according to Group Commit or CAMO requirements.

A commit group is the group of all BDR nodes involved in the commit, that is, the origin and all of its partner nodes, which can be just a few or all peer
nodes.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 157

https://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION
https://www.postgresql.org/docs/current/warm-standby.html#SYNCHRONOUS-REPLICATION

Comparison

Most options for synchronous replication available to BDR allow for different levels of synchronization, offering different tradeoffs between performance
and protection against node or network outages.

The following table summarizes what a client can expect from a peer node replicated to after having received a COMMIT confirmation from the origin node
the transaction was issued to. The Mode column takes on different meaning depending on the variant. For PSR and legacy synchronous replication with
BDR, it refers to the synchronous_commit setting. For CAMO, it refers to the bdr.enable_camo setting. And for Group Commit, it refers to the
confirmation requirements of the commit scope configuration.

Variant Mode Received Visible Durable

async BDR off (default) no no no

PSR remote_write (2) yes no no (1)

PSR on (2) yes no yes

PSR remote_apply (2) yes yes yes

Group Commit 'ON received' nodes yes no no

Group Commit 'ON replicated' nodes yes no no

Group Commit 'ON durable' nodes yes no yes

Group Commit 'ON visible' nodes yes yes yes

CAMO remote_write (2) yes no no

CAMO remote_commit_async (2) yes yes no

CAMO remote_commit_flush (2) yes yes yes

Eager n/a yes yes yes

legacy (3) remote_write (2) yes no no

legacy (3) on (2) yes yes yes

legacy (3) remote_apply (2) yes yes yes

(1) Written to the OS, durable if the OS remains running and only Postgres crashes.

(2) Unless switched to local mode (if allowed) by setting synchronous_replication_availability to async' , otherwise the values for the
asynchronous BDR default apply.

(3) Consider using Group Commit instead.

Reception ensures the peer operating normally can eventually apply the transaction without requiring any further communication, even in the face of a full
or partial network outage. A crash of a peer node might still require retransmission of the transaction, as this confirmation doesn't involve persistent
storage. All modes considered synchronous provide this protection.

Visibility implies the transaction was applied remotely. All other clients see the results of the transaction on all nodes, providing this guarantee
immediately after the commit is confirmed by the origin node. Without visibility, other clients connected might not see the results of the transaction and
experience stale reads.

Durability relates to the peer node's storage and provides protection against loss of data after a crash and recovery of the peer node. This can either relate
to the reception of the data (as with physical streaming replication) or to visibility (as with Group Commit, CAMO, and Eager). The former eliminates the
need for retransmissions after a crash, while the latter ensures visibility is maintained across restarts.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 158

Internal timing of operations

For a better understanding of how the different modes work, it's helpful to realize PSR and BDR apply transactions differently.

With physical streaming replication, the order of operations is:

Origin flushes a commit record to WAL, making the transaction visible locally.
Peer node receives changes and issues a write.
Peer flushes the received changes to disk.
Peer applies changes, making the transaction visible locally.

With BDR, the order of operations is different:

Origin flushes a commit record to WAL, making the transaction visible locally.
Peer node receives changes into its apply queue in memory.
Peer applies changes, making the transaction visible locally.
Peer persists the transaction by flushing to disk.

For Group Commit, CAMO, and Eager, the origin node waits for a certain number of confirmations prior to making the transaction visible locally. The order
of operations is:

Origin flushes a prepare or precommit record to WAL.
Peer node receives changes into its apply queue in memory.
Peer applies changes, making the transaction visible locally.
Peer persists the transaction by flushing to disk.
Origin commits and makes the transaction visible locally.

The following table summarizes the differences.

Variant Order of apply vs
persist

Replication before or after
commit

PSR persist first after WAL flush of commit record

BDR apply first after WAL flush of commit record

Group Commit apply first before COMMIT on origin

CAMO apply first before COMMIT on origin

Eager apply first before COMMIT on origin

Configuration

The following table provides an overview of the configuration settings that are required to be set to a nondefault value (req) or optional (opt) but affecting a
specific variant.

setting (GUC) Group Commit CAMO Eager PSR (1)

synchronous_standby_names n/a n/a n/a req

synchronous_commit n/a n/a n/a opt

synchronous_replication_availability n/a opt n/a opt

bdr.enable_camo n/a req n/a n/a

bdr.commit_scope req n/a opt n/a

bdr.global_commit_timeout opt opt opt n/a

(1) values in this column apply also to synchronous_commit and synchronous_standby_names being used in combination with BDR.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 159

Planned shutdown and restarts

When using Group Commit with receive confirmations or CAMO in combination with remote_write , take care with planned shutdown or restart. By
default, the apply queue is consumed prior to shutting down. However, in the immediate shutdown mode, the queue is discarded at shutdown, leading
to the stopped node "forgetting" transactions in the queue. A concurrent failure of the origin node can lead to loss of data, as if both nodes failed.

To ensure the apply queue gets flushed to disk, use either smart or fast shutdown for maintenance tasks. This approach maintains the required
synchronization level and prevents loss of data.

Legacy synchronous replication using BDR

Note

Consider using Group Commit instead.

Usage

To enable synchronous replication using BDR, you need to add the application name of the relevant BDR peer nodes to
synchronous_standby_names . The use of FIRST x or ANY x offers a some flexibility if this doesn't conflict with the requirements of non-BDR

standby nodes.

Once you've added it, you can configure the level of synchronization per transaction using synchronous_commit , which defaults to on . This setting
means that adding to synchronous_standby_names already enables synchronous replication. Setting synchronous_commit to local or
off turns off synchronous replication.

Due to BDR applying the transaction before persisting it, the values on and remote_apply are equivalent (for logical replication).

Migration to Group Commit

The Group Commit feature of BDR is configured independent of synchronous_commit and synchronous_standby_names . Instead, the
bdr.commit_scope GUC allows you to select the scope per transaction. And instead of synchronous_standby_names configured on each node

individually, Group Commit uses globally synchronized Commit Scopes.

Note

While the grammar for synchronous_standby_names and Commit Scopes looks similar, the former doesn't account for the origin node,
but the latter does. Therefore, for example, synchronous_standby_names = 'ANY 1 (..)' is equivalent to a Commit Scope of ANY
2 (...) . This choice makes reasoning about majority easier and reflects that the origin node also contributes to the durability and visibility of
the transaction.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 160

6.12 Group Commit

The goal of Group Commit is to protect against data loss in case of single node failures or temporary outages. You achieve this by requiring more than one
BDR node to successfully receive and confirm a transaction at COMMIT time.

Warning

Group commit is currently offered as an experimental feature intended for preview and evaluation purposes. While it provides valuable
capabilities, it has known limitations and challenges that make it unsuitable for production environments. We recommend that customers avoid
using this feature in production scenarios until these limitations are addressed in future releases.

Requirements

During normal operation, Group Commit is completely transparent to the application. Upon failover, the reconciliation phase needs to be explicitly
triggered or consolidated by either the application or a proxy in between. HARP provides native support for Group Commit and triggers the reconciliation
phase, making this equally transparent to the client.

On the origin node, a transaction committed with Group Commit uses two-phase commit underneath. Therefore, configure
max_prepared_transactions high enough to handle all such transactions originating per node.

Configuration

To use Group Commit, first define a commit scope. This determines the BDR nodes involved in the commit of a transaction. Once a scope is established, you
can configure a transaction to use Group Commit as follows:

The commit scope must be set before the transaction has written any data.

For this example, you might previously have defined the commit scope as:

This assumes a node group named example_bdr_group exists and includes at least two BDR nodes as members, either directly or in subgroups. Any
transaction committed in the example_scope requires one extra confirmation from a BDR node in the group. Together with the origin node, this
accounts for "ANY 2" nodes out of the group, on which the transaction is guaranteed to be visible and durable after the commit.

BEGIN;
SET LOCAL bdr.commit_scope =
'example_scope';
...
COMMIT;

SELECT
bdr.add_commit_scope(
 commit_scope_name := 'example_scope',
 origin_node_group := 'example_bdr_group',
 rule := 'ANY 2
(example_bdr_group)'
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 161

Origin groups

Rules for commit scopes can depend on the node the transaction is committed on, that is, the node that acts as the origin for the transaction. To make this
transparent for the application, BDR allows a commit scope to define different rules depending on where the transaction originates from.

For example, consider a EDB Postgres Distributed cluster with nodes spread across two data centers: a left and a right one. Assume the top-level BDR node
group is called top_group . You can use the following commands to set up subgroups and create a commit scope requiring all nodes in the local data
center to confirm the transaction but only one node from the remote one.

Confirmation levels

BDR nodes can send confirmations for a transaction at different points in time, similar to Commit At Most Once. In increasing levels of protection, from the
perspective of the confirming node, these are:

received — A remote BDR node confirms the transaction immediately after receiving it, prior to starting the local application.
replicated — Confirm after applying changes of the transaction but before flushing them to disk.
durable — Confirm the transaction after all of its changes are flushed to disk.
visible (default) — Confirm the transaction after all of its changes are flushed to disk and it's visible to concurrent transactions.

In rules for commit scopes, you can append these confirmation levels to the node group definition in parenthesis with ON as follows:

ANY 2 (right_dc) ON replicated
ALL (left_dc) ON visible (default and may as well be omitted)
ALL (left_dc) ON received AND ANY 1 (right_dc) ON durable

-- create sub-
groups
SELECT bdr.create_node_group(
 node_group_name := 'left_dc',
 parent_group_name := 'top_group',
 join_node_group := false
);
SELECT bdr.create_node_group(
 node_group_name := 'right_dc',
 parent_group_name := 'top_group',
 join_node_group := false
);

-- create a commit scope with individual
rules
-- for each sub-
group
SELECT
bdr.add_commit_scope(
 commit_scope_name := 'example_scope',
 origin_node_group := 'left_dc',
 rule := 'ALL (left_dc) AND ANY 1
(right_dc)'
);
SELECT
bdr.add_commit_scope(
 commit_scope_name := 'example_scope',
 origin_node_group := 'right_dc',
 rule := 'ANY 1 (left_dc) AND ALL
(right_dc)'
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 162

Reference

Commit scope grammar

For reference, the grammar for commit scopes is composed as follows:

commit_scope:
 confirmation [AND ...]

confirmation:
 node_def (ON [received|replicated|durable|visible])

node_def:
 ANY num (node_group [, ...])
 | MAJORITY (node_group [, ...])
 | ALL (node_group [, ...])

Note

While the grammar for synchronous_standby_names and Commit Scopes looks very similar, it is important to note that the former does
not account for the origin node, but the latter does. Therefore, for example synchronous_standby_names = 'ANY 1 (..)' is
equivalent to a Commit Scope of ANY 2 (...) . This choice makes reasoning about majority easier and reflects that the origin node also
contributes to the durability and visibility of the transaction.

Adding a commit scope rule

The function bdr.add_commit_scope creates a rule for the given commit scope name and origin node group. If the rule is the same for all nodes in the
EDB Postgres Distributed cluster, invoking this function once for the top-level node group is enough to fully define the commit scope.

Alternatively, you can invoke it multiple times with the same commit_scope_name but different origin node groups and rules for commit scopes that
vary depending on the origin of the transaction.

Synopsis

Changing a commit scope rule

To change a specific rule for a single origin node group in a commit scope, you can use the function bdr.alter_commit_scope .

Synopsis

bdr.add_commit_scope(
 commit_scope_name NAME,
 origin_node_group NAME,
 rule TEXT)

bdr.alter_commit_scope(
 commit_scope_name NAME,
 origin_node_group NAME,
 rule TEXT)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 163

Removing a commit scope rule

You can use bdr.remove_commit_scope to drop a single rule in a commit scope. If you define multiple rules for the commit scope, you must invoke
this function once per rule to fully remove the entire commit scope.

Synopsis

Note

Removing a commit scope that is still used as default by a node group is not allowed

bdr.remove_commit_scope(
 commit_scope_name NAME,
 origin_node_group NAME)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 164

6.13 Eager Replication

To prevent conflicts after a commit, set the bdr.commit_scope parameter to global . The default setting of local disables Eager Replication, so
BDR applies changes and resolves potential conflicts post-commit, as described in the Conflicts.

In this mode, BDR uses two-phase commit (2PC) internally to detect and resolve conflicts prior to the local commit. It turns a normal COMMIT of the
application into an implicit two-phase commit, requiring all peer nodes to prepare the transaction before the origin node continues to commit it. If at least
one node is down or unreachable during the prepare phase, the commit times out after bdr.global_commit_timeout , leading to an abort of the
transaction. There's no restriction on the use of temporary tables as exists in explicit 2PC in PostgreSQL.

Once prepared, Eager All-Node Replication employs Raft to reach a commit decision. In case of failures, this allows a remaining majority of nodes to reach
a congruent commit or abort decision so they can finish the transaction. This unblocks the objects and resources locked by the transaction and allows the
cluster to proceed.

In case all nodes remain operational, the origin confirms the commit to the client only after all nodes have committed to ensure that the transaction is
immediately visible on all nodes after the commit.

Requirements

Eager All-Node Replication uses prepared transactions internally. Therefore all replica nodes need to have a max_prepared_transactions
configured high enough to handle all incoming transactions, possibly in addition to local two-phase commit and CAMO transactions. (See Configuration:
Max-prepared transactions). We recommend configuring it the same on all nodes and high enough to cover the maximum number of concurrent
transactions across the cluster for which CAMO or Eager All-Node Replication is used. Other than that, no special configuration is required, and every EDB
Postgres Distributed cluster can run Eager All-Node transactions.

Usage

To enable Eager All-Node Replication, the client needs to switch to global commit scope at session level or for individual transactions as shown here:

The client can continue to issue a COMMIT at the end of the transaction and let BDR manage the two phases:

Error handling

Given that BDR manages the transaction, the client needs to check only the result of the COMMIT . (This is advisable in any case, including single-node
Postgres.)

In case of an origin node failure, the remaining nodes eventually (after at least bdr.global_commit_timeout) decide to roll back the globally

BEGIN;

... other commands
possible...

SET LOCAL bdr.commit_scope =
'global';

... other commands
possible...

COMMIT;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 165

In case of an origin node failure, the remaining nodes eventually (after at least bdr.global_commit_timeout) decide to roll back the globally
prepared transaction. Raft prevents inconsistent commit versus rollback decisions. However, this requires a majority of connected nodes. Disconnected
nodes keep the transactions prepared to eventually commit them (or roll back) as needed to reconcile with the majority of nodes that might have decided
and made further progress.

Eager All-Node Replication with CAMO

Eager All-Node Replication goes beyond CAMO and implies it. There's no need to also enable bdr.enable_camo if bdr.commit_scope is set to
global . Nor does a CAMO pair need to be configured with bdr.add_camo_pair() .

You can use any other active BDR node in the role of a CAMO partner to query a transaction's status. However, you must indicate this non-CAMO usage to
the bdr.logical_transaction_status function with a third argument of require_camo_partner = false . Otherwise, it might complain
about a missing CAMO configuration (which isn't required for Eager transactions).

Other than this difference in configuration and invocation of that function, the client needs to adhere to the protocol described for CAMO. Reference client
implementations are provided to customers on request .

Limitations

Transactions using Eager Replication can't yet execute DDL, nor do they support explicit two-phase commit. These might be allowed in later releases. The
TRUNCATE command is allowed.

Replacing a crashed and unrecoverable BDR node with its physical standby isn't currently supported in combination with Eager All-Node transactions.

BDR currently offers a global commit scope only. Later releases will support Eager Replication with fewer nodes for increased availability.

You can't combine Eager All-Node Replication with synchronous_replication_availability = 'async' . Trying to configure both causes an
error.

Eager All-Node transactions are not currently supported in combination with the Decoding Worker feature nor with transaction streaming. Installations
using Eager must keep enable_wal_decoder and streaming_mode disabled for the BDR node group.

Synchronous replication uses a mechanism for transaction confirmation different from Eager. The two aren't compatible, and you must not use them
together. Therefore, whenever using Eager All-Node transactions, make sure none of the BDR nodes are configured in
synchronous_standby_names . Using synchronous replication to a non-BDR node acting as a physical standby is possible.

Effects of Eager Replication in general

Increased commit latency

Adding a synchronization step means additional communication between the nodes, resulting in additional latency at commit time. Eager All-Node
Replication adds roughly two network roundtrips (to the furthest peer node in the worst case). Logical standby nodes and nodes still in the process of
joining or catching up aren't included but eventually receive changes.

Before a peer node can confirm its local preparation of the transaction, it also needs to apply it locally. This further adds to the commit latency, depending
on the size of the transaction. This is independent of the synchronous_commit setting and applies whenever bdr.commit_scope is set to
global .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 166

Increased abort rate

Note

The performance of Eager Replication is currently known to be unexpectedly slow (around 10 TPS only). This is expected to be improved in the
next release.

With single-node Postgres, or even with BDR in its default asynchronous replication mode, errors at COMMIT time are rare. The additional synchronization
step adds a source of errors, so applications need to be prepared to properly handle such errors (usually by applying a retry loop).

The rate of aborts depends solely on the workload. Large transactions changing many rows are much more likely to conflict with other concurrent
transactions.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 167

6.14 Commit At Most Once

The objective of the Commit At Most Once (CAMO) feature is to prevent the application from committing more than once.

Without CAMO, when a client loses connection after a COMMIT is submitted, the application might not receive a reply from the server and is therefore
unsure whether the transaction committed.

The application can't easily decide between the two options of:

Retrying the transaction with the same data, since this can in some cases cause the data to be entered twice

Not retrying the transaction and risk that the data doesn't get processed at all

Either of those is a critical error with high-value data.

One way to avoid this situation is to make sure that the transaction includes at least one INSERT into a table with a unique index, but that depends on the
application design and requires application- specific error-handling logic, so it isn't effective in all cases.

The CAMO feature in BDR offers a more general solution and doesn't require an INSERT . When activated by bdr.enable_camo or
bdr.commit_scope , the application receives a message containing the transaction identifier, if already assigned. Otherwise, the first write statement

in a transaction sends that information to the client. If the application sends an explicit COMMIT, the protocol ensures that the application receives the
notification of the transaction identifier before the COMMIT is sent. If the server doesn't reply to the COMMIT, the application can handle this error by using
the transaction identifier to request the final status of the transaction from another BDR node. If the prior transaction status is known, then the application
can safely decide whether to retry the transaction.

CAMO works in one of two modes:

Pair mode
With Eager All Node Replication

In pair mode, CAMO works by creating a pair of partner nodes that are two BDR master nodes from the same top-level BDR group. In this operation mode,
each node in the pair knows the outcome of any recent transaction executed on the other peer and especially (for our need) knows the outcome of any
transaction disconnected during COMMIT. The node that receives the transactions from the application might be referred to as "origin" and the node that
confirms these transactions as "partner." However, there's no difference in the CAMO configuration for the nodes in the CAMO pair. The pair is symmetric.

When combined with Eager All-Node Replication, CAMO enables every peer (that is, a full BDR master node) to act as a CAMO partner. No designated
CAMO partner must be configured in this mode.

Warning

CAMO requires changes to the user's application to take advantage of the advanced error handling. Enabling a parameter isn't enough to gain
protection. Reference client implementations are provided to customers on request.

Requirements

To use CAMO, an application must issue an explicit COMMIT message as a separate request (not as part of a multi-statement request). CAMO can't provide
status for transactions issued from procedures or from single-statement transactions that use implicit commits.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 168

Configuration

Assume an existing EDB Postgres Distributed cluster consists of the nodes node1 and node2 . Both nodes are part of a BDR-enabled database called
bdrdemo , and both part of the same node group mygroup . You can configure the nodes to be CAMO partners for each other.

1. Create the EDB Postgres Distributed cluster where nodes node1 and node2 are part of the mygroup node group.

2. Run the function bdr.add_camo_pair() on one node:

3. Adjust the application to use the COMMIT error handling that CAMO suggests.

We don't recommend enabling CAMO at the server level, as this imposes higher latency for all transactions, even when not needed. Instead, selectively
enable it for individual transactions by turning on CAMO at the session or transaction level.

To enable CAMO at the session level:

To enable CAMO for individual transactions, after starting the transaction and before committing it:

Valid values for bdr.enable_camo that enable CAMO are:

off (default)
remote_write
remote_commit_async
remote_commit_flush or on

See the Comparison of synchronous replication modes for details about how each mode behaves. Setting bdr.enable_camo = off disables this
feature, which is the default.

CAMO with Eager All-Node Replication

To use CAMO with Eager All-Node Replication, no changes are required on either node. It is enough to enable the global commit scope after the start of the
transaction. You don't need to set bdr.enable_camo .

The application still needs to be adjusted to use COMMIT error handling as specified but is free to connect to any available BDR node to query the
transaction's status.

SELECT bdr.add_camo_pair('mygroup', 'node1', 'node2');

SET bdr.enable_camo = 'remote_commit_flush';

SET LOCAL bdr.enable_camo = 'remote_commit_flush';

BEGIN;
SET LOCAL bdr.commit_scope =
'global';
...
COMMIT;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 169

Failure scenarios

Different failure scenarios occur in different configurations.

Data persistence at receiver side

By default, a PGL writer operates in bdr.synchronous_commit = off mode when applying transactions from remote nodes. This holds true for
CAMO as well, meaning that transactions are confirmed to the origin node possibly before reaching the disk of the CAMO partner. In case of a crash or
hardware failure, it is possible for a confirmed transaction to be unrecoverable on the CAMO partner by itself. This isn't an issue as long as the CAMO origin
node remains operational, as it redistributes the transaction once the CAMO partner node recovers.

This in turn means CAMO can protect against a single-node failure, which is correct for local mode as well as or even in combination with remote write.

To cover an outage of both nodes of a CAMO pair, you can use bdr.synchronous_commit = local to enforce a flush prior to the pre-commit
confirmation. This doesn't work with either remote write or local mode and has a performance impact due to I/O requirements on the CAMO partner in the
latency sensitive commit path.

Local mode

When synchronous_replication_availability = 'async' , a node (i.e., master) detects whether its CAMO partner is ready. If not, it
temporarily switches to local mode. When in local mode, a node commits transactions locally until switching back to CAMO mode.

This doesn't allow COMMIT status to be retrieved, but it does let you choose availability over consistency. This mode can tolerate a single-node failure. In
case both nodes of a CAMO pair fail, they might choose incongruent commit decisions to maintain availability, leading to data inconsistencies.

For a CAMO partner to switch to ready, it needs to be connected, and the estimated catchup interval needs to drop below
bdr.global_commit_timeout . The current readiness status of a CAMO partner can be checked with bdr.is_camo_partner_ready , while
bdr.node_replication_rates provides the current estimate of the catchup time.

The switch from CAMO protected to local mode is only ever triggered by an actual CAMO transaction either because the commit exceeds the
bdr.global_commit_timeout or, in case the CAMO partner is already known, disconnected at the time of commit. This switch is independent of the

estimated catchup interval. If the CAMO pair is configured to require Raft to switch to local mode, this switch requires a majority of nodes to be operational
(see the require_raft flag for bdr.add_camo_pair). This can prevent a split brain situation due to an isolated node from switching to local mode. If
require_raft isn't set for the CAMO pair, the origin node switches to local mode immediately.

You can configure the detection on the sending node using PostgreSQL settings controlling keep-alives and timeouts on the TCP connection to the CAMO
partner. The wal_sender_timeout is the time that a node waits for a CAMO partner until switching to local mode. Additionally, the
bdr.global_commit_timeout setting puts a per-transaction limit on the maximum delay a COMMIT can incur due to the CAMO partner being

unreachable. It might be lower than the wal_sender_timeout , which influences synchronous standbys as well, and for which a good compromise
between responsiveness and stability must be found.

The switch from local mode to CAMO mode depends on the CAMO partner node, which initiates the connection. The CAMO partner tries to reconnect at
least every 30 seconds. After connectivity is reestablished, it might therefore take up to 30 seconds until the CAMO partner connects back to its origin
node. Any lag that accumulated on the CAMO partner further delays the switch back to CAMO protected mode.

Unlike during normal CAMO operation, in local mode there's no additional commit overhead. This can be problematic, as it allows the node to continuously
process more transactions than the CAMO pair can normally process. Even if the CAMO partner eventually reconnects and applies transactions, its lag only
ever increases in such a situation, preventing reestablishing the CAMO protection. To artificially throttle transactional throughput, BDR provides the
bdr.camo_local_mode_delay setting, which allows you to delay a COMMIT in local mode by an arbitrary amount of time. We recommend measuring

commit times in normal CAMO mode during expected workloads and configuring this delay accordingly. The default is 5 ms, which reflects a local network
and a relatively quick CAMO partner response.

Consider the choice of whether to allow local mode in view of the architecture and the availability requirements. The following examples provide some
detail.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 170

Example: Symmetric node pair

This example considers a setup with two BDR nodes that are the CAMO partner of each other. This is the only possible configuration starting with BDR4.

This configuration enables CAMO behavior on both nodes. It's therefore suitable for workload patterns where it is acceptable to write concurrently on more
than one node, such as in cases that aren't likely to generate conflicts.

With local mode

If local mode is allowed, there's no single point of failure. When one node fails:

The other node can determine the status of all transactions that were disconnected during COMMIT on the failed node.
New write transactions are allowed:

If the second node also fails, then the outcome of those transactions that were being committed at that time is unknown.

Without local mode

If local mode isn't allowed, then each node requires the other node for committing transactions, that is, each node is a single point of failure. When one
node fails:

The other node can determine the status of all transactions that were disconnected during COMMIT on the failed node.
New write transactions are prevented until the node recovers.

Application use

Overview and requirements

CAMO relies on a retry loop and specific error handling on the client side. There are three aspects to it:

The result of a transaction's COMMIT needs to be checked and, in case of a temporary error, the client must retry the transaction.
Prior to COMMIT, the client must retrieve a global identifier for the transaction, consisting of a node id and a transaction id (both 32-bit integers).
If the current server fails while attempting a COMMIT of a transaction, the application must connect to its CAMO partner, retrieve the status of that
transaction, and retry depending on the response.

The application must store the global transaction identifier only for the purpose of verifying the transaction status in case of disconnection during COMMIT.
In particular, the application doesn't need an additional persistence layer. If the application fails, it needs only the information in the database to restart.

Adding a CAMO pair

The function bdr.add_camo_pair() configures an existing pair of BDR nodes to work as a symmetric CAMO pair.

The require_raft option controls how and when to switch to local mode in case synchronous_replication_availability is set to
async , allowing such a switch in general.

Synopsis

bdr.add_camo_pair(node_group text, left_node text, right_node text,
 require_raft boolean)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 171

Note

The names left and right have no special meaning.

Note

Since BDR version 4.0, only symmetric CAMO configurations are supported, that is, both nodes of the pair act as a CAMO partner for each other.

Changing the configuration of a CAMO pair

The function bdr.alter_camo_pair() allows you to toggle the require_raft You can't currently change the nodes of a pairing. You must
instead use bdr.remove_camo_pair followed by bdr.add_camo_pair .

Synopsis

Removing a CAMO pair

The function bdr.remove_camo_pair() removes a CAMO pairing of two nodes and disallows future use of CAMO transactions by
bdr.enable_camo on those two nodes.

Synopsis

Note

The names left and right have no special meaning.

CAMO partner connection status

The function bdr.is_camo_partner_connected allows checking the connection status of a CAMO partner node configured in pair mode. There
currently is no equivalent for CAMO used with Eager Replication.

Synopsis

Return value

A Boolean value indicating whether the CAMO partner is currently connected to a WAL sender process on the local node and therefore can receive
transactional data and send back confirmations.

bdr.alter_camo_pair(node_group text, left_node text, right_node text,
 require_raft boolean)

bdr.remove_camo_pair(node_group text, left_node text, right_node text)

bdr.is_camo_partner_connected()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 172

CAMO partner readiness

The function bdr.is_camo_partner_ready allows checking the readiness status of a CAMO partner node configured in pair mode. Underneath, this
triggers the switch to and from local mode.

Synopsis

Return value

A Boolean value indicating whether the CAMO partner can reasonably be expected to confirm transactions originating from the local node in a timely
manner (before bdr.global_commit_timeout expires).

Note

This function queries the past or current state. A positive return value doesn't indicate whether the CAMO partner can confirm future
transactions.

Fetch the CAMO partner

This function shows the local node's CAMO partner (configured by pair mode).

Wait for consumption of the apply queue from the CAMO partner

The function bdr.wait_for_camo_partner_queue is a wrapper of bdr.wait_for_apply_queue defaulting to query the CAMO partner node.
It yields an error if the local node isn't part of a CAMO pair.

Synopsis

Transaction status between CAMO nodes

This function enables a wait for CAMO transactions to be fully resolved.

Transaction status query function

To check the status of a transaction that was being committed when the node failed, the application must use this function:

bdr.is_camo_partner_ready()

bdr.get_configured_camo_partner()

bdr.wait_for_camo_partner_queue()

bdr.camo_transactions_resolved()

bdr.logical_transaction_status(node_id OID, xid
OID,
 require_camo_partner boolean)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 173

With CAMO used in pair mode, use this function only on a node that's part of a CAMO pair. Along with Eager replication, you can use it on all nodes.

In both cases, you must call the function within 15 minutes after the commit was issued. The CAMO partner must regularly purge such meta-information
and therefore can't provide correct answers for older transactions.

Before querying the status of a transaction, this function waits for the receive queue to be consumed and fully applied. This prevents early negative
answers for transactions that were received but not yet applied.

Despite its name, it's not always a read-only operation. If the status is unknown, the CAMO partner decides whether to commit or abort the transaction,
storing that decision locally to ensure consistency going forward.

The client must not call this function before attempting to commit on the origin. Otherwise the transaction might be forced to roll back.

Synopsis

Parameters

node_id — The node id of the BDR node the transaction originates from, usually retrieved by the client before COMMIT from the PQ parameter
bdr.local_node_id .
xid — The transaction id on the origin node, usually retrieved by the client before COMMIT from the PQ parameter transaction_id (requires
enable_camo to be set to on , remote_write , remote_commit_async , or remote_commit_flush . See Commit At Most Once

settings)
require_camo_partner — Defaults to true and enables configuration checks. Set to false to disable these checks and query the status of a

transaction that was protected by Eager All-Node Replication.

Return value

The function returns one of these results:

'committed'::TEXT — The transaction was committed, is visible on both nodes of the CAMO pair, and will eventually be replicated to all other
BDR nodes. No need for the client to retry it.

'aborted'::TEXT — The transaction was aborted and will not be replicated to any other BDR node. The client needs to either retry it or escalate
the failure to commit the transaction.

'in progress'::TEXT — The transaction is still in progress on this local node and wasn't committed or aborted yet. The transaction might be in
the COMMIT phase, waiting for the CAMO partner to confirm or deny the commit. The recommended client reaction is to disconnect from the origin
node and reconnect to the CAMO partner to query that instead. With a load balancer or proxy in between, where the client lacks control over which
node gets queried, the client can only poll repeatedly until the status switches to either 'committed' or 'aborted' .

For Eager All-Node Replication, peer nodes yield this result for transactions that aren't yet committed or aborted. This means that even transactions
not yet replicated (or not even started on the origin node) might yield an in progress result on a peer BDR node in this case. However, the client
must not query the transaction status prior to attempting to commit on the origin.

'unknown'::TEXT — The transaction specified is unknown, either because it's in the future, not replicated to that specific node yet, or too far in
the past. The status of such a transaction is not yet or no longer known. This return value is a sign of improper use by the client.

The client must be prepared to retry the function call on error.

bdr.logical_transaction_status(node_id OID, xid
OID,
 require_camo_partner boolean DEFAULT true)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 174

Connection pools and proxies

The effect of connection pools and proxies needs to be considered when designing a CAMO cluster. A proxy may freely distribute transactions to all nodes in
the commit group (i.e. to both nodes of a CAMO pair or to all BDR nodes in case of Eager All Node Replication).

Care needs to be taken to ensure that the application fetches the proper node id: when using session pooling, the client remains connected to the same
node, so the node id remains constant for the lifetime of the client session. However, with finer-grained transaction pooling, the client needs to fetch the
node id for every transaction (as in the example given below).

A client that is not directly connected to the BDR nodes might not even notice a failover or switchover, but can always use the bdr.local_node_id
parameter to determine which node it is currently connected to. In the crucial situation of a disconnect during COMMIT, the proxy must properly forward
that disconnect as an error to the client applying the CAMO protocol.

For CAMO in remote_write mode, a proxy that potentially switches between the CAMO pairs must use the
bdr.wait_for_camo_partner_queue function to prevent stale reads.

HARP is the only proxy that supports all of the above requirements. PgBouncer and HAproxy can work with CAMO, but do not support CAMO's
remote_write mode.

Example

The following example demonstrates what a retry loop of a CAMO aware client application should look like in C-like pseudo-code. It expects two DSNs
origin_dsn and partner_dsn providing connection information. These usually are the same DSNs as used for the initial call to
bdr.create_node , and can be looked up in bdr.node_summary , column interface_connstr .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 175

PGconn *conn = PQconnectdb(origin_dsn);

loop {
 // start a transaction
 PQexec(conn, "BEGIN");

 // apply transactional changes
 PQexec(conn, "INSERT INTO ...");
 ...

 // store a globally unique transaction identifier
 node_id = PQparameterStatus(conn, "bdr.local_node_id");
 xid = PQparameterStatus(conn, "transaction_id");

 // attempt to commit
 PQexec(conn, "COMMIT");
 if (PQresultStatus(res) == PGRES_COMMAND_OK)
 return SUCCESS;
 else if (PQstatus(res) == CONNECTION_BAD)
 {
 // Re-connect to the partner
 conn = PQconnectdb(partner_dsn);
 // Check if successfully reconnected
 if (!connectionEstablished())
 panic();

 // Check the attempted transaction's status
 sql = "SELECT bdr.logical_transaction_status($node_id, $xid)";
 txn_status = PQexec(conn, sql);
 if (txn_status == "committed")
 return SUCCESS;
 else
 continue; // to retry the transaction on the partner
 }
 else
 {
 // The connection is intact, but the transaction failed for some
 // other reason. Differentiate between permanent and temporary
 // errors.
 if (isPermanentError())
 return FAILURE;
 else
 {
 // Determine an appropriate delay to back-off to account for
 // temporary failures due to congestion, so as to decrease
 // the overall load put on the servers.
 sleep(increasing_retry_delay);

 continue;
 }
 }
}

This example needs to be extended with proper logic for connecting, including retries and error handling. If using a load balancer (e.g. PgBouncer), re-
connecting can be implemented by simply using PQreset . Ensure that the load balancer only ever redirects a client to a CAMO partner and not any other
BDR node.

In practice, an upper limit of retries is recommended. Depending on the actions performed in the transaction, other temporary errors may be possible and
need to be handled by retrying the transaction depending on the error code, similarly to the best practices on deadlocks or on serialization failures while in
SERIALIZABLE isolation mode.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 176

Interaction with DDL and global locks

Transactions protected by CAMO can contain DDL operations. However, DDL uses global locks, which already provide some synchronization among nodes.
See DDL locking details for more information.

Combining CAMO with DDL imposes a higher latency and also increases the chance of global deadlocks. We therefore recommend using a relatively low
bdr.global_lock_timeout , which aborts the DDL and therefore resolves a deadlock in a reasonable amount of time.

Nontransactional DDL

The following DDL operations aren't allowed in a transaction block and therefore can't benefit from CAMO protection. For these, CAMO is automatically
disabled internally:

all concurrent index operations (CREATE , DROP , and REINDEX)
REINDEX DATABASE , REINDEX SCHEMA , and REINDEX SYSTEM
VACUUM
CLUSTER without any parameter
ALTER TABLE DETACH PARTITION CONCURRENTLY
ALTER TYPE [enum] ADD VALUE
ALTER SYSTEM
CREATE and DROP DATABASE
CREATE and DROP TABLESPACE
ALTER DATABASE [db] TABLESPACE

CAMO limitations

CAMO is designed to query the results of a recently failed COMMIT on the origin node, so in case of disconnection, code the application to
immediately request the transaction status from the CAMO partner. Have as little delay as possible after the failure before requesting the status.
Applications must not rely on CAMO decisions being stored for longer than 15 minutes.

If the application forgets the global identifier assigned, for example as a result of a restart, there's no easy way to recover it. Therefore, we
recommend that applications wait for outstanding transactions to end before shutting down.

For the client to apply proper checks, a transaction protected by CAMO can't be a single statement with implicit transaction control. You also can't
use CAMO with a transaction-controlling procedure or in a DO block that tries to start or end transactions.

CAMO resolves commit status but doesn't yet resolve pending notifications on commit. CAMO and Eager replication options don't allow the
NOTIFY SQL command or the pg_notify() function. They also don't allow LISTEN or UNLISTEN .

When replaying changes, CAMO transactions may detect conflicts just the same as other transactions. If timestamp conflict detection is used, the
CAMO transaction uses the timestamp of the prepare on the origin node, which is before the transaction becomes visible on the origin node itself.

CAMO is not currently compatible with transaction streaming. Please ensure to disable transaction streaming when planning to use CAMO. This can
be configured globally or in the BDR node group, see Transaction Streaming Configuration.

Performance implications

CAMO extends the Postgres replication protocol by adding a message roundtrip at commit. Applications have a higher commit latency than with
asynchronous replication, mostly determined by the roundtrip time between involved nodes. Increasing the number of concurrent sessions can help to
increase parallelism to obtain reasonable transaction throughput.

The CAMO partner confirming transactions must store transaction states. Compared to non-CAMO operation, this might require an additional seek for each
transaction applied from the origin.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 177

Client application testing

Proper use of CAMO on the client side isn't trivial. We strongly recommend testing the application behavior with the BDR cluster against failure scenarios
such as node crashes or network outages.

CAMO versus group commit

CAMO doesn't currently work with group commit.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 178

6.15 Lag control

Data throughput of database applications on a BDR origin node can exceed the rate at which committed data can be safely replicated to downstream peer
nodes. If this disparity persists beyond a period of time or chronically in high availability applications, then organizational objectives related to disaster
recovery or business continuity plans might not be satisfied.

The replication lag control (RLC) feature is designed to regulate this imbalance using a dynamic rate-limiting device so that data flow between BDR group
nodes complies with these organizational objectives. It does so by controlling the extent of replication lag between BDR nodes.

Some of these objectives include the following:

Recovery point objective (RPO) specifies the maximum tolerated amount of data that can be lost due to unplanned events, usually expressed as an
amount of time. In nonreplicated systems, RPO is used to set backup intervals to limit the risk of lost committed data due to failure. For replicated
systems, RPO determines the acceptable amount of committed data that hasn't been safely applied to one or more peer nodes.

Resource constraint objective (RCO) acknowledges that there are finite storage constraints. This storage includes database files, WAL, and
temporary or intermediate files needed for continued operation. For replicated systems, as lag increases the demands on these storage resources
also increase.

Group elasticity objective (GEO) ensures that any node isn't originating new data at a clip that can't be acceptably saved to its peer nodes. When that
is the case then the detection of that condition can be used as one metric in the decision to expand the number of database nodes. Similarly, when
that condition abates then it might influence the decision to contract the number of database nodes.

Lag control manages replication lag by controlling the rate at which client connections can commit READ WRITE transactions. Replication lag is measured
either as lag time or lag size, depending on the objectives to meet. Transaction commit rate is regulated using a configured BDR commit-delay time.

Requirements

To get started using lag control:

1. Determine the maximum acceptable commit delay time bdr.lag_control_max_commit_delay that can be tolerated for all database
applications.

2. Decide on the lag measure to use. Choose either lag size bdr.lag_control_max_lag_size or lag time
bdr.lag_control_max_lag_time .

3. Decide on the number of BDR nodes in the group bdr.lag_control_min_conforming_nodes that must satisfy the lag measure chosen in
step 2 as the minimal acceptable number of nodes.

Configuration

Lag control is configured on each BDR node in the group using postgresql.conf configuration parameters. To enable lag control, set
bdr.lag_control_max_commit_delay and either bdr.lag_control_max_lag_size or bdr.lag_control_max_lag_time to positive

non-zero values.

bdr.lag_control_max_commit_delay allows and encourages a specification of milliseconds with a fractional part, including a sub-millisecond
setting if appropriate.

By default, bdr.lag_control_min_conforming_nodes is set to 1. For a complete list, see Lag control

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 179

Overview

Lag control is a dynamic TPS rate-limiting mechanism that operates at the client connection level. It's designed to be as unobtrusive as possible while
satisfying configured lag-control constraints. This means that if enough BDR nodes can replicate changes fast enough to remain below configured lag
measure thresholds, then the BDR runtime commit delay stays fixed at 0 milliseconds.

If this isn't the case, minimally adjust the BDR runtime commit delay as high as needed, but no higher, until the number of conforming nodes returns to the
minimum threshold.

Even after the minimum node threshold is reached, lag control continues to attempt to drive the BDR runtime commit delay back to zero. The BDR commit
delay might rise and fall around an equilibrium level most of the time, but if data throughput or lag-apply rates improve then the commit delay decreases
over time.

The BDR commit delay is a post-commit delay. It occurs after the transaction has committed and after all Postgres resources locked or acquired by the
transaction are released. Therefore, the delay doesn't prevent concurrent active transactions from observing or modifying its values or acquiring its
resources. The same guarantee can't be made for external resources managed by Postgres extensions. Regardless of extension dependencies, the same
guarantee can be made if the BDR extension is listed before extension-based resource managers in postgresql.conf .

Strictly speaking, the BDR commit delay is not a per-transaction delay. It is the mean value of commit delays over a stream of transactions for a particular
client connection. This technique allows the commit delay and fine-grained adjustments of the value to escape the coarse granularity of OS schedulers,
clock interrupts, and variation due to system load. It also allows the BDR runtime commit delay to settle within microseconds of the lowest duration
possible to maintain a lag measure threshold.

Note

Don't conflate the BDR commit delay with the Postgres commit delay. They are unrelated and perform different functions. Don't substitute one for
the other.

Transaction application

The BDR commit delay is applied to all READ WRITE transactions that modify data for user applications. This implies that any transaction that doesn't
modify data, including declared READ WRITE transactions, is exempt from the commit delay.

Asynchronous transaction commit also executes a BDR commit delay. This might appear counterintuitive, but asynchronous commit, by virtue of its
performance, can be one of the greatest sources of replication lag.

Postgres and BDR auxillary processes don't delay at transaction commit. Most notably, BDR writers don't execute a commit delay when applying remote
transactions on the local node. This is by design as BDR writers contribute nothing to outgoing replication lag and can reduce incoming replication lag the
most by not having their transaction commits throttled by a delay.

Limitations

The maximum commit delay bdr.lag_control_max_commit_delay is a ceiling value representing a hard limit. This means that a commit delay
never exceeds the configured value. Conversely, the maximum lag measures bdr.lag_control_max_lag_size and
bdr.lag_control_max_lag_time are soft limits that can be exceeded. When the maximum commit delay is reached, there's no additional back

pressure on the lag measures to prevent their continued increase.

There's no way to exempt origin transactions that don't modify BDR replication sets from the commit delay. For these transactions, it can be useful to SET
LOCAL the maximum transaction delay to 0.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 180

Caveats

Application TPS is one of many factors that can affect replication lag. Other factors include the average size of transactions for which BDR commit delay
can be less effective. In particular, bulk load operations can cause replication lag to rise, which can trigger a concomitant rise in the BDR runtime commit
delay beyond the level reasonably expected by normal applications, although still under the maximum allowed delay.

Similarly, an application with a very high OLTP requirement and modest data changes can be unduly restrained by the acceptable BDR commit delay
setting.

In these cases, it can be useful to use the SET [SESSION|LOCAL] command to custom configure lag control settings for those applications or modify
those applications. For example, bulk load operations are sometimes split into multiple, smaller transactions to limit transaction snapshot duration and
WAL retention size or establish a restart point if the bulk load fails. In deference to lag control, those transaction commits can also schedule very long BDR
commit delays to allow digestion of the lag contributed by the prior partial bulk load.

Meeting organizational objectives

In the example objectives list earlier:

RPO can be met by setting an appropriate maximum lag time.
RCO can be met by setting an appropriate maximum lag size.
GEO can be met by monitoring the BDR runtime commit delay and the BDR runtime lag measures,

As mentioned, when the maximum BDR runtime commit delay is pegged at the BDR configured commit-delay limit and the lag measures consistently
exceed their BDR-configured maximum levels, this scenario can be a marker for BDR group expansion.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 181

6.16 AutoPartition

AutoPartition allows tables to grow easily to large sizes by automatic partitioning management. This capability uses features of BDR such as low-conflict
locking of creating and dropping partitions.

You can create new partitions regularly and then drop them when the data retention period expires.

BDR management is primarily accomplished by functions that can be called by SQL. All functions in BDR are exposed in the bdr schema. Unless you put it
into your search_path, you need to schema-qualify the name of each function.

Auto creation of partitions

bdr.autopartition() creates or alters the definition of automatic range partitioning for a table. If no definition exists, it's created. Otherwise, later
executions will alter the definition.

bdr.autopartition() doesn't lock the actual table. It changes the definition of when and how new partition maintenance actions take place.

PGD Autopartition in PGD 4.3.5 and later leverages underlying Postgres features that allow a partition to be attached or detached/dropped without locking
the rest of the table. Versions of PGD prior to 4.3.5 don't support this feature and will lock the tables.

An ERROR is raised if the table isn't RANGE partitioned or a multi-column partition key is used.

A new partition is added for every partition_increment range of values, with lower and upper bound partition_increment apart. For tables
with a partition key of type timestamp or date , the partition_increment must be a valid constant of type interval . For example, specifying
1 Day causes a new partition to be added each day, with partition bounds that are one day apart.

If the partition column is connected to a snowflakeid , timeshard , or ksuuid sequence, you must specify the partition_increment as type
interval . Otherwise, if the partition key is integer or numeric, then the partition_increment must be a valid constant of the same datatype. For

example, specifying 1000000 causes new partitions to be added every 1 million values.

If the table has no existing partition, then the specified partition_initial_lowerbound is used as the lower bound for the first partition. If you
don't specify partition_initial_lowerbound , then the system tries to derive its value from the partition column type and the specified
partition_increment . For example, if partition_increment is specified as 1 Day , then partition_initial_lowerbound is set to

CURRENT DATE. If partition_increment is specified as 1 Hour , then partition_initial_lowerbound is set to the current hour of the
current date. The bounds for the subsequent partitions are set using the partition_increment value.

The system always tries to have a certain minimum number of advance partitions. To decide whether to create new partitions, it uses the specified
partition_autocreate_expression . This can be an expression that can be evaluated by SQL, which is evaluated every time a check is performed.

For example, for a partitioned table on column type date , if partition_autocreate_expression is specified as
DATE_TRUNC('day',CURRENT_DATE) , partition_increment is specified as 1 Day and minimum_advance_partitions is specified as

2, then new partitions are created until the upper bound of the last partition is less than DATE_TRUNC('day', CURRENT_DATE) + '2
Days'::interval .

The expression is evaluated each time the system checks for new partitions.

For a partitioned table on column type integer , you can specify the partition_autocreate_expression as SELECT max(partcol) FROM
schema.partitioned_table . The system then regularly checks if the maximum value of the partitioned column is within the distance of
minimum_advance_partitions * partition_increment of the last partition's upper bound. Create an index on the partcol so that the

query runs efficiently. If the partition_autocreate_expression isn't specified for a partition table on column type integer , smallint , or
bigint , then the system sets it to max(partcol) .

If the data_retention_period is set, partitions are dropped after this period. Partitions are dropped at the same time as new partitions are added, to
minimize locking. If this value isn't set, you must drop the partitions manually.

The data_retention_period parameter is supported only for timestamp (and related) based partitions. The period is calculated by considering the

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 182

The data_retention_period parameter is supported only for timestamp (and related) based partitions. The period is calculated by considering the
upper bound of the partition. The partition is either migrated to the secondary tablespace or dropped if either of the given period expires, relative to the
upper bound.

By default, AutoPartition manages partitions globally. In other words, when a partition is created on one node, the same partition is also created on all
other nodes in the cluster. So all partitions are consistent and guaranteed to be available. For this, AutoPartition makes use of Raft. You can change this
behavior by passing managed_locally as true . In that case, all partitions are managed locally on each node. This is useful for the case when the
partitioned table isn't a replicated table and hence it might not be necessary or even desirable to have all partitions on all nodes. For example, the built-in
bdr.conflict_history table isn't a replicated table and is managed by AutoPartition locally. Each node creates partitions for this table locally and

drops them once they are old enough.

You can't later change tables marked as managed_locally to be managed globally and vice versa.

Activities are performed only when the entry is marked enabled = on .

You aren't expected to manually create or drop partitions for tables managed by AutoPartition. Doing so can make the AutoPartition metadata inconsistent
and might cause it to fail.

Configure AutoPartition

The bdr.autopartition function configures automatic partitioning of a table.

Synopsis

Parameters

relation — Name or Oid of a table.
partition_increment — Interval or increment to next partition creation.
partition_initial_lowerbound — If the table has no partition, then the first partition with this lower bound and
partition_increment apart upper bound is created.
partition_autocreate_expression — Used to detect if it's time to create new partitions.
minimum_advance_partitions — The system attempts to always have at least minimum_advance_partitions partitions.
maximum_advance_partitions — Number of partitions to be created in a single go once the number of advance partitions falls below
minimum_advance_partitions .
data_retention_period — Interval until older partitions are dropped, if defined. This value must be greater than
migrate_after_period .
managed_locally — If true, then the partitions are managed locally.
enabled — Allows activity to be disabled or paused and later resumed or reenabled.

bdr.autopartition(relation regclass,
 partition_increment
text,
 partition_initial_lowerbound text DEFAULT NULL,
 partition_autocreate_expression text DEFAULT
NULL,
 minimum_advance_partitions integer DEFAULT
2,
 maximum_advance_partitions integer DEFAULT
5,
 data_retention_period interval DEFAULT
NULL,
 managed_locally boolean DEFAULT false,
 enabled boolean DEFAULT on);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 183

Examples

Daily partitions, keep data for one month:

Create five advance partitions when there are only two more partitions remaining (each partition can hold 1 billion orders):

Create one AutoPartition

Use bdr.autopartition_create_partition() to create a standalone AutoPartition on the parent table.

Synopsis

Parameters

relname — Name or Oid of the parent table to attach to.
partname — Name of the new AutoPartition.
lowerb — The lower bound of the partition.
upperb — The upper bound of the partition.
nodes — List of nodes that the new partition resides on.

Stopping automatic creation of partitions

Use bdr.drop_autopartition() to drop the auto-partitioning rule for the given relation. All pending work items for the relation are deleted and no
new work items are created.

CREATE TABLE measurement
(
logdate date not null,
peaktemp int,
unitsales int
) PARTITION BY RANGE (logdate);

bdr.autopartition('measurement', '1 day', data_retention_period := '30
days');

bdr.autopartition('Orders', '1000000000',
 partition_initial_lowerbound := '0',
 minimum_advance_partitions :=
2,
 maximum_advance_partitions :=
5
);

bdr.autopartition_create_partition(relname regclass,
 partname
name,
 lowerb
text,
 upperb
text,
 nodes oid[]);

bdr.drop_autopartition(relation regclass);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 184

Parameters

relation — Name or Oid of a table.

Drop one AutoPartition

Use bdr.autopartition_drop_partition once a BDR AutoPartition table has been made, as this function can specify single partitions to drop. If
the partitioned table was successfully dropped, the function returns true .

Synopsis

Parameters

relname — The name of the partitioned table to drop.

Notes

This places a DDL lock on the parent table, before using DROP TABLE on the chosen partition table.

Wait for partition creation

Use bdr.autopartition_wait_for_partitions() to wait for the creation of partitions on the local node. The function takes the partitioned
table name and a partition key column value and waits until the partition that holds that value is created.

The function only waits for the partitions to be created locally. It doesn't guarantee that the partitions also exists on the remote nodes.

To wait for the partition to be created on all BDR nodes, use the bdr.autopartition_wait_for_partitions_on_all_nodes() function. This
function internally checks local as well as all remote nodes and waits until the partition is created everywhere.

Synopsis

Parameters

relation — Name or Oid of a table.
bound — Partition key column value.

Synopsis

bdr.autopartition_drop_partition(relname regclass)

bdr.autopartition_wait_for_partitions(relation regclass, text bound);

bdr.autopartition_wait_for_partitions_on_all_nodes(relation regclass, text bound);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 185

Parameters

relation — Name or Oid of a table.
bound — Partition key column value.

Find partition

Use the bdr.autopartition_find_partition() function to find the partition for the given partition key value. If partition to hold that value
doesn't exist, then the function returns NULL. Otherwise Oid of the partition is returned.

Synopsis

Parameters

relname — Name of the partitioned table.
searchkey — Partition key value to search.

Enable or disable AutoPartitioning

Use bdr.autopartition_enable() to enable AutoPartitioning on the given table. If AutoPartitioning is already enabled, then no action occurs.
Similarly, use bdr.autopartition_disable() to disable AutoPartitioning on the given table.

Synopsis

Parameters

relname — Name of the relation to enable AutoPartitioning.

Synopsis

Parameters

relname — Name of the relation to disable AutoPartitioning.

Synopsis

Return the id of the last workitem successfully completed on all nodes in the cluster.

bdr.autopartition_find_partition(relname regclass, searchkey
text);

bdr.autopartition_enable(relname regclass);

bdr.autopartition_disable(relname regclass);

bdr.autopartition_get_last_completed_workitem();

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 186

Check AutoPartition workers

From using the bdr.autopartition_work_queue_check_status function, you can see the status of the background workers that are doing their
job to maintain AutoPartitions.

The workers can be seen through these views: autopartition_work_queue_local_status
autopartition_work_queue_global_status

Synopsis

Parameters

workid — The key of the AutoPartition worker.
local — Check the local status only.

Notes

AutoPartition workers are always running in the background, even before the bdr.autopartition function is called for the first time. If an invalid
worker ID is used, the function returns unknown . In-progress is the typical status.

bdr.autopartition_work_queue_check_status(workid
bigint
 local boolean DEFAULT false);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 187

6.17 Timestamp-based snapshots

The timestamp-based snapshots allow reading data in a consistent manner by using a user-specified timestamp rather than the usual MVCC snapshot. You
can use this to access data on different BDR nodes at a common point in time. For example, you can use this as a way to compare data on multiple nodes for
data-quality checking.

This feature doesn't currently work with write transactions.

Enable the use of timestamp-based snapshots using the snapshot_timestamp parameter. This parameter accepts either a timestamp value or a
special value, 'current' , which represents the current timestamp (now). If snapshot_timestamp is set, queries use that timestamp to determine
visibility of rows rather than the usual MVCC semantics.

For example, the following query returns the state of the customers table at 2018-12-08 02:28:30 GMT:

Without BDR, this works only with future timestamps or the special 'current' value, so you can't use it for historical queries.

BDR works with and improves on that feature in a multi-node environment. First, BDR makes sure that all connections to other nodes replicate any
outstanding data that was added to the database before the specified timestamp. This ensures that the timestamp-based snapshot is consistent across the
whole multi-master group. Second, BDR adds a parameter called bdr.timestamp_snapshot_keep . This specifies a window of time when you can
execute queries against the recent history on that node.

You can specify any interval, but be aware that VACUUM (including autovacuum) doesn't clean dead rows that are newer than up to twice the specified
interval. This also means that transaction ids aren't freed for the same amount of time. As a result, using this can leave more bloat in user tables. Initially,
we recommend 10 seconds as a typical setting, although you can change that as needed.

Once the query is accepted for execution, the query might run for longer than bdr.timestamp_snapshot_keep without problem, just as normal.

Also, information about how far the snapshots were kept doesn't survive server restart. The oldest usable timestamp for the timestamp-based snapshot is
the time of last restart of the PostgreSQL instance.

You can combine the use of bdr.timestamp_snapshot_keep with the postgres_fdw extension to get a consistent read across multiple nodes in
a BDR group. You can use this to run parallel queries across nodes, when used with foreign tables.

There are no limits on the number of nodes in a multi-node query when using this feature.

Use of timestamp-based snapshots doesn't increase inter-node traffic or bandwidth. Only the timestamp value is passed in addition to query data.

SET snapshot_timestamp = '2018-12-08 02:28:30
GMT';
SELECT count(*) FROM customers;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 188

6.18 Replication sets

A replication set is a group of tables that a BDR node can subscribe to. You can use replication sets to create more complex replication topologies than
regular symmetric multi-master where each node is an exact copy of the other nodes.

Every BDR group creates a replication set with the same name as the group. This replication set is the default replication set, which is used for all user
tables and DDL replication. All nodes are subscribed to it. In other words, by default all user tables are replicated between all nodes.

Using replication sets

You can create replication sets using create_replication_set() , specifying whether to include insert, update, delete, or truncate actions. One
option lets you add existing tables to the set, and a second option defines whether to add tables when they are created.

You can also manually define the tables to add or remove from a replication set.

Tables included in the replication set are maintained when the node joins the cluster and afterwards.

Once the node is joined, you can still remove tables from the replication set, but you must add new tables using a resync operation.

By default, a newly defined replication set doesn't replicate DDL or BDR administration function calls. Use replication_set_add_ddl_filter to
define the commands to replicate.

BDR creates replication set definitions on all nodes. Each node can then be defined to publish or subscribe to each replication set using
alter_node_replication_sets .

You can use functions to alter these definitions later or to drop the replication set.

Note

Don't use the default replication set for selective replication. Don't drop or modify the default replication set on any of the BDR nodes in the
cluster as it is also used by default for DDL replication and administration function calls.

Behavior of partitioned tables

BDR supports partitioned tables transparently, meaning that you can add a partitioned table to a replication set. Changes that involve any of the partitions
are replicated downstream.

Note

When partitions are replicated through a partitioned table, the statements executed directly on a partition are replicated as they were executed
on the parent table. The exception is the TRUNCATE command, which always replicates with the list of affected tables or partitions.

You can add individual partitions to the replication set, in which case they are replicated like regular tables (to the table of the same name as the partition
on the downstream). This has some performance advantages if the partitioning definition is the same on both provider and subscriber, as the partitioning
logic doesn't have to be executed.

Note

If a root partitioned table is part of any replication set, memberships of individual partitions are ignored. only the membership of that root table is
taken into account.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 189

Behavior with foreign keys

A foreign key constraint ensures that each row in the referencing table matches a row in the referenced table. Therefore, if the referencing table is a
member of a replication set, the referenced table must also be a member of the same replication set.

The current version of BDR doesn't automatically check for or enforce this condition. When adding a table to a replication set, the database administrator
must make sure that all the tables referenced by foreign keys are also added.

You can use the following query to list all the foreign keys and replication sets that don't satisfy this requirement. The referencing table is a member of the
replication set, while the referenced table isn't:

The output of this query looks like the following:

This means that table t2 is a member of replication set s2 , but the table referenced by the foreign key t2_x_fkey isn't.

The TRUNCATE CASCADE command takes into account the replication set membership before replicating the command. For example:

This becomes a TRUNCATE without cascade on all the tables that are part of the replication set only:

SELECT
t1.relname,

t1.nspname,

fk.conname,

t1.set_name
 FROM bdr.tables AS t1
 JOIN pg_catalog.pg_constraint AS
fk
 ON fk.conrelid =
t1.relid
 AND fk.contype = 'f'
 WHERE NOT EXISTS
(
 SELECT *
 FROM bdr.tables AS t2
 WHERE t2.relid =
fk.confrelid
 AND t2.set_name =
t1.set_name
);

 relname | nspname | conname |
set_name
---------+---------+-----------+----------
 t2 | public | t2_x_fkey |
s2
(1 row)

TRUNCATE table1
CASCADE;

TRUNCATE table1, referencing_table1, referencing_table2
...

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 190

Replication set management

Management of replication sets.

With the exception of bdr.alter_node_replication_sets , the following functions are considered to be DDL . DDL replication and global locking
apply to them, if that's currently active. See DDL replication.

bdr.create_replication_set

This function creates a replication set.

Replication of this command is affected by DDL replication configuration including DDL filtering settings.

Synopsis

Parameters

set_name — Name of the new replication set. Must be unique across the BDR group.
replicate_insert — Indicates whether to replicate inserts into tables in this replication set.
replicate_update — Indicates whether to replicate updates of tables in this replication set.
replicate_delete — Indicates whether to replicate deletes from tables in this replication set.
replicate_truncate — Indicates whether to replicate truncates of tables in this replication set.
autoadd_tables — Indicates whether to replicate newly created (future) tables to this replication set
autoadd_existing — Indicates whether to add all existing user tables to this replication set. This parameter has an effect only if
autoadd_tables is set to true .

Notes

By default, new replication sets don't replicate DDL or BDR administration function calls. See ddl filters for how to set up DDL replication for replication
sets. A preexisting DDL filter is set up for the default group replication set that replicates all DDL and admin function calls. It's created when the group is
created but can be dropped in case you don't want the BDR group default replication set to replicate DDL or the BDR administration function calls.

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

bdr.create_replication_set(set_name name,
 replicate_insert boolean DEFAULT
true,
 replicate_update boolean DEFAULT
true,
 replicate_delete boolean DEFAULT
true,
 replicate_truncate boolean DEFAULT true,
 autoadd_tables boolean DEFAULT
false,
 autoadd_existing boolean DEFAULT
true)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 191

bdr.alter_replication_set

This function modifies the options of an existing replication set.

Replication of this command is affected by DDL replication configuration, including DDL filtering settings.

Synopsis

Parameters

set_name — Name of an existing replication set.
replicate_insert — Indicates whether to replicate inserts into tables in this replication set.
replicate_update — Indicates whether to replicate updates of tables in this replication set.
replicate_delete — Indicates whether to replicate deletes from tables in this replication set.
replicate_truncate — Indicates whether to replicate truncates of tables in this replication set.
autoadd_tables — Indicates whether to add newly created (future) tables to this replication set.

Any of the options that are set to NULL (the default) remain the same as before.

Notes

This function uses the same replication mechanism as DDL statements. This means the replication is affected by the ddl filters configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

bdr.drop_replication_set

This function removes an existing replication set.

Replication of this command is affected by DDL replication configuration, including DDL filtering settings.

Synopsis

bdr.alter_replication_set(set_name name,
 replicate_insert boolean DEFAULT
NULL,
 replicate_update boolean DEFAULT
NULL,
 replicate_delete boolean DEFAULT
NULL,
 replicate_truncate boolean DEFAULT NULL,
 autoadd_tables boolean DEFAULT
NULL)

bdr.drop_replication_set(set_name name)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 192

Parameters

set_name — Name of an existing replication set.

Notes

This function uses the same replication mechanism as DDL statements. This means the replication is affected by the ddl filters configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Warning

Don't drop a replication set that's being used by at least another node, because doing so stops replication on that node. If that happens,
unsubscribe the affected node from that replication set. For the same reason, don't drop a replication set with a join operation in progress when
the node being joined is a member of that replication set. Replication set membership is checked only at the beginning of the join. This happens
because the information on replication set usage is local to each node, so that you can configure it on a node before it joins the group.

You can manage replication set subscription for a node using alter_node_replication_sets .

bdr.alter_node_replication_sets

This function changes the replication sets a node publishes and is subscribed to.

Synopsis

Parameters

node_name — The node to modify. Currently has to be local node.
set_names — Array of replication sets to replicate to the specified node. An empty array results in the use of the group default replication set.

Notes

This function is executed only on the local node and isn't replicated in any manner.

The replication sets listed aren't checked for existence, since this function is designed to execute before the node joins. Be careful to specify replication set
names correctly to avoid errors.

This allows for calling the function not only on the node that's part of the BDR group but also on a node that hasn't joined any group yet. This approach
limits the data synchronized during the join. However, the schema is always fully synchronized without regard to the replication sets setting. All tables are
copied across, not just the ones specified in the replication set. You can drop unwanted tables by referring to the bdr.tables catalog table. These might
be removed automatically in later versions of BDR. This is currently true even if the ddl filters configuration otherwise prevent replication of DDL.

The replication sets that the node subscribes to after this call are published by the other nodes for actually replicating the changes from those nodes to the
node where this function is executed.

bdr.alter_node_replication_sets(node_name name,
 set_names text[])

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 193

Replication set membership

You can add tables to or remove them from one or more replication sets. This affects replication only of changes (DML) in those tables. Schema changes
(DDL) are handled by DDL replication set filters (see DDL replication filtering).

The replication uses the table membership in replication sets with the node replication sets configuration to determine the actions to replicate to which
node. The decision is done using the union of all the memberships and replication set options. Suppose that a table is a member of replication set A that
replicates only INSERT actions and replication set B that replicates only UPDATE actions. Both INSERT and UPDATE act8ions are replicated if the target
node is also subscribed to both replication set A and B.

bdr.replication_set_add_table

This function adds a table to a replication set.

This adds a table to a replication set and starts replicating changes from this moment (or rather transaction commit). Any existing data the table might have
on a node isn't synchronized.

Replication of this command is affected by DDL replication configuration, including DDL filtering settings.

Synopsis

Parameters

relation — Name or Oid of a table.
set_name — Name of the replication set. If NULL (the default), then the BDR group default replication set is used.
columns — Reserved for future use (currently does nothing and must be NULL).
row_filter — SQL expression to be used for filtering the replicated rows. If this expression isn't defined (that is, set to NULL, the default) then

all rows are sent.

The row_filter specifies an expression producing a Boolean result, with NULLs. Expressions evaluating to True or Unknown replicate the row. A False
value doesn't replicate the row. Expressions can't contain subqueries or refer to variables other than columns of the current row being replicated. You can't
reference system columns.

row_filter executes on the origin node, not on the target node. This puts an additional CPU overhead on replication for this specific table but
completely avoids sending data for filtered rows. Hence network bandwidth is reduced and overhead on the target node is applied.

row_filter never removes TRUNCATE commands for a specific table. You can filter away TRUNCATE commands at the replication set level.

You can replicate just some columns of a table. See Replicating between nodes with differences.

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration.

The function takes a DML global lock on the relation that's being added to the replication set if the row_filter isn't NULL. Otherwise it takes just a
DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

bdr.replication_set_add_table(relation regclass,
 set_name name DEFAULT
NULL,
 columns text[] DEFAULT
NULL,
 row_filter text DEFAULT NULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 194

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

bdr.replication_set_remove_table

This function removes a table from the replication set.

Replication of this command is affected by DDL replication configuration, including DDL filtering settings.

Synopsis

Parameters

relation — Name or Oid of a table.
set_name — Name of the replication set. If NULL (the default), then the BDR group default replication set is used.

Notes

This function uses the same replication mechanism as DDL statements. This means the replication is affected by the ddl filters configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Listing replication sets

You can list existing replication sets with the following query:

You can use this query to list all the tables in a given replication set:

In Behavior with foreign keys, we show a query that lists all the foreign keys whose referenced table isn't included in the same replication set as the
referencing table.

Use the following SQL to show those replication sets that the current node publishes and subscribes from:

bdr.replication_set_remove_table(relation regclass,
 set_name name DEFAULT
NULL)

SELECT
set_name
FROM
bdr.replication_sets;

SELECT nspname,
relname
FROM bdr.tables
WHERE set_name =
'myrepset';

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 195

This code produces output like this:

To execute the same query against all nodes in the cluster, you can use the following query. This approach gets the replication sets associated with all
nodes at the same time.

This shows, for example:

 SELECT
node_id,
 node_name,
 pub_repsets,

sub_repsets
 FROM bdr.local_node_summary;

 node_id | node_name | pub_repsets |
sub_repsets
------------+-----------+--
 1834550102 | s01db01 | {bdrglobal,bdrs01} |
{bdrglobal,bdrs01}
(1 row)

WITH node_repsets AS
(
 SELECT
jsonb_array_elements(
 bdr.run_on_all_nodes($$
 SELECT

node_id,
 node_name,
 pub_repsets,

sub_repsets
 FROM bdr.local_node_summary;
 $$)::jsonb
) AS
j
)
SELECT j->'response'->'command_tuples'->0->>'node_id' AS
node_id,
 j->'response'->'command_tuples'->0->>'node_name' AS
node_name,
 j->'response'->'command_tuples'->0->>'pub_repsets' AS
pub_repsets,
 j->'response'->'command_tuples'->0->>'sub_repsets' AS
sub_repsets
FROM node_repsets;

 node_id | node_name | pub_repsets |
sub_repsets
------------+-----------+--
 933864801 | s02db01 | {bdrglobal,bdrs02} |
{bdrglobal,bdrs02}
 1834550102 | s01db01 | {bdrglobal,bdrs01} |
{bdrglobal,bdrs01}
 3898940082 | s01db02 | {bdrglobal,bdrs01} |
{bdrglobal,bdrs01}
 1102086297 | s02db02 | {bdrglobal,bdrs02} |
{bdrglobal,bdrs02}
(4 rows)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 196

DDL replication filtering

By default, the replication of all supported DDL happens by way of the default BDR group replication set. This is achieved with a DDL filter with the same
name as the BDR group. This filter is added to the default BDR group replication set when the BDR group is created.

You can adjust this by changing the DDL replication filters for all existing replication sets. These filters are independent of table membership in the
replication sets. Just like data changes, each DDL statement is replicated only once, even if it's matched by multiple filters on multiple replication sets.

You can list existing DDL filters with the following query, which shows for each filter the regular expression applied to the command tag and to the role
name:

You can use the following functions to manipulate DDL filters. They are considered to be DDL and are therefore subject to DDL replication and global
locking.

bdr.replication_set_add_ddl_filter

This function adds a DDL filter to a replication set.

Any DDL that matches the given filter is replicated to any node that's subscribed to that set. This also affects replication of BDR admin functions.

This doesn't prevent execution of DDL on any node. It only alters whether DDL is replicated to other nodes. Suppose two nodes have a replication filter
between them that excludes all index commands. Index commands can still be executed freely by directly connecting to each node and executing the
desired DDL on that node.

The DDL filter can specify a command_tag and role_name to allow replication of only some DDL statements. The command_tag is the same as
those used by EVENT TRIGGERs for regular PostgreSQL commands. A typical example might be to create a filter that prevents additional index commands
on a logical standby from being replicated to all other nodes.

You can filter the BDR admin functions used by using a tagname matching the qualified function name. For example,
bdr.replication_set_add_table is the command tag for the function of the same name. In this case, this tag allows all BDR functions to be

filtered using bdr.* .

The role_name is used for matching against the current role that is executing the command. Both command_tag and role_name are evaluated as
regular expressions, which are case sensitive.

Synopsis

Parameters

set_name — name of the replication set; if NULL then the BDR group default replication set is used
ddl_filter_name — name of the DDL filter; this must be unique across the whole BDR group
command_tag — regular expression for matching command tags; NULL means match everything
role_name — regular expression for matching role name; NULL means match all roles

base_relation_name — reserved for future use, must be NULL

SELECT * FROM bdr.ddl_replication;

bdr.replication_set_add_ddl_filter(set_name name,
 ddl_filter_name text,
 command_tag
text,
 role_name text DEFAULT NULL,
 base_relation_name text DEFAULT NULL,
 query_match text DEFAULT
NULL,
 exclusive boolean DEFAULT FALSE)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 197

https://www.postgresql.org/docs/current/static/event-trigger-matrix.html

base_relation_name — reserved for future use, must be NULL
query_match — regular expression for matching the query; NULL means match all queries
exclusive — if true, other matched filters are not taken into consideration (that is, only the exclusive filter is applied), when multiple exclusive

filters match, we throw an error. This is useful for routing specific commands to specific replication set, while keeping the default replication
through the main replication set.

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration. This
also means that replication of changes to ddl filter configuration is affected by the existing ddl filter configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

To view the defined replication filters, use the view bdr.ddl_replication .

Examples

To include only BDR admin functions, define a filter like this:

To exclude everything apart from index DDL:

To include all operations on tables and indexes but exclude all others, add two filters: one for tables, one for indexes. This shows that multiple filters
provide the union of all allowed DDL commands:

bdr.replication_set_remove_ddl_filter

This function removes the DDL filter from a replication set.

Replication of this command is affected by DDL replication configuration, including DDL filtering settings themselves.

Synopsis

SELECT bdr.replication_set_add_ddl_filter('mygroup', 'mygroup_admin',
$$bdr\..*$$);

SELECT bdr.replication_set_add_ddl_filter('mygroup', 'index_filter',
 '^(?!(CREATE INDEX|DROP INDEX|ALTER
INDEX)).*');

SELECT bdr.replication_set_add_ddl_filter('bdrgroup','index_filter', '^((?!INDEX).)*$');
SELECT bdr.replication_set_add_ddl_filter('bdrgroup','table_filter', '^((?!TABLE).)*$');

bdr.replication_set_remove_ddl_filter(set_name name,
 ddl_filter_name text)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 198

Parameters

set_name — Name of the replication set. If NULL then the BDR group default replication set is used.
ddl_filter_name — Name of the DDL filter to remove.

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration. This
also means that replication of changes to the DDL filter configuration is affected by the existing DDL filter configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 199

6.19 Stream triggers

BDR introduces new types of triggers that you can use for additional data processing on the downstream/target node.

Conflict triggers
Transform triggers

Together, these types of triggers are known as stream triggers.

Stream triggers are designed to be trigger-like in syntax. They leverage the PostgreSQL BEFORE trigger architecture and are likely to have similar
performance characteristics as PostgreSQL BEFORE Triggers.

Multiple trigger definitions can use one trigger function, just as with normal PostgreSQL triggers. A trigger function is a program defined in this form:
CREATE FUNCTION ... RETURNS TRIGGER . Creating the trigger doesn't require use of the CREATE TRIGGER command. Instead, create stream

triggers using the special BDR functions bdr.create_conflict_trigger() and bdr.create_transform_trigger() .

Once created, the trigger is visible in the catalog table pg_trigger . The stream triggers are marked as tgisinternal = true and tgenabled
= 'D' and have the name suffix '_bdrc' or '_bdrt'. The view bdr.triggers provides information on the triggers in relation to the table, the name of the
procedure that is being executed, the event that triggers it, and the trigger type.

Stream triggers aren't enabled for normal SQL processing. Because of this, the ALTER TABLE ... ENABLE TRIGGER is blocked for stream triggers
in both its specific name variant and the ALL variant. This mechanism prevents the trigger from executing as a normal SQL trigger.

These triggers execute on the downstream or target node. There's no option for them to execute on the origin node. However, you might want to consider
the use of row_filter expressions on the origin.

Also, any DML that is applied while executing a stream trigger isn't replicated to other BDR nodes and doesn't trigger the execution of standard local
triggers. This is intentional. You can use it, for example, to log changes or conflicts captured by a stream trigger into a table that is crash-safe and specific
of that node. See Stream triggers examples for a working example.

Trigger execution during Apply

Transform triggers execute first—once for each incoming change in the triggering table. These triggers fire before we attempt to locate a matching target
row, allowing a very wide range of transforms to be applied efficiently and consistently.

Next, for UPDATE and DELETE changes, we locate the target row. If there's no target row, then no further processing occurs for those change types.

We then execute any normal triggers that previously were explicitly enabled as replica triggers at table-level:

We then decide whether a potential conflict exists. If so, we then call any conflict trigger that exists for that table.

Missing column conflict resolution

Before transform triggers are executed, PostgreSQL tries to match the incoming tuple against the row-type of the target table.

Any column that exists on the input row but not on the target table triggers a conflict of type target_column_missing . Conversely, a column existing
on the target table but not in the incoming row triggers a source_column_missing conflict. The default resolutions for those two conflict types are
respectively ignore_if_null and use_default_value .

ALTER TABLE tablename
ENABLE REPLICA TRIGGER trigger_name;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 200

This is relevant in the context of rolling schema upgrades, for example, if the new version of the schema introduces a new column. When replicating from
an old version of the schema to a new one, the source column is missing, and the use_default_value strategy is appropriate, as it populates the
newly introduced column with the default value.

However, when replicating from a node having the new schema version to a node having the old one, the column is missing from the target table. The
ignore_if_null resolver isn't appropriate for a rolling upgrade because it breaks replication as soon as the user inserts a tuple with a non-NULL value

in the new column in any of the upgraded nodes.

In view of this example, the appropriate setting for rolling schema upgrades is to configure each node to apply the ignore resolver in case of a
target_column_missing conflict.

You can do this with the following query, which you must execute separately on each node. Replace node1 with the actual node name.

Data loss and divergence risk

Setting the conflict resolver to ignore can lead to data loss and cluster divergence.

Consider the following example: table t exists on nodes 1 and 2, but its column col exists only on node 1.

If the conflict resolver is set to ignore , then there can be rows on node 1 where c isn't null, for example, (pk=1, col=100) . That row is replicated
to node 2, and the value in column c is discarded, for example, (pk=1) .

If column c is then added to the table on node 2, it is at first set to NULL on all existing rows, and the row considered above becomes (pk=1,
col=NULL) . The row having pk=1 is no longer identical on all nodes, and the cluster is therefore divergent.

The default ignore_if_null resolver isn't affected by this risk because any row replicated to node 2 has col=NULL .

Based on this example, we recommend running LiveCompare against the whole cluster at the end of a rolling schema upgrade where the ignore resolver
was used. This practice helps to ensure that you detect and fix any divergence.

Terminology of row-types

We use these row-types:

SOURCE_OLD is the row before update, that is, the key.
SOURCE_NEW is the new row coming from another node.
TARGET is the row that exists on the node already, that is, the conflicting row.

Conflict triggers

Conflict triggers execute when a conflict is detected by BDR. They decide what happens when the conflict has occurred.

If the trigger function returns a row, the action is applied to the target.
If the trigger function returns a NULL row, the action is skipped.

For example, if the trigger is called for a DELETE , the trigger returns NULL if it wants to skip the DELETE . If you want the DELETE to proceed, then

SELECT
bdr.alter_node_set_conflict_resolver('node1',
 'target_column_missing', 'ignore');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 201

For example, if the trigger is called for a DELETE , the trigger returns NULL if it wants to skip the DELETE . If you want the DELETE to proceed, then
return a row value: either SOURCE_OLD or TARGET works. When the conflicting operation is either INSERT or UPDATE , and the chosen resolution is
the deletion of the conflicting row, the trigger must explicitly perform the deletion and return NULL. The trigger function can perform other SQL actions as
it chooses, but those actions are only applied locally, not replicated.

When a real data conflict occurs between two or more nodes, two or more concurrent changes are occurring. When we apply those changes, the conflict
resolution occurs independently on each node. This means the conflict resolution occurs once on each node and can occur with a significant time
difference between them. As a result, communication between the multiple executions of the conflict trigger isn't possible. It is the responsibility of the
author of the conflict trigger to ensure that the trigger gives exactly the same result for all related events. Otherwise, data divergence occurs. Technical
Support recommends that you formally test all conflict triggers using the isolationtester tool supplied with BDR.

Warning

You can specify multiple conflict triggers on a single table, but they must match a distinct event. That is, each conflict must match only a
single conflict trigger.
We don't recommend multiple triggers matching the same event on the same table. They might result in inconsistent behavior and will not
be allowed in a future release.

If the same conflict trigger matches more than one event, you can use the TG_OP variable in the trigger to identify the operation that produced the
conflict.

By default, BDR detects conflicts by observing a change of replication origin for a row. Hence, you can call a conflict trigger even when only one change is
occurring. Since, in this case, there's no real conflict, this conflict detection mechanism can generate false-positive conflicts. The conflict trigger must
handle all of those identically.

In some cases, timestamp conflict detection doesn't detect a conflict at all. For example, in a concurrent UPDATE / DELETE where the DELETE occurs
just after the UPDATE , any nodes that see first the UPDATE and then the DELETE don't see any conflict. If no conflict is seen, the conflict trigger are
never called. In the same situation but using row version conflict detection, a conflict is seen, which a conflict trigger can then handle.

The trigger function has access to additional state information as well as the data row involved in the conflict, depending on the operation type:

On INSERT , conflict triggers can access the SOURCE_NEW row from the source and TARGET row.
On UPDATE , conflict triggers can access the SOURCE_OLD and SOURCE_NEW row from the source and TARGET row.
On DELETE , conflict triggers can access the SOURCE_OLD row from the source and TARGET row.

You can use the function bdr.trigger_get_row() to retrieve SOURCE_OLD , SOURCE_NEW , or TARGET rows, if a value exists for that operation.

Changes to conflict triggers happen transactionally and are protected by global DML locks during replication of the configuration change, similarly to how
some variants of ALTER TABLE are handled.

If primary keys are updated inside a conflict trigger, it can sometimes lead to unique constraint violations errors due to a difference in timing of execution.
Hence, avoid updating primary keys in conflict triggers.

Transform triggers

These triggers are similar to conflict triggers, except they are executed for every row on the data stream against the specific table. The behavior of return
values and the exposed variables is similar, but transform triggers execute before a target row is identified, so there is no TARGET row.

You can specify multiple transform triggers on each table in BDR. Transform triggers execute in alphabetical order.

A transform trigger can filter away rows, and it can do additional operations as needed. It can alter the values of any column or set them to NULL . The
return value decides the further action taken:

If the trigger function returns a row, it's applied to the target.
If the trigger function returns a NULL row, there's no further action to perform. Unexecuted triggers never execute.
The trigger function can perform other actions as it chooses.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 202

The trigger function has access to additional state information as well as rows involved in the conflict:

On INSERT , transform triggers can access the SOURCE_NEW row from the source.
On UPDATE , transform triggers can access the SOURCE_OLD and SOURCE_NEW row from the source.
On DELETE , transform triggers can access the SOURCE_OLD row from the source.

You can use the function bdr.trigger_get_row() to retrieve SOURCE_OLD or SOURCE_NEW rows. TARGET row isn't available, since this type of
trigger executes before such a target row is identified, if any.

Transform triggers look very similar to normal BEFORE row triggers but have these important differences:

A transform trigger gets called for every incoming change. BEFORE triggers aren't called at all for UPDATE and DELETE changes if a matching
row in a table isn't found.

Transform triggers are called before partition table routing occurs.

Transform triggers have access to the lookup key via SOURCE_OLD , which isn't available to normal SQL triggers.

Stream triggers variables

Both conflict triggers and transform triggers have access to information about rows and metadata by way of the predefined variables provided by the trigger
API and additional information functions provided by BDR.

In PL/pgSQL, you can use the predefined variables that follow.

TG_NAME

Data type name. This variable contains the name of the trigger actually fired. The actual trigger name has a '_bdrt' or '_bdrc' suffix (depending on trigger
type) compared to the name provided during trigger creation.

TG_WHEN

Data type text. This variable says BEFORE for both conflict and transform triggers. You can get the stream trigger type by calling the
bdr.trigger_get_type() information function. See bdr.trigger_get_type.

TG_LEVEL

Data type text: a string of ROW .

TG_OP

Data type text: a string of INSERT , UPDATE , or DELETE identifying the operation for which the trigger was fired.

TG_RELID

Data type oid: the object ID of the table that caused the trigger invocation.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 203

TG_TABLE_NAME

Data type name: the name of the table that caused the trigger invocation.

TG_TABLE_SCHEMA

Data type name: the name of the schema of the table that caused the trigger invocation. For partitioned tables, this is the name of the root table.

TG_NARGS

Data type integer: the number of arguments given to the trigger function in the bdr.create_conflict_trigger() or
bdr.create_transform_trigger() statement.

TG_ARGV[]

Data type array of text: the arguments from the bdr.create_conflict_trigger() or bdr.create_transform_trigger() statement. The
index counts from 0. Invalid indexes (less than 0 or greater than or equal to TG_NARGS) result in a NULL value.

Information functions

bdr.trigger_get_row

This function returns the contents of a trigger row specified by an identifier as a RECORD . This function returns NULL if called inappropriately, that is,
called with SOURCE_NEW when the operation type (TG_OP) is DELETE .

Synopsis

Parameters

row_id — identifier of the row. Can be any of SOURCE_NEW , SOURCE_OLD , and TARGET , depending on the trigger type and operation (see
description of individual trigger types).

bdr.trigger_get_committs

This function returns the commit timestamp of a trigger row specified by an identifier. If not available because a row is frozen or isn't available, returns
NULL . Always returns NULL for row identifier SOURCE_OLD .

Synopsis

bdr.trigger_get_row(row_id text)

bdr.trigger_get_committs(row_id text)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 204

Parameters

row_id — Identifier of the row. Can be any of SOURCE_NEW , SOURCE_OLD , and TARGET , depending on trigger type and operation (see
description of individual trigger types).

bdr.trigger_get_xid

This function returns the local transaction id of a TARGET row specified by an identifier. If not available because a row is frozen or isn't available, returns
NULL . Always returns NULL for SOURCE_OLD and SOURCE_NEW row identifiers.

Available only for conflict triggers.

Synopsis

Parameters

row_id — Identifier of the row. Can be any of SOURCE_NEW , SOURCE_OLD , and TARGET , depending on trigger type and operation (see
description of individual trigger types).

bdr.trigger_get_type

This function returns the current trigger type, which can be CONFLICT or TRANSFORM . Returns null if called outside a stream trigger.

Synopsis

bdr.trigger_get_conflict_type

This function returns the current conflict type if called inside a conflict trigger. Otherwise, returns NULL .

See Conflict types for possible return values of this function.

Synopsis

bdr.trigger_get_origin_node_id

This function returns the node id corresponding to the origin for the trigger row_id passed in as argument. If the origin isn't valid (which means the row
originated locally), returns the node id of the source or target node, depending on the trigger row argument. Always returns NULL for row identifier
SOURCE_OLD . You can use this function to define conflict triggers to always favor a trusted source node.

bdr.trigger_get_xid(row_id text)

bdr.trigger_get_type()

bdr.trigger_get_conflict_type()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 205

Synopsis

Parameters

row_id — Identifier of the row. Can be any of SOURCE_NEW , SOURCE_OLD , and TARGET , depending on trigger type and operation (see
description of individual trigger types).

bdr.ri_fkey_on_del_trigger

When called as a BEFORE trigger, this function uses FOREIGN KEY information to avoid FK anomalies.

Synopsis

Row contents

The SOURCE_NEW , SOURCE_OLD , and TARGET contents depend on the operation, REPLICA IDENTITY setting of a table, and the contents of the target
table.

The TARGET row is available only in conflict triggers. The TARGET row contains data only if a row was found when applying UPDATE or DELETE in the
target table. If the row isn't found, the TARGET is NULL .

Triggers notes

Execution order for triggers:

Transform triggers — Execute once for each incoming row on the target.
Normal triggers — Execute once per row.
Conflict triggers — Execute once per row where a conflict exists.

Stream triggers manipulation interfaces

You can create stream triggers only on tables with REPLICA IDENTITY FULL or tables without any columns to which TOAST applies.

bdr.create_conflict_trigger

This function creates a new conflict trigger.

bdr.trigger_get_origin_node_id(row_id text)

bdr.ri_fkey_on_del_trigger()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 206

Synopsis

Parameters

trigger_name — Name of the new trigger.
events — Array of events on which to fire this trigger. Valid values are ' INSERT ', ' UPDATE ', and ' DELETE '.
relation — Relation to fire this trigger for.
function — The function to execute.
args — Optional. Specifies the array of parameters the trigger function receives on execution (contents of TG_ARGV variable).

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration.

The function takes a global DML lock on the relation on which the trigger is being created.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Similar to normal PostgreSQL triggers, the bdr.create_conflict_trigger function requires TRIGGER privilege on the relation and
EXECUTE privilege on the function. This applies with a bdr.backwards_compatibility of 30619 or above. Additional security rules apply in BDR

to all triggers including conflict triggers. See Security and roles.

bdr.create_transform_trigger

This function creates a transform trigger.

Synopsis

Parameters

trigger_name — Name of the new trigger.
events — Array of events on which to fire this trigger. Valid values are ' INSERT ', ' UPDATE ', and ' DELETE '.
relation — Relation to fire this trigger for.
function — The function to execute.
args — Optional. Specify array of parameters the trigger function receives on execution (contents of TG_ARGV variable).

bdr.create_conflict_trigger(trigger_name text,
 events text[],
 relation
regclass,
 function regprocedure,
 args text[] DEFAULT
'{}')

bdr.create_transform_trigger(trigger_name text,
 events text[],
 relation
regclass,
 function regprocedure,
 args text[] DEFAULT
'{}')

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 207

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration.

The function takes a global DML lock on the relation on which the trigger is being created.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Similarly to normal PostgreSQL triggers, the bdr.create_transform_trigger function requires the TRIGGER privilege on the relation and
EXECUTE privilege on the function. Additional security rules apply in BDR to all triggers including transform triggers. See Security and roles.

bdr.drop_trigger

This function removes an existing stream trigger (both conflict and transform).

Synopsis

Parameters

trigger_name — Name of an existing trigger.
relation — The relation the trigger is defined for.
ifexists — When set to true , this function ignores missing triggers.

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration.

The function takes a global DML lock on the relation on which the trigger is being created.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Only the owner of the relation can execute the bdr.drop_trigger function.

Stream triggers examples

A conflict trigger that provides similar behavior as the update_if_newer conflict resolver:

bdr.drop_trigger(trigger_name text,
 relation
regclass,
 ifexists boolean DEFAULT
false)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 208

A conflict trigger that applies a delta change on a counter column and uses SOURCE_NEW for all other columns:

A transform trigger that logs all changes to a log table instead of applying them:

CREATE OR REPLACE FUNCTION update_if_newer_trig_func
RETURNS TRIGGER
LANGUAGE plpgsql
AS $$
BEGIN
 IF (bdr.trigger_get_committs('TARGET')
>
 bdr.trigger_get_committs('SOURCE_NEW')) THEN
 RETURN TARGET;
 ELSIF
 RETURN SOURCE;
 END IF;
END;
$$;

CREATE OR REPLACE FUNCTION delta_count_trg_func
RETURNS TRIGGER
LANGUAGE plpgsql
AS $$
DECLARE
 DELTA bigint;
 SOURCE_OLD record;
 SOURCE_NEW record;
 TARGET
record;
BEGIN
 SOURCE_OLD := bdr.trigger_get_row('SOURCE_OLD');
 SOURCE_NEW := bdr.trigger_get_row('SOURCE_NEW');
 TARGET :=
bdr.trigger_get_row('TARGET');

 DELTA := SOURCE_NEW.counter -
SOURCE_OLD.counter;
 SOURCE_NEW.counter = TARGET.counter +
DELTA;

 RETURN
SOURCE_NEW;
END;
$$;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 209

This example shows a conflict trigger that implements trusted source conflict detection, also known as trusted site, preferred node, or Always Wins
resolution. This uses the bdr.trigger_get_origin_node_id() function to provide a solution that works with three or more nodes.

CREATE OR REPLACE FUNCTION log_change
RETURNS TRIGGER
LANGUAGE plpgsql
AS $$
DECLARE
 SOURCE_NEW record;
 SOURCE_OLD record;
 COMMITTS
timestamptz;
BEGIN
 SOURCE_NEW := bdr.trigger_get_row('SOURCE_NEW');
 SOURCE_OLD := bdr.trigger_get_row('SOURCE_OLD');
 COMMITTS :=
bdr.trigger_get_committs('SOURCE_NEW');

 IF (TG_OP = 'INSERT')
THEN
 INSERT INTO log SELECT 'I', COMMITTS,
row_to_json(SOURCE_NEW);
 ELSIF (TG_OP = 'UPDATE')
THEN
 INSERT INTO log SELECT 'U', COMMITTS,
row_to_json(SOURCE_NEW);
 ELSIF (TG_OP = 'DELETE')
THEN
 INSERT INTO log SELECT 'D', COMMITTS,
row_to_json(SOURCE_OLD);
 END IF;

 RETURN NULL; -- do not apply the
change
END;
$$;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 210

CREATE OR REPLACE FUNCTION test_conflict_trigger()
RETURNS TRIGGER
LANGUAGE plpgsql
AS $$
DECLARE
 SOURCE record;
 TARGET
record;

 TRUSTED_NODE bigint;
 SOURCE_NODE
bigint;
 TARGET_NODE
bigint;
BEGIN
 TARGET :=
bdr.trigger_get_row('TARGET');
 IF (TG_OP =
'DELETE')
 SOURCE := bdr.trigger_get_row('SOURCE_OLD');
 ELSE
 SOURCE := bdr.trigger_get_row('SOURCE_NEW');
 END IF;

 TRUSTED_NODE :=
current_setting('customer.trusted_node_id');

 SOURCE_NODE :=
bdr.trigger_get_origin_node_id('SOURCE_NEW');
 TARGET_NODE :=
bdr.trigger_get_origin_node_id('TARGET');

 IF (TRUSTED_NODE = SOURCE_NODE) THEN
 RETURN SOURCE;
 ELSIF (TRUSTED_NODE = TARGET_NODE) THEN
 RETURN TARGET;
 ELSE
 RETURN NULL; -- do not apply the
change
 END IF;
END;
$$;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 211

6.20 Explicit two-phase commit (2PC)

An application can explicitly opt to use two-phase commit with BDR. See Distributed Transaction Processing: The XA Specification.

The X/Open Distributed Transaction Processing (DTP) model envisions three software components:

An application program (AP) that defines transaction boundaries and specifies actions that constitute a transaction
Resource managers (RMs, such as databases or file-access systems) that provide access to shared resources
A separate component called a transaction manager (TM) that assigns identifiers to transactions, monitors their progress, and takes responsibility
for transaction completion and for failure recovery

BDR supports explicit external 2PC using the PREPARE TRANSACTION and COMMIT PREPARED / ROLLBACK PREPARED commands. Externally, a
EDB Postgres Distributed cluster appears to be a single resource manager to the transaction manager for a single session.

When bdr.commit_scope is local , the transaction is prepared only on the local node. Once committed, changes are replicated, and BDR then
applies post-commit conflict resolution.

Using bdr.commit_scope set to local might not seem to make sense with explicit two-phase commit, but the option is offered to allow you to
control the tradeoff between transaction latency and robustness.

Explicit two-phase commit doesn't work with either CAMO or the global commit scope. Future releases might enable this combination.

Use

Two-phase commits with a local commit scope work exactly like standard PostgreSQL. Use the local commit scope and disable CAMO.

To start the first phase of the commit, the client must assign a global transaction id, which can be any unique string identifying the transaction:

After a successful first phase, all nodes have applied the changes and are prepared for committing the transaction. The client must then invoke the second
phase from the same node:

BEGIN;

SET LOCAL bdr.enable_camo = 'off';
SET LOCAL bdr.commit_scope =
'local';

... other commands
possible...

PREPARE TRANSACTION 'some-global-id';

COMMIT PREPARED 'some-global-
id';

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 212

http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf

6.21 Catalogs and views

Catalogs and views are presented here in alphabetical order.

User-visible catalogs and views

bdr.conflict_history

This table is the default table where conflicts are logged. The table is RANGE partitioned on column local_time and is managed by Autopartition. The
default data retention period is 30 days.

Access to this table is possible by any table owner, who can see all conflicts for the tables they own, restricted by row-level security.

For details, see Logging conflicts to a table.

bdr.conflict_history columns

Name Type Description

sub_id oid Which subscription produced this conflict; can be joined to bdr.subscription table

origin_node_id oid The oid (as seen in the pg_replication_origin catalog) of the node that produced the conflicting
change

local_xid xid Local transaction of the replication process at the time of conflict

local_lsn pg_lsn Local LSN at the time of conflict

local_time timestamp with time
zone

Local time of the conflict

remote_xid xid Transaction that produced the conflicting change on the remote node (an origin)

remote_change_nr oid The index of the change within its transaction

remote_commit_lsn pg_lsn Commit LSN of the transaction which produced the conflicting change on the remote node (an
origin)

remote_commit_time timestamp with time
zone

Commit timestamp of the transaction that produced the conflicting change on the remote node
(an origin)

conflict_type text Detected type of the conflict

conflict_resolution text Conflict resolution chosen

conflict_index regclass Conflicting index (valid only if the index wasn't dropped since)

reloid oid Conflicting relation (valid only if the index wasn't dropped since)

nspname text Name of the schema for the relation on which the conflict has occurred at the time of conflict
(doesn't follow renames)

relname text Name of the relation on which the conflict has occurred at the time of conflict (does not follow
renames)

key_tuple json Json representation of the key used for matching the row

remote_tuple json Json representation of an incoming conflicting row

local_tuple json Json representation of the local conflicting row

apply_tuple json Json representation of the resulting (the one that has been applied) row

local_tuple_xmin xid Transaction that produced the local conflicting row (if local_tuple is set and the row isn't
frozen)

local_tuple_node_id oid Node that produced the local conflicting row (if local_tuple is set and the row isn't frozen)

local_tuple_commit_time timestamp with time
zone

Last known change timestamp of the local conflicting row (if local_tuple is set and the row
isn't frozen)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 213

https://www.postgresql.org/docs/current/catalog-pg-replication-origin.html

bdr.conflict_history_summary

A view containing user-readable details on row conflict.

bdr.conflict_history_summary columns

Name Type Description

nspname text Name of the schema

relname text Name of the table

origin_node_id oid The oid (as seen in the pg_replication_origin catalog) of the node that produced the conflicting
change

remote_change_nr oid The index of the change within its transaction

remote_commit_lsn pg_lsn Commit LSN of the transaction which produced the conflicting change on the remote node (an
origin)

local_time timestamp with time
zone

Local time of the conflict

local_tuple_commit_time timestamp with time
zone

Time of local commit

remote_commit_time timestamp with time
zone

Time of remote commit

conflict_type text Type of conflict

conflict_resolution text Resolution adopted

bdr.consensus_kv_data

A persistent storage for the internal Raft-based KV store used by bdr.consensus_kv_store() and bdr.consensus_kv_fetch() interfaces.

bdr.consensus_kv_data Columns

Name Type Description

kv_key text Unique key

kv_val json Arbitrary value in json format

kv_create_ts timestamptz Last write timestamp

kv_ttl int Time to live for the value in milliseconds

kv_expire_ts timestamptz Expiration timestamp (kv_create_ts + kv_ttl)

bdr.camo_decision_journal

A persistent journal of decisions resolved by a CAMO partner node after a failover, in case bdr.logical_transaction_status was invoked. Unlike
bdr.node_pre_commit , this doesn't cover transactions processed under normal operational conditions (i.e., both nodes of a CAMO pair are running

and connected). Entries in this journal aren't ever cleaned up automatically. This is a diagnostic tool that the system doesn't depend on.

bdr.camo_decision_journal columns

Name Type Description

origin_node_id oid OID of the node where the transaction
executed

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 214

https://www.postgresql.org/docs/current/catalog-pg-replication-origin.html

origin_xid oid Transaction ID on the remote origin node

decision char 'c' for commit, 'a' for abort

decision_ts timestamptz Decision time

Name Type Description

bdr.crdt_handlers

This table lists merge ("handlers") functions for all CRDT data types.

bdr.crdt_handlers Columns

Name Type Description

crdt_type_id regtype CRDT data type ID

crdt_merge_id regproc Merge function for this data
type

bdr.ddl_replication

This view lists DDL replication configuration as set up by current DDL filters.

bdr.ddl_replication columns

Name Type Description

set_ddl_name name Name of DDL filter

set_ddl_tag text The command tags it applies on (regular expression)

set_ddl_role text The roles it applies to (regular expression)

set_name name Name of the replication set for which this filter is
defined

bdr.depend

This table tracks internal object dependencies inside BDR catalogs.

bdr.global_consensus_journal

This catalog table logs all the Raft messages that were sent while managing global consensus.

As for the bdr.global_consensus_response_journal catalog, the payload is stored in a binary encoded format, which can be decoded with the
bdr.decode_message_payload() function. See the bdr.global_consensus_journal_details view for more details.

bdr.global_consensus_journal columns

Name Type Description

log_index int8 ID of the journal entry

term int8 Raft term

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 215

origin oid ID of node where the request
originated

req_id int8 ID for the request

req_payload bytea Payload for the request

trace_context bytea Trace context for the request

Name Type Description

bdr.global_consensus_journal_details

This view presents Raft messages that were sent and the corresponding responses, using the bdr.decode_message_payload() function to decode
their payloads.

bdr.global_consensus_journal_details columns

Name Type Description

log_index int8 ID of the journal entry

term int8 Raft term

request_id int8 ID of the request

origin_id oid ID of the node where the request originated

req_payload bytea Payload of the request

origin_node_name name Name of the node where the request originated

message_type_no oid ID of the BDR message type for the request

message_type text Name of the BDR message type for the request

message_payload text BDR message payload for the request

response_message_type_no oid ID of the BDR message type for the response

response_message_type text Name of the BDR message type for the response

response_payload text BDR message payload for the response

response_errcode_no text SQLSTATE for the response

response_errcode text Error code for the response

response_message text Error message for the response

bdr.global_consensus_response_journal

This catalog table collects all the responses to the Raft messages that were received while managing global consensus.

As for the bdr.global_consensus_journal catalog, the payload is stored in a binary-encoded format, which can be decoded with the
bdr.decode_message_payload() function. See the bdr.global_consensus_journal_details view for more details.

bdr.global_consensus_response_journal columns

Name Type Description

log_index int8 ID of the journal entry

res_status oid Status code for the response

res_payload bytea Payload for the response

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 216

trace_context bytea Trace context for the response

Name Type Description

bdr.global_lock

This catalog table stores the information needed for recovering the global lock state on server restart.

For monitoring usage, the bdr.global_locks view is preferable because the visible rows in bdr.global_lock don't necessarily reflect all global
locking activity.

Don't modify the contents of this table. It is an important BDR catalog.

bdr.global_lock columns

Name Type Description

ddl_epoch int8 DDL epoch for the lock

origin_node_id oid OID of the node where the global lock has originated

lock_type oid Type of the lock (DDL or DML)

nspname name Schema name for the locked relation

relname name Relation name for the locked relation

groupid oid OID of the top level group (for Advisory locks)

key1 integer First 32-bit key or lower order 32-bits of 64-bit key (for advisory locks)

key2 integer Second 32-bit key or higher order 32-bits of 64-bit key (for advisory
locks)

key_is_bigint boolean True if 64-bit integer key is used (for advisory locks)

bdr.global_locks

A view containing active global locks on this node. The bdr.global_locks view exposes BDR's shared-memory lock state tracking, giving
administrators greater insight into BDR's global locking activity and progress.

See Monitoring global locks for more information about global locking.

bdr.global_locks columns

Name Type Description

origin_node_id oid The OID of the node where the global lock has originated

origin_node_name name Name of the node where the global lock has originated

lock_type text Type of the lock (DDL or DML)

relation text Locked relation name (for DML locks) or keys (for advisory locks)

pid int4 PID of the process holding the lock

acquire_stage text Internal state of the lock acquisition process

waiters int4 List of backends waiting for the same global lock

global_lock_request_time timestamptz Time this global lock acquire was initiated by origin node

local_lock_request_time timestamptz Time the local node started trying to acquire the local lock

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 217

last_state_change_time timestamptz Time acquire_stage last changed

Name Type Description

Column details:

relation : For DML locks, relation shows the relation on which the DML lock is acquired. For global advisory locks, relation column
actually shows the two 32-bit integers or one 64-bit integer on which the lock is acquired.

origin_node_id and origin_node_name : If these are the same as the local node's ID and name, then the local node is the initiator of the
global DDL lock, i.e., it is the node running the acquiring transaction. If these fields specify a different node, then the local node is instead trying to
acquire its local DDL lock to satisfy a global DDL lock request from a remote node.

pid : The process ID of the process that requested the global DDL lock, if the local node is the requesting node. Null on other nodes. Query the
origin node to determine the locker pid.

global_lock_request_time : The timestamp at which the global-lock request initiator started the process of acquiring a global lock. Can be
null if unknown on the current node. This time is stamped at the beginning of the DDL lock request and includes the time taken for DDL epoch
management and any required flushes of pending-replication queues. Currently only known on origin node.

local_lock_request_time : The timestamp at which the local node started trying to acquire the local lock for this global lock. This includes
the time taken for the heavyweight session lock acquire but doesn't include any time taken on DDL epochs or queue flushing. If the lock is reacquired
after local node restart, it becomes the node restart time.

last_state_change_time : The timestamp at which the bdr.global_locks.acquire_stage field last changed for this global lock
entry.

bdr.local_consensus_snapshot

This catalog table contains consensus snapshots created or received by the local node.

bdr.local_consensus_snapshot columns

Name Type Description

log_index int8 ID of the journal entry

log_term int8 Raft term

snapshot bytea Raft snapshot data

bdr.local_consensus_state

This catalog table stores the current state of Raft on the local node.

bdr.local_consensus_state columns

Name Type Description

node_id oid ID of the node

current_term int8 Raft term

apply_index int8 Raft apply index

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 218

voted_for oid Vote cast by this node in this term

last_known_leader oid node_id of last known Raft leader

Name Type Description

bdr.local_node

This table identifies the local node in the current database of the current Postgres instance.

bdr.local_node columns

Name Type Description

node_id oid ID of the node

pub_repsets text[] Published replication sets

sub_repsets text[] Subscribed replication sets

bdr.local_node_summary

A view containing the same information as bdr.node_summary but only for the local node.

bdr.local_sync_status

Information about status of either subscription or table synchronization process.

bdr.local_sync_status columns

Name Type Description

sync_kind char The kind of synchronization done

sync_subid oid ID of subscription doing the synchronization

sync_nspname name Schema name of the synchronized table (if any)

sync_relname name Name of the synchronized table (if any)

sync_status char Current state of the synchronization

sync_remote_relid oid ID of the synchronized table (if any) on the upstream

sync_end_lsn pg_lsn Position at which the synchronization state last changed

bdr.network_path_info

A catalog view that stores user-defined information on network costs between node locations.

bdr.network_path_info columns

Name Type Description

node_group_name name Name of the BDR group

node_region1 text Node region name, from bdr.node_location

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 219

node_region2 text Node region name, from bdr.node_location

node_location1 text Node location name, from
bdr.node_location

node_location2 text Node location name, from
bdr.node_location

network_cost numeric Node location name, from
bdr.node_location

Name Type Description

bdr.node

This table lists all the BDR nodes in the cluster.

bdr.node columns

Name Type Description

node_id oid ID of the node

node_name name Name of the node

node_group_id oid ID of the node group

source_node_id oid ID of the source node

synchronize_structure "char" Schema synchronization done during the join

node_state oid Consistent state of the node

target_state oid State that the node is trying to reach (during join or promotion)

seq_id int4 Sequence identifier of the node used for generating unique sequence numbers

dbname name Database name of the node

node_dsn char Connection string for the node

proto_version_ranges int[] Supported protocol version ranges by the node

bdr.node_catchup_info

This catalog table records relevant catchup information on each node, either if it is related to the join or part procedure.

bdr.node_catchup_info columns

Name Type Description

node_id oid ID of the node

node_source_id oid ID of the node used as source for the data

slot_name name Slot used for this source

min_node_lsn pg_lsn Minimum LSN at which the node can switch to direct replay from a peer node

catchup_state oid Status code of the catchup state

origin_node_id oid ID of the node from which we want transactions

If a node(node_id) needs missing data from a parting node(origin_node_id), it can get it from a node that already has it(node_source_id) by forwarding. The
records in this table persists until the node(node_id) is a member of the EDB Postgres Distributed cluster.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 220

bdr.node_conflict_resolvers

Currently configured conflict resolution for all known conflict types.

bdr.node_conflict_resolvers columns

Name Type Description

conflict_type text Type of the conflict

conflict_resolver text Resolver used for this conflict type

bdr.node_group

This catalog table lists all the BDR node groups.

bdr.node_group columns

Name Type Description

node_group_id oid ID of the node group

node_group_name name Name of the node group

node_group_default_repset oid Default replication set for this node group

node_group_default_repset_ext oid Default replication set for this node group

node_group_parent_id oid ID of parent group (0 if this is a root group)

node_group_flags int The group flags

node_group_uuid uuid The uuid of the group

node_group_apply_delay interval How long a subscriber waits before applying changes from the provider

node_group_check_constraints bool Whether the apply process checks constraints when applying data

node_group_num_writers int Number of writers to use for subscriptions backing this node group

node_group_enable_wal_decoder bool Whether the group has enable_wal_decoder set

node_group_streaming_mode char Transaction streaming setting: 'O' - off, 'F' - file, 'W' - writer, 'A' - auto, 'D' - default

bdr.node_group_replication_sets

A view showing default replication sets create for BDR groups. See also bdr.replication_sets .

bdr.node_group_replication_sets columns

Name Type Description

node_group_name name Name of the BDR group

def_repset name Name of the default repset

def_repset_ops text[] Actions replicated by the default repset

def_repset_ext name Name of the default "external" repset (usually same as def_repset)

def_repset_ext_ops text[] Actions replicated by the default "external" repset (usually same as def_repset_ops)

bdr.node_local_info

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 221

bdr.node_local_info

A catalog table used to store per-node configuration that's specific to the local node (as opposed to global view of per-node configuration).

bdr.node_local_info columns

Name Type Description

node_id oid The OID of the node (including the local node)

applied_state oid Internal ID of the node state

ddl_epoch int8 Last epoch number processed by the node

slot_name name Name of the slot used to connect to that node (NULL for the local node)

bdr.node_location

A catalog view that stores user-defined information on node locations.

bdr.node_location Columns

Name Type Description

node_group_name name Name of the BDR group

node_id oid ID of the node

node_region text User-supplied region name

node_location text User-supplied location name

bdr.node_log_config

A catalog view that stores information on the conflict logging configurations.

bdr.node_log_config columns

Name Description

log_name Name of the logging configuration

log_to_file Whether it logs to the server log file

log_to_table Whether it logs to a table, and which table is the target

log_conflict_type Which conflict types it logs, if NULL means all

log_conflict_res Which conflict resolutions it logs, if NULL means all

bdr.node_peer_progress

Catalog used to keep track of every node's progress in the replication stream. Every node in the cluster regularly broadcasts its progress every
bdr.replay_progress_frequency milliseconds to all other nodes (default is 60000 ms, i.e., 1 minute). Expect N * (N-1) rows in this relation.

You might be more interested in the bdr.node_slots view for monitoring purposes. See also Monitoring.

bdr.node_peer_progress columns

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 222

bdr.node_peer_progress columns

Name Type Description

node_id oid The OID of the originating node that reported this position info

peer_node_id oid The OID of the node's peer (remote node) for which this position info was reported

last_update_sent_time timestamptz The time at which the report was sent by the originating node

last_update_recv_time timestamptz The time at which the report was received by the local server

last_update_node_lsn pg_lsn LSN on the originating node at the time of the report

peer_position pg_lsn Latest LSN of the node's peer seen by the originating node

peer_replay_time timestamptz Latest replay time of peer seen by the reporting node

last_update_horizon_xid oid Internal resolution horizon: all lower xids are known resolved on the reporting node

last_update_horizon_lsn pg_lsn Internal resolution horizon: same in terms of an LSN of the reporting node

bdr.node_pre_commit

Used internally on a node configured as a Commit At Most Once (CAMO) partner. Shows the decisions a CAMO partner took on transactions in the last 15
minutes.

bdr.node_pre_commit columns

Name Type Description

origin_node_id oid OID of the node where the transaction
executed

origin_xid oid Transaction ID on the remote origin node

decision char 'c' for commit, 'a' for abort

local_xid xid Transaction ID on the local node

commit_ts timestamptz Commit timestamp of the transaction

decision_ts timestamptz Decision time

bdr.node_replication_rates

This view contains information about outgoing replication activity from a given node.

bdr.node_replication_rates columns

Column Type Description

peer_node_id oid The OID of node's peer (remote node) for which this info was reported

target_name name Name of the target peer node

sent_lsn pg_lsn Latest sent position

replay_lsn pg_lsn Latest position reported as replayed (visible)

replay_lag interval Approximate lag time for reported replay

replay_lag_bytes int8 Bytes difference between replay_lsn and current WAL write position on origin

replay_lag_size text Human-readable bytes difference between replay_lsn and current WAL write position

apply_rate bigint LSNs being applied per second at the peer node

catchup_interval interval Approximate time required for the peer node to catch up to all the changes that are yet to be
applied

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 223

Note

The replay_lag is set immediately to zero after reconnect. As a workaround, use replay_lag_bytes , replay_lag_size , or
catchup_interval .

bdr.node_slots

This view contains information about replication slots used in the current database by BDR.

See Monitoring outgoing replication for guidance on the use and interpretation of this view's fields.

bdr.node_slots columns

Name Type Description

target_dbname name Database name on the target node

node_group_name name Name of the BDR group

node_group_id oid The OID of the BDR group

origin_name name Name of the origin node

target_name name Name of the target node

origin_id oid The OID of the origin node

target_id oid The OID of the target node

local_slot_name name Name of the replication slot according to BDR

slot_name name Name of the slot according to Postgres (same as above)

is_group_slot boolean True if the slot is the node-group crash recovery slot for this node (see ["Group Replication Slot"](nodes#Group
Replication Slot))

is_decoder_slot boolean Is this slot used by Decoding Worker

plugin name Logical decoding plugin using this slot (should be pglogical_output or bdr)

slot_type text Type of the slot (should be logical)

datoid oid The OID of the current database

database name Name of the current database

temporary bool Is the slot temporary

active bool Is the slot active (does it have a connection attached to it)

active_pid int4 The PID of the process attached to the slot

xmin xid The XID needed by the slot

catalog_xmin xid The catalog XID needed by the slot

restart_lsn pg_lsn LSN at which the slot can restart decoding

confirmed_flush_lsn pg_lsn Latest confirmed replicated position

usesysid oid sysid of the user the replication session is running as

usename name username of the user the replication session is running as

application_name text Application name of the client connection (used by synchronous_standby_names)

client_addr inet IP address of the client connection

client_hostname text Hostname of the client connection

client_port int4 Port of the client connection

backend_start timestamptz When the connection started

state text State of the replication (catchup, streaming, ...) or 'disconnected' if offline

sent_lsn pg_lsn Latest sent position

write_lsn pg_lsn Latest position reported as written

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 224

flush_lsn pg_lsn Latest position reported as flushed to disk

replay_lsn pg_lsn Latest position reported as replayed (visible)

write_lag interval Approximate lag time for reported write

flush_lag interval Approximate lag time for reported flush

replay_lag interval Approximate lag time for reported replay

sent_lag_bytes int8 Bytes difference between sent_lsn and current WAL write position

write_lag_bytes int8 Bytes difference between write_lsn and current WAL write position

flush_lag_bytes int8 Bytes difference between flush_lsn and current WAL write position

replay_lag_bytes int8 Bytes difference between replay_lsn and current WAL write position

sent_lag_size text Human-readable bytes difference between sent_lsn and current WAL write position

write_lag_size text Human-readable bytes difference between write_lsn and current WAL write position

flush_lag_size text Human-readable bytes difference between flush_lsn and current WAL write position

replay_lag_size text Human-readable bytes difference between replay_lsn and current WAL write position

Name Type Description

Note

The replay_lag is set immediately to zero after reconnect. As a workaround, use replay_lag_bytes or replay_lag_size .

bdr.node_summary

This view contains summary information about all BDR nodes known to the local node.

bdr.node_summary columns

Name Type Description

node_name name Name of the node

node_group_name name Name of the BDR group the node is part of

interface_connstr text Connection string to the node

peer_state_name text Consistent state of the node in human readable form

peer_target_state_name text State that the node is trying to reach (during join or promotion)

node_seq_id int4 Sequence identifier of the node used for generating unique sequence numbers

node_local_dbname name Database name of the node

node_id oid The OID of the node

node_group_id oid The OID of the BDR node group

bdr.queue

This table stores the historical record of replicated DDL statements.

bdr.queue columns

Name Type Description

queued_at timestamptz When was the statement queued

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 225

role name Which role has executed the statement

replication_sets text[] Which replication sets was the statement published to

message_type char

Type of a message. Possible values:
A - Table sync
D - DDL
S - Sequence
T - Truncate
Q - SQL statement

message json Payload of the message needed for replication of the statement

Name Type Description

bdr.replication_set

A table that stores replication set configuration. For user queries, we recommend instead checking the bdr.replication_sets view.

bdr.replication_set columns

Name Type Description

set_id oid The OID of the replication set

set_nodeid oid OID of the node (always local node oid currently)

set_name name Name of the replication set

replicate_insert boolean Indicates if the replication set replicates INSERTs

replicate_update boolean Indicates if the replication set replicates UPDATEs

replicate_delete boolean Indicates if the replication set replicates DELETEs

replicate_truncate boolean Indicates if the replication set replicates TRUNCATEs

set_isinternal boolean Reserved

set_autoadd_tables boolean Indicates if new tables are automatically added to this replication set

set_autoadd_seqs boolean Indicates if new sequences are automatically added to this replication set

bdr.replication_set_table

A table that stores replication set table membership. For user queries, we recommend instead checking the bdr.tables view.

bdr.replication_set_table columns

Name Type Description

set_id oid The OID of the replication set

set_reloid regclass Local ID of the table

set_att_list text[] Reserved

set_row_filter pg_node_tree Compiled row filtering expression

bdr.replication_set_ddl

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 226

bdr.replication_set_ddl

A table that stores replication set ddl replication filters. For user queries, we recommend instead checking the bdr.ddl_replication view.

bdr.replication_set_ddl Columns

Name Type Description

set_id oid The OID of the replication set

set_ddl_name name Name of the DDL filter

set_ddl_tag text Command tag for the DDL filter

set_ddl_role text Role executing the DDL

bdr.replication_sets

A view showing replication sets defined in the BDR group, even if they aren't currently used by any node.

bdr.replication_sets columns

Name Type Description

set_id oid The OID of the replication set

set_name name Name of the replication set

replicate_insert boolean Indicates if the replication set replicates INSERTs

replicate_update boolean Indicates if the replication set replicates UPDATEs

replicate_delete boolean Indicates if the replication set replicates DELETEs

replicate_truncate boolean Indicates if the replication set replicates TRUNCATEs

set_autoadd_tables boolean Indicates if new tables are automatically added to this replication set

set_autoadd_seqs boolean Indicates if new sequences are automatically added to this replication set

bdr.schema_changes

A simple view to show all the changes to schemas win BDR.

bdr.schema_changes columns

Name Type Description

schema_changes_ts timestampstz The ID of the trigger

schema_changes_change char A flag of change type

schema_changes_classid oid Class ID

schema_changes_objectid oid Object ID

schema_changes_subid smallint The subscription

schema_changes_descr text The object changed

schema_changes_addrnames text[] Location of schema change

bdr.sequence_alloc

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 227

bdr.sequence_alloc

A view to see the allocation details for galloc sequences.

bdr.sequence_alloc columns

Name Type Description

seqid regclass The ID of the sequence

seq_chunk_size bigint A sequence number for the chunk within its value

seq_allocated_up_to bigint

seq_nallocs bigint

seq_last_alloc timestamptz Last sequence allocated

bdr.schema_changes

A simple view to show all the changes to schemas in BDR.

bdr.schema_changes columns

Name Type Description

schema_changes_ts timestampstz The ID of the trigger

schema_changes_change char A flag of change type

schema_changes_classid oid Class ID

schema_changes_objectid oid Object ID

schema_changes_subid smallint The subscription

schema_changes_descr text The object changed

schema_changes_addrnames text[] Location of schema change

bdr.sequence_alloc

A view to see the sequences allocated.

bdr.sequence_alloc columns

Name Type Description

seqid regclass The ID of the sequence

seq_chunk_size bigint A sequence number for the chunk within its value

seq_allocated_up_to bigint

seq_nallocs bigint

seq_last_alloc timestamptz Last sequence allocated

bdr.sequences

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 228

bdr.sequences

This view lists all sequences with their kind, excluding sequences for internal BDR bookkeeping.

bdr.sequences columns

Name Type Description

nspname name Namespace containing the sequence

relname name Name of the sequence

seqkind text Type of the sequence ('local', 'timeshard', 'galloc')

bdr.stat_activity

Dynamic activity for each backend or worker process.

This contains the same information as pg_stat_activity , except wait_event is set correctly when the wait relates to BDR.

bdr.stat_relation

Shows apply statistics for each relation. Contains data only if tracking is enabled with bdr.track_relation_apply and if data was replicated for a
given relation.

lock_acquire_time is updated only if bdr.track_apply_lock_timing is set to on (default: off).

You can reset the stored relation statistics by calling bdr.reset_relation_stats() .

bdr.stat_relation columns

Column Type Description

nspname name Name of the relation's schema

relname name Name of the relation

relid oid OID of the relation

total_time double
precision

Total time spent processing replication for the relation

ninsert bigint Number of inserts replicated for the relation

nupdate bigint Number of updates replicated for the relation

ndelete bigint Number of deletes replicated for the relation

ntruncate bigint Number of truncates replicated for the relation

shared_blks_hit bigint Total number of shared block cache hits for the relation

shared_blks_read bigint Total number of shared blocks read for the relation

shared_blks_dirtied bigint Total number of shared blocks dirtied for the relation

shared_blks_written bigint Total number of shared blocks written for the relation

blk_read_time double
precision

Total time spent reading blocks for the relation, in milliseconds (if track_io_timing is enabled, otherwise
zero)

blk_write_time double
precision

Total time spent writing blocks for the relation, in milliseconds (if track_io_timing is enabled, otherwise
zero)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 229

lock_acquire_time double
precision

Total time spent acquiring locks on the relation, in milliseconds (if bdr.track_apply_lock_timing is
enabled, otherwise zero)

Column Type Description

bdr.stat_subscription

Shows apply statistics for each subscription. Contains data only if tracking is enabled with bdr.track_subscription_apply .

You can reset the stored subscription statistics by calling bdr.reset_subscription_stats() .

bdr.stat_subscription columns

Column Type Description

sub_name name Name of the subscription

subid oid OID of the subscription

nconnect bigint Number of times this subscription has connected upstream

ncommit bigint Number of commits this subscription did

nabort bigint Number of aborts writer did for this subscription

nerror bigint Number of errors writer has hit for this subscription

nskippedtx bigint Number of transactions skipped by writer for this subscription (due to skip_transaction
conflict resolver)

ninsert bigint Number of inserts this subscription did

nupdate bigint Number of updates this subscription did

ndelete bigint Number of deletes this subscription did

ntruncate bigint Number of truncates this subscription did

nddl bigint Number of DDL operations this subscription has executed

ndeadlocks bigint Number of errors that were caused by deadlocks

nretries bigint Number of retries the writer did (without going for full restart/reconnect)

nstream_writer bigint Number of transactions streamed to writer

nstream_file bigint Number of transactions streamed to file

nstream_commit bigint Number of streaming transactions committed

nstream_abort bigint Number of streaming transactions aborted

nstream_start bigint Number of STREAM START messages processed

nstream_stop bigint Number of STREAM STOP messages processed

shared_blks_hit bigint Total number of shared block cache hits by the subscription

shared_blks_read bigint Total number of shared blocks read by the subscription

shared_blks_dirtied bigint Total number of shared blocks dirtied by the subscription

shared_blks_written bigint Total number of shared blocks written by the subscription

blk_read_time double precision Total time the subscription spent reading blocks, in milliseconds (if track_io_timing is
enabled, otherwise zero)

blk_write_time double precision Total time the subscription spent writing blocks, in milliseconds (if track_io_timing is enabled,
otherwise zero)

connect_time timestamp with time
zone

Time when the current upstream connection was established, NULL if not connected

last_disconnect_time timestamp with time
zone

Time when the last upstream connection was dropped

start_lsn pg_lsn LSN from which this subscription requested to start replication from the upstream

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 230

retries_at_same_lsn bigint Number of attempts the subscription was restarted from the same LSN value

curr_ncommit bigint Number of commits this subscription did after the current connection was established

Column Type Description

bdr.subscription

This catalog table lists all the subscriptions owned by the local BDR node and their modes.

bdr.subscription columns

Name Type Description

sub_id oid ID of the subscription

sub_name name Name of the subscription

nodegroup_id oid ID of nodegroup

origin_node_id oid ID of origin node

source_node_id oid ID of source node

target_node_id oid ID of target node

subscription_mode char Mode of subscription

sub_enabled bool Whether the subscription is enabled (should be replication)

apply_delay interval How much behind should the apply of changes on this subscription be (normally
0)

slot_name name Slot on upstream used by this subscription

origin_name name Local origin used by this subscription

num_writers int Number of writer processes this subscription uses

streaming_mode char Streaming configuration for the subscription

replication_sets text[] Replication sets replicated by this subscription (NULL = all)

forward_origin text[] Origins forwarded by this subscription (NULL = all)

bdr.subscription_summary

This view contains summary information about all BDR subscriptions that the local node has to other nodes.

bdr.subscription_summary columns

Name Type Description

node_group_name name Name of the BDR group the node is part of

sub_name name Name of the subscription

origin_name name Name of the origin node

target_name name Name of the target node (normally local node)

sub_enabled bool Is the subscription enabled

sub_slot_name name Slot name on the origin node used by this subscription

sub_replication_sets text[] Replication sets subscribed

sub_forward_origins text[] Does the subscription accept changes forwarded from other nodes besides the origin

sub_apply_delay interval Delay transactions by this much compared to the origin

sub_origin_name name Replication origin name used by this subscription

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 231

bdr_subscription_mode char Subscription mode

subscription_status text Status of the subscription worker

node_group_id oid The OID of the BDR group the node is part of

sub_id oid The OID of the subscription

origin_id oid The OID of the origin node

target_id oid The OID of the target node

receive_lsn pg_lsn Latest LSN of any change or message received (this can go backwards in case of restarts)

receive_commit_lsn pg_lsn Latest LSN of last COMMIT received (this can go backwards in case of restarts)

last_xact_replay_lsn pg_lsn LSN of last transaction replayed on this subscription

last_xact_flush_lsn timestamptz LSN of last transaction replayed on this subscription that's flushed durably to disk

last_xact_replay_timestamp timestamptz Timestamp of last transaction replayed on this subscription

Name Type Description

bdr.replication_status

This view shows incoming replication status between the local node and all other nodes in the EDB Postgres Distributed cluster. We consider replication to
be blocked when the subscription restarted from the same LSN at least twice and not a single transaction is yet applied after the current upstream
connection was established. If the first transaction after restart is very big and still being applied, the replication_blocked result might be wrong.

If this is a logical standby node, then only the status for its upstream node is shown. Similarly, replication status isn't shown for subscriber-only nodes since
they never send replication changes to other nodes.

bdr.replication_status columns

Column Type Description

node_id oid OID of the local node

node_name name Name of the local node

origin_node_id oid OID of the origin node

origin_node_name name Name of the origin node

sub_id oid OID of the subscription for this origin node

sub_name name Name of the subscription for this origin node

connected boolean Is this node connected to the origin node?

replication_blocked boolean Is the replication currently blocked for this origin?

connect_time timestamp with time zone Time when the current connection was established

disconnect_time timestamp with time zone Time when the last connection was dropped

uptime interval Duration since the current connection is active for this origin

bdr.tables

This view lists information about table membership in replication sets. If a table exists in multiple replication sets, it appears multiple times in this table.

bdr.tables columns

Name Type Description

relid oid The OID of the relation

nspname name Name of the schema relation is in

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 232

relname name Name of the relation

set_name name Name of the replication set

set_ops text[] List of replicated operations

rel_columns text[] List of replicated columns (NULL = all columns) (*)

row_filter text Row filtering expression

conflict_detection text Conflict detection method used: row_origin (default), row_version or
column_level

Name Type Description

(*) These columns are reserved for future use and should currently be NULL

bdr.trigger

In this view, you can see all the stream triggers created. Often triggers here are created from bdr.create_conflict_trigger .

bdr.trigger columns

Name Type Description

trigger_id oid The ID of the trigger

trigger_reloid regclass Name of the relating
function

trigger_pgtgid oid Postgres trigger ID

trigger_type char Type of trigger call

trigger_name name Name of the trigger

bdr.triggers

An expanded view of bdr.trigger with columns that are easier to read.

Name Type Description

trigger_name name The name of the trigger

event_manipulation text The operation(s)

trigger_type bdr.trigger_type Type of trigger

trigger_table bdr.trigger_reloid The table that calls it

trigger_function name The function used

bdr.workers

Information about running BDR worker processes.

This can be joined with bdr.stat_activity using pid to get even more insight into the state of BDR workers.

bdr.workers Columns

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 233

bdr.workers Columns

Name Type Description

worker_pid int Process ID of the worker process

worker_role int Numeric representation of worker role

worker_role_name text Name of the worker role

worker_subid oid Subscription ID if the worker is associated with one

worker_commit_timestamp timestamptz Last commit timestamp processed by this worker if any

worker_local_timestamp timestamptz Local time at which the above commit was processed if any

bdr.worker_errors

A persistent log of errors from BDR background worker processes.

bdr.worker_errors Columns

Name Type Description

node_group_name name Name of the BDR group

origin_name name Name of the origin node

source_name name

target_name name Name of the target node (normally local node)

sub_name name Name of the subscription

worker_role int4 Internal identifier of the role of this worker (1: manager, 2: receive, 3: writer, 4: output, 5: extension)

worker_role_name text Role name

worker_pid int4 Process ID of the worker causing the error

error_time timestamptz Date and time of the error

error_age interval Duration since error

error_message text Description of the error

error_context_message text Context in which the error happened

remoterelid oid OID of remote relation on that node

bdr.writers

Specific information about BDR writer processes.

bdr.writers columns

Name Type Description

sub_name name Name of the subscription

pid int Process ID of the worker process

syncing_rel int OID of the relation being synchronized (if any)

streaming_allowed text Can this writer be target of direct to writer streaming

is_streaming bool Is there transaction being streamed to this writer

remote_xid xid Remote transaction id of the transaction being processed (if any)

remote_commit_lsn pg_lsn LSN of last commit processed

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 234

commit_queue_position int Position in the internal commit queue

commit_timestamp timestamptz Timestamp of last commit processed

nxacts bigint Number of transactions processed by this writer

ncommits bigint Number of transactions committed by this writer

naborts bigint Number of transactions aborted by this writer

nstream_file bigint Number of streamed-to-file transactions processed by this writer

nstream_writer bigint Number of streamed-to-writer transactions processed by this writer

Name Type Description

bdr.worker_tasks

The bdr.worker_tasks view shows BDR's current worker launch rate limiting state as well as some basic statistics on background worker launch and
registration activity.

Unlike the other views listed here, it isn't specific to the current database and BDR node. State for all BDR nodes on the current PostgreSQL instance is
shown. Join on the current database to filter it.

bdr.worker_tasks doesn't track walsenders and output plugins.

bdr.worker_tasks columns

Column Type Description

task_key_worker_role integer Worker role identifier

task_key_worker_role_name text Worker role name

task_key_dboid oid Database identifier, if available

datname name Name of the database, if available

task_key_subid oid Subscription identifier, if available

sub_name name Name of the subscription, if available

task_key_ext_libname name Name of the library (most likely bdr)

task_key_ext_funcname name Name of the function entry point

task_key_ext_workername name Name assigned to the worker

task_key_remoterelid oid Identifier of the remote syncing relation, if available

task_pid integer Process ID of the worker

task_registered timestamp with time zone Worker registration timestamp

since_registered interval Interval since the worker registered

task_attached timestamp with time zone Worker attach timestamp

since_attached interval Interval since the worker attached

task_exited timestamp with time zone Worker exit timestamp

since_exited interval Interval since the worker exited

task_success boolean Is worker still running?

task_next_launch_not_before timestamp with time zone Timestamp when the worker will be restarted again

until_launch_allowed interval Time remaining for next launch

task_last_launch_requestor_pid integer Process ID that requested launch

task_last_launch_request_time timestamp with time zone Timestamp when the request was made

since_last_request interval Interval since the last request

task_last_launch_request_approved boolean Did the last request succeed?

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 235

task_nrequests integer Number of requests

task_nregistrations integer Number of registrations

task_prev_pid integer Process ID of the previous generation

task_prev_registered timestamp with time zone Timestamp of the previous registered task

since_prev_registered interval Interval since the previous registration

task_prev_launched timestamp with time zone Timestamp of the previous launch

since_prev_launched interval Interval since the previous launch

task_prev_exited timestamp with time zone Timestamp when the previous task exited

since_prev_exited interval Interval since the previous task exited

task_first_registered timestamp with time zone Timestamp when the first registration happened

since_first_registered interval Interval since the first registration

Column Type Description

bdr.autopartition_work_queue

Contains work items created and processed by autopartition worker. The work items are created on only one node and processed on different nodes.

bdr.autopartition_work_queue columns

Column Type Description

ap_wq_workid bigint The unique ID of the work item

ap_wq_ruleid int ID of the rule listed in autopartition_rules. Rules are specified using bdr.autopartition command

ap_wq_relname name Name of the relation being autopartitioned

ap_wq_relnamespace name Name of the tablespace specified in rule for this work item

ap_wq_partname name Name of the partition created by the workitem

ap_wq_work_kind char The work kind can be either 'c' (Create Partition), 'm' (Migrate Partition), 'd' (Drop Partition), 'a' (Alter
Partition)

ap_wq_work_sql text SQL query for the work item

ap_wq_work_depends Oid[] OIDs of the nodes on which the work item depends

bdr.autopartition_workitem_status

The status of the work items that is updated locally on each node.

bdr.autopartition_workitem_status columns

Column Type Description

ap_wi_workid bigint The ID of the work item

ap_wi_nodeid Oid OID of the node on which the work item is being processed

ap_wi_status char The status can be either 'q' (Queued), 'c' (Complete), 'f' (Failed), 'u' (Unknown)

ap_wi_started_at timestamptz The start timestamptz of work item

ap_wi_finished_at timestamptz The end timestamptz of work item

bdr.autopartition_local_work_queue

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 236

bdr.autopartition_local_work_queue

Contains work items created and processed by autopartition worker. This is similar to bdr.autopartition_work_queue , except that these work
items are for locally managed tables. Each node creates and processes its own local work items, independent of other nodes in the cluster.

bdr.autopartition_local_work_queue columns

Column Type Description

ap_wq_workid bigint The unique ID of the work item

ap_wq_ruleid int ID of the rule listed in autopartition_rules. Rules are specified using bdr.autopartition command

ap_wq_relname name Name of the relation being autopartitioned

ap_wq_relnamespace name Name of the tablespace specified in rule for this work item.

ap_wq_partname name Name of the partition created by the workitem

ap_wq_work_kind char The work kind can be either 'c' (Create Partition), 'm' (Migrate Partition), 'd' (Drop Partition), 'a' (Alter
Partition)

ap_wq_work_sql text SQL query for the work item

ap_wq_work_depends Oid[] Always NULL

bdr.autopartition_local_workitem_status

The status of the work items for locally managed tables.

bdr.autopartition_local_workitem_status columns

Column Type Description

ap_wi_workid bigint The ID of the work item

ap_wi_nodeid Oid OID of the node on which the work item is being processed

ap_wi_status char The status can be either 'q' (Queued), 'c' (Complete), 'f' (Failed), 'u' (Unknown)

ap_wi_started_at timestamptz The start timestamptz of work item

ap_wi_finished_at timestamptz The end timestamptz of work item

bdr.group_camo_details

Uses bdr.run_on_all_nodes to gather CAMO-related information from all nodes.

bdr.group_camo_details columns

Name Type Description

node_id text Internal node ID

node_name text Name of the node

camo_partner text Node name of the camo partner

is_camo_partner_connected text Connection status

is_camo_partner_ready text Readiness status

camo_transactions_resolved text Are there any pending and unresolved CAMO transactions

apply_lsn text Latest position reported as replayed (visible)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 237

receive_lsn text Latest LSN of any change or message received (can go backwards in case of restarts)

apply_queue_size text Bytes difference between apply_lsn and receive_lsn

Name Type Description

bdr.camo_pairs

Information regarding all the CAMO pairs configured in all the cluster.

bdr.camo_pairs columns

Name Type Description

node_group_id oid Node group ID

left_node_id oid Node ID

right_node_id oid Node ID

require_raft bool Whether switching to local mode requires majority

Note

The names left and right have no special meaning. BDR4 can configure only symmetric CAMO configuration, i.e., both nodes in the pair are
CAMO partners for each other.

bdr.commit_scopes

Catalog storing all possible commit scopes that you can use for bdr.commit_scope to enable group commit.

bdr.commit_scopes columns

Name Type Description

commit_scope_id oid ID of the scope to be referenced

commit_scope_name name Name of the scope to be referenced

commit_scope_origin_node_group oid Node group for which the rule applies, referenced by ID

sync_scope_rule text Definition of the scope

bdr.group_raft_details

Uses bdr.run_on_all_nodes to gather Raft Consensus status from all nodes.

bdr.group_raft_details columns

Name Type Description

node_id oid Internal node ID

node_name name Name of the node

state text Raft worker state on the node

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 238

leader_id oid Node id of the RAFT_LEADER

current_term int Raft election internal ID

commit_index int Raft snapshot internal ID

nodes int Number of nodes accessible

voting_nodes int Number of nodes voting

protocol_version int Protocol version for this node

Name Type Description

bdr.group_replslots_details

Uses bdr.run_on_all_nodes to gather BDR slot information from all nodes.

bdr.group_replslots_details columns

Name Type Description

node_group_name text Name of the BDR group

origin_name text Name of the origin node

target_name text Name of the target node

slot_name text Slot name on the origin node used by this subscription

active text Is the slot active (does it have a connection attached to it)

state text State of the replication (catchup, streaming, ...) or 'disconnected' if offline

write_lag interval Approximate lag time for reported write

flush_lag interval Approximate lag time for reported flush

replay_lag interval Approximate lag time for reported replay

sent_lag_bytes int8 Bytes difference between sent_lsn and current WAL write position

write_lag_bytes int8 Bytes difference between write_lsn and current WAL write position

flush_lag_bytes int8 Bytes difference between flush_lsn and current WAL write position

replay_lag_byte int8 Bytes difference between replay_lsn and current WAL write position

bdr.group_subscription_summary

Uses bdr.run_on_all_nodes to gather subscription status from all nodes.

bdr.group_subscription_summary columns

Name Type Description

origin_node_name text Name of the origin of the subscription

target_node_name text Name of the target of the subscription

last_xact_replay_timestamp text Timestamp of the last replayed transaction

sub_lag_seconds text Lag between now and last_xact_replay_timestamp

bdr.group_versions_details

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 239

bdr.group_versions_details

Uses bdr.run_on_all_nodes to gather BDR information from all nodes.

bdr.group_versions_details columns

Name Type Description

node_id oid Internal node ID

node_name name Name of the node

postgres_version text PostgreSQL version on the node

bdr_version text BDR version on the node

Internal catalogs and views

bdr.ddl_epoch

An internal catalog table holding state per DDL epoch.

bdr.ddl_epoch columns

Name Type Description

ddl_epoch int8 Monotonically increasing epoch number

origin_node_id oid Internal node ID of the node that requested creation of this epoch

epoch_consume_timeout timestamptz Timeout of this epoch

epoch_consumed boolean Switches to true as soon as the local node has fully processed the epoch

epoch_consumed_lsn boolean LSN at which the local node has processed the epoch

bdr.internal_node_pre_commit

Internal catalog table. Use the bdr.node_pre_commit view.

bdr.sequence_kind

An internal state table storing the type of each nonlocal sequence. We recommend the view bdr.sequences for diagnostic purposes.

bdr.sequence_kind columns

Name Type Description

seqid oid Internal OID of the sequence

seqkind char Internal sequence kind ('l'=local,'t'=timeshard,'s'=snowflakeid,'g'=galloc)

bdr.state_journal

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 240

bdr.state_journal

An internal node state journal. Use bdr.state_journal_details for diagnostic purposes instead.

bdr.state_journal_details

Every change of node state of each node is logged permanently in bdr.state_journal for diagnostic purposes. This view provides node names and
human-readable state names and carries all of the information in that journal. Once a node has successfully joined, the last state entry is
BDR_PEER_STATE_ACTIVE . This differs from the state of each replication connection listed in bdr.node_slots.state .

bdr.state_journal_details columns

Name Type Description

state_counter oid Monotonically increasing event counter, per node

node_id oid Internal node ID

node_name name Name of the node

state oid Internal state ID

state_name text Human-readable state name

entered_time timestamptz Point in time the current node observed the state change

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 241

6.22 BDR system functions

Perform BDR management primarily by using functions you call from SQL. All functions in BDR are exposed in the bdr schema. Schema qualify any calls
to these functions instead of putting bdr in the search_path .

Version information functions

bdr.bdr_version

This function retrieves the textual representation of the BDR version currently in use.

bdr.bdr_version_num

This function retrieves the BDR version number that is currently in use. Version numbers are monotonically increasing, allowing this value to be used for
less-than and greater-than comparisons.

The following formula returns the version number consisting of major version, minor version, and patch release into a single numerical value:

MAJOR_VERSION * 10000 + MINOR_VERSION * 100 + PATCH_RELEASE

System information functions

bdr.get_relation_stats

Returns the relation information.

bdr.get_subscription_stats

Returns the current subscription statistics.

System and progress information parameters

BDR exposes some parameters that you can query using SHOW in psql or using PQparameterStatus (or equivalent) from a client application.

bdr.local_node_id

When you initialize a session, this is set to the node id the client is connected to. This allows an application to figure out the node it's connected to, even
behind a transparent proxy.

It's also used with Connection pools and proxies.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 242

bdr.last_committed_lsn

After every COMMIT of an asynchronous transaction, this parameter is updated to point to the end of the commit record on the origin node. Combining it
with bdr.wait_for_apply_queue , allows applications to perform causal reads across multiple nodes, that is, to wait until a transaction becomes
remotely visible.

transaction_id

As soon as Postgres assigns a transaction id, if CAMO is enabled, this parameter is updated to show the transaction id just assigned.

bdr.is_node_connected

Synopsis

Returns boolean by checking if the walsender for a given peer is active on this node.

bdr.is_node_ready

Synopsis

Returns boolean by checking if the lag is lower than the given span or lower than the bdr.global_commit_timeout otherwise.

Consensus function

bdr.consensus_disable

Disables the consensus worker on the local node until server restart or until it's reenabled using bdr.consensus_enable (whichever happens first).

Warning

Disabling consensus disables some features of BDR and affects availability of the EDB Postgres Distributed cluster if left disabled for a long time.
Use this function only when working with Technical Support.

bdr.consensus_enable

Reenabled disabled consensus worker on local node.

bdr.consensus_proto_version

Returns currently used consensus protocol version by the local node.

Needed by the BDR group reconfiguration internal mechanisms.

bdr.is_node_connected(node_name name)

bdr.is_node_ready(node_name name, span interval DEFAULT NULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 243

bdr.consensus_snapshot_export

Synopsis

Generate a new BDR consensus snapshot from the currently committed-and-applied state of the local node and return it as bytea.

By default, a snapshot for the highest supported Raft version is exported. But you can override that by passing an explicit version number.

The exporting node doesn't have to be the current Raft leader, and it doesn't need to be completely up to date with the latest state on the leader. However,
bdr.consensus_snapshot_import() might not accept such a snapshot.

The new snapshot isn't automatically stored to the local node's bdr.local_consensus_snapshot table. It's only returned to the caller.

The generated snapshot might be passed to bdr.consensus_snapshot_import() on any other nodes in the same BDR node group that's behind the
exporting node's Raft log position.

The local BDR consensus worker must be disabled for this function to work. Typical usage is:

 SELECT bdr.bdr_consensus_disable();
 \copy (SELECT * FROM bdr.consensus_snapshot_export()) TO 'my_node_consensus_snapshot.data'
 SELECT bdr.bdr_consensus_enable();

While the BDR consensus worker is disabled:

DDL locking attempts on the node fail or time out.
galloc sequences don't get new values.
Eager and CAMO transactions pause or error.
Other functionality that needs the distributed consensus system is disrupted. The required downtime is generally very brief.

Depending on the use case, it might be practical to extract a snapshot that already exists from the snapshot field of the
bdr.local_consensus_snapshot table and use that instead. Doing so doesn't require you to stop the consensus worker.

bdr.consensus_snapshot_import

Synopsis

Import a consensus snapshot that was exported by bdr.consensus_snapshot_export() , usually from another node in the same BDR node group.

It's also possible to use a snapshot extracted directly from the snapshot field of the bdr.local_consensus_snapshot table on another node.

This function is useful for resetting a BDR node's catalog state to a known good state in case of corruption or user error.

You can import the snapshot if the importing node's apply_index is less than or equal to the snapshot-exporting node's commit_index when the
snapshot was generated. (See bdr.get_raft_status() .) A node that can't accept the snapshot because its log is already too far ahead raises an
error and makes no changes. The imported snapshot doesn't have to be completely up to date, as once the snapshot is imported the node fetches the
remaining changes from the current leader.

The BDR consensus worker must be disabled on the importing node for this function to work. See notes on bdr.consensus_snapshot_export()
for details.

bdr.consensus_snapshot_export(version integer DEFAULT NULL)

bdr.consensus_snapshot_import(IN snapshot
bytea)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 244

It's possible to use this function to force the local node to generate a new Raft snapshot by running:

SELECT bdr.consensus_snapshot_import(bdr.consensus_snapshot_export());

This approach might also truncate the Raft logs up to the current applied log position.

bdr.consensus_snapshot_verify

Synopsis

Verify the given consensus snapshot that was exported by bdr.consensus_snapshot_export() . The snapshot header contains the version with
which it was generated and the node tries to verify it against the same version.

The snapshot might have been exported on the same node or any other node in the cluster. If the node verifying the snapshot doesn't support the version of
the exported snapshot, then an error is raised.

bdr.get_consensus_status

Returns status information about the current consensus (Raft) worker.

bdr.get_raft_status

Returns status information about the current consensus (Raft) worker. Alias for bdr.get_consensus_status .

bdr.raft_leadership_transfer

Synopsis

Request the node identified by node_name to be the Raft leader. The request can be initiated from any of the BDR nodes and is internally forwarded to
the current leader to transfer the leadership to the designated node. The designated node must be an ACTIVE BDR node with full voting rights.

If wait_for_completion is false, the request is served on a best-effort basis. If the node can't become a leader in the
bdr.raft_election_timeout period, then some other capable node becomes the leader again. Also, the leadership can change over the period of

time per Raft protocol. A true return result indicates only that the request was submitted successfully.

If wait_for_completion is true , then the function waits until the given node becomes the new leader and possibly waits infinitely if the requested
node fails to become Raft leader (for example, due to network issues). We therefore recommend that you always set a statement_timeout with
wait_for_completion to prevent an infinite loop.

bdr.consensus_snapshot_verify(IN snapshot
bytea)

bdr.raft_leadership_transfer(IN node_name text, IN wait_for_completion
boolean)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 245

Utility functions

bdr.wait_slot_confirm_lsn

Allows you to wait until the last write on this session was replayed to one or all nodes.

Waits until a slot passes a certain LSN. If no position is supplied, the current write position is used on the local node.

If no slot name is passed, it waits until all BDR slots pass the LSN.

The function polls every 1000 ms for changes from other nodes.

If a slot is dropped concurrently, the wait ends for that slot. If a node is currently down and isn't updating its slot, then the wait continues. You might want
to set statement_timeout to complete earlier in that case.

Synopsis

Parameters

slot_name — Name of replication slot or, if NULL, all BDR slots (only).
target_lsn — LSN to wait for or, if NULL, use the current write LSN on the local node.

bdr.wait_for_apply_queue

The function bdr.wait_for_apply_queue allows a BDR node to wait for the local application of certain transactions originating from a given BDR
node. It returns only after all transactions from that peer node are applied locally. An application or a proxy can use this function to prevent stale reads.

For convenience, BDR provides a variant of this function for CAMO and the CAMO partner node. See bdr.wait_for_camo_partner_queue.

In case a specific LSN is given, that's the point in the recovery stream from which the peer waits. You can use this with bdr.last_committed_lsn
retrieved from that peer node on a previous or concurrent connection.

If the given target_lsn is NULL, this function checks the local receive buffer and uses the LSN of the last transaction received from the given peer
node, effectively waiting for all transactions already received to be applied. This is especially useful in case the peer node has failed and it's not known
which transactions were sent. In this case, transactions that are still in transit or buffered on the sender side aren't waited for.

Synopsis

Parameters

peer_node_name — The name of the peer node from which incoming transactions are expected to be queued and to wait for. If NULL, waits for all
peer node's apply queue to be consumed.
target_lsn — The LSN in the replication stream from the peer node to wait for, usually learned by way of bdr.last_committed_lsn from

the peer node.

bdr.wait_slot_confirm_lsn(slot_name text DEFAULT NULL, target_lsn pg_lsn DEFAULT
NULL)

bdr.wait_for_apply_queue(peer_node_name TEXT, target_lsn pg_lsn)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 246

bdr.get_node_sub_receive_lsn

You can use this function on a subscriber to get the last LSN that was received from the given origin. It can be either unfiltered or filtered to take into
account only relevant LSN increments for transactions to be applied.

The difference between the output of this function and the output of bdr.get_node_sub_apply_lsn() measures the size of the corresponding
apply queue.

Synopsis

Parameters

node_name — The name of the node that's the source of the replication stream whose LSN is being retrieved.
committed —; The default (true) makes this function take into account only commits of transactions received rather than the last LSN overall.

This includes actions that have no effect on the subscriber node.

bdr.get_node_sub_apply_lsn

You can use this function on a subscriber to get the last LSN that was received and applied from the given origin.

Synopsis

Parameters

node_name — the name of the node that's the source of the replication stream whose LSN is being retrieved.

bdr.run_on_all_nodes

Function to run a query on all nodes.

Warning

This function runs an arbitrary query on a remote node with the privileges of the user used for the internode connections as specified in the
node's DSN. Use caution when granting privileges to this function.

Synopsis

bdr.get_node_sub_receive_lsn(node_name name, committed bool default true)

bdr.get_node_sub_apply_lsn(node_name name)

bdr.run_on_all_nodes(query text)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 247

Parameters

query — Arbitrary query to execute.

Notes

This function connects to other nodes and executes the query, returning a result from each of them in JSON format. Multiple rows might be returned from
each node, encoded as a JSON array. Any errors, such as being unable to connect because a node is down, are shown in the response field. No explicit
statement_timeout or other runtime parameters are set, so defaults are used.

This function doesn't go through normal replication. It uses direct client connection to all known nodes. By default, the connection is created with
bdr.ddl_replication = off , since the commands are already being sent to all of the nodes in the cluster.

Be careful when using this function since you risk breaking replication and causing inconsistencies between nodes. Use either transparent DDL replication
or bdr.replicate_ddl_command() to replicate DDL. DDL might be blocked in a future release.

Example

It's useful to use this function in monitoring, for example, as in the following query:

This query returns something like this on a two-node cluster:

SELECT bdr.run_on_all_nodes($$
 SELECT local_slot_name, origin_name, target_name,
replay_lag_size
 FROM
bdr.node_slots
 WHERE origin_name IS NOT
NULL
$$);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 248

[
 {
 "dsn": "host=node1 port=5432 dbname=bdrdb user=postgres ",
 "node_id": "2232128708",
 "response": {
 "command_status": "SELECT 1",
 "command_tuples": [
 {
 "origin_name": "node1",
 "target_name": "node2",
 "local_slot_name": "bdr_bdrdb_bdrgroup_node2",
 "replay_lag_size": "0 bytes"
 }
]
 },
 "node_name": "node1"
 },
 {
 "dsn": "host=node2 port=5432 dbname=bdrdb user=postgres ",
 "node_id": "2058684375",
 "response": {
 "command_status": "SELECT 1",
 "command_tuples": [
 {
 "origin_name": "node2",
 "target_name": "node1",
 "local_slot_name": "bdr_bdrdb_bdrgroup_node1",
 "replay_lag_size": "0 bytes"
 }
]
 },
 "node_name": "node2"
 }
]

bdr.run_on_nodes

Function to run a query on a specified list of nodes.

Warning

This function runs an arbitrary query on remote nodes with the privileges of the user used for the internode connections as specified in the node's
DSN. Use caution when granting privileges to this function.

Synopsis

bdr.run_on_nodes(node_names text[], query text)

Parameters

node_names — Text ARRAY of node names where query is executed.
query — Arbitrary query to execute.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 249

Notes

This function connects to other nodes and executes the query, returning a result from each of them in JSON format. Multiple rows can be returned from
each node, encoded as a JSON array. Any errors, such as being unable to connect because a node is down, are shown in the response field. No explicit
statement_timeout or other runtime parameters are set, so defaults are used.

This function doesn't go through normal replication. It uses direct client connection to all known nodes. By default, the connection is created with
bdr.ddl_replication = off , since the commands are already being sent to all of the nodes in the cluster.

Be careful when using this function since you risk breaking replication and causing inconsistencies between nodes. Use either transparent DDL replication
or bdr.replicate_ddl_command() to replicate DDL. DDL might be blocked in a future release.

bdr.run_on_group

Function to run a query on a group of nodes.

Warning

This function runs an arbitrary query on remote nodes with the privileges of the user used for the internode connections as specified in the node's
DSN. Use caution when granting privileges to this function.

Synopsis

bdr.run_on_group(node_group_name text, query text)

Parameters

node_group_name — Name of node group where query is executed.
query — Arbitrary query to execute.

Notes

This function connects to other nodes and executes the query, returning a result from each of them in JSON format. Multiple rows can be returned from
each node, encoded as a JSON array. Any errors, such as being unable to connect because a node is down, are shown in the response field. No explicit
statement_timeout or other runtime parameters are set, so defaults are used.

This function doesn't go through normal replication. It uses direct client connection to all known nodes. By default, the connection is created with
bdr.ddl_replication = off , since the commands are already being sent to all of the nodes in the cluster.

Be careful when using this function since you risk breaking replication and causing inconsistencies between nodes. Use either transparent DDL replication
or bdr.replicate_ddl_command() to replicate DDL. DDL might be blocked in a future release.

bdr.global_lock_table

This function acquires a global DML locks on a given table. See DDL locking details for information about global DML lock.

Synopsis

bdr.global_lock_table(relation regclass)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 250

Parameters

relation — Name or oid of the relation to lock.

Notes

This function acquires the global DML lock independently of the ddl_locking setting.

The bdr.global_lock_table function requires UPDATE , DELETE , or TRUNCATE privilege on the locked relation unless
bdr.backwards_compatibility is set to 30618 or lower.

bdr.wait_for_xid_progress

You can use this function to wait for the given transaction (identified by its XID) originated at the given node (identified by its node id) to make enough
progress on the cluster. The progress is defined as the transaction being applied on a node and this node having seen all other replication changes done
before the transaction is applied.

Synopsis

Parameters

origin_node_id — Node id of the node where the transaction originated.

origin_topxid — XID of the transaction.

allnodes — If true then wait for the transaction to progress on all nodes. Otherwise wait only for the current node.

Notes

You can use the function only for those transactions that replicated a DDL command because only those transactions are tracked currently. If a wrong
origin_node_id or origin_topxid is supplied, the function might wait forever or until statement_timeout occurs.

bdr.local_group_slot_name

Returns the name of the group slot on the local node.

Example

bdr.wait_for_xid_progress(origin_node_id oid, origin_topxid int4, allnodes boolean DEFAULT
true)

bdrdb=# SELECT bdr.local_group_slot_name();

local_group_slot_name

 bdr_bdrdb_bdrgroup

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 251

bdr.node_group_type

Returns the type of the given node group. Returned value is the same as what was passed to bdr.create_node_group() when the node group was
created, except normal is returned if the node_group_type was passed as NULL when the group was created.

Example

Global advisory locks

BDR supports global advisory locks. These locks are similar to the advisory locks available in PostgreSQL except that the advisory locks supported by BDR
are global. They follow semantics similar to DDL locks. So an advisory lock is obtained by majority consensus and can be used even if one or more nodes are
down or lagging behind, as long as a majority of all nodes can work together.

Currently only EXCLUSIVE locks are supported. So if another node or another backend on the same node has already acquired the advisory lock on the
object, then other nodes or backends must wait for the lock to be released.

Advisory lock is transactional in nature. So the lock is automatically released when the transaction ends unless it's explicitly released before the end of the
transaction. In this case, it becomes available as soon as it's released. Session-level advisory locks aren't currently supported.

Global advisory locks are reentrant. So if the same resource is locked three times, you must then unlock it three times for it to be released for use in other
sessions.

bdr.global_advisory_lock

This function acquires an EXCLUSIVE lock on the provided object. If the lock isn't available, then it waits until the lock becomes available or the
bdr.global_lock_timeout is reached.

Synopsis

parameters

key — The object on which an advisory lock is acquired.

Synopsis

bdrdb=# SELECT bdr.node_group_type('bdrgroup');
 node_group_type

 normal

bdr.global_advisory_lock(key bigint)

bdr.global_advisory_lock(key1 integer, key2 integer)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 252

parameters

key1 — First part of the composite key.
key2 — second part of the composite key.

bdr.global_advisory_unlock

This function releases a previously acquired lock on the application-defined source. The lock must have been obtained in the same transaction by the
application. Otherwise, an error is raised.

Synopsis

Parameters

key — The object on which an advisory lock is acquired.

Synopsis

Parameters

key1 — First part of the composite key.
key2 — Second part of the composite key.

Monitoring functions

bdr.monitor_group_versions

To provide a cluster-wide version check, this function uses BDR version information returned from the view bdr.group_version_details .

Synopsis

Notes

This function returns a record with fields status and message , as explained in Monitoring.

This function calls bdr.run_on_all_nodes() .

bdr.global_advisory_unlock(key bigint)

bdr.global_advisory_unlock(key1 integer, key2 integer)

bdr.monitor_group_versions()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 253

bdr.monitor_group_raft

To provide a cluster-wide Raft check, this function uses BDR Raft information returned from the view bdr.group_raft_details .

Synopsis

Notes

This function returns a record with fields status and message , as explained in Monitoring.

This function calls bdr.run_on_all_nodes() .

bdr.monitor_local_replslots

This function uses replication slot status information returned from the view pg_replication_slots (slot active or inactive) to provide a local check
considering all replication slots except the BDR group slots.

Synopsis

Notes

This function returns a record with fields status and message , as explained in Monitoring replication slots.

bdr.wal_sender_stats

If the decoding worker is enabled, this function shows information about the decoder slot and current LCR (logical change record) segment file being read
by each WAL sender.

Synopsis

Output columns

pid — PID of the WAL sender (corresponds to pg_stat_replication 's pid column).

is_using_lcr — Whether the WAL sender is sending LCR files. The next columns are NULL if is_using_lcr is FALSE .

decoder_slot_name — The name of the decoder replication slot.

lcr_file_name — The name of the current LCR file.

bdr.monitor_group_raft()

bdr.monitor_local_replslots()

bdr.wal_sender_stats()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 254

bdr.get_decoding_worker_stat

If the decoding worker is enabled, this function shows information about the state of the decoding worker associated with the current database. This also
provides more granular information about decoding worker progress than is available via pg_replication_slots .

Synopsis

Output columns

pid — The PID of the decoding worker (corresponds to the column active_pid in pg_replication_slots).

decoded_upto_lsn — LSN up to which the decoding worker read transactional logs.

waiting — Whether the decoding worker is waiting for new WAL.

waiting_for_lsn — The LSN of the next expected WAL.

Notes

For further details, see Monitoring WAL senders using LCR.

bdr.lag_control

If lag control is enabled, this function shows information about the commit delay and number of nodes conforming to their configured lag measure for the
local node and current database.

Synopsis

Output columns

commit_delay — Current runtime commit delay, in fractional milliseconds.

commit_delay_maximum — Configured maximum commit delay, in fractional milliseconds.

commit_delay_adjustment — Change to runtime commit delay possible during a sample interval, in fractional milliseconds.

conforming_nodes — Current runtime number of nodes conforming to lag measures.

conforming_nodes_minimum — Configured minimum number of nodes required to conform to lag measures, below which a commit delay
adjustment is applied.

lag_bytes_threshold — Lag size at which a commit delay is applied, in kilobytes.

lag_bytes_maximum — Configured maximum lag size, in kilobytes.

lag_time_threshold — Lag time at which a commit delay is applied, in milliseconds.

bdr.get_decoding_worker_stat()

bdr.lag_control()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 255

lag_time_threshold — Lag time at which a commit delay is applied, in milliseconds.

lag_time_maximum — Configured maximum lag time, in milliseconds.

sample_interval — Configured minimum time between lag samples and possible commit delay adjustments, in milliseconds.

Internal functions

BDR message payload functions

bdr.decode_message_response_payload and bdr.decode_message_payload

These functions decode the consensus payloads to a more human-readable output.

Used primarily by the bdr.global_consensus_journal_details debug view.

bdr.get_global_locks

This function shows information about global locks held on the local node.

Used to implement the bdr.global_locks view to provide a more detailed overview of the locks.

bdr.get_slot_flush_timestamp

Retrieves the timestamp of the last flush position confirmation for a given replication slot.

Used internally to implement the bdr.node_slots view.

BDR internal function replication functions

bdr.internal_alter_sequence_set_kind , internal_replication_set_add_table ,
internal_replication_set_remove_table

Functions used internally for replication of the various function calls.

No longer used by the current version of BDR. Exists only for backward compatibility during rolling upgrades.

bdr.internal_submit_join_request

Submits a consensus request for joining a new node.

Needed by the BDR group reconfiguration internal mechanisms.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 256

bdr.isolation_test_session_is_blocked

A helper function, extending (and actually invoking) the original pg_isolation_test_session_is_blocked with an added check for blocks on
global locks.

Used for isolation/concurrency tests.

bdr.local_node_info

This function displays information for the local node, needed by the BDR group reconfiguration internal mechanisms.

The view bdr.local_node_summary provides similar information useful for user consumption.

bdr.msgb_connect

Function for connecting to the connection pooler of another node, used by the consensus protocol.

bdr.msgb_deliver_message

Function for sending messages to another node's connection pooler, used by the consensus protocol.

bdr.peer_state_name

This function transforms the node state (node_state) into a textual representation and is used mainly to implement the bdr.node_summary view.

bdr.request_replay_progress_update

Requests the immediate writing of a 'replay progress update' Raft message. It's used mainly for test purposes but can be also used to test if the consensus
mechanism is working.

bdr.seq_nextval

Internal implementation of sequence increments.

Use this function instead of standard nextval in queries that interact with BDR global sequences.

Notes

The following are also internal BDR sequence manipulation functions. bdr.seq_currval and bdr.seq_lastval are used automatically.

bdr.show_subscription_status

Retrieves information about the subscription status and is used mainly to implement the bdr.subscription_summary view.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 257

bdr.get_node_conflict_resolvers

Displays a text string of all the conflict resolvers on the local node.

bdr.reset_subscription_stats

Returns a Boolean result after resetting the statistics created by subscriptions, as viewed by bdr.stat_subscription .

bdr.reset_relation_stats

Returns a Boolean result after resetting the relation stats, as viewed by bdr.stat_relation .

bdr.pg_xact_origin

Returns origin id of a given transaction.

Synopsis

Parameters

xid — Transaction id whose origin is returned,

bdr.difference_fix_origin_create

Creates a replication origin with a given name passed as an argument but adding a bdr_ prefix. It returns the internal id of the origin. This performs the
same functionality as pg_replication_origin_create() , except this requires bdr_superuser rather than postgres superuser permissions.

Synopsis

bdr.difference_fix_session_setup

Marks the current session as replaying from the current origin. The function uses the pre-created bdr_local_only_origin local replication origin
implicitly for the session. It allows replay progress to be reported and returns void. This function performs the same functionality as
pg_replication_origin_session_setup() except that this function requires bdr_superuser rather than postgres superuser permissions. The

earlier form of the function, bdr.difference_fix_session_setup(text) , was deprecated and will be removed in upcoming releases.

Synopsis

bdr.pg_xact_origin(xmin xid)

bdr.difference_fix_session_setup()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 258

bdr.difference_fix_session_reset

Marks the current session as not replaying from any origin, essentially resetting the effect of bdr.difference_fix_session_setup() . It returns
void. This function has the same functionality as pg_replication_origin_session_reset() except this function requires bdr_superuser rather
than postgres superuser permissions.

Synopsis

bdr.difference_fix_xact_set_avoid_conflict

Marks the current transaction as replaying a transaction that committed at LSN '0/0' and timestamp '2000-01-01'. This function has the same functionality
as pg_replication_origin_xact_setup('0/0', '2000-01-01') except this requires bdr_superuser rather than postgres superuser
permissions.

Synopsis

bdr.resynchronize_table_from_node(node_name name, relation regclass)

Resynchronizes the relation from a remote node.

Synopsis

Parameters

node_name — The node from which to copy or resync the relation data.
relation — The relation to copy from the remote node.

Notes

This function acquires a global DML lock on the relation, truncates the relation locally, and copies data into it from the remote node.

The relation must exist on both nodes with the same name and definition.

The following are supported:

Resynchronizing partitioned tables with identical partition definitions
Resynchronizing partitioned table to nonpartitioned table and vice versa
Resynchronizing referenced tables by temporarily dropping and recreating foreign key constraints

After running the function on a referenced table, if the referenced column data no longer matches the referencing column values, it throws an error. After
resynchronizing the referencing table data, rerun the function.

bdr.difference_fix_session_reset()

bdr.difference_fix_xact_set_avoid_conflict()

bdr.resynchronize_table_from_node(node_name name, relation
regclass)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 259

Furthermore, it supports resynchronization of tables with generated columns by computing the generated column values locally after copying the data from
remote node.

Currently, row_filters are ignored by this function.

The bdr.resynchronize_table_from_node function can be executed only by the owner of the table, provided the owner has bdr_superuser
privileges.

bdr.consensus_kv_store

Stores value in the consistent KV Store.

Returns timestamp of the value expiration time. This depends on ttl . If ttl is NULL , then this returns infinity . If the value was deleted, it returns
-infinity .

Synopsis

Parameters

key — An arbitrary unique key to insert, update, or delete.
value — JSON value to store. If NULL, any existing record is deleted.
prev_value — If set, the write operation is done only if the current value is equal to prev_value .
ttl — Time to live of the new value, in milliseconds.

Notes

This is an internal function, mainly used by HARP.

Warning

Don't use this function in user applications.

bdr.consensus_kv_fetch

Fetch value from the consistent KV Store in JSON format.

Synopsis

bdr.consensus_kv_store(key text, value
jsonb,
 prev_value jsonb DEFAULT NULL, ttl int DEFAULT
NULL)

bdr.consensus_kv_fetch(IN key text) RETURNS jsonb

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 260

Parameters

key — An arbitrary key to fetch.

Notes

This is an internal function, mainly used by HARP.

Warning

Don't use this function in user applications.

bdr.alter_subscription_skip_changes_upto

Because logical replication can replicate across versions, doesn't replicate global changes like roles, and can replicate selectively, sometimes the logical
replication apply process can encounter an error and stop applying changes.

Wherever possible, fix such problems by making changes to the target side. CREATE any missing table that's blocking replication, CREATE a needed
role, GRANT a necessary permission, and so on. But occasionally a problem can't be fixed that way and it might be necessary to skip entirely over a
transaction. Changes are skipped as entire transactions—all or nothing. To decide where to skip to, use log output to find the commit LSN, per the example
that follows, or peek the change stream with the logical decoding functions.

Unless a transaction made only one change, you often need to manually apply the transaction's effects on the target side, so it's important to save the
problem transaction whenever possible, as shown in the examples that follow.

It's possible to skip over changes without bdr.alter_subscription_skip_changes_upto by using
pg_catalog.pg_logical_slot_get_binary_changes to skip to the LSN of interest, so this is a convenience function. It does do a faster skip,

although it might bypass some kinds of errors in logical decoding.

This function works only on disabled subscriptions.

The usual sequence of steps is:

1. Identify the problem subscription and LSN of the problem commit.
2. Disable the subscription.
3. Save a copy of the transaction using pg_catalog.pg_logical_slot_peek_changes on the source node, if possible.
4. bdr.alter_subscription_skip_changes_upto on the target node.
5. Apply repaired or equivalent changes on the target manually, if necessary.
6. Reenable the subscription.

Warning

It's easy to make problems worse when using this function. Don't do anything unless you're certain it's the only option.

Synopsis

 bdr.alter_subscription_skip_changes_upto(
 subname text,
 skip_upto_and_including
pg_lsn
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 261

Example

Apply of a transaction is failing with an error, and you've determined that lower-impact fixes such as changes on the target side can't resolve this issue. You
determine that you must skip the transaction.

In the error logs, find the commit record LSN to skip to, as in this example:

ERROR: XX000: CONFLICT: target_table_missing; resolver skip_if_recently_dropped returned an error: table
does not exist
CONTEXT: during apply of INSERT from remote relation public.break_me in xact with commit-end lsn 0/300AC18
xid 131315
committs 2021-02-02 15:11:03.913792+01 (action #2) (effective sess origin id=2 lsn=0/300AC18)
while consuming 'I' message from receiver for subscription bdr_regression_bdrgroup_node1_node2
(id=2667578509)
on node node2 (id=3367056606) from upstream node node1 (id=1148549230, reporiginid=2)

In this portion of log, you have the information you need: the_target_lsn: 0/300AC18 the_subscription: bdr_regression_bdrgroup_node1_node2

Next, disable the subscription so the apply worker doesn't try to connect to the replication slot:

You can't skip only parts of the transaction: it's all or nothing. So we strongly recommend that you save a record of it by copying it out on the provider side
first, using the subscription's slot name.

This example is broken into multiple lines for readability, but issue it in a single line. \copy doesn't support multi-line commands.

You can skip the change by changing peek to get , but bdr....skip_changes_upto does a faster skip that avoids decoding and outputting all
the data:

You can apply the same changes (or repaired versions of them) manually to the target node, using the dumped transaction contents as a guide.

Finally, reenable the subscription:

 SELECT
bdr.alter_subscription_disable('the_subscription');

 \\copy (SELECT * FROM
pg_catalog.pg_logical_slot_peek_changes('the_slot_name',
 'the_target_lsn', NULL, 'min_proto_version', '1', 'max_proto_version', '1',
 'startup_params_format', '1', 'proto_format', 'json'))
 TO 'transaction_to_drop.csv' WITH (FORMAT csv);

 SELECT bdr.alter_subscription_skip_changes_upto('subscription_name',
 'the_target_lsn');

 SELECT bdr.alter_subscription_enable('the_subscription');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 262

7 High Availability Routing for Postgres (HARP)

High Availability Routing for Postgres (HARP) is a new approach for managing high availabiliity for EDB Postgres Distributed clusters versions 3.6 or later.
All application traffic within a single location (data center or region) is routed to only one BDR node at a time in a semi-exclusive manner. This node,
designated the lead master, acts as the principal write target to reduce the potential for data conflicts.

HARP leverages a distributed consensus model to determine availability of the BDR nodes in the cluster. On failure or unavailability of the lead master,
HARP elects a new lead master and redirects application traffic.

Together with the core capabilities of the BDR extension, this mechanism of routing application traffic to the lead master node enables fast failover and
switchover without risk of data loss.

The importance of quorum

The central purpose of HARP is to enforce full quorum on any EDB Postgres Distributed cluster it manages. Quorum is a term applied to a voting body that
mandates a certain minimum of attendees are available to make a decision. More simply: majority rules.

For any vote to end in a result other than a tie, an odd number of nodes must constitute the full cluster membership. Quorum, however, doesn't strictly
demand this restriction; a simple majority is enough. This means that in a cluster of N nodes, quorum requires a minimum of N/2+1 nodes to hold a
meaningful vote.

All of this ensures the cluster is always in agreement regarding the node that is "in charge." For a EDB Postgres Distributed cluster consisting of multiple
nodes, this determines the node that is the primary write target. HARP designates this node as the lead master.

Reducing write targets

The consequence of ignoring the concept of quorum, or not applying it well enough, can lead to a "split brain" scenario where the "correct" write target is
ambiguous or unknowable. In a standard EDB Postgres Distributed cluster, it's important that only a single node is ever writable and sending replication
traffic to the remaining nodes.

Even in multi-master-capable approaches such as BDR, it can be helpful to reduce the amount of necessary conflict management to derive identical data
across the cluster. In clusters that consist of multiple BDR nodes per physical location or region, this usually means a single BDR node acts as a "leader"
and remaining nodes are "shadow". These shadow nodes are still writable, but writing to them is discouraged unless absolutely necessary.

By leveraging quorum, it's possible for all nodes to agree on the exact Postgres node to represent the entire cluster or a local BDR region. Any nodes that
lose contact with the remainder of the quorum, or are overruled by it, by definition can't become the cluster leader.

This restriction prevents split-brain situations where writes unintentionally reach two Postgres nodes. Unlike technologies such as VPNs, proxies, load
balancers, or DNS, you can't circumvent a quorum-derived consensus by misconfiguration or network partitions. So long as it's possible to contact the
consensus layer to determine the state of the quorum maintained by HARP, only one target is ever valid.

Basic architecture

The design of HARP comes in essentially two parts, consisting of a manager and a proxy. The following diagram describes how these interact with a single
Postgres instance:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 263

The consensus layer is an external entity where HARP Manager maintains information it learns about its assigned Postgres node, and HARP Proxy
translates this information to a valid Postgres node target. Because HARP Proxy obtains the node target from the consensus layer, several such instances
can exist independently.

While using BDR as the consensus layer, each server node resembles this variant instead:

In either case, each unit consists of the following elements:

A Postgres instance
A consensus layer resource, meant to track various attributes of the Postgres instance
A HARP Manager process to convey the state of the Postgres node to the consensus layer
A HARP Proxy service that directs traffic to the proper lead master node, as derived from the consensus layer

Not every application stack has access to additional node resources specifically for the Proxy component, so it can be combined with the application server
to simplify the stack.

This is a typical design using two BDR nodes in a single data center organized in a lead master/shadow master configuration:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 264

When using BDR as the HARP consensus layer, at least three fully qualified BDR nodes must be present to ensure a quorum majority. (Not shown in the
diagram are connections between BDR nodes.)

How it works

When managing an EDB Postgres Distributed cluster, HARP maintains at most one leader node per defined location. This is referred to as the lead master.
Other BDR nodes that are eligible to take this position are in shadow master state until they take the leader role.

Applications can contact the current leader only through the proxy service. Since the consensus layer requires quorum agreement before conveying leader
state, proxy services direct traffic to that node.

At a high level, this mechanism prevents simultaneous application interaction with multiple nodes.

Determining a leader

As an example, consider the role of lead master in a locally subdivided BDR Always On group as can exist in a single data center. When any Postgres or
Manager resource is started, and after a configurable refresh interval, the following must occur:

1. The Manager checks the status of its assigned Postgres resource.
If Postgres isn't running, try again after configurable timeout.
If Postgres is running, continue.

2. The Manager checks the status of the leader lease in the consensus layer.
If the lease is unclaimed, acquire it and assign the identity of the Postgres instance assigned to this manager. This lease duration is
configurable, but setting it too low can result in unexpected leadership transitions.
If the lease is already claimed by us, renew the lease TTL.
Otherwise do nothing.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 265

A lot more occurs, but this simplified version explains what's happening. The leader lease can be held by only one node, and if it's held elsewhere, HARP
Manager gives up and tries again later.

Note

Depending on the chosen consensus layer, rather than repeatedly looping to check the status of the leader lease, HARP subscribes to
notifications. In this case, it can respond immediately any time the state of the lease changes rather than polling. Currently this functionality is
restricted to the etcd consensus layer.

This means HARP itself doesn't hold elections or manage quorum, which is delegated to the consensus layer. A quorum of the consensus layer must
acknowledge the act of obtaining the lease, so if the request succeeds, that node leads the cluster in that location.

Connection routing

Once the role of the lead master is established, connections are handled with a similar deterministic result as reflected by HARP Proxy. Consider a case
where HARP Proxy needs to determine the connection target for a particular backend resource:

1. HARP Proxy interrogates the consensus layer for the current lead master in its configured location.
2. If this is unset or in transition:

New client connections to Postgres are barred, but clients accumulate and are in a paused state until a lead master appears.
Existing client connections are allowed to complete current transactions and are then reverted to a similar pending state as new connections.

3. Client connections are forwarded to the lead master.

The interplay shown in this case doesn't require any interaction with either HARP Manager or Postgres. The consensus layer is the source of all truth from
the proxy's perspective.

Colocation

The arrangement of the work units is such that their organization must follow these principles:

1. The manager and Postgres units must exist concomitantly in the same node.
2. The contents of the consensus layer dictate the prescriptive role of all operational work units.

This arrangement delegates cluster quorum responsibilities to the consensus layer, while HARP leverages it for critical role assignments and key/value
storage. Neither storage nor retrieval succeeds if the consensus layer is inoperable or unreachable, thus preventing rogue Postgres nodes from accepting
connections.

As a result, the consensus layer generally exists outside of HARP or HARP-managed nodes for maximum safety. Our reference diagrams show this
separation, although it isn't required.

Note

To operate and manage cluster state, BDR contains its own implementation of the Raft Consensus model. You can configure HARP to leverage
this same layer to reduce reliance on external dependencies and to preserve server resources. However, certain drawbacks to this approach are
discussed in Consensus layer.

Recommended architecture and use

HARP was primarily designed to represent a BDR Always On architecture that resides in two or more data centers and consists of at least five BDR nodes.
This configuration doesn't count any logical standby nodes.

The following diagram shows the current and standard representation:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 266

In this diagram, HARP Manager exists on BDR Nodes 1-4. The initial state of the cluster is that BDR Node 1 is the lead master of DC A, and BDR Node 3 is
the lead master of DC B.

This configuration results in any HARP Proxy resource in DC A connecting to BDR Node 1 and the HARP Proxy resource in DC B connecting to BDR Node 3.

Note

While this diagram shows only a single HARP Proxy per DC, this is an example only and should not be considered a single point of failure. Any
number of HARP Proxy nodes can exist, and they all direct application traffic to the same node.

Location configuration

For multiple BDR nodes to be eligible to take the lead master lock in a location, you must define a location in the config.yml configuration file.

To reproduce the BDR Always On reference architecture shown in the diagram, include these lines in the config.yml configuration for BDR Nodes 1
and 2:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 267

For BDR Nodes 3 and 4, add:

This applies to any HARP Proxy nodes that are designated in those respective data centers as well.

Health check

HARP provides the following HTTP(S) health check API endpoints. These APIs are GET requests and don't require a request body. See Configurations for
more details about enabling and configuring this feature.

GET /health/is-ready
GET /health/is-live

Readiness

Readiness endpoint is available only for harp-proxy . On receiving a valid 'GET' request, the proxy checks if it can successfully route connections to
the current write leader. If the check returns successfully, then the API gives a response with a body containing true and a HTTP status code 200
(OK) . Otherwise, it returns a body containing false with the HTTP status code 500 (Internal Server Error) .

Liveness

Liveness checks return either true with HTTP status code 200 (OK) or an error. They never return false because the HTTP server listening for
requests is stopped if the corresponding HARP service fails to start or exits. This API endpoint is available for harp-manager and harp-proxy
services.

location:
dca

location:
dcb

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 268

7.1 Installation

A standard installation of HARP includes two system services:

HARP Manager (harp-manager) on the node being managed
HARP Proxy (harp-proxy) elsewhere

There are two ways to install and configure these services to manage Postgres for proper quorum-based connection routing.

Software versions

HARP has dependencies on external software. These must fit a minimum version as listed here.

Software Min version

etcd 3.4

TPAExec

The easiest way to install and configure HARP is to use the EDB TPAexec utility for cluster deployment and management. For details on this software, see
the TPAexec product page.

Note

TPAExec is currently available only through an EULA specifically dedicated to EDB Postgres Distributed cluster deployments. If you can't access
the TPAExec URL, contact your sales or account representative.

Configure TPAexec to recognize that cluster routing is managed through HARP by ensuring the TPA config.yml file contains these attributes:

Note

Versions of TPAexec earlier than 21.1 require a slightly different approach:

After this, install HARP by invoking the tpaexec commands for making cluster modifications:

No other modifications are necessary apart from cluster-specific considerations.

cluster_vars:
 failover_manager: harp

cluster_vars:
 enable_harp: true

tpaexec provision ${CLUSTER_DIR}
tpaexec deploy
${CLUSTER_DIR}

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 269

Package installation

Currently CentOS/RHEL packages are provided by the EDB packaging infrastructure. For details, see the HARP product page.

etcd packages

Currently etcd packages for many popular Linux distributions aren't available by their standard public repositories. EDB has therefore packaged etcd
for RHEL and CentOS versions 7 and 8, Debian, and variants such as Ubuntu LTS. You need access to our HARP package repository to use these libraries.

Consensus layer

HARP requires a distributed consensus layer to operate. Currently this must be either bdr or etcd . If using fewer than three BDR nodes, you might need
to rely on etcd . Otherwise any BDR service outage reduces the consensus layer to a single node and thus prevents node consensus and disables Postgres
routing.

etcd

If you're using etcd as the consensus layer, etcd must be installed either directly on the Postgres nodes or in a separate location they can access.

To set etcd as the consensus layer, include this code in the HARP config.yml configuration file:

When using TPAExec, all configured etcd endpoints are entered here automatically.

BDR

The bdr native consensus layer is available from BDR 3.6.21 and 3.7.3. This consensus layer model requires no supplementary software when managing
routing for a EDB Postgres Distributed cluster.

To ensure quorum is possible in the cluster, always use more than two nodes so that BDR's consensus layer remains responsive during node maintenance or
outages.

To set BDR as the consensus layer, include this in the config.yml configuration file:

The endpoints for a BDR consensus layer follow the standard Postgres DSN connection format.

dcs:
 driver: etcd
 endpoints:
 - host1:2379
 - host2:2379
 - host3:2379

dcs:
 driver:
bdr
 endpoints:
 - host=host1 dbname=bdrdb
user=harp_user
 - host=host2 dbname=bdrdb
user=harp_user
 - host=host3 dbname=bdrdb
user=harp_user

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 270

7.2 Configuring HARP for cluster management

The HARP configuration file follows a standard YAML-style formatting that was simplified for readability. This file is located in the /etc/harp directory
by default and is named config.yml

You can explicitly provide the configuration file location to all HARP executables by using the -f / --config argument.

Standard configuration

HARP essentially operates as three components:

HARP Manager
HARP Proxy
harpctl

Each of these use the same standard config.yml configuration format, which always include the following sections:

cluster.name — The name of the cluster to target for all operations.
dcs — DCS driver and connection configuration for all endpoints.

This means a standard preamble is always included for HARP operations, such as the following:

Other sections are optional or specific to the named HARP component.

Cluster name

The name entry under the cluster heading is required for all interaction with HARP. Each HARP cluster has a name for both disambiguation and for
labeling data in the DCS for the specific cluster.

HARP Manager writes information about the cluster here for consumption by HARP Proxy and harpctl. HARP Proxy services direct traffic to nodes in this
cluster. The harpctl management tool interacts with this cluster.

DCS settings

Configuring the consensus layer is key to HARP functionality. Without the DCS, HARP has nowhere to store cluster metadata, can't hold leadership
elections, and so on. Therefore this portion of the configuration is required, and certain elements are optional.

Specify all elements under a section named dcs with these multiple supplementary entries:

driver : Required type of consensus layer to use. Currently can be etcd or bdr . Support for bdr as a consensus layer is experimental. Using
bdr as the consensus layer reduces the additional software for consensus storage but expects a minimum of three full BDR member nodes to

maintain quorum during database maintenance.

endpoints : Required list of connection strings to contact the DCS. List every node of the DCS here if possible. This ensures HARP continues to

cluster:
 name: mycluster

dcs:

...

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 271

endpoints : Required list of connection strings to contact the DCS. List every node of the DCS here if possible. This ensures HARP continues to
function as long as a majority of the DCS can still operate and be reached by the network.

Format when using etcd as the consensus layer is as follows:

Format when using the experimental bdr consensus layer is as follows:

Currently, bdr consensus layer requires the first endpoint to point to the local postgres instance.

request_timeout : Time in milliseconds to consider a request as failed. If HARP makes a request to the DCS and receives no response in this
time, it considers the operation as failed. This can cause the issue to be logged as an error or retried, depending on the nature of the request. Default:
250.

The following DCS SSL settings apply only when driver: etcd is set in the configuration file:

ssl : Either on or off to enable SSL communication with the DCS. Default: off

ssl_ca_file : Client SSL certificate authority (CA) file.

ssl_cert_file : Client SSL certificate file.

ssl_key_file : Client SSL key file.

Tip

When ssl is set to on , the etcd endpoint URLs must contain the https scheme, for example, https://host1:2379 .

Example

This example shows how to configure HARP to contact an etcd DCS consisting of three nodes:

dcs:
 endpoints:
 - host1:2379
 - host2:2379
 - host3:2379

dcs:
only DSN format is
supported
 endpoints:
 - "host=host1 port=5432 dbname=bdrdb
user=postgres"
 - "host=host2 port=5432 dbname=bdrdb
user=postgres"
 - "host=host3 port=5432 dbname=bdrdb
user=postgres"

dcs:
 driver: etcd
 endpoints:
 - host1:2379
 - host2:2379
 - host3:2379

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 272

Health check API settings

HARP provides HTTP(S) health check APIs. Add the following settings only if health check APIs are required. Specify all elements under a section named
http with these multiple supplementary entries:

enable : Set to true to enable HTTP(S) health check APIs. Defaults to false .

host : Host name of HTTP(S) API server. Typically the same as the hostname of the HARP service as it's running within the HARP service. Defaults
to 0.0.0.0 .

port : Port number of HTTP(S) server. Defaults to 8080 .

probes.timeout : Timeout value for the API endpoints. Defaults to 10s .

secure : Enable HTTPS. Defaults to false .

The following http settings apply and are mandatory if secure: true is set:

cert_file : HTTP server SSL certificate file. Mandatory if secure is set to true .

key_file : HTTP server SSL key file. Mandatory if secure is set to true .

Example

HARP Manager specific

Besides the generic service options required for all HARP components, Manager needs other settings:

log_level : One of DEBUG , INFO , WARNING , ERROR , or CRITICAL , which might alter the amount of log output from HARP services.

name : Required name of the Postgres node represented by this Manager. Since the Manager can only represent a specific node, that node is named
here and it is used as the name of this Manager. If this is a BDR node, it must match the value used at node creation when executing the
bdr.create_node(node_name, ...) function and as reported by the bdr.local_node_summary.node_name view column.

Alphanumeric characters and underscores only.

start_command : This can be used instead of the information in DCS for starting the database to monitor. This is required if using bdr as the
consensus layer.

status_command : This can be used instead of the information in DCS for the Harp Manager to determine whether the database is running. This is
required if using bdr as the consensus layer.

stop_command : This can be used instead of the information in DCS for stopping the database.

db_retry_wait_min : The initial time in seconds to wait if Harp Manager cannot connect to the database before trying again. Harp Manager will

http:
 enable: true
 host: "0.0.0.0"
 port: 8080
 secure: false
 cert_file: ""
 key_file: ""
 probes:
 timeout:
10s

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 273

db_retry_wait_min : The initial time in seconds to wait if Harp Manager cannot connect to the database before trying again. Harp Manager will
increase the wait time with each attempt, up to the db_retry_wait_max value.

db_retry_wait_max : The maximum time in seconds to wait if Harp Manager cannot connect to the database before trying again.

Thus a complete configuration example for HARP Manager might look like this:

This configuration is essentially the DCS contact information, any associated service customizations, the name of the cluster, and the name of the node. All
other settings are associated with the node and is stored in the DCS.

Read the Node bootstrapping for more about specific node settings and initializing nodes to be managed by HARP Manager.

HARP Proxy specific

Some configuration options are specific to HARP Proxy. These affect how the daemon operates and thus are currently located in config.yml .

Specify Proxy-based settings under a proxy heading, and include:

location : Required name of location for HARP Proxy to represent. HARP Proxy nodes are directly tied to the location where they are running, as
they always direct traffic to the current lead master node. Specify location for any defined proxy.

log_level : One of DEBUG , INFO , WARNING , ERROR , or CRITICAL , which might alter the amount of log output from HARP services.
Defaults to INFO

name : Name of this specific proxy. Each proxy node is named to ensure any associated statistics or operating state are available in status checks
and other interactive events.

type : Defaults to builtin to use the built-in passthrough proxy. Can also be set to pgbouncer to use the deprecated (since HARP 2.1)
embedded PgBouncer support.

pgbouncer_bin_dir : Directory where PgBouncer binaries are located. If HARP is configured to use PgBouncer, it needs to know where the
PgBouncer binaries are located. This can be depend on the platform or distribution, so it has no default. Otherwise, the assumption is that the
appropriate binaries are in the environment's PATH variable. Deprecated (since HARP 2.1).

Example

HARP Proxy requires the cluster name, DCS connection settings, location, and name of the proxy in operation. For example:

cluster:
 name: mycluster

dcs:
 driver: etcd
 endpoints:
 - host1:2379
 - host2:2379
 - host3:2379

manager:
 name: node1
 log_level: INFO

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 274

All other attributes are obtained from the DCS on proxy startup.

Runtime directives

While it is possible to configure HARP Manager, HARP Proxy, or harpctl with a minimum of YAML in the config.yml file, some customizations are held
in the DCS. These values must either be initialized via bootstrap or set specifically with harpctl set directives.

Cluster-wide

Set these settings under a cluster YAML heading during bootstrap, or modify them with a harpctl set cluster command.

event_sync_interval : Time in milliseconds to wait for synchronization. When events occur in HARP, they do so asynchronously across the
cluster. HARP managers start operating immediately when they detect metadata changes, and HARP proxies might pause traffic and start
reconfiguring endpoints. This is a safety interval that roughly approximates the maximum amount of event time skew that exists between all HARP
components.

For example, suppose Node A goes offline and HARP Manager on Node B commonly receives this event 5 milliseconds before Node C. A setting of at
least 5 ms is then needed to ensure all HARP Manager services receive the event before they begin to process it.

This also applies to HARP Proxy.

Node directives

You can change most node-oriented settings and then apply them while HARP Manager is active. These items are retained in the DCS after initial bootstrap,
and thus you can modify them without altering a configuration file.

Set these settings under a node YAML heading during bootstrap, or modify them with a harpctl set node command.

node_type : The type of this database node, either bdr or witness . You can't promote a witness node to leader.

camo_enforcement : Whether to strictly enforce CAMO queue state. When set to strict , HARP never allows switchover or failover to a BDR
CAMO partner node unless it's fully caught up with the entire CAMO queue at the time of the migration. When set to lag_only , only standard lag
thresholds such as maximum_camo_lag are applied.

dcs_reconnect_interval : The interval, measured in milliseconds, between attempts that a disconnected node tries to reconnect to the DCS.

Default: 1000.

dsn : Required full connection string to the managed Postgres node. This parameter applies equally to all HARP services and enables micro-

cluster:
 name: mycluster

dcs:
 driver: etcd
 endpoints:
 - host1:2379
 - host2:2379
 - host3:2379

proxy:
 name:
proxy1
 location:
dc1

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 275

dsn : Required full connection string to the managed Postgres node. This parameter applies equally to all HARP services and enables micro-
architectures that run only one service per container.

Note

HARP sets the sslmode argument to require by default and prevents connections to servers that don't require SSL. To disable this
behavior, explicitly set this parameter to a more permissive value such as disable , allow , or prefer .

db_data_dir : Required Postgres data directory. This is required by HARP Manager to start, stop, or reload the Postgres service. It's also the
default location for configuration files, which you can use later for controlling promotion of streaming replicas.

db_conf_dir : Location of Postgres configuration files. Some platforms prefer storing Postgres configuration files away from the Postgres data
directory. In these cases, set this option to that expected location.

db_log_file : Location of Postgres log file. Defaults to /tmp/pg_ctl.out .

fence_node_on_dcs_failure : If HARP can't reach the DCS, several readiness keys and the leadership lease expire. This implicitly prevents a
node from routing consideration. However, such a node isn't officially fenced, and the Manager doesn't stop monitoring the database if
stop_database_when_fenced is set to false . Defaults to False.

leader_lease_duration : Amount of time in seconds the lead master lease persists if not refreshed. This allows any HARP Manager a certain
grace period to refresh the lock, before expiration allows another node to obtain the lead master lock instead. Defaults to 6.

lease_refresh_interval : Amount of time in milliseconds between refreshes of the lead master lease. This essentially controls the time
between each series of checks HARP Manager performs against its assigned Postgres node and when the status of the node is updated in the
consensus layer. Defaults to 2000.

max_dcs_failures : The amount of DCS request failures before marking a node as fenced according to fence_node_on_dcs_failure .
This setting prevents transient communication disruptions from shutting down database nodes. Defaults to 10.

maximum_lag : Highest allowable variance (in bytes) between last recorded LSN of previous lead master and this node before being allowed to
take the lead master lock. This setting prevents nodes experiencing terminal amounts of lag from taking the lead master lock. Set to -1 to disable
this check. Defaults to -1.

maximum_camo_lag : Highest allowable variance (in bytes) between last received LSN and applied LSN between this node and its CAMO
partners. This applies only to clusters where CAMO is both available and enabled. Thus this applies only to BDR EE clusters where
pg2q.enable_camo is set. For clusters with particularly stringent CAMO apply queue restrictions, set this very low or even to 0 to avoid any

unapplied CAMO transactions. Set to -1 to disable this check. Defaults to -1.

ready_status_duration : Amount of time in seconds the node's readiness status persists if not refreshed. This is a failsafe that removes a
node from being contacted by HARP Proxy if the HARP Manager in charge of it stops operating. Defaults to 30.

db_bin_dir : Directory where Postgres binaries are located. As HARP uses Postgres binaries, such as pg_ctl , it needs to know where they're
located. This can depend on the platform or distribution, so it has no default. Otherwise, the assumption is that the appropriate binaries are in the
environment's PATH variable.

priority : Any numeric value. Any node where this option is set to -1 can't take the lead master role, even when attempting to explicitly set the
lead master using harpctl . Defaults to 100.

stop_database_when_fenced : Rather than removing a node from all possible routing, stop the database on a node when it is fenced. This is
an extra safeguard to prevent data from other sources than HARP Proxy from reaching the database or in case proxies can't disconnect clients for
some other reason. Defaults to False.

consensus_timeout : Amount of milliseconds before aborting a read or write to the consensus layer. If the consensus layer loses quorum or
becomes unreachable, you want near-instant errors rather than infinite timeouts. This prevents blocking behavior in such cases. When using bdr as
the consensus layer, the highest recognized timeout is 1000 ms. Defaults to 250.

use_unix_socket : Specifies for HARP Manager to prefer to use Unix sockets to connect to the database. Defaults to False.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 276

use_unix_socket : Specifies for HARP Manager to prefer to use Unix sockets to connect to the database. Defaults to False.

All of these runtime directives can be modified via harpctl . Consider if you want to decrease the lease_refresh_interval to 100ms on node1 :

Proxy directives

You can change certain settings to the proxy while the service is active. These items are retained in the DCS after initial bootstrap, and thus you can modify
them without altering a configuration file. Many of these settings are direct mappings to their PgBouncer equivalent, and we will note these where
relevant.

Set these settings under a proxies YAML heading during bootstrap, or modify them with a harpctl set proxy command. Properties set by
harpctl set proxy require a restart of the proxy.

auth_file : The full path to a PgBouncer-style userlist.txt file. HARP Proxy uses this file to store a pgbouncer user that has access to
PgBouncer's Admin database. You can use this for other users as well. Proxy modifies this file to add and modify the password for the pgbouncer
user. Deprecated (since HARP 2.1). Defaults to /etc/harp/userlist.txt .

auth_type : The type of Postgres authentication to use for password matching. This is actually a PgBouncer setting and isn't fully compatible with
the Postgres pg_hba.conf capabilities. We recommend using md5 , pam cert , or scram-sha-256 . Deprecated (since HARP 2.1). Defaults
to md5 .

auth_query : Query to verify a user’s password with Postgres. Direct access to pg_shadow requires admin rights. It’s better to use a non-
superuser that calls a SECURITY DEFINER function instead. If using TPAexec to create a cluster, a function named pgbouncer_get_auth is
installed on all databases in the pg_catalog namespace to fulfill this purpose. Deprecated (since HARP 2.1).

auth_user : If auth_user is set, then any user not specified in auth_file is queried through the auth_query query from pg_shadow
in the database, using auth_user . The password of auth_user is taken from auth_file .

client_tls_ca_file : Root certificate file to validate client certificates. Requires client_tls_sslmode to be set.

client_tls_cert_file : Certificate for private key. Clients can validate it. Requires client_tls_sslmode to be set.

client_tls_key_file : Private key for PgBouncer to accept client connections. Requires client_tls_sslmode to be set.

client_tls_protocols : TLS protocol versions allowed for client connections. Allowed values: tlsv1.0 , tlsv1.1 , tlsv1.2 ,
tlsv1.3 . Shortcuts: all (tlsv1.0,tlsv1.1,tlsv1.2,tlsv1.3), secure (tlsv1.2,tlsv1.3), legacy (all). Defaults to secure .

client_tls_sslmode : Whether to enable client SSL functionality. Possible values are disable , allow , prefer , require , verify-
ca , and verify-full . Defaults to disable .

database_name : Required name that represents the database clients use when connecting to HARP Proxy. This is a stable endpoint that doesn't
change and points to the current node, database name, port, etc., necessary to connect to the lead master. You can use the global value * here so
all connections get directed to this target regardless of database name.

default_pool_size : The maximum number of active connections to allow per database/user combination. This is for connection pooling
purposes but does nothing in session pooling mode. This is a PgBouncer setting. Deprecated (since HARP 2.1). Defaults to 25.

ignore_startup_parameters : By default, PgBouncer allows only parameters it can keep track of in startup packets: client_encoding ,
datestyle , timezone , and standard_conforming_strings . All other parameters raise an error. To allow other parameters, you can

specify them here so that PgBouncer knows that they are handled by the admin and it can ignore them. Often, you need to set this to
extra_float_digits for Java applications to function properly. Deprecated (since HARP 2.1). Defaults to extra_float_digits .

listen_address : IP addresses where Proxy should listen for connections. Used by the builtin and deprecated pgbouncer proxy. Defaults to

harpctl set node node1
lease_refresh_interval=100

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 277

listen_address : IP addresses where Proxy should listen for connections. Used by the builtin and deprecated pgbouncer proxy. Defaults to
0.0.0.0 .

listen_port : System port where Proxy listens for connections. Used by the builtin and deprecated pgbouncer proxy. Defaults to 6432.

max_client_conn : The total maximum number of active client connections that are allowed on the proxy. This can be many orders of magnitude
greater than default_pool_size , as these are all connections that have yet to be assigned a session or have released a session for use by
another client connection. This is a PgBouncer setting. Deprecated (since HARP 2.1). Defaults to 100.

monitor_interval : Time in seconds between Proxy checks of PgBouncer. Since HARP Proxy manages PgBouncer as the actual connection
management layer, it needs to periodically check various status and stats to verify it's still operational. You can also log or register some of this
information to the DCS. Deprecated (since HARP 2.1). Defaults to 5.

server_tls_protocols : TLS protocol versions are allowed for server connections. Allowed values: tlsv1.0 , tlsv1.1 , tlsv1.2 ,
tlsv1.3 . Shortcuts: all (tlsv1.0,tlsv1.1,tlsv1.2,tlsv1.3), secure (tlsv1.2,tlsv1.3), legacy (all). Defaults to secure .

server_tls_sslmode : Whether to enable server SSL functionality. Possible values are disable , allow , prefer , require ,
verify-ca , and verify-full . Defaults to disable .

session_transfer_mode : Method by which to transfer sessions. Possible values are fast , wait , and reconnect . Deprecated (since
HARP 2.1). Defaults to wait .

This property isn't used by the builtin proxy.

server_transfer_timeout : The number of seconds Harp Proxy waits before giving up on a PAUSE and issuing a KILL command. Defaults to
30.

The following two options apply only when using the built-in proxy.

keepalive : The number of seconds the built-in proxy waits before sending a keepalive message to an idle leader connection. Default to 5.

timeout : The number of seconds the built-in proxy waits before giving up on connecting to the leader. Defaults to 1.

When using harpctl to change any of these settings for all proxies, use the global keyword in place of the proxy name. For example:

harpctl set proxy global
max_client_conn=1000

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 278

7.3 Cluster bootstrapping

To use HARP, a minimum amount of metadata must exist in the DCS. The process of "bootstrapping" a cluster essentially means initializing node, location,
and other runtime configuration either all at once or on a per-resource basis.

This process is governed through the harpctl apply command. For more information, see harpctl command-line tool.

Set up the DCS and make sure it is functional before bootstrapping.

Important

You can combine any or all of these example into a single YAML document and apply it all at once.

Cluster-wide bootstrapping

Some settings are applied cluster-wide and you can specify them during bootstrapping. Currently this applies only to the event_sync_interval
runtime directive, but others might be added later.

The format is as follows:

Assuming that file was named cluster.yml , you then apply it with the following:

If the cluster name isn't already defined in the DCS, this also initializes that value.

Important

The cluster name parameter specified here always overrides the cluster name supplied in config.yml . The assumption is that the bootstrap
file supplies all necessary elements to bootstrap a cluster or some portion of its larger configuration. A config.yml file is primarily meant to
control the execution of HARP Manager, HARP Proxy, or harpctl specifically.

Location bootstrapping

Every HARP node is associated with at most one location. This location can be a single data center, a grouped region consisting of multiple underlying
servers, an Amazon availability zone, and so on. This is a logical structure that allows HARP to group nodes together such that only one represents the
nodes in that location as the lead master.

Thus it is necessary to initialize one or more locations. The format for this is as follows:

cluster:
 name: mycluster
 event_sync_interval: 100

harpctl apply
cluster.yml

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 279

Assuming that file was named locations.yml , you then apply it with the following:

When performing any manipulation of the cluster, include the name as a preamble so the changes are directed to the right place.

Once locations are bootstrapped, they show up with a quick examination:

Both locations are recognized by HARP and available for node and proxy assignment.

Node bootstrapping

HARP nodes exist in a named cluster and must have a designated name. Beyond this, all other settings are retained in the DCS, as they are dynamic and can
affect how HARP interacts with them. To this end, bootstrap each node using one or more of the runtime directives discussed in Configuration.

While bootstrapping a node, there are a few required fields:

name
location
dsn
pg_data_dir

Everything else is optional and can depend on the cluster. Because you can bootstrap multiple nodes at once, the format generally fits this structure:

Assuming that file was named node1.yml , you then apply it with the following:

cluster:
 name: mycluster

locations:
 - location:
dc1
 - location:
dc2

harpctl apply locations.yml

> harpctl get locations

Cluster Location Leader Previous Leader Target Leader Lease Renewals
------- -------- ------ --------------- ------------- --------------
mycluster dc1 <nil>
mycluster dc2 <nil>

cluster:
 name: mycluster

nodes:
 - name: node1
 location:
dc1
 dsn: host=node1 dbname=bdrdb user=postgres
 pg_data_dir: /db/pgdata
 leader_lease_duration: 10
 priority: 500

harpctl apply node1.yml

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 280

Once nodes are bootstrapped, they show up with a quick examination:

Proxy bootstrapping

Unlike locations or nodes, proxies can also supply a configuration template that is applied to all proxies in a location. These are stored in the DCS under the
global designation. Each proxy also requires a name to exist as an instance, but no further customization is needed unless some setting needs a specific

override.

This is because there are likely to be multiple proxies that have the same default configuration settings for the cluster, and repeating these values for every
single proxy isn't necessary.

Additionally, when bootstrapping the proxy template, define at least one database for connection assignments. With these notes in mind, the format for
this is as follows:

This configures HARP for two proxies: proxy1 and proxy2 . Only proxy2 has a custom default_pool_size , while using the global settings
otherwise.

Assuming that file was named proxy.yml , you then apply it with the following:

Once the proxy template is bootstrapped, it shows up with a quick examination:

> harpctl get nodes

Cluster Name Location Ready Fenced Allow Routing Routing Status Role Type Lock Duration
------- ---- -------- ----- ------ ------------- -------------- ---- ---- -------------
mycluster bdra1 dc1 true false true ok primary bdr
30

cluster:
 name: mycluster

proxies:
 monitor_interval: 5
 default_pool_size: 20
 max_client_conn: 1000
 database_name: bdrdb
 instances:
 - name:
proxy1
 - name:
proxy2
 default_pool_size: 50

harpctl apply proxy.yml

> harpctl get proxies

Cluster Name Pool Mode Auth Type Max Client Conn Default Pool Size
------- ---- --------- --------- --------------- -----------------
mycluster global session md5 1000 20
mycluster proxy1 session md5 1000 20
mycluster proxy2 session md5 1000 50

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 281

7.4 HARP Manager

HARP Manager is a daemon that interacts with the local PostgreSQL/BDR node and stores information about its state in the consensus layer. Manager
determines the node that currently holds leader status for a respective location and enforces configuration (lag, CAMO lag, etc.) constraints to prevent
ineligible nodes from leader consideration.

Every Postgres node in the cluster must have an associated HARP Manager. Other nodes can exist, but they can't to participate as lead or shadow master
roles or any other functionality that requires a HARP Manager.

Important

HARP Manager expects to be used to start and stop the database. Stopping HARP Manager will stop the database. Starting HARP Manager will
start the database if it isn't already started. If another method is used to stop the database then HARP Manager will try and restart it.

How it works

Upon starting, HARP Manager uses pg_ctl to start Postgres if it isn't already running. After this, it periodically checks the server as defined by the
node.lease_refresh_interval setting. HARP Manager collects various bits of data about Postgres including:

The node's current LSN.
If Postgres is running and accepting connections. This particular data point is considered a lease that must be periodically renewed. If it expires,
HARP Proxy removes the node from any existing routing.
The current apply LSN position for all upstream BDR peer nodes.
If CAMO is enabled:

Name of the CAMO partner
Peer CAMO state (is_ready)
CAMO queue received and applied LSN positions

Node type, such as whether the node is BDR or regular Postgres.
The node's current role, such as a read/write, physical streaming replica, logical standby, and so on.
BDR node state, which is ACTIVE except in limited cases.
BDR Node ID for other metadata gathering.
Other tracking values.

Important

When naming BDR nodes in HARP, the BDR node name must match the node name represented in the node.name configuration attribute. This
occurs in the bootstrap process.

The data collected here is fully available to other HARP Manager processes and is used to evaluate lag, partner readiness, and other criteria that direct
switchover and failover behavior.

After updating the node metadata, HARP Manager either refreshes the lead master lease if it's already held by the local node or seeks to obtain the lease if
it's expired. Since the current state of all nodes is known to all other nodes, the node that was the previous lead master is given automatic priority ranking if
present. If not, all other nodes list themselves by LSN lag, node priority, and other criteria, and the most qualified node seizes the lead master lease.

This procedure happens for every defined location where nodes are present. Thus for locations DC1 and DC2, there is a lead master node in each, with a
separate lease and election process for both.

HARP Manager repeats these Postgres status checks, lease renewals, and elections repeatedly to ensure the cluster always has a lead master target for
connections from HARP Proxy.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 282

Configuration

HARP Manager expects the dcs , cluster , and manager configuration stanzas. The following is a functional example:

You can apply changes to the configuration file (default: /etc/harp/config.yml) by issuing SIGHUP to the running instance or by calling a service-
level reload.

See Configuration for further details.

Usage

This is the basic usage for HARP Manager:

There are no arguments to launch harp-manager as a forked daemon. This software is designed to be launched through systemd or in a container as a
top-level process. This also means output is directed to STDOUT and STDERR for capture and access through journald or an attached container terminal.

cluster:
 name: mycluster

dcs:
 driver: etcd
 endpoints:
 - host1:2379
 - host2:2379
 - host3:2379

manager:
 name: node1
 postgres_bin_dir:
/usr/lib/postgresql/13/bin

Usage of ./harp-manager:
 -f
string
 Optional path to config file
(shorthand)
 --config
string
 Optional path to config
file

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 283

7.5 HARP Proxy

HARP Proxy is a daemon that acts as an abstraction layer between the client application and Postgres. It interfaces with the consensus layer to obtain the
identity of the current lead master node and directs traffic to that location. During a planned switchover or unplanned failover, it redirects to the new lead
master node as dictated by the DCS.

You can select between pgbouncer or builtin for HARP Proxy. If you don't specify a proxy type, the default is builtin . When using pgbouncer ,
HARP Proxy is an interface layer between the DCS and PgBouncer. As such, PgBouncer is a prerequisite and must also be installed for HARP Proxy to fully
manage its activity.

The builtin proxy doesn't require any additional software. When using builtin, HARP Proxy functions as a level 4 pass-through proxy.

Builtin proxy: how it works

Upon starting, HARP Proxy listens for incoming connections on the listening address and listening port specified in the bootstrap file per proxy instance.
All application client traffic then passes through builtin proxy into the current lead master node for the location where this proxy is operating.

If the lead master lease isn't set, HARP Proxy disconnects all connection traffic until a new lead master is established. This also applies to circumstances
when harpctl promote is used to invoke a planned transition to a new lead master. The disconnect is immediate.

Configuration

Choose the built-in proxy by setting the proxy type to builtin . The only other option that applies to the built-in proxy is max_client_conn , which
specifies the maximum allowed client connections. If max_client_conn is higher than what the system can handle, it is lowered to a setting that's
within the capability of the system that the proxy is on.

PgBouncer: how it works

Note

If you need more configurability of pgbouncer than what Harp Proxy provides, the recommended setup is to use builtin proxy and have pgbouncer
point to it.

Upon starting, HARP Proxy launches PgBouncer if it's not already running and leaves client connections paused. After, it contacts the DCS to determine the
identity of the lead master, configure PgBouncer to use this as the target for database connections, and resume connection activity. All application client
traffic then passes through PgBouncer into the current lead master node for the location where this proxy is operating.

While PgBouncer is running, HARP Proxy checks its status based on the monitor_interval configuration setting in the DCS and stores it in the DCS
for monitoring purposes. This configuration allows interrogation with harpctl to retrieve status of all configured proxies or any one proxy.

If the lead master lease isn't set, HARP Proxy pauses all connection traffic until a new lead master is established. This also applies to circumstances when
harpctl promote is used to invoke a planned transition to a new lead master. It uses a PgBouncer PAUSE command for this, so existing sessions are

allowed to complete any pending transactions before they're held in stasis.

PgBouncer configuration file

When HARP Proxy uses PgBouncer for connection management and redirection, a pgbouncer.ini file must exist. HARP Manager builds this file based
on various runtime directives as defined in Proxy directives.

This file is located in the same folder as the config.yml used by HARP Proxy. Any PgBouncer process launched by HARP Proxy uses this configuration

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 284

This file is located in the same folder as the config.yml used by HARP Proxy. Any PgBouncer process launched by HARP Proxy uses this configuration
file, and you can use it for debugging or information purposes. Modifications to this automatically generated pgbouncer.ini file are lost any time
HARP Proxy restarts, so use harpctl set proxy to alter these settings instead. Calling harpctl set proxy doesn't update the
pgbouncer.ini file until the proxy restarts.

Disabling and reenabling HARP Proxy node management

You can temporarily pause HARP Proxy control of PgBouncer. This results in a state where the daemon continues running but doesn't perform any
operations that can affect existing behavior of the cluster. Reenabling management causes it to resume operation.

An example of temporarily disabling management of a specific proxy is:

See harpctl command-line tool for more details.

Proxy node management is enabled by default.

Passthrough user authentication

With pgbouncer, we strongly recommend configuring HARP Proxy to use the auth_user and auth_query runtime directives. If these aren't set, the
PgBouncer userlist.txt file must include username and password hash combinations for every user PgBouncer needs to authenticate on behalf of
Postgres.

Do not use the pgbouncer user, as this this is used by HARP Proxy as an admin-level user to operate the underlying PgBouncer service.

Configuration

HARP Proxy expects the dcs , cluster , and proxy configuration stanzas. The following is a functional example:

Each proxy connects to the DCS to retrieve the hosts and ports to listen on for connections.

harpctl unmanage proxy
proxy1

cluster:
 name: mycluster

dcs:
 driver: etcd
 endpoints:
 - host1:2379
 - host2:2379
 - host3:2379

proxy:
 name:
proxy1

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 285

Usage

This is the basic usage for HARP Proxy:

There are no arguments to launch harp-proxy as a forked daemon. This software is designed to be launched through systemd or in a container as a top-
level process. This also means output is directed to STDOUT and STDERR for capture and access through journald or an attached container terminal.

Usage of ./harp-proxy:
 -f
string
 Optional path to config file
(shorthand)
 --config
string
 Optional path to config
file

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 286

7.6 harpctl command-line tool

harpctl is a command-line tool for directly manipulating the consensus layer contents to fit desired cluster geometry. You can use it to, for example,
examine node status, "promote" a node to lead master, disable/enable cluster management, bootstrap cluster settings, and so on.

Synopsis

In addition to this basic synopsis, each of the available commands has its own series of allowed subcommands and flags.

Configuration

harpctl must interact with the consensus layer to operate. This means a certain minimum amount of settings must be defined in config.yml for
successful execution. This includes:

dcs.driver
dcs.endpoints

cluster.name

$ harpctl --help

Usage:
 harpctl [command]

Available Commands:
 apply Command to set up a
cluster
 completion generate the autocompletion script for the specified
shell
 fence Fence specified node
 get Command to get
resources
 help Help about any
command
 manage Manage
Cluster
 promote Promotes the sepcified node to be
primary,
 set Command to set
resources.
 unfence unfence specified node
 unmanage Unmanage
Cluster
 version Command to get version
information

Flags:
 -c, --cluster string name of
cluster.
 -f, --config-file string config file (default is
/etc/harp/config.yml)
 -h, --help help for
harpctl
 -o, --output string 'json,
yaml'.
 -t, --toggle Help message for
toggle

Use "harpctl [command] --help" for more information about a
command.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 287

cluster.name

As an example using etcd:

See Configuration for details.

Execution

Execute harpctl like this:

Each command has its own series of subcommands and flags. Further help for these are available by executing this command:

harpctl apply

You must use an apply command to "bootstrap" a HARP cluster using a file that defines various attributes of the intended cluster.

Execute an apply command like this:

This essentially creates all of the initial cluster metadata, default or custom management settings, and so on. This is done here because the DCS is used as
the ultimate source of truth for managing the cluster, and this makes it possible to change these settings dynamically.

This can either be done once to bootstrap the entire cluster, once per type of object, or even on a per-node basis for the sake of simplicity.

This is an example of a bootstrap file for a single node:

cluster:
 name: mycluster
dcs:
 driver: etcd
 endpoints:
 - host1:2379
 - host2:2379
 - host3:2379

harpctl command [flags]

harpctl <command> --
help

harpctl apply <filename>

cluster:
 name: mycluster
nodes:
 - name: firstnode
 dsn: host=host1 dbname=bdrdb
user=harp_user
 location:
dc1
 priority: 100
 db_data_dir: /db/pgdata

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 288

As seen here, it is good practice to always include a cluster name preamble to ensure all changes target the correct HARP cluster, in case several are
operating in the same environment.

Once apply completes without error, the node is integrated with the rest of the cluster.

Note

You can also use this command to bootstrap the entire cluster at once since all defined sections are applied at the same time. However, we don't
encourage this use for anything but testing as it increases the difficulty of validating each portion of the cluster during initial definition.

harpctl fence

Marks the local or specified node as fenced. A node with this status is essentially completely excluded from the cluster. HARP Proxy doesn't send it traffic,
its representative HARP Manager doesn't claim the lead master lease, and further steps are also taken. If running, HARP Manager stops Postgres on the
node as well.

Execute a fence command like this:

The node-name is optional; if omitted, harpctl uses the name of the locally configured node.

harpctl get

Fetches information stored in the consensus layer for various elements of the cluster. This includes nodes, locations, the cluster, and so on. The full list
includes:

cluster — Returns the cluster state.
leader — Returns the current or specified location leader.
location — Returns current or specified location information.
locations — Returns list of all locations.
node — Returns the specified Postgres node.
nodes — Returns list of all Postgres nodes.
proxy — Returns current or specified proxy information.
proxies — Returns list of all proxy nodes.

harpctl get cluster

Fetches information stored in the consensus layer for the current cluster:

harpctl get leader

harpctl fence (<node-name>)

> harpctl get cluster

Name Enabled
---- -------
mycluster true

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 289

harpctl get leader

Fetches node information for the current lead master stored in the DCS for the specified location. Use harpctl get locations to list the defined
locations.

Example:

harpctl get location

Fetches location information for the specified location. Use harpctl get locations to list the defined locations.

Example:

harpctl get locations

Fetches information for all locations currently present in the DCS.

Example:

harpctl get node

Fetches node information stored in the DCS for the specified node.

Example:

> harpctl get leader
dc1

Cluster Name Ready Role Type Location Fenced Lock
Duration
------- ---- ----- ---- ---- -------- ------ -------------
mycluster mynode true primary bdr dc1 false
30

> harpctl get location
dc1

Cluster Location Leader Previous Leader Target Leader Lease
Renewals
------- -------- ------ --------------- ------------- --------------
mycluster dc1 mynode mynode
<nil>

> harpctl get locations

Cluster Location Leader Previous Leader Target Leader Lease
Renewals
------- -------- ------ --------------- ------------- --------------
mycluster dc1 mynode mynode
<nil>
mycluster dc2 thatnode thatnode
<nil>

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 290

harpctl get nodes

Fetches node information stored in the DCS for the all nodes in the cluster.

Example:

harpctl get proxy

Fetches proxy information stored in the DCS for specified proxy. Specify global to see proxy defaults for this cluster.

Example:

harpctl get proxies

Fetches proxy information stored in the DCS for all proxies in the cluster. Additionally, lists the global pseudo-proxy for default proxy settings.

Example:

> harpctl get node
mynode
Cluster Name Location Ready Fenced Allow Routing Routing Status Role Type Lock
Duration
------- ---- -------- ----- ------ ------------- -------------- ---- ---- -------------
mycluster mynode dc1 true false true ok primary bdr
30

> harpctl get nodes

Cluster Name Location Ready Fenced Allow Routing Routing Status Role Type Lock
Duration
------- ---- -------- ----- ------ ------------- -------------- ---- ---- -------------
myclusters bdra1 dc1 true false true ok primary bdr
30
myclusters bdra2 dc1 true false false N/A primary bdr
30
myclusters bdra3 dc1 true false false N/A primary bdr
30

> harpctl get proxy
proxy1

Cluster Name Pool Mode Auth Type Max Client Conn Default Pool
Size
------- ---- --------- --------- --------------- -----------------
mycluster proxy1 session md5 1000
20

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 291

harpctl manage

If a cluster isn't in a managed state, instructs all HARP Manager services to resume monitoring Postgres and updating the consensus layer. Do this after
maintenance is complete following HARP software updates or other significant changes that might affect the whole cluster.

Execute a manage command like this:

Note

Currently you can enable or disable cluster management only at the cluster level. Later versions will also make it possible to do this for
individual nodes or proxies.

harpctl promote

Promotes the next available node that meets leadership requirements to lead master in the current Location. Since this is a requested event, it invokes a
smooth handover where:

1. The existing lead master releases the lead master lease, provided:
If CAMO is enabled, the promoted node must be up to date and CAMO ready, and the CAMO queue must have less than
node.maximum_camo_lag bytes remaining to be applied.

Replication lag between the old lead master and the promoted node is less than node.maximum_lag .

2. The promoted node is the only valid candidate to take the lead master lease and does so as soon as it is released by the current holder. All other
nodes ignore the unset lead master lease.

If CAMO is enabled, the promoted node temporarily disables client traffic until the CAMO queue is fully applied, even though it holds the lead
master lease.

3. HARP Proxy, if using pgbouncer, will PAUSE connections to allow ongoing transactions to complete. Once the lead master lease is claimed by the
promoted node, it reconfigures PgBouncer for the new connection target and resumes database traffic. If HARP Proxy is using the builtin proxy, it
terminates existing connections and creates new connections to the lead master as new connections are requested from the client.

Execute a promote command like this:

Provide the --force option to forcibly set a node to lead master, even if it doesn't meet the criteria for becoming lead master. This circumvents any
verification of CAMO status or replication lag and causes an immediate transition to the promoted node. This is the only way to specify an exact node for
promotion.

The node must be online and operational for this to succeed. Use this option with care.

> harpctl get proxies

Cluster Name Pool Mode Auth Type Max Client Conn Default Pool
Size
------- ---- --------- --------- --------------- -----------------
mycluster global session md5 500
25
mycluster proxy1 session md5 1000
20
mycluster proxy2 session md5 1500
30

harpctl manage
cluster

harpctl promote (<node-name>)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 292

harpctl set

Sets a specific attribute in the cluster to the supplied value. This is used to tweak configuration settings for a specific node, proxy, location, or the cluster
rather than using apply . You can use this for the following object types:

cluster — Sets cluster-related attributes.
location — Sets specific location attributes.
node — Sets specific node attributes.
proxy — Sets specific proxy attributes.

harpctl set cluster

Sets cluster-related attributes only.

Example:

harpctl set node

Sets node-related attributes for the named node. Any options mentioned in Node directives are valid here.

Example:

harpctl set proxy

Sets proxy-related attributes for the named proxy. Any options mentioned in the Proxy directives are valid here. Properties set this way require a restart of
the proxy before the new value takes effect.

Example:

Use global for cluster-wide proxy defaults:

harpctl unfence

Removes the fenced attribute from the local or specified node. This removes all previously applied cluster exclusions from the node so that it can again
receive traffic or hold the lead master lease. Postgres is also started if it isn't running.

Execute an unfence command like this:

harpctl set cluster
event_sync_interval=200

harpctl set node mynode
priority=500

harpctl set proxy proxy1
max_client_conn=750

harpctl set proxy global
default_pool_size=10

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 293

The node-name is optional. If you omit it, harpctl uses the name of the locally configured node.

harpctl unmanage

Instructs all HARP Manager services in the cluster to remain running but no longer actively monitoring Postgres, or modify the contents of the consensus
layer. This means that any ordinary failover event such as a node outage doesn't result in a leadership migration. This is intended for system or HARP
maintenance prior to making changes to HARP software or other significant changes to the cluster.

Execute an unmanage command like this:

Note

Currently you can enable or disable cluster management at only the cluster level. Later versions will also make it possible to do this for
individual nodes or proxies.

harpctl unfence (<node-name>)

harpctl unmanage
cluster

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 294

7.7 Consensus layer considerations

HARP is designed so that it can work with different implementations of consensus layer, also known as Distributed Control Systems (DCS).

Currently the following DCS implementations are supported:

etcd
BDR

This information is specific to HARP's interaction with the supported DCS implementations.

BDR driver compatibility

The bdr native consensus layer is available from BDR versions 3.6.21 and 3.7.3.

For the purpose of maintaining a voting quorum, BDR Logical Standby nodes and BDR Subscriber-Only nodes don't participate in consensus
communications in a EDB Postgres Distributed cluster. Don't count these in the total node list to fulfill DCS quorum requirements.

Maintaining quorum

Clusters of any architecture require at least n/2 + 1 nodes to maintain consensus via a voting quorum. Thus a three-node cluster can tolerate the outage of
a single node, a five-node cluster can tolerate a two-node outage, and so on. If consensus is ever lost, HARP becomes inoperable because the DCS prevents
it from deterministically identifying the node that is the lead master in a particular location.

As a result, whichever DCS is chosen, more than half of the nodes must always be available cluster-wide. This can become a non-trivial element when
distributing DCS nodes among two or more data centers. A network partition prevents quorum in any location that can't maintain a voting majority, and thus
HARP stops working.

Thus an odd-number of nodes (with a minimum of three) is crucial when building the consensus layer. An ideal case distributes nodes across a minimum of
three independent locations to prevent a single network partition from disrupting consensus.

One example configuration is to designate two DCS nodes in two data centers coinciding with the primary BDR nodes, and a fifth DCS node (such as a BDR
witness) elsewhere. Using such a design, a network partition between the two BDR data centers doesn't disrupt consensus thanks to the independently
located node.

Multi-consensus variant

HARP assumes one lead master per configured location. Normally each location is specified in HARP using the location configuration setting. By
creating a separate DCS cluster per location, you can emulate this behavior independently of HARP.

To accomplish this, configure HARP in config.yml to use a different DCS connection target per desired Location.

HARP nodes in DC-A use something like this:

location:
dca
dcs:
 driver: etcd
 endpoints:
 - dcs-a1:2379
 - dcs-a2:2379
 - dcs-a3:2379

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 295

https://www.enterprisedb.com/docs/pgd/3.6/release-notes/#bdr-3621-2020-aug-14
https://www.enterprisedb.com/docs/pgd/3.7/bdr/release-notes/#bdr-373-2020-aug-06

While DC-B uses different hostnames corresponding to nodes in its canonical location:

There's no DCS communication between different data centers in this design, and thus a network partition between them doesn't affect HARP operation. A
consequence of this is that HARP is completely unaware of nodes in the other location, and each location operates essentially as a separate HARP cluster.

This isn't possible when using BDR as the DCS, as BDR maintains a consensus layer across all participant nodes.

A possible drawback to this approach is that harpctl can't interact with nodes outside of the current location. It's impossible to obtain node
information, get or set the lead master, or perform any other operation that targets the other location. Essentially this organization renders the --
location parameter to harpctl unusable.

TPAexec and consensus

These considerations are integrated into TPAexec as well. When deploying a cluster using etcd, it constructs a separate DCS cluster per location to
facilitate high availability in favor of strict consistency.

Thus this configuration example groups any DCS nodes assigned to the first location together, and the second location is a separate cluster:

To override this behavior, configure the harp_location implicitly to force a particular grouping.

Thus this example returns all etcd nodes into a single cohesive DCS layer:

The harp_location override might also be necessary to favor specific node groupings when using cloud providers such as Amazon that favor
availability zones in regions over traditional data centers.

location:
dcb
dcs:
 driver: etcd
 endpoints:
 - dcs-a1:2379
 - dcs-a2:2379
 - dcs-a3:2379

cluster_vars:
 failover_manager: harp
 harp_consensus_protocol: etcd

locations:
 - Name: first
 - Name:
second

cluster_vars:
 failover_manager: harp
 harp_consensus_protocol: etcd

locations:
 - Name: first
 - Name:
second
 - Name: all_dcs

instance_defaults:
 vars:
 harp_location: all_dcs

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 296

Leadership consensus storage

Leader elections

The process of selecting a leader begins with the startup of the first HARP manager:

Starts Postgres on the node.
Reads the Postgres status, including any data on replication lag.
Queries for the current leader. No current leader must be returned for this node to become leader.
Stores the leadership request in the DCS.
If the leadership request isn't rejected, stores the leader lease in the DCS.
Refreshes the leader lease. This is a configurable interval with the default set at 500ms.

Once established, subsequent HARP manager instances start up in a similar fashion:

Starts Postgres on the node.
Reads the Postgres status, including any data on replication lag.
Queries the current leader. A current leader must be returned for this node to become a follower.
As there's a leader, the manager assumes a shadow role and monitors the leader lease.
If the lease expires, follows the path of the first HARP manager instance to claim leadership.

When HARP Proxy instances start, they configure themselves with this logic:

Subscribe to and watch for key changes in the DCS.
If the leader changes, reconfigure routing.

The diagram shows the sequence of events:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 297

Detection and recovery

When partitions in availability zones (AZ) occur, the process detailed in Leader elections leads to the following behaviors:

Partition of all AZ

Leader lease expires.
No leader can be elected, and routing stops.

Partition of an AZ not containing the write leader

Normal operations continue as long as the write leader has a majority.

Recovery

If no leader exists:
Wait for consensus to be reestablished.
Elect a new leader.
Start routing.

Replication replays outstanding transactions kept in replications slots.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 298

7.8 Security and roles

Beyond basic package installation and configuration, HARP requires Postgres permissions to operate. These allow it to gather information about Postgres
or BDR as needed to maintain node status in the consensus layer.

Postgres permissions

Create the role specified in the node.dsn parameter in one of the following ways:

CREATE USER ...
CREATE ROLE ... WITH LOGIN

This syntax ensures the role can log into the database to gather diagnostic information.

Similarly, an entry must exist in pg_hba.conf for this role. You can do this in many ways. As an example, consider a VPN subnet where all database
hosts are located somewhere in 10.10.* . In such a case, the easiest approach is to add a specific line:

TYPE DATABASE USER ADDRESS METHOD
hostssl all harp_user 10.10.1.1/16 scram-sha-256

Note

In this case we've used the more modern scram-sha-256 authentication rather than md5 , which is now deprecated. We've also elected to
require SSL authentication by specifying hostssl .

BDR permissions

BDR nodes have metadata and views that are visible only when certain roles are granted to the HARP-enabled user. In this case, the HARP user requires the
following:

The bdr_monitor BDR role is meant for status monitoring tools to maintain ongoing information on cluster operation, thus it is well-suited to HARP.

BDR consensus permissions

When the dcs.driver configuration parameter is set to bdr , HARP uses BDR as the consensus layer. As such, it requires access to API methods that
are currently available only to the bdr_superuser role. This means the HARP-enabled user requires the following:

Currently access to the BDR consensus model requires superuser equivalent permission.

Important

BDR superusers are not Postgres superusers. The bdr_superuser role is merely granted elevated privileges in BDR, such as access to
restricted functions, tables, views, and other objects.

GRANT bdr_monitor TO
harp_user;

GRANT bdr_superuser TO foobar;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 299

8 Choosing your architecture

Always On architectures reflect EDB’s Trusted Postgres architectures that encapsulate practices and help you to achieve the highest possible service
availability in multiple configurations. These configurations range from single-location architectures to complex distributed systems that protect from
hardware failures and data center failures. The architectures leverage EDB Postgres Distributed’s multi-master capability and its ability to achieve 99.999%
availability, even during maintenance operations.

You can use EDB Postgres Distributed for architectures beyond the examples described here. Use-case-specific variations have been successfully deployed
in production. However, these variations must undergo rigorous architecture review first. Also, EDB’s standard deployment tool for Always On
architectures, TPAExec, must be enabled to support the variations before they can be supported in production environments.

Standard EDB Always On architectures

EDB has identified four standard Always On architectures:

Bronze: Single location with two data nodes, a witness node, and a local backup
Silver: Single location with three data nodes and second location with an offsite backup
Gold: Two locations with two data nodes each and a third location with a witness
Platinum: Two locations with three data nodes each (two masters plus additional redundant hardware in a hot standby mode)

Note: A location is either a data center or availability zone [AZ].

All Always On architectures protect a progressively robust range of failure situations. For example, Always On Bronze protects against local hardware
failure but doesn't provide protection from location (data center or AZ) failure. Always On Silver makes sure that a backup is kept at a different location,
thus providing some protection in case of the catastrophic loss of a location. However, the database still must be restored from backup first, which might
violate Recovery Time Objective (RTO) requirements. Always On Gold provides two locations connected in a multi-master mesh network, making sure that
service remains available even in case a location goes offline. Finally, Always On Platinum adds redundant hot standby hardware in both locations to
maintain local high availability in case of a hardware failure.

Each architecture can provide zero Recovery Point Objective (RPO), as data can be streamed synchronously to at least one local master, thus guaranteeing
zero data loss in case of local hardware failure. However, synchronous replication is highly discouraged for Bronze architectures due to the extended RPO
on failure of either data node.

Increasing the availability guarantee drives additional cost for hardware and licenses, networking requirements, and operational complexity. Carefully
consider your availability and compliance requirements before choosing an architecture.

Architecture details

EDB Postgres Distributed uses a Raft-based consensus architecture. While regular database operations (insert, select, delete) don’t require cluster-wide
consensus, EDB Postgres Distributed benefits from an odd number of nodes to make decisions that require consensus, such as generating new global
sequences, or distributed DDL operations. Even the simpler architectures always have three nodes within a location, even if not all of them are storing data.
Always On Gold and Platinum, which use two locations, introduce a fifth node as a witness node to support the RAFT requirements.

Applications connect to the standard Always On architectures by way of multi-host connection strings, where each HARP-proxy server is a distinct entry in
the multi-host connection string. Other connection mechanisms have been successfully deployed in production, but they're not part of the standard Always
On architectures.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 300

https://raft.github.io/

Choosing your architecture

All architectures provide the following:

Hardware failure protection
Zero downtime upgrades
Support for availability zones in public/private cloud

Use these criteria to help you to select the appropriate Always On architecture.

Bronze Silver Gold Platinum

Minimum Locations
Needed

1 2 3 2

Location failure
protection

No - unless offsite backup Yes - Recovery from backup Yes - instant failover to
fully functional site

Yes - instant failover to fully
functional site

Failover to DR or full DC NA (DR only if offsite
backup)

DR using offsite backup Full DC Full DC

Fast local restoration of
high availability after
device failure

No; time to restore HA: (1)
VM prov + (2) approx 60
min/500GB

Yes; three local data nodes
allow to maintain HA after
device failure

No; time to restore HA: (1)
VM prov + (2) approx 60
min/500GB

Yes; logical standbys can
quickly be promoted to
master data nodes

Cross location network
traffic

None (unless offsite
backup then backup
traffic only)

Backup traffic only Full replication traffic Full replication traffic

License cost 2 data nodes 3 data nodes 4 data nodes 4 data nodes
2 logical standbys

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 301

8.1 Always On Bronze

The Always On Bronze architecture includes the following:

Two BDR data nodes
One BDR witness node that doesn't hold data but is used for consensus
Two HARP-Proxy nodes for routing application traffic to the "lead" master
One barman node for backup and recovery can be onsite or offsite

BDR and HARP-Proxy nodes should be spread across availability zones.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 302

8.2 Always On Silver

The Always On Silver architecture includes the following:

Three BDR data nodes
Two HARP-Proxy nodes
Barman offsite (offsite is optional but recommended)

BDR and HARP nodes should be spread across AZs. Barman can be located in location A.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 303

8.3 Always On Gold

This architecture favors local resiliency/redundancy first and remote locations only when and an entire location is offline or fails.

This architecture enables geo-distributed writes where no/low conflict handling is expected

The Always On Gold architecture requires intervention to move between locations but all data will be replicated and available to the application when
failover is initiated with full capacity.

The Always On Gold architecture includes the following:

Four BDR data nodes (two in location A, two in location B)
One BDR witness node in location C (optional but recommended)
Four HARP-Proxy nodes (two in location A, two in location B)
Two Barman nodes (one in location A, one in location B)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 304

8.4 Always On Platinum

The Always On Platinum architecture includes the following:

Four BDR data nodes (two in location A, two in location B)
Two logical standby nodes (one in location A, one in location B)
One witness node in location C (optional but recommended)
Four HARP-Proxy nodes (two in location A, two in location B)
Two Barman nodes (one in location A, one in location B)

Both locations have redundant hot standby hardware to maintain local high availability in case of a hardware failure without waiting to restore a BDR node
from backup.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 305

9 Choosing a Postgres distribution

EDB Postgres Distributed can be deployed with three different Postgres distributions: PostgreSQL, EDB Postgres Extended Server, or EDB Postgres
Advanced Server. The availability of particular EDB Postgres Distributed features depends on which Postgres distribution is used. Therefore, it is essential
to adopt the Postgres distribution best suited to your business needs. For example, if having the feature "Commit At Most Once (CAMO)" is mission critical
to your use case, you should not adopt open source PostgreSQL because it does not have the core capabilities required to handle CAMO.

The following table lists features of EDB Postgres Distributed that are dependent on the Postgres distribution and version.

Feature PostgreSQL EDB Postgres Extended EDB Postgres Advanced

Commit At Most Once (CAMO) N Y 14+

Group Commit N Y 14+

Eager Replication N Y 14+

Decoding Worker N 13+ 14+

Assessment Tooling N Y 14+

Lag Tracker N Y 14+

Lag Control N Y 14+

Timestamp Snapshots N Y 14+

Transaction Streaming 14+ 13+ 14+

Missing Partition Conflict N Y 14+

No need for UPDATE Trigger on tables with TOAST N Y 14+

Automatically hold back FREEZE N Y 14+

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 306

10 Choosing durability

EDB Postgres Distributed allows you to choose from several replication configurations based on your consistency, availability, and performance needs:

Asynchronous
Synchronous (using synchronous_standby_names)
Commit at Most Once
Eager
Group Commit

For more information, see Durability.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 307

11 Other considerations

Review these other considerations when planning your deployment.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 308

Data Consistency

Read about Conflicts to understand the implications of the asynchronous operation mode in terms of data consistency.

Deployment and sizing considerations

For production deployments, EDB recommends a minimum of four cores for each Postgres data node and each logical standby. Witness nodes don't
participate in the data replication operation and don't have to meet this requirement. Always size logical standbys exactly like the data nodes to avoid
performance degradations in case of a node promotion. In production deployments, HARP proxy nodes require a minimum of two cores each. EDB
recommends detailed benchmarking based on your performance requirements to determine the correct sizing for your environment. EDB’s Professional
Services team is available to assist, if needed.

For development purposes, don't assign Postgres data nodes fewer than two cores. The sizing of Barman nodes depends on the database size and the data
change rate.

You can deploy Postgres data nodes, logical standbys, Barman nodes, and HARP proxy nodes on virtual machines or in a bare metal deployment mode.
However, maintain anti-affinity between data nodes and HARP proxy nodes. Don't deploy multiple data nodes on VMs that are on the same physical
hardware, as that reduces resiliency. Also don't deploy multiple HARP proxy nodes on VMs on the same physical hardware, as that, too, reduces resiliency.

You can deploy single HARP proxy nodes with single data nodes on the same physical hardware but should be deployed as VMs to ensure proper CPU and
memory resource assignment.

Clocks and timezones

EDB Postgres Distributed has been designed to operate with nodes in multiple timezones, allowing a truly worldwide database cluster. Individual servers do
not need to be configured with matching timezones, though we do recommend using log_timezone = UTC to ensure the human readable server log
is more accessible and comparable.

Server clocks should be synchronized using NTP or other solutions.

Clock synchronization is not critical to performance, as is the case with some other solutions. Clock skew can impact Origin Conflict Detection, though EDB
Postgres Distributed provides controls to report and manage any skew that exists. EDB Postgres Distributed also provides Row Version Conflict Detection,
as described in Conflict Detection.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 309

12 Limitations

This section covers design limitations of BDR, that should be taken into account when planning your deployment.

Limits on nodes

BDR can run hundreds of nodes assuming adequate hardware and network. However, for mesh-based deployments, we generally don’t recommend
running more than 48 nodes in one cluster. If extra read scalability is needed beyond the 48 node limit, subscriber only nodes can be added without
adding connections to the mesh network.

BDR places a limit that at most 10 databases in any one PostgreSQL instance can be BDR nodes across different BDR node groups. However, BDR
works best if you use only one BDR database per PostgreSQL instance.

The minimum recommended number of nodes in a group is three to provide fault tolerance for BDR's consensus mechanism. With just two nodes,
consensus would fail if one of the nodes was unresponsive. Consensus is required for some BDR operations such as distributed sequence
generation. For more information about the consensus mechanism used by EDB Postgres Distributed, see Architectural details.

Limitations of multiple databases on a single instance

Support for using BDR for multiple databases on the same Postgres instance is deprecated beginning with PGD 5 and will no longer be supported with PGD
6. As we extend the capabilities of the product, the additional complexity introduced operationally and functionally is no longer viable in a multi-database
design.

It is best practice and recommended that only one database per PGD instance be configured. The deployment automation with TPA and the tooling such as
the CLI and proxy already codify that recommendation.

While it is still possible to host up to ten databases in a single instance, this incurs many immediate risks and current limitations:

Administrative commands need to be executed for each database if PGD configuration changes are needed, which increases risk for potential
inconsistencies and errors.

Each database needs to be monitored separately, adding overhead.

TPAexec assumes one database; additional coding is needed by customers or PS in a post-deploy hook to set up replication for additional databases.

HARP works at the Postgres instance level, not at the database level, meaning the leader node will be the same for all databases.

Each additional database increases the resource requirements on the server. Each one needs its own set of worker processes maintaining
replication (e.g. logical workers, WAL senders, and WAL receivers). Each one also needs its own set of connections to other instances in the
replication cluster. This might severely impact performance of all databases.

When rebuilding or adding a node, the physical initialization method (“bdr_init_physical”) for one database can only be used for one node, all other
databases will have to be initialized by logical replication, which can be problematic for large databases because of the time it might take.

Synchronous replication methods (e.g. CAMO, Group Commit) won’t work as expected. Since the Postgres WAL is shared between the databases, a
synchronous commit confirmation may come from any database, not necessarily in the right order of commits.

CLI and OTEL integration (new with v5) assumes one database.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 310

Other limitations

This is a (non-comprehensive) list of limitations that are expected and are by design. They aren't expected to be resolved in the future.

Replacing a node with its physical standby doesn't work for nodes that use CAMO/Eager/Group Commit. Combining physical standbys and BDR in
general isn't recommended, even if otherwise possible.

A galloc sequence might skip some chunks if the sequence is created in a rolled back transaction and then created again with the same name.
This can also occur if it is created and dropped when DDL replication isn't active and then it is created again when DDL replication is active. The
impact of the problem is mild, because the sequence guarantees aren't violated. The sequence skips only some initial chunks. Also, as a workaround
you can specify the starting value for the sequence as an argument to the bdr.alter_sequence_set_kind() function.

Legacy BDR synchronous replication uses a mechanism for transaction confirmation different from the one used by CAMO, Eager, and Group
Commit. The two aren't compatible and must not be used together. Therefore, nodes that appear in synchronous_standby_names must not
be part of CAMO, Eager, or Group Commit configuration.

Postgres two-phase commit (2PC) transactions (that is, PREPARE TRANSACTION) can't be used with CAMO, Group Commit, or Eager Replication
because those features use two-phase commit underneath.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 311

https://www.postgresql.org/docs/current/sql-prepare-transaction.html

13 Deployment options

You can deploy and install EDB Postgres Distributed products using the following methods:

TPAexec is an orchestration tool that uses Ansible to build Postgres clusters as specified by TPA (Trusted Postgres Architecture), a set of reference
architectures that document how to set up and operate Postgres in various scenarios. TPA represents the best practices followed by EDB, and its
recommendations are as applicable to quick testbed setups as to production environments. To deploy PGD using TPA, see the TPA documentation.

Manual installation is also available where TPA is not an option. Details of how to deploy PGD manually are in the manual installation section of the
documentation.

EDB Postgres AI Cloud Service is a fully managed database-as-a-service with built-in Oracle compatibility, running in your cloud account and
operated by the Postgres experts. Cloud Service makes it easy to set up, manage, and scale your databases. The addition of distributed high
availability support through EDB Postres Distributed allows single-region or multi-region clusters with one or two data groups. See the Distributed
high availability topic in the EDB Postgres AI Cloud Service documentation for more information.

EDB Postgres Distributed for Kubernetes is a Kubernetes operator is designed, developed, and supported by EDB that covers the full lifecycle of a
highly available Postgres database clusters with a multi-master architecture, using BDR replication. It is based on the open source CloudNativePG
operator, and provides additional value such as compatibility with Oracle using EDB Postgres Advanced Server and additional supported platforms
such as IBM Power and OpenShift.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 312

https://www.enterprisedb.com/docs/edb-postgres-ai/cloud-service/references/supported_cluster_types/distributed_highavailability/
https://www.enterprisedb.com/docs/edb-postgres-ai/cloud-service/

13.1 TPAexec

The standard way of deploying EDB Postgres Distributed in a self managed setting, including physical and virtual machines, both self-hosted and in the
cloud (EC2), is to use EDB's deployment tool called TPAexec.

TPAexec is an orchestration tool that uses Ansible to build Postgres clusters as specified by Trusted Postgres Architecture (TPA), a set of reference
architectures that documents how to set up and operate Postgres in various scenarios. TPA represents the best practices followed by EDB and its
recommendations are as applicable to quick testbed setups as to production environments.

TPAexec packages are only available to EDB customers with an active BDR subscription. Please contact your account manager to request access.

Incremental changes

TPAexec is carefully designed so that provisioning, deployment, and testing are idempotent. You can run through them, make a change to config.yml, and
run through the process again to deploy the change. If nothing has changed in the configuration or on the instances, then rerunning the entire process does
not change anything either.

Extensible through Ansible

TPAexec supports a variety of configuration options, so you can do a lot just by editing config.yml and re-running provision/deploy/test. Should you need to
go beyond what is already implemented, you can write hook scripts to extend the deployment process.

This mechanism places the full range of Ansible functionality at your disposal during every stage of the deployment. For example, any tasks in hooks/pre-
deploy.yml are executed before the main deployment; and there are also post-deploy and many other hooks.

Cluster management

Once your cluster is up and running, TPAexec provides convenient cluster management functions, including configuration changes, switchover, and zero-
downtime minor-version upgrades. These features make it easier and safer to manage your cluster than making the changes by hand.

It's just Postgres

TPAexec can create complex clusters with many features configured, but the result is just Postgres. The installation follows some conventions designed to
make life simpler, but there is no hidden magic or anything standing in the way between you and the database. You can do everything on a TPA cluster that
you could do on any other Postgres installation.

Getting started

See these topics to install TPAexec and use it to deploy your first EDB Postgres Distributed cluster:

Installing TPAexec
Using TPAexec
Example: Deploying EDB Postgres Distributed

For more information, see TPAexec.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 313

https://documentation.enterprisedb.com/tpa/release/latest/

13.1.1 Installing TPAexec

The TPAexec install package in available from the EDB customer portal. You must have a subscription to access the repository and the TPAexec install
package.

Prerequisites

Access

Setting up the repository requires root user permissions. If you do not have direct root access, log in as superuser.

To log in as a superuser:
sudo su -

If you are behind an HTTPS proxy, see How to install RPM/APT repositories through a HTTPS proxy.

Token

You need your token to complete the install process. It is available from the EnterpriseDB customer portal. From the left navigation pane, select Company
info > Company. The account information for your company displays. Copy your token.

Installing TPAexec

The examples in this section assume you are using TPAexec v22.14 and installing Postgres 14.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 314

https://techsupport.enterprisedb.com/kb/a/how-to-install-rpm-apt-repositories-through-a-https-proxy/
https://techsupport.enterprisedb.com/customer_portal/

1. Install the EnterpriseDB repository for TPAexec.

To configure the yum repository (for RedHat derivatives): Replace token with your company token.

Syntax:

curl https://techsupport.enterprisedb.com/api/repository/<token>/products/tpa/release/14/rpm |
bash

Example:

curl
https://techsupport.enterprisedb.com/api/repository/xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx/products/tpa/rel
ease/14/rpm | bash

To configure the apt repository (for Debian and Ubuntu): Replace token with your company token.

Syntax:

curl https://techsupport.enterprisedb.com/api/repository/<token>/products/tpa/release/deb | bash

Example:

curl
https://techsupport.enterprisedb.com/api/repository/xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx/products/tpa/rel
ease/deb | bash

2. Install TPAexec:

On RedHat

yum install tpaexec

On Debian/Ubuntu

apt-get install tpaexec

3. Install additional dependencies:

/opt/EDB/TPA/bin/tpaexec setup

4. Verify the installation:

/opt/EDB/TPA/bin/tpaexec selftest

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 315

13.1.2 Using TPAexec

With TPAexec you configure, provision, and deploy your EDB Postgres Distributed clusters.

Configure

The tpaexec configure command generates a simple YAML configuration file to describe a cluster, based on the options you select. The
configuration is ready for immediate use and you can modify it to better suit your needs. Editing the configuration file is the usual way to make any
configuration changes to your cluster both before and after it's created.

The syntax is:

tpaexec configure <cluster_dir> --architecture <architecture_name> --layout <layout> [options]

The required configuration options include:

Flags Description

--architecture Required. Set to BDR-Always-ON for EDB Postgres Distributed deployments.

--layout Required. Specify one of the four supported architectures: bronze, silver, gold, and platinum. See Choosing your
architecture for more information.

--harp-consensus-
protocol

Required. Use bdr if your layout is bronze or silver. Use etcd if your layout is gold or platinum.

For example:

[tpa]$ tpaexec configure ~/clusters/speedy \
 --architecture BDR-Always-ON \
 --layout gold \
 --harp-consensus-protocol etcd \

The first argument must be the cluster directory, for example, speedy or ~/clusters/speedy (the cluster is named speedy in both cases). We
recommend that you keep all your clusters in a common directory, for example, ~/clusters . The next argument must be --architecture to select
an architecture, followed by --layout .

The command creates a directory named ~/clusters/speedy and generates a configuration file named config.yml that follows the layout of the BDR-
Always-ON architecture and gold layout. You can use the tpcaexec info command to see what values are supported for the configuration options
based on what you specified when running the configure command.

Common configuration options

Other configuration options include:

Owner

Every cluster must be directly traceable to a person responsible for the provisioned resources.

By default, a cluster is tagged as being owned by the login name of the user running tpaexec provision . If this name does not identify a person (for
example, postgres , ec2-user), you must specify --owner SomeId to set an identifiable owner.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 316

You may use your initials, or "Firstname Lastname", or anything else that identifies you uniquely.

Platform options

The default value for --platform is aws . It is the platform supported by the BDR-Always-ON architecture.

Specify --region to specify any existing AWS region that you have access to (and that permits the required number of instances to be created). The
default region is eu-west-1.

Specify --instance-type with any valid instance type for AWS. The default is t3.micro.

Subnet selection

By default, each cluster is assigned a random /28 subnet under 10.33/16, but depending on the architecture, there may be one or more subnets, and each
subnet may be anywhere between a /24 and a /29.

Specify --subnet to use a particular subnet. For example, --subnet 192.0.2.128/27 .

Alternatively, specify --subnet-pattern to generate random subnets (as many as required by the architecture) matching the given pattern. For
example, --subnet-pattern 192.0.x.x .

Disk space

Specify --root-volume-size to set the size of the root volume in GB. For example, --root-volume-size 64 . The default is 16GB. (Depending
on the image used to create instances, there may be a minimum size for the root volume.)

For architectures that support separate postgres and barman volumes:

Specify --postgres-volume-size to set the size of the Postgres volume in GB. The default is 16GB.

Specify --barman-volume-size to set the size of the Barman volume in GB. The default is 32GB.

Distribution

Specify --os or --distribution to specify the OS to be used on the cluster's instances. The value is case-sensitive.

The selected platform determines which distributions are available and which one is used by default. For more details, see tpaexec info
platforms/<platformname> .

In general, you can use "Debian", "RedHat", and "Ubuntu" to select TPA images that have Postgres and other software preinstalled (to reduce deployment
times). To use stock distribution images instead, append "-minimal" to the value, for example, --distribution Debian-minimal .

2ndQuadrant repositories

By default, TPAexec installs the 2ndQuadrant public repository and adds on any product repositories that the architecture requires.

Specify --2Q-repositories source/name/release … to specify the complete list of 2ndQuadrant repositories to install on each instance in
addition to the 2ndQuadrant public repository.

If you do this, you must first export TPA_2Q_SUBSCRIPTION_TOKEN=xxx before you run tpaexec. You can get a subscription token from the EnterpriseDB
customer portal (Support > Software subscriptions > Add).

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 317

https://techsupport.enterprisedb.com/customer_portal/

Software versions

By default TPAexec uses the latest major version of Postgres. Specify --postgres-version to install an earlier supported major version.

By default, TPAexec always installs the latest version of every package. This is usually the desired behavior, but in some testing scenarios, it may be
necessary to select specific package versions. For example,

--postgres-package-version 10.4-2.pgdg90+1
--repmgr-package-version 4.0.5-1.pgdg90+1
--barman-package-version 2.4-1.pgdg90+1
--pglogical-package-version '2.2.0*'
--bdr-package-version '3.0.2*'
--pgbouncer-package-version '1.8*'

Specify --extra-packages or --extra-postgres-packages to install additional packages. The former lists packages to install along with
system packages, while the latter lists packages to install later along with postgres packages. (If you mention packages that depend on Postgres in the
former list, the installation fails because Postgres is not yet installed.) The arguments are passed on to the package manager for installation without any
modifications.

The --extra-optional-packages option behaves like --extra-packages , but it is not an error if the named packages cannot be installed.

Hostnames

By default, tpaexec configure randomly selects as many hostnames as it needs from a pre-approved list of several dozen names. This should be enough for
most clusters.

Specify --hostnames-from to select names from a different list (for example, if you need more names than are available in the canned list). The file
must contain one hostname per line.

Specify --hostnames-pattern to restrict hostnames to those matching the egrep-syntax pattern. If you choose to do this, you must ensure that the
pattern matches only valid hostnames ([a-zA-Z0-9-]) and finds a sufficient number thereof.

Locations

By default, tpaexec configure uses the names first, second, and so on for any locations used by the selected architecture.

Specify --location-names to provide more meaningful names for each location.

Enable Commit At Most Once

Specify --enable-camo to set the pair of BDR primary instances in each region to be each other's Commit At Most Once (CAMO) partners. See Commit
At Most Once (CAMO) for more information.

Provision

The tpaexec provision command creates instances and other resources required by the cluster. The details of the process depend on the
architecture (for example, BDR-Always-ON) and platform (for example, AWS) that you selected while configuring the cluster.

For example, given AWS access with the necessary privileges, TPAexec provisions EC2 instances, VPCs, subnets, routing tables, internet gateways, security
groups, EBS volumes, elastic IPs, and so on.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 318

You can also "provision" existing servers by selecting the "bare" platform and providing connection details. Whether these are bare metal servers or those
provisioned separately on a cloud platform, they can be used just as if they had been created by TPAexec.

You are not restricted to a single platform—you can spread your cluster out across some AWS instances (in multiple regions) and some on-premise servers,
or servers in other data centres, as needed.

At the end of the provisioning stage, you will have the required number of instances with the basic operating system installed, which TPAexec can access
via SSH (with sudo to root).

Deploy

The tpaexec deploy command installs and configures Postgres and other software on the provisioned servers (which may or may not have been
created by TPAexec; but it doesn't matter who created them so long as SSH and sudo access is available). This includes setting up replication, backups, and
so on.

At the end of the deployment stage, EDB Postgres Distributed is up and running.

Test

The tpaexec test command executes various architecture and platform-specific tests against the deployed cluster to ensure that it is working as
expected.

At the end of the testing stage, you will have a fully-functioning cluster.

For more information, see TPAexec.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 319

https://documentation.enterprisedb.com/tpa/release/latest/

13.1.3 Example: Deploying EDB Postgres Distributed

The following steps setup EDB Postgres Distributed with the Always On Silver architecture using Amazon EC2.

1. Generate a configuration file:

$ tpaexec configure myedbdpcluster --architecture BDR-Always-ON --layout silver --platform aws --bdr-
version 4 --2q --2Q-repositories products/2ndqpostgres/release

This creates a subdirectory directory in current working directory called myedbdpcluster containing the config.yml configuration file
TPAexec uses to create the cluster. Edit the config.yml as needed, for example to change the IP address range used for servers or adjust
locations of nodes.

We included options to specify using BDR 4 (the default version) and the 2ndQuadrant repositories to install EDB Postgres Extended Server. By
default, TPAexec installs the 2ndQuadrant public repository and adds on any product repositories that the architecture requires. In this example, we
specified --2Q-repositories so the complete list of 2ndQuadrant repositories is installed on each instance in addition to the 2ndQuadrant
public repository. Since we did this, before the provisioning step, you must first export TPA_2Q_SUBSCRIPTION_TOKEN=xxx. You can get a
subscription token from the EnterpriseDB customer portal (Support > Software subscriptions > Add).

cd ~/clusters/myedbdpcluster

export TPA_2Q_SUBSCRIPTION_TOKEN=<token>

2. Provision the cluster:

tpaexec provision myedbdpcluster

Since we specified AWS as the platform (the default platform), TPAexec provisions EC2 instances, VPCs, subnets, routing tables, internet gateways,
security groups, EBS volumes, elastic IPs, and so on.

3. Deploy the cluster:

tpaexec deploy myedbdpcluster

TPAexec installs the needed packages, appliies the configuration and sets up the actual EDB Postgres Distributed cluster

4. Test the cluster:

After the successful run of the deploy command the cluster is ready to use. You can connect to it via psql or any other database client.

It's also possible to run a test that ensures the cluster is running as expected:

tpaexec test myedbdpcluster

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 320

https://techsupport.enterprisedb.com/customer_portal/

13.2 Deploying PGD 4 manually

EDB offers automated PGD deployment using Trusted Postgres Architect (TPA) because it's generally more reliable than manual processes. Consult
Deploying with TPA for full details on how to install TPA and use its automated best-practice-driven PGD deployment options.

To complement automated installation, and to enable alternative installation and deployment processes, this section of the documentation looks at the
basic operations needed to manually configure a three-node PGD 4 cluster (with a local subgroup) and PGD CLI.

This section includes, for completeness, instructions for installing PostgreSQL. If you're familiar with that, then skip to step 3 in the linked sections that
follow.

Each step is outlined and followed by a worked example with further detail. This documentation is not a quick start but an exploration of PGD installation.
It shows how to configure a basic deployment that will be used for additional examples of PGD administration tasks.

Note

Installation of HARP proxies is not covered in this guide. For information on how to install HARP proxies, see the HARP Proxy Installation Guide.

The examples deploy a 3-node cluster of EDB Postgres Advanced Server 14 on Red Hat Enterprise Linux 9. These instructions also apply to RHEL derivatives
like Alma Linux, Rocky Linux, or Oracle Linux.

At the highest level, manually deploying PGD involves the following steps:

 1: Provisioning and configuring hosts to run the cluster on.

 2: Installing your selected Postgres version on each of the hosts.

 3: Configuring repositories to install PGD to add PGD capabilities to each host.

 4: Initializing Postgres and installing PGD software on each host.

 5: Connecting the cluster by connecting to each node and telling it to join the cluster.

 6: Checking the cluster by running SQL commands and confirming replication has happened.

 7: Using PGD CLI covers installing PGD CLI and how to use it to inspect and manage your cluster.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 321

13.2.1 Step 1 - Provisioning hosts

Provisioning hosts

The first step in the process of deploying PGD is to provision and configure hosts.

You can deploy to virtual machine instances in the cloud with Linux installed, on-premises virtual machines with Linux installed, or on-premises physical
hardware, also with Linux installed.

Whichever supported Linux operating system and whichever deployment platform you select, the result of provisioning a machine must be a Linux system
that you can access using SSH with a user that has superuser, administrator, or sudo privileges.

Each machine provisioned must be able to make connections to any other machine you're provisioning for your cluster.

On cloud deployments, this can be done over the public network or over a VPC.

On-premises deployments must be able to connect over the local network.

Cloud provisioning guides

If you're new to cloud provisioning, these guides may provide assistance:

Vendor Platform Guide

Amazon AWS Tutorial: Get started with Amazon EC2 Linux instances

Microsoft Azure Quickstart: Create a Linux virtual machine in the Azure portal

Google GCP Create a Linux VM instance in Compute Engine

Configuring hosts

Create an admin user

We recommend that you configure an admin user for each provisioned instance. The admin user must have superuser or sudo (to superuser) privileges. We
also recommend that the admin user be configured for passwordless SSH access using certificates.

Ensure networking connectivity

With the admin user created, ensure that each machine can communicate with the other machines you're provisioning.

In particular, the PostgreSQL TCP/IP port (5444 for EDB Postgres Advanced Server, 5432 for EDB Postgres Extended and community PostgreSQL) must be
open to all machines in the cluster. If you plan to deploy PGD Proxy, its port must be open to any applications that will connect to the cluster. Port 6432 is
typically used for PGD Proxy.

Worked example

For the example in this section, three hosts are provisioned with Red Hat Enterprise Linux 9.

host-one
host-two
host-three

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 322

https://www.enterprisedb.com/resources/platform-compatibility#bdr
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://learn.microsoft.com/en-us/azure/virtual-machines/linux/quick-create-portal?tabs=ubuntu
https://cloud.google.com/compute/docs/create-linux-vm-instance

Each is configured with an admin user named admin.

These hosts have been configured in the cloud. As such, each host has both a public and private IP address.

Name Public IP Private IP

host-one 172.24.117.204 192.168.254.166

host-two 172.24.113.247 192.168.254.247

host-three 172.24.117.23 192.168.254.135

For this example, the cluster's /etc/hosts file was edited to use those private IP addresses:

192.168.254.166 host-one
192.168.254.247 host-two
192.168.254.135 host-three

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 323

13.2.2 Step 2 - Installing Postgres

Installing Postgres

You need to install Postgres on all the hosts.

An EDB account is required to use the EDB Repos 2.0 page where you can get installation instructions. Select your platform and Postgres edition. You're
presented with two steps of instructions. The first covers how to configure the required package repository and the second covers how to install the
packages from that repository.

Run both steps.

Worked example

In this example, EDB Postgres Advanced Server 14 is installed on Red Hat Enterprise Linux 9 (RHEL 9).

Note

PGD 4 doesn't support Postgres versions 15, 16, or later.

EDB account

You need an EDB account to install both Postgres and PGD.

Use your EDB account to sign in to the EDB Repos 2.0 page where you can select your platform. Then scroll down the list to select the Postgres version you
want to install:

EDB Postgres Advanced Server (up to and including version 14)
EDB Postgres Extended (up to and including version 14)
PostgreSQL (up to and including version 14)

When you select the version of the Postgres server you want, two steps are displayed.

1: Configuring repositories

For step 1, you can choose to use the automated script or step through the manual install instructions that are displayed. Your EDB repository token will be
automatically inserted by the EDB Repos 2.0 site into these scripts. In these examples, the token is shown as XXXXXXXXXXXXXXXX .

On each provisioned host, you can run the automatic repository installation script, which looks like this:

curl -1sLf 'https://downloads.enterprisedb.com/XXXXXXXXXXXXXXXX/enterprise/setup.rpm.sh' | sudo -E bash

Or you can use the manual installation steps, which looks like this:

dnf install yum-utils
rpm --import 'https://downloads.enterprisedb.com/XXXXXXXXXXXXXXXX/enterprise/gpg.E71EB0829F1EF813.key'
curl -1sLf 'https://downloads.enterprisedb.com/XXXXXXXXXXXXXXXX/enterprise/config.rpm.txt?
distro=el&codename=9' > /tmp/enterprise.repo
dnf config-manager --add-repo '/tmp/enterprise.repo'
dnf -q makecache -y --disablerepo='*' --enablerepo='enterprisedb-enterprise'

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 324

https://www.enterprisedb.com/repos
https://www.enterprisedb.com/repos

2: Install Postgres

For step 2, just run the command to install the packages:

sudo dnf -y install edb-as14-server

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 325

13.2.3 Step 3 - Configuring PGD repositories

Configuring PGD repositories

To install and run PGD requires that you configure repositories so that the system can download and install the appropriate packages.

Perform the following operations on each host. For the purposes of this exercise, each host will be a standard data node, but the procedure would be the
same for other node types, such as witness or subscriber-only nodes.

Use your EDB account.

Obtain your EDB repository token from the EDB Repos 2.0 page.

Set environment variables.

Set the EDB_SUBSCRIPTION_TOKEN environment variable to the repository token:

export EDB_SUBSCRIPTION_TOKEN=<your-repo-token>

Configure the repository.

Run the automated installer to install the repositories:

Red Hat

curl -1sLf
"https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed_4/setup.rpm.s
h" | sudo -E bash

Ubuntu/Debian

curl -1sLf
"https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed_4/setup.deb.s
h" | sudo -E bash

Worked example

Use your EDB account

You need an EDB account to install Postgres Distributed.

Use your EDB account to sign in to the EDB Repos 2.0 page, where you can obtain your repo token.

On your first visit to this page, select Request Access to generate your repo token.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 326

https://www.enterprisedb.com/repos-downloads
https://www.enterprisedb.com/repos-downloads

Copy the token to your clipboard using Copy Token, and store it safely.

Set environment variables

Set the EDB_SUBSCRIPTION_TOKEN environment variable to the value of your EDB repo token, obtained in the EDB account step.

export EDB_SUBSCRIPTION_TOKEN=<your-repo-token>

You can add this to your .bashrc script or similar shell profile to ensure it's always set.

Note

Your preferred platform may support storing this variable as a secret, which can appear as an environment variable. If this is the case, don't add
the setting to .bashrc . Instead add it to your platform's secret manager.

Configure the repository

All the software you need is available from the EDB Postgres Distributed package repository. You have the option to simply download and run a script to
configure the EDB Postgres Distributed repository. You can also download, inspect, and then run that same script. The following instructions also include
the essential steps that the scripts take for any user wanting to manually run, or automate, the installation process.

RHEL/Other RHEL-based

You can autoinstall with automated OS detection:

curl -1sLf "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed_4/setup.rpm.sh"
| sudo -E bash

If you want to inspect the script that's generated for you, run:

curl -1sLfO
"https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed_4/setup.rpm.sh"

Then, inspect the resulting setup.rpm.sh file. When you're ready to proceed, run:

sudo -E bash setup.rpm.sh

If you want to perform all steps manually or use your own preferred deployment mechanism, you can use the following example as a guide.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 327

You will need to pass details of your Linux distribution and version. You may need to change the codename to match the version of RHEL you're using. This
example sets it for RHEL-compatible Linux version 9:

export DISTRO="el"
export CODENAME="9"

Now install the yum-utils package:

sudo dnf install -y yum-utils

The next step imports a GPG key for the repositories:

sudo rpm --import
"https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed_4/gpg.44D45428437EAD1B.key
"

Now, you can import the repository details, add them to the local configuration, and enable the repository.

curl -1sLf
"https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed_4/config.rpm.txt?
distro=$DISTRO&codename=$CODENAME" > /tmp/enterprise.repo
sudo dnf config-manager --add-repo '/tmp/enterprise.repo'
sudo dnf -q makecache -y --disablerepo='*' --enablerepo='enterprisedb-postgres_distributed'

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 328

13.2.4 Step 4 - Installing the PGD software

Installing the PGD software

With the repositories configured, you can now install the Postgres Distributed software. You must perform these steps on each host before proceeding to
the next step.

Install the packages.

Install the PGD packages, which include a server-specific BDR package and generic PGD CLI packages(edb-bdr4-<postgresversion>
and edb-pgd-cli).

Ensure the Postgres database server was initialized and started.

Use systemctl status to check the service is running.
If it isn't, initialize the database and start the service.

Configure the BDR extension.

Add the BDR extension ($libdir/bdr) at the start of the shared_preload_libraries setting in postgresql.conf .
Set the wal_level GUC variable to logical in postgresql.conf .
Turn on commit timestamp tracking by setting track_commit_timestamp to 'on' in postgresql.conf .
Raise the maximum worker processes to 16 or higher by setting max_worker_processes to '16' in postgresql.conf .

The max_worker_processes value

The max_worker_processes value is derived from the topology of the cluster, the number of peers, number of databases, and
other factors. To calculate the needed value, see Postgres configuration/settings. The value of 16 was calculated for the size of
cluster being deployed in this example and must be raised for larger clusters.

Set a password on the EnterprisedDB/Postgres user.
Add rules to pg_hba.conf to allow nodes to connect to each other.

Ensure that these lines are present in pg_hba.conf :

host all all all md5
host replication all all md5

Add a .pgpass file to allow nodes to authenticate each other.
Configure a user with sufficient privileges to be able to log into the other nodes.
See The Password File in the Postgres documentation for more on the .pgpass file.

Restart the server.

Verify the restarted server is running with the modified settings and that the BDR extension is available.

Create the replicated database.

Log in to the server's default database (edb for EDB Postgres Advanced Server, postgres for EDB Postgres Extended Server and
community Postgres).
Use CREATE DATABASE bdrdb to create the default PGD replicated database.
Log out and then log back in to bdrdb .
Use CREATE EXTENSION bdr to enable the BDR extension and PGD to run on that database.

The worked example that follows explores these steps in detail for EDB Postgres Advanced Server.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 329

https://www.postgresql.org/docs/current/libpq-pgpass.html

If you're installing PGD with EDB Postgres Extended Server or community Postgres, the steps are similar, but details such as package names and paths are
different. These differences are summarized in Installing PGD for EDB Postgres Extended Server and Installing PGD for Postgresql.

Worked example

Install the packages

The first step is to install the packages. For each Postgres package, there's an edb-bdr4-<postgresversion> package to go with it. For example, if
you're installing EDB Postgres Advanced Server (epas) version 14, you install edb-bdr4-epas14 .

There in one other packages to also install:

edb-pgd-cli for the PGD command line tool

To install all of these packages on a RHEL or RHEL-compatible Linux, run:

sudo dnf -y install edb-bdr4-epas14 edb-pgd-cli

Ensure the database is initialized and started

If it wasn't initialized and started by the database's package initialization (or you're repeating the process), you need to initialize and start the server.

To see if the server is running, you can check the service. The service name for EDB Advanced Server is edb-as-14 , so run:

sudo systemctl status edb-as-14

If the server isn't running, the response is:

○ edb-as-14.service - EDB Postgres Advanced Server 14
 Loaded: loaded (/usr/lib/systemd/system/edb-as-16.service; disabled; preset: disabled)
 Active: inactive (dead)

The "Active: inactive (dead)" tells you that you need to initialize and start the server.

You need to know the path to the setup script for your particular Postgres flavor.

For EDB Postgres Advanced Server, this script can be found in /usr/edb/as14/bin as edb-as-14-setup . This command needs to be run with the
initdb parameter, passing an option setting the database to use UTF-8:

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as14/bin/edb-as-14-setup initdb

Once the database is initialized, start it, which enables you to continue configuring the BDR extension"

sudo systemctl start edb-as-14

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 330

Configure the BDR extension

Installing EDB Postgres Advanced Server creates a system user enterprisedb with admin capabilities when connected to the database. In this example, this
user configures the BDR extension.

Preload the BDR library

The BDR library needs to be preloaded with other libraries. EDB Postgres Advanced Server has a number of libraries already preloaded, so you have to
prefix the existing list with the BDR library:

echo -e "shared_preload_libraries = '\$libdir/bdr,\$libdir/dbms_pipe,\$libdir/edb_gen,\$libdir/dbms_aq'" |
sudo -u enterprisedb tee -a /var/lib/edb/as14/data/postgresql.conf >/dev/null

Tip

This command format (echo ... | sudo ... tee -a ...) appends the echoed string to the end of the postgresql.conf file,
which is owned by another user.

Set the wal_level

The BDR extension needs to set the server to perform logical replication. You can do this by setting wal_level to logical :

echo -e "wal_level = 'logical'" | sudo -u enterprisedb tee -a /var/lib/edb/as14/data/postgresql.conf
>/dev/null

Enable commit timestamp tracking

The BDR extension also needs the commit timestamp tracking enabled:

echo -e "track_commit_timestamp = 'on'" | sudo -u enterprisedb tee -a
/var/lib/edb/as14/data/postgresql.conf >/dev/null

Raise max_worker_processes

To communicate between multiple nodes, Postgres Distributed nodes run more worker processes than usual. The default limit (8) is too low even for a small
cluster.

The max_worker_processes value is derived from the topology of the cluster, the number of peers, number of databases, and other factors. To
calculate the needed value, see Postgres configuration/settings.

This example, with a 3-node cluster, uses the value of 16.

Raise the maximum number of worker processes to 16 with this command:

echo -e "max_worker_processes = '16'" | sudo -u enterprisedb tee -a /var/lib/edb/as14/data/postgresql.conf
>/dev/null

This value must be raised for larger clusters.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 331

Add a password to the Postgres enterprisedb user

To allow connections between nodes, a password needs to be set on the Postgres enterprisedb user. This example uses the password secret . Select a
different password for your deployments. You will need this password when you get to Creating the PGD cluster.

sudo -u enterprisedb psql edb -c "ALTER USER enterprisedb WITH PASSWORD 'secret'"

Enable inter-node authentication in pg_hba.conf

Out of the box, Postgres allows local authentication and connections with the database but not external network connections. To enable this, edit
pg_hba.conf and add appropriate rules, including rules for the replication users. To simplify the process, use this command:

echo -e "host all all all md5\nhost replication all all md5" | sudo tee -a
/var/lib/edb/as14/data/pg_hba.conf

It appends the following to pg_hba.conf , which enables the nodes to replicate:

host all all all md5
host replication all all md5

Enable authentication between nodes

As part of the process of connecting nodes for replication, PGD logs into other nodes. It performs that login as the user that Postgres is running under. For
EDB Postgres Advanced Server, this is the enterprisedb user. That user needs credentials to log into the other nodes. This example supplies these
credentials using the .pgpass file, which needs to reside in the user's home directory. The home directory for enterprisedb is /var/lib/edb .

Run this command to create the file:

echo -e "*:*:*:enterprisedb:secret" | sudo -u enterprisedb tee /var/lib/edb/.pgpass; sudo chmod 0600
/var/lib/edb/.pgpass

You can read more about the .pgpass file in The Password File in the PostgreSQL documentation.

Restart the server

After all these configuration changes, we recommend that you restart the server with:

sudo systemctl restart edb-as-14

Check the extension has been installed

At this point, it's worth checking the extension is actually available and the configuration was correctly loaded. You can query the
pg_available_extensions table for the BDR extension like this:

sudo -u enterprisedb psql edb -c "select * from pg_available_extensions where name like 'bdr'"

This command returns an entry for the extension and its version:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 332

https://www.postgresql.org/docs/current/libpq-pgpass.html

 name | default_version | installed_version | comment
------+-----------------+-------------------+---
 bdr | 4.3.3 | | Bi-Directional Replication for PostgreSQL
(1 row)

You can also confirm the other server settings using this command:

sudo -u enterprisedb psql edb -c "show all" | grep -e wal_level -e track_commit_timestamp -e
max_worker_processes

Create the replicated database

The server is now prepared for PGD. Next, create a database named bdrdb and install the BDR extension when logged into it.

sudo -u enterprisedb psql edb -c "CREATE DATABASE bdrdb"
sudo -u enterprisedb psql bdrdb -c "CREATE EXTENSION bdr"

Finally, test the connection by logging into the server.

sudo -u enterprisedb psql bdrdb

You're connected to the server.

Execute the command \dx to list extensions installed.

bdrdb=# \dx
 List of installed extensions
 Name | Version | Schema | Description
------------------+---------+------------+--
 bdr | 4.3.3 | pg_catalog | Bi-Directional Replication for PostgreSQL
 edb_dblink_libpq | 1.0 | pg_catalog | EnterpriseDB Foreign Data Wrapper for PostgreSQL
 edb_dblink_oci | 1.0 | pg_catalog | EnterpriseDB Foreign Data Wrapper for Oracle
 edbspl | 1.0 | pg_catalog | EDB-SPL procedural language
 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language

Notice that the BDR extension is listed in the table, showing that it's installed.

Summaries

Installing PGD4 for EDB Postgres Advanced Server

These are all the commands used in this section gathered together for your convenience.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 333

sudo dnf -y install edb-bdr4-epas14 edb-pgd-cli
sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as14/bin/edb-as-14-setup initdb
sudo systemctl start edb-as-14
echo -e "shared_preload_libraries = '\$libdir/bdr,\$libdir/dbms_pipe,\$libdir/edb_gen,\$libdir/dbms_aq'" |
sudo -u enterprisedb tee -a /var/lib/edb/as14/data/postgresql.conf >/dev/null
echo -e "wal_level = 'logical'" | sudo -u enterprisedb tee -a /var/lib/edb/as14/data/postgresql.conf
>/dev/null
echo -e "track_commit_timestamp = 'on'" | sudo -u enterprisedb tee -a
/var/lib/edb/as14/data/postgresql.conf >/dev/null
echo -e "max_worker_processes = '16'" | sudo -u enterprisedb tee -a /var/lib/edb/as14/data/postgresql.conf
>/dev/null
sudo -u enterprisedb psql edb -c "ALTER USER enterprisedb WITH PASSWORD 'secret'"
echo -e "host all all all md5\nhost replication all all md5" | sudo tee -a
/var/lib/edb/as14/data/pg_hba.conf
echo -e "*:*:*:enterprisedb:secret" | sudo -u enterprisedb tee /var/lib/edb/.pgpass; sudo chmod 0600
/var/lib/edb/.pgpass
sudo systemctl restart edb-as-14
sudo -u enterprisedb psql edb -c "CREATE DATABASE bdrdb"
sudo -u enterprisedb psql bdrdb -c "CREATE EXTENSION bdr"
sudo -u enterprisedb psql bdrdb

Installing PGD for EDB Postgres Extended Server

If you're installing PGD with EDB Postgres Extended Server, there are a number of differences from the EDB Postgres Advanced Server installation:

The BDR package to install is named edb-bdrV-pgextendedNN , where V is the PGD version and NN is the PGE version number.
Call a different setup utility: /usr/edb/pgeNN/bin/edb-pge-NN-setup
The service name is edb-pge-NN .
The system user is postgres, not enterprisedb.
The home directory for the postgres user is /var/lib/pgqsl .
shared_preload_libraries is empty by default and needs only $libdir/bdr added to it.

Installing PGD for PostgreSQL

If installing PGD with PostgreSQL, there are a number of differences from the EDB Postgres Advanced Server installation.

The BDR package to install is named edb-bdrV-pgNN , where V is the PGD version and NN is the PostgreSQL version number.
Call a different setup utility: /usr/pgsql-NN/bin/postgresql-NN-setup .
The service name is postgresql-NN .
The system user is postgres, not enterprisedb.
The home directory for the postgres user is /var/lib/pgqsl .
shared_preload_libraries is empty by default and needs only $libdir/bdr added to it.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 334

13.2.5 Step 5 - Creating the PGD cluster

Creating the PGD cluster

Create connection strings for each node.
For each node, create a connection string that will allow PGD to perform replication.

The connection string is a key/value string that starts with host= and the IP address of the host (or, if you have resolvable named hosts, the name
of the host).

That's followed by the name of the database: dbname=bdrdb . (The bdrdb database was created while installing the software.)

We recommend you also add the port number of the server to your connection string as port=5444 for EDB Postgres Advanced Server and
port=5432 for EDB Postgres Extended and community PostgreSQL.

Prepare the first node. To create the cluster, log into the bdrdb database on one of the nodes.

Create the first node.
Run bdr.create_node and give the node a name and its connection string where other nodes can connect to it.

Create the top-level group. Create a top-level group for the cluster with bdr.create_node_group , giving it a single parameter: the
name of the top-level group.
Create a subgroup. Create a subgroup as a child of the top-level group with bdr.create_node_group , giving it two parameters: the
name of the subgroup and the name of the parent (and top-level) group. This sequence initializes the first node.

Add the second node.

Create the second node.
Log into another initialized node's bdrdb database. Run bdr.create_node and give the node a different name and its connection string
where other nodes can connect to it.
Join the second node to the cluster. Next, run bdr.join_node_group , passing two parameters: the connection string for the first node
and the name of the subgroup you want the node to join.

Add the third node.

Create the third node. Log into another initialized node's bdrdb database. Run bdr.create_node and give the node a different name
and its connection string where other nodes can connect to it.
Join the third node to the cluster. Next, run bdr.join_node_group , passing two parameters: the connection string for the first node and
the name of the subgroup you want the node to join.

Worked example

So far, this example has:

Created three hosts.
Installed a Postgres server on each host.
Installed Postgres Distributed on each host.
Configured the Postgres server to work with PGD on each host.

To create the cluster, tell the host-one Postgres instance that it's a PGD node (node-one) and create PGD groups on that node. Then tell the host-
two and host-three Postgres instances that they're PGD nodes (node-two and node-three) and that they should join a group on node-one .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 335

Create connection strings for each node

Calculate the connection strings for each of the nodes in advance. Following are the connection strings for this 3-node example:

Name Node Name Private IP Connection string

host-one node-one 192.168.254.166 host=host-one dbname=bdrdb port=5444

host-two node-two 192.168.254.247 host=host-two dbname=bdrdb port=5444

host-three node-three 192.167.254.135 host=host-three dbname=bdrdb port=5444

Preparing the first node

Log into the host-one Postgres server.

ssh admin@host-one
sudo -iu enterprisedb psql bdrdb

Create the first node

Call the bdr.create_node function to create a node, passing it the node name and a connection string that other nodes can use to connect to it.

select bdr.create_node('node-one','host=host-one dbname=bdrdb port=5444');

Create the top-level group

Call the bdr.create_node_group function to create a top-level group for your PGD cluster. Passing a single string parameter creates the top-level
group with that name. For this example, create a top-level group named pgd :

select bdr.create_node_group('pgd');

Create a subgroup

Using subgroups to organize your nodes is preferred as it allows services like PGD Proxy, which you'll configured later in this example, to coordinate their
operations. In a larger PGD installation, multiple subgroups can exist providing organizational grouping that enables geographical mapping of clusters and
localized resilience. For that reason, this example creates a subgroup for the first nodes to enable simpler expansion and use of PGD Proxy.

Call the bdr.create_node_group function again to create a subgroup of the top-level group. The subgroup name is the first parameter, and the
parent group is the second parameter. This example creates a subgroup dc1 as a child of pgd :

select bdr.create_node_group('dc1','pgd');

Add the second node

Log into the host-two Postgres server:

ssh admin@host-two
sudo -iu enterprisedb psql bdrdb

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 336

Create the second node

Call the bdr.create_node function to create this node, passing it the node name and a connection string that other nodes can use to connect to it:

select bdr.create_node('node-two','host=host-two dbname=bdrdb port=5444');

Join the second node to the cluster

Using bdr.join_node_group , you can ask node-two to join the node-one dc1 group. The function takes as a first parameter the connection
string of a node already in the group. It takes the group name as a second parameter.

select bdr.join_node_group('host=host-one dbname=bdrdb port=5444','dc1');

Add the third node

Log into the host-three Postgres server.

ssh admin@host-three
sudo -iu enterprisedb psql bdrdb

Create the third node

Call the bdr.create_node function to create this node, passing it the node name and a connection string that other nodes can use to connect to it:

select bdr.create_node('node-three','host=host-three dbname=bdrdb port=5444');

Join the third node to the cluster

Using bdr.join_node_group , you can ask node-three to join the node-one dc1 group. The function takes as a first parameter the connection
string of a node already in the group. It takes the group name as a second parameter.

select bdr.join_node_group('host=host-one dbname=bdrdb port=5444','dc1');

These steps have now created a PGD cluster.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 337

13.2.6 Step 6 - Checking the cluster

Checking the cluster

With the cluster up and running, it's worthwhile to run some basic checks to see how effectively it's replicating.

The following example shows one quick way to do this, but make sure that any testing you perform is appropriate for your use case.

Preparation

Ensure the cluster is ready.
Log into the database on host-one / node-one .
Run select bdr.wait_slot_confirm_lsn(NULL, NULL); .
When the query returns, the cluster is ready.

Create data The simplest way to test the cluster is replicating is to log into one node, create a table, and populate it.

On node-one , create a table:

On node-one , populate the table:

On node-one , monitor performance:

On node-one , get a sum of the value column (for checking):

Check data

Log into node-two . Log into the database on host-two / node-two .
On node-two , get a sum of the value column (for checking):

Compare with the result from node-one .
Log into node-three . Log into the database on host-three / node-three .
On node-three , get a sum of the value column (for checking):

Compare with the result from node-one and node-two .

CREATE TABLE quicktest (id SERIAL PRIMARY KEY, value INT);

INSERT INTO quicktest (value) SELECT random()*10000 FROM
generate_series(1,10000);

select * from bdr.node_replication_rates;

select COUNT(*),SUM(value) from quicktest;

select COUNT(*),SUM(value) from quicktest;

select COUNT(*),SUM(value) from quicktest;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 338

Worked example

Preparation

Log into the host-one Postgres server:

ssh admin@host-one
sudo -iu enterprisedb psql bdrdb

This is your connection to PGD's node-one .

Ensure the cluster is ready

To ensure that the cluster is ready to go, run:

select bdr.wait_slot_confirm_lsn(NULL, NULL)

This query will block while the cluster is busy initializing and return when the cluster is ready.

In another window, log into the host-two Postgres server:

ssh admin@host-two
sudo -iu enterprisedb psql bdrdb

Create data

On node-one create a table

Run:

On node-one populate the table

INSERT INTO quicktest (value) SELECT random()*10000 FROM generate_series(1,10000);

This command generates a table of 10000 rows of random values.

On node-one monitor performance

As soon as possible, run:

This command returns statistics on how quickly that data was replicated to the other two nodes:

CREATE TABLE quicktest (id SERIAL PRIMARY KEY, value INT);

select * from bdr.node_replication_rates;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 339

bdrdb=# select * from bdr.node_replication_rates;
 peer_node_id | target_name | sent_lsn | replay_lsn | replay_lag | replay_lag_bytes | replay_lag_size |
apply_rate | catchup_interv
al
--------------+-------------+-----------+------------+------------+------------------+-----------------+--------
----+---------------

 1954860017 | node-three | 0/DDAA908 | 0/DDAA908 | 00:00:00 | 0 | 0 bytes |
13682 | 00:00:00
 2299992455 | node-two | 0/DDAA908 | 0/DDAA908 | 00:00:00 | 0 | 0 bytes |
13763 | 00:00:00
(2 rows)

And it's already replicated.

On node-one get a checksum

To get some values from the generated data, run:

This command returns:

output
 count | sum
--------+-----------
 100000 | 498884606
(1 row)

Check data

Log into host-two's Postgres server.

ssh admin@host-two
sudo -iu enterprisedb psql bdrdb

This is your connection to PGD's node-two .

On node-two get a checksum

To get node-two's values for the generated data, run:

This command returns:

select COUNT(*),SUM(value) from quicktest;

bdrdb=# select COUNT(*),SUM(value) from quicktest;

select COUNT(*),SUM(value) from quicktest;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 340

output
 count | sum
--------+-----------
 100000 | 498884606
(1 row)

Compare with the result from node-one

When you compare with the result from node-one , the values will be identical.

You can repeat the process with node-three or generate new data on any node and see it replicate to the other nodes.

Log into host-three's Postgres server

ssh admin@host-two
sudo -iu enterprisedb psql bdrdb

This is your connection to PGD's node-three .

On node-three get a checksum

To get the node-three values for the generated data, run:

This command returns:

output
 count | sum
--------+-----------
 100000 | 498884606
(1 row)

Compare with the result from node-one and node-two

When you compare the results, the values will be identical.

bdrdb=# select COUNT(*),SUM(value) from quicktest;

select COUNT(*),SUM(value) from quicktest;

bdrdb=# select COUNT(*),SUM(value) from quicktest;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 341

13.2.7 Step 7 - Using PGD CLI

Using PGD CLI

The PGD CLI client uses a configuration file to work out which hosts to connect to. There are options that allow you to override this to use alternative
configuration files or explicitly point at a server, but by default PGD CLI looks for a configuration file in preset locations.

The connection to the database is authenticated in the same way as other command line utilities (like the psql command) are authenticated.

Unlike other commands, PGD CLI doesn't interactively prompt for your password. Therefore, you must pass your password using one of the following
methods:

Adding an entry to your .pgpass password file, which includes the host, port, database name, user name, and password.
Setting the password in the PGPASSWORD environment variable.
Including the password in the connection string.

We recommend the first option, as the other options don't scale well with multiple database clusters, or they compromise password confidentiality.

Configuring and connecting PGD CLI

Ensure PGD-CLI is installed.
If PGD CLI is already installed, move to the next step.
For any system, repeat the configure repositories step on that system.
Then run the package installation command appropriate for that platform:

RHEL and derivatives: sudo dnf install edb-pgd-cli
Debian, Ubuntu, and derivatives: sudo apt-get install edb-pgd-cli

Create a configuration file.
YAML file that specifies the cluster and endpoints for the PGD CLI application to use.

Install the configuration file.
Copy the YAML configuration file to a default config directory /etc/edb/ as pgd-config.yml .
Repeat this step on any system where you want to run PGD CLI.

Add /usr/local/bin/ to the PATH for any user wanting to use PGD CLI.
Add /usr/local/bin to the path in your .bashrc file

Run pgd-cli with the pgd command.

Use PGD CLI to explore the cluster

Check the health of the cluster with the check-health command.
Show the nodes in the cluster with the show-nodes command.

More details of these command are shown in the worked example that follows.

Also consult the PGD CLI documentation for details of other configuration options and a full command reference.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 342

https://www.postgresql.org/docs/current/libpq-pgpass.html

Worked example

Ensure PGD CLI is installed

This worked example configures and uses PGD CLI on host-one , where Postgres and PGD are already installed. You don't need to install PGD CLI again.
The example uses the enterprisedb account as this is already configured for access to Postgres. If you aren't logged in as enterprisedb switch to
it:

sudo -iu enterprisedb

Create a configuration file

The PGD CLI configuration file is similar to the PGD Proxy configuration file. It's a YAML file that contains a cluster object. This has two properties:

The name of the PGD cluster's top-level group (as name)
An array of endpoints of databases (as endpoints)

cluster:
 name: pgd
 endpoints:
 - host=host-one dbname=bdrdb port=5444
 - host=host-two dbname=bdrdb port=5444
 - host=host-three dbname=bdrdb port=5444

Note that the endpoints in this example specify port=5444 . This is necessary for EDB Postgres Advanced Server instances. For EDB Postgres Extended
and community PostgreSQL, this can be set to port=5432 .

Install the configuration file

Create the PGD CLI configuration directory:

sudo mkdir -p /etc/edb/

Then, write the configuration to the pgd-config.yml file in the /etc/edb/ directory.

For this example, this can be run on host-one to create the file:

cat <<EOF | sudo tee /etc/edb/pgd-config.yml
cluster:
 name: pgd
 endpoints:
 - host=host-one dbname=bdrdb port=5444
 - host=host-two dbname=bdrdb port=5444
 - host=host-three dbname=bdrdb port=5444
EOF

This process can be repeated on any system where you need to use PGD CLI.

Add /usr/local/bin to the Path

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 343

Add /usr/local/bin to the Path

To add the directory where the pgd command is installed to your path, run:

export PATH=/usr/local/bin:$PATH

For users other than enteprisedb, add this line to your .bashrc file to always have pgd available.

For the enterprisedb user, add the line to /var/lib/edb/.enterprisedb_profile .

Run PGD CLI

With the configuration file in place, and logged is as the enterprisedb system user, you can run pgd-cli. For example, you can use the show-nodes
command to list the nodes in your cluster and their status. For example:

pgd show-nodes

output
Node Node ID Group Type Current State Target State Status Seq ID
---- ------- ----- ---- ------------- ------------ ------ ------
node-one 2824718320 dc1 data ACTIVE ACTIVE Up 1
node-three 1954860017 dc1 data ACTIVE ACTIVE Up 3
node-two 2299992455 dc1 data ACTIVE ACTIVE Up 2

Using PGD CLI to explore the cluster

Once it's configured, you can use PGD CLI to get PGD-level views of the cluster.

Check the health of the cluster

The check-health command provides a quick way to view the health of the cluster:

pgd check-health

output
Check Status Message
----- ------ -------
ClockSkew Ok All BDR node pairs have clockskew within permissible limit
Connection Ok All BDR nodes are accessible
Raft Ok Raft Consensus is working correctly
Replslots Ok All BDR replication slots are working correctly
Version Ok All nodes are running same BDR versions

Show the nodes in the cluster

As previously seen, the show-nodes command lists the nodes in the cluster:

pgd show-nodes

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 344

output
Node Node ID Group Type Current State Target State Status Seq ID
---- ------- ----- ---- ------------- ------------ ------ ------
node-one 2824718320 dc1 data ACTIVE ACTIVE Up 1
node-three 1954860017 dc1 data ACTIVE ACTIVE Up 3
node-two 2299992455 dc1 data ACTIVE ACTIVE Up 2

This view shows which group the node is a member of and its current status. To find out what versions of PGD and Postgres are running on the nodes, use
show-version :

pgd show-version

output
---- ----------- ----------------
node-one 4.3.3 14.11.0
node-two 4.3.3 14.11.0
node-three 4.3.3 14.11.0

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 345

14 Upgrading

Because EDB Postgres Distributed consists in multiple software components, the upgrade strategy depends partially on which components are being
upgraded.

In general it's possible to upgrade the cluster with almost zero downtime, by using an approach called Rolling Upgrade where nodes are upgraded one by
one, and the application connections are switched over to already upgraded nodes.

Ii's also possible to stop all nodes, perform the upgrade on all nodes and only then restart the entire cluster, just like with a standard PostgreSQL setup. This
strategy of upgrading all nodes at the same time avoids running with mixed versions of software and therefore is the simplest, but obviously incurs some
downtime and is not recommended unless the Rolling Upgrade is not possible for some reason.

To upgrade an EDB Postgres Distributed cluster, perform the following steps:

1. Plan the upgrade.
2. Prepare for the upgrade.
3. Upgrade the server software.
4. Check and validate the upgrade.

Upgrade Planning

There are broadly two ways to upgrade each node.

Upgrading nodes in-place to the newer software version, see Rolling Server Software Upgrades.

Replacing nodes with ones that have the newer version installed, see Rolling Upgrade Using Node Join.

Both of these approaches can be done in a rolling manner.

Rolling Upgrade considerations

While the cluster is going through a rolling upgrade, mixed versions of software are running in the cluster. For example, nodeA has BDR 3.7.16, while nodeB
and nodeC has 4.1.0. In this state, the replication and group management uses the protocol and features from the oldest version (3.7.16 in case of this
example), so any new features provided by the newer version which require changes in the protocol are disabled. Once all nodes are upgraded to the same
version, the new features are automatically enabled.

Similarly, when a cluster with WAL decoder enabled nodes is going through a rolling upgrade, WAL decoder on a higher version of BDR node produces LCRs
with a higher pglogical version and WAL decoder on a lower version of BDR node produces LCRs with lower pglogical version. As a result, WAL senders on a
higher version of BDR nodes are not expected to use LCRs due to a mismatch in protocol versions while on a lower version of BDR nodes, WAL senders may
continue to use LCRs. Once all the BDR nodes are on the same BDR version, WAL senders use LCRs.

A rolling upgrade starts with a cluster with all nodes at a prior release, then proceeds by upgrading one node at a time to the newer release, until all nodes
are at the newer release. There should never be more than two versions of any component running at the same time, which means the new upgrade must
not be initiated until the previous upgrade process has fully finished on all nodes.

Where additional caution is required to reduce business risk, more time may be required to perform an upgrade. For maximum caution and to reduce the
time required upgrading production systems, we suggest performing the upgrades in a separate test environment first.

Don't run with mixed versions of the software for any longer than is absolutely necessary to complete the upgrade. The longer you run with mixed versions,
the more likely you are to encounter issues, the more difficult it is to diagnose and resolve them. We recommend upgrading in off peak hours for your
business, and over a short period of time.

While Rolling Upgrade can be used for upgrading major version of the software it is not supported to mix PostgreSQL, EDB Postgres Extended and EDB
Postgres Advanced Server in one cluster, so this approach cannot be used to change the Postgres variant.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 346

Warning

Downgrades of the EDB Postgres Distributed are not supported and require manual rebuild of the cluster.

Rolling Server Software Upgrades

A rolling upgrade is the process where the Server Software Upgrade process is performed on each node in the cluster one after another, while keeping the
remainder of the cluster operational.

The actual procedure depends on whether the Postgres component is being upgraded to a new major version or not.

During the upgrade process, the application can be switched over to a node which is currently not being upgraded to provide continuous availability of the
database for applications.

Rolling Upgrade Using Node Join

The other method of upgrade of the server software, is to join a new node to the cluster and later drop one of the existing nodes running the older version of
the software.

For this approach, the procedure is always the same, however because it includes node join, the potentially large data transfer is required.

Care must be taken to not use features that are available only in the newer Postgres versions, until all nodes are upgraded to the newer and same release of
Postgres. This is especially true for any new DDL syntax that may have been added to a newer release of Postgres.

Note

bdr_init_physical makes a byte-by-byte of the source node so it cannot be used while upgrading from one major Postgres version to
another. In fact, currently bdr_init_physical requires that even the BDR version of the source and the joining node is exactly the same. It
cannot be used for rolling upgrades via joining a new node method. Instead, a logical join must be used.

Upgrading a CAMO-Enabled Cluster

CAMO protection requires at least one of the nodes of a CAMO pair to be operational. For upgrades, we recommend to ensure that no CAMO protected
transactions are running concurrent to the upgrade, or to use a rolling upgrade strategy, giving the nodes enough time to reconcile in between the
upgrades and the corresponding node downtime due to the upgrade.

Upgrade Preparation

Each major release of the software contains several changes that may affect compatibility with previous releases. These may affect the Postgres
configuration, deployment scripts, as well as applications using BDR. We recommend to consider and possibly adjust in advance of the upgrade.

Please see individual changes mentioned in release notes and any version specific upgrade notes in this topic.

Server Software Upgrade

The upgrade of EDB Postgres Distributed on individual nodes happens in-place. There is no need for backup and restore when upgrading the BDR extension.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 347

BDR Extension Upgrade

BDR extension upgrade process consists of few simple steps.

Stop Postgres

During the upgrade of binary packages, it's usually best to stop the running Postgres server first to ensure that mixed versions don't get loaded in case of
unexpected restart during the upgrade.

Upgrade Packages

The first step in the upgrade is to install the new version of the BDR packages, which installs both the new binary and the extension SQL script. This step is
operating system-specific.

Start Postgres

Once packages are upgraded the Postgres instance can be started, the BDR extension is automatically upgraded upon start when the new binaries detect
older version of the extension.

Postgres Upgrade

The process of in-place upgrade of Postgres highly depends on whether you are upgrading to new minor version of Postgres of to new major version of
Postgres.

Minor Version Postgres Upgrade

Upgrading to a new minor version of Postgres is similar to upgrading the BDR extension. Stopping Postgres, upgrading packages, and starting Postgres
again is typically all that's needed.

However, sometimes additional steps like reindexing may be recommended for specific minor version upgrades. Refer to the Release Notes of the specific
version of Postgres you are upgrading to.

Major Version Postgres Upgrade

Upgrading to a new major version of Postgres is a more complicated process.

EDB Postgres Distributed provides a bdr_pg_upgrade command line utility, which can be used to do a In-place Postgres Major Version Upgrades.

Note

When upgrading to new major version of any software, including Postgres, the BDR extension and others, it's always important to ensure the
compatibility of your application with the target version of a given software.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 348

Upgrade Check and Validation

After this procedure, your BDR node is upgraded. You can verify the current version of BDR4 binary like this:

Always check the monitoring after upgrade of a node to confirm that the upgraded node is working as expected.

Application Schema Upgrades

Similar to the upgrade of BDR itself, there are two approaches to upgrading the application schema. The simpler option is to stop all applications affected,
preform the schema upgrade, and restart the application upgraded to use the new schema variant. Again, this imposes some downtime.

To eliminate this downtime, BDR offers ways to perform a rolling application schema upgrade.

Rolling Application Schema Upgrades

By default, DDL will automatically be sent to all nodes. This can be controlled manually, as described in DDL Replication, which could be used to create
differences between database schemas across nodes. BDR is designed to allow replication to continue even while minor differences exist between nodes.
These features are designed to allow application schema migration without downtime, or to allow logical standby nodes for reporting or testing.

Warning

Rolling Application Schema Upgrades have to be managed outside of BDR. Careful scripting is required to make this work correctly on production
clusters. Extensive testing is advised.

See Replicating between nodes with differences for details.

When one node runs DDL that adds a new table, nodes that have not yet received the latest DDL need to handle the extra table. In view of this, the
appropriate setting for rolling schema upgrades is to configure all nodes to apply the skip resolver in case of a target_table_missing conflict.
This must be performed before any node has additional tables added and is intended to be a permanent setting.

This is done with the following query, that must be executed separately on each node, after replacing node1 with the actual node name:

When one node runs DDL that adds a column to a table, nodes that have not yet received the latest DDL need to handle the extra columns. In view of this,
the appropriate setting for rolling schema upgrades is to configure all nodes to apply the ignore resolver in case of a target_column_missing
conflict. This must be performed before one node has additional columns added and is intended to be a permanent setting.

This is done with the following query, that must be executed separately on each node, after replacing node1 with the actual node name:

When one node runs DDL that removes a column from a table, nodes that have not yet received the latest DDL need to handle the missing column. This
situation will cause a source_column_missing conflict, which uses the use_default_value resolver. Thus, columns that neither accept NULLs
nor have a DEFAULT value require a two step process:

1. Remove NOT NULL constraint or add a DEFAULT value for a column on all nodes.
2. Remove the column.

SELECT bdr.bdr_version();

SELECT
bdr.alter_node_set_conflict_resolver('node1',
 'target_table_missing', 'skip');

SELECT
bdr.alter_node_set_conflict_resolver('node1',
 'target_column_missing', 'ignore');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 349

Constraints can be removed in a rolling manner. There is currently no supported way for handling adding table constraints in a rolling manner, one node at
a time.

When one node runs a DDL that changes the type of an existing column, depending on the existence of binary coercibility between the current type and the
target type, the operation may not rewrite the underlying table data. In that case, it will be only a metadata update of the underlying column type. Rewrite
of a table is normally restricted. However, in controlled DBA environments, it is possible to change the type of a column to an automatically castable one by
adopting a rolling upgrade for the type of this column in a non-replicated environment on all the nodes, one by one. See ALTER TABLE for more details.
section.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 350

14.1 In-place Postgres Major Version Upgrades

Upgrading a BDR Node to a newer major version of Postgres is possible using the command-line utility bdr_pg_upgrade .

bdr_pg_upgrade internally uses the standard pg_upgrade with BDR specific logic to ensure a smooth upgrade.

Terminology

Various terminology is used in this documentation to describe the upgrade process and components involved.

old cluster - The existing Postgres cluster node to be upgraded, which data will be migrated from.

new cluster - The new Postgres cluster, which data will be migrated to. This cluster node must be one (1) major version ahead of the old cluster.

Precautions

Standard Postgres major version upgrade precautions apply, including the fact that all the requirements for pg_upgrade must be met by both clusters.

Additionaly, bdr_pg_upgrade should not be used if there are other tools using replication slots and replication origins, only BDR slots and origins will
be restored after the upgrade.

There are several prerequisites for bdr_pg_upgrade that have to be met:

Applications using the old cluster have been disconnected, it can for example, be redirected to another node in the cluster
Peer authentication is configured for both clusters, bdr_pg_upgrade requires peer authentication
The same BDR version must be installed on both clusters.
The BDR version must be 4.1.0 or above. Version 3.7.22 and later is also supported.
The new cluster must be in a shutdown state
BDR packages must be installed in the new cluster
The new cluster must be already initialized and configured as needed to match the old cluster configuration
Databases, tables, and other objects must not exist in the new cluster

It is also recommended to have the old cluster up prior to running bdr_pg_upgrade as the CLI will start the old cluster if it is shutdown.

Usage

To upgrade to a newer major version of Postgres, the new version must first be installed.

bdr_pg_upgrade command-line

bdr_pg_upgrade passes all parameters to pg_upgrade . Therefore, you can specify any parameters supported by pg_upgrade .

Synopsis

bdr_pg_upgrade [OPTION] ...

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 351

https://www.postgresql.org/docs/current/pgupgrade.html
https://www.postgresql.org/docs/current/pgupgrade.html#id-1.9.5.12.7
https://www.postgresql.org/docs/current/pgupgrade.html#id-1.9.5.12.6

Options

In addition to the options for pg_upgrade , the following parameters are can be passed to bdr_pg_upgrade :

-b, --old-bindir - old cluster bin directory (required)
-B, --new-bindir - new cluster bin directory (required)
-d, --old-datadir - old cluster data directory (required)
-D, --new-datadir - REQUIRED new cluster data directory (required)
--database - BDR database name (required)
-p, --old-port - old cluster port number
-s, --socketdir - directory to use for postmaster sockets during upgrade
--check - only perform checks, do not modify clusters

Environment Variables

Environment variables can be used in place of command line parameters.

PGBINOLD - old cluster bin directory
PGBINNEW - new cluster bin directory
PGDATAOLD - old cluster data directory
PGDATANEW - new cluster data directory
PGPORTOLD - old cluster port number
PGSOCKETDIR - directory to use for postmaster sockets during upgrade

Example

Given a scenario where:

Old cluster bin directory is /usr/lib/postgresql/13/bin
New cluster bin directory is /usr/lib/postgresql/14/bin
Old cluster data directory is /var/lib/postgresql/13/main
New cluster data directory is /var/lib/postgresql/14/main
Database name is bdrdb

The following command could be used to upgrade the cluster:

bdr_pg_upgrade \
--old-bindir /usr/lib/postgresql/13/bin \
--new-bindir /usr/lib/postgresql/14/bin \
--old-datadir /var/lib/postgresql/13/main \
--new-datadir /var/lib/postgresql/14/main \
--database bdrdb

Steps Performed

Steps performed when running bdr_pg_upgrade .

Note

When --check is supplied as an argument to bdr_pg_upgrade , the CLI will skip steps that modify the database.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 352

BDR Postgres Checks

Steps --check supplied

Collecting pre-upgrade new cluster control data run

Checking new cluster state is shutdown run

Checking BDR versions run

Starting old cluster (if shutdown) skip

Connecting to old cluster skip

Checking if bdr schema exists skip

Turning DDL replication off skip

Terminating connections to database. skip

Waiting for all slots to be flushed skip

Disconnecting from old cluster skip

Stopping old cluster skip

Starting old cluster with BDR disabled skip

Connecting to old cluster skip

Collecting replication origins skip

Collecting replication slots skip

Disconnecting from old cluster skip

Stopping old cluster skip

pg_upgrade Steps

Standard pg_upgrade steps are performed

Note

--check is passed to pg_upgrade if supplied

BDR Post-Upgrade Steps

Steps --check supplied

Collecting old cluster control data skip

Collecting new cluster control data skip

Advancing LSN of new cluster skip

Starting new cluster with BDR disabled skip

Connecting to new cluster skip

Creating replication origin Repeated for each origin skip

Advancing replication origin Repeated for each origin skip

Creating replication slot Repeated for each slot skip

Stopping new cluster skip

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 353

14.2 Supported BDR upgrade paths

Upgrading within version 4

Beginning with version 4, EDB Postgres Distributed adopted semantic versioning. All changes within the same major version are backward compatible,
lowering the risk when upgrading and allowing you to choose any later minor or patch release as the upgrade target. You can upgrade from any version 4.x
release to a later 4.x release.

Due to interdependencies between EDB Postgres Distributed and EDB Postgres Advanced Server or EDB Postgres Extended, there are occasions when it is
important to always upgrade both components at once. More detailed compatibility information can be found below.

PGD version EPAS version PGE version

Up to 4.3.0 Up to 14.7 / 15.2 Up to 14.9 / 15.4

4.3.1, 4.3.2 14.8, 14.9 / 15.3, 15.4 Up to 14.9/ 15.4

4.3.3 and higher 14.10 / 15.5 and higher 14.10 / 15.5 and higher

This dependency is bidirectional dependency.

Upgrading your Postgres servers will require you to upgrade your PGD installation to the relevant version.
Upgrading your PGD installation will require you to upgrade your Postgres servers to the relevant version.

Upgrading from version 3.7 to version 4

Generally, we recommend that you upgrade to the latest version 3.7 release before upgrading to the latest version 4 release. You must be using 3.7.15 or
later before upgrading to 4. See Upgrading within from 3.7 in the 3.7 documentation for more information. After upgrading to 3.7.15 or later, the following
upgrade paths are possible.

From version To versions
(range)

3.7.15 4.0.2 to 4.2.1

3.7.16 4.0.2 to 4.2.1

3.7.17 4.2.0 to 4.2.1

3.7.18 4.2.1 only

3.7.19 4.2.2 only

3.7.20 4.3.0 to 4.3.2

3.7.21 4.3.1 to 4.3.2

3.7.22 4.3.2 or later

3.7.23 4.3.3 or later

3.7.24 4.3.3 or later

3.7.25 4.3.3 or later

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 354

https://semver.org/
https://www.enterprisedb.com/docs/pgd/3.7/bdr/upgrades/supported_paths/#upgrading-within-version-37

Upgrading from version 3.6 to version 4

Currently, there are no direct upgrade paths from 3.6 to 4. You must first upgrade your cluster to 3.7 before upgrading to 4. See Upgrading from 3.6 in the
3.7 documentation for more information.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 355

https://www.enterprisedb.com/docs/pgd/3.7/bdr/upgrades/supported_paths/#upgrading-from-version-36-to-version-37

15 Backup and recovery

In this chapter we discuss the backup and restore of a EDB Postgres Distributed cluster.

BDR is designed to be a distributed, highly available system. If one or more nodes of a cluster are lost, the best way to replace them is to clone new nodes
directly from the remaining nodes.

The role of backup and recovery in BDR is to provide for Disaster Recovery (DR), such as in the following situations:

Loss of all nodes in the cluster
Significant, uncorrectable data corruption across multiple nodes as a result of data corruption, application error or security breach

Backup

pg_dump

pg_dump , sometimes referred to as "logical backup", can be used normally with BDR.

Note that pg_dump dumps both local and global sequences as if they were local sequences. This is intentional, to allow a BDR schema to be dumped and
ported to other PostgreSQL databases. This means that sequence kind metadata is lost at the time of dump, so a restore would effectively reset all
sequence kinds to the value of bdr.default_sequence_kind at time of restore.

To create a post-restore script to reset the precise sequence kind for each sequence, you might want to use an SQL script like this:

Note that if pg_dump is run using bdr.crdt_raw_value = on then the dump can only be reloaded with bdr.crdt_raw_value = on .

Technical Support recommends the use of physical backup techniques for backup and recovery of BDR.

Physical Backup

Physical backups of a node in a EDB Postgres Distributed cluster can be taken using standard PostgreSQL software, such as Barman.

A physical backup of a BDR node can be performed with the same procedure that applies to any PostgreSQL node: a BDR node is just a PostgreSQL node
running the BDR extension.

There are some specific points that must be considered when applying PostgreSQL backup techniques to BDR:

BDR operates at the level of a single database, while a physical backup includes all the databases in the instance; you should plan your databases to
allow them to be easily backed-up and restored.

Backups will make a copy of just one node. In the simplest case, every node has a copy of all data, so you would need to backup only one node to
capture all data. However, the goal of BDR will not be met if the site containing that single copy goes down, so the minimum should be at least one
node backup per site (obviously with many copies etc.).

However, each node may have un-replicated local data, and/or the definition of replication sets may be complex so that all nodes do not subscribe
to all replication sets. In these cases, backup planning must also include plans for how to backup any unreplicated local data and a backup of at
least one node that subscribes to each replication set.

SELECT 'SELECT bdr.alter_sequence_set_kind('''||
 nspname||'.'||relname||''','''||seqkind||''');'
FROM bdr.sequences
WHERE seqkind != 'local';

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 356

https://www.enterprisedb.com/docs/supported-open-source/barman/

Eventual Consistency

The nodes in a EDB Postgres Distributed cluster are eventually consistent, but not entirely consistent; a physical backup of a given node will provide Point-
In-Time Recovery capabilities limited to the states actually assumed by that node (see the [Example] below).

The following example shows how two nodes in the same EDB Postgres Distributed cluster might not (and usually do not) go through the same sequence of
states.

Consider a cluster with two nodes N1 and N2 , which is initially in state S . If transaction W1 is applied to node N1 , and at the same time a non-
conflicting transaction W2 is applied to node N2 , then node N1 will go through the following states:

(N1) S --> S + W1 --> S + W1 + W2

...while node N2 will go through the following states:

(N2) S --> S + W2 --> S + W1 + W2

That is: node N1 will never assume state S + W2 , and node N2 likewise will never assume state S + W1 , but both nodes will end up in the same state
S + W1 + W2 . Considering this situation might affect how you decide upon your backup strategy.

Point-In-Time Recovery (PITR)

In the example above, the changes are also inconsistent in time, since W1 and W2 both occur at time T1 , but the change W1 is not applied to N2 until
T2 .

PostgreSQL PITR is designed around the assumption of changes arriving from a single master in COMMIT order. Thus, PITR is possible by simply scanning
through changes until one particular point-in-time (PIT) is reached. With this scheme, you can restore one node to a single point-in-time from its viewpoint,
e.g. T1 , but that state would not include other data from other nodes that had committed near that time but had not yet arrived on the node. As a result,
the recovery might be considered to be partially inconsistent, or at least consistent for only one replication origin.

To request this, use the standard syntax:

recovery_target_time = T1

BDR allows for changes from multiple masters, all recorded within the WAL log for one node, separately identified using replication origin identifiers.

BDR allows PITR of all or some replication origins to a specific point in time, providing a fully consistent viewpoint across all subsets of nodes.

Thus for multi-origins, we view the WAL stream as containing multiple streams all mixed up into one larger stream. There is still just one PIT, but that will be
reached as different points for each origin separately.

We read the WAL stream until requested origins have found their PIT. We apply all changes up until that point, except that we do not mark as committed
any transaction records for an origin after the PIT on that origin has been reached.

We end up with one LSN "stopping point" in WAL, but we also have one single timestamp applied consistently, just as we do with "single origin PITR".

Once we have reached the defined PIT, a later one may also be set to allow the recovery to continue, as needed.

After the desired stopping point has been reached, if the recovered server will be promoted, shut it down first and move the LSN forwards using
pg_resetwal to an LSN value higher than used on any timeline on this server. This ensures that there will be no duplicate LSNs produced by logical

decoding.

In the specific example above, N1 would be restored to T1 , but would also include changes from other nodes that have been committed by T1 , even
though they were not applied on N1 until later.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 357

To request multi-origin PITR, use the standard syntax in the postgresql.conf file:

recovery_target_time = T1

The list of replication origins which would be restored to T1 need either to be specified in a separate multi_recovery.conf file via the use of a new
parameter recovery_target_origins :

recovery_target_origins = '*'

...or one can specify the origin subset as a list in recovery_target_origins .

recovery_target_origins = '1,3'

Note that the local WAL activity recovery to the specified recovery_target_time is always performed implicitly. For origins that are not specified in
recovery_target_origins , recovery may stop at any point, depending on when the target for the list mentioned in
recovery_target_origins is achieved.

In the absence of the multi_recovery.conf file, the recovery defaults to the original PostgreSQL PITR behaviour that is designed around the
assumption of changes arriving from a single master in COMMIT order.

Note

This is feature is only available on EDB Postgres Extended and Barman does not currently automatically create a multi_recovery.conf
file.

Restore

While you can take a physical backup with the same procedure as a standard PostgreSQL node, what is slightly more complex is restoring the physical
backup of a BDR node.

EDB Postgres Distributed Cluster Failure or Seeding a New Cluster from a Backup

The most common use case for restoring a physical backup involves the failure or replacement of all the BDR nodes in a cluster, for instance in the event of
a datacentre failure.

You may also want to perform this procedure to clone the current contents of a EDB Postgres Distributed cluster to seed a QA or development instance.

In that case, BDR capabilities can be restored based on a physical backup of a single BDR node, optionally plus WAL archives:

If you still have some BDR nodes live and running, fence off the host you restored the BDR node to, so it cannot connect to any surviving BDR nodes.
This ensures that the new node does not confuse the existing cluster.
Restore a single PostgreSQL node from a physical backup of one of the BDR nodes.
If you have WAL archives associated with the backup, create a suitable postgresql.conf and start PostgreSQL in recovery to replay up to the
latest state. You can specify a alternative recovery_target here if needed.
Start the restored node, or promote it to read/write if it was in standby recovery. Keep it fenced from any surviving nodes!
Clean up any leftover BDR metadata that was included in the physical backup, as described below.
Fully stop and restart the PostgreSQL instance.
Add further BDR nodes with the standard procedure based on the bdr.join_node_group() function call.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 358

Cleanup BDR Metadata

The cleaning of leftover BDR metadata is achieved as follows:

1. Drop the BDR node using bdr.drop_node
2. Fully stop and re-start PostgreSQL (important!).

Cleanup of Replication Origins

Replication origins must be explicitly removed with a separate step because they are recorded persistently in a system catalog, and therefore included in
the backup and in the restored instance. They are not removed automatically when dropping the BDR extension, because they are not explicitly recorded as
its dependencies.

BDR creates one replication origin for each remote master node, to track progress of incoming replication in a crash-safe way. Therefore we need to run:

SELECT pg_replication_origin_drop('bdr_dbname_grpname_nodename');

...once for each node in the (previous) cluster. Replication origins can be listed as follows:

SELECT * FROM pg_replication_origin;

...and those created by BDR are easily recognized by their name, as in the example shown above.

Cleanup of Replication Slots

If a physical backup was created with pg_basebackup , replication slots will be omitted from the backup.

Some other backup methods may preserve replications slots, likely in outdated or invalid states. Once you restore the backup, just:

SELECT pg_drop_replication_slot(slot_name)
FROM pg_replication_slots;

...to drop all replication slots. If you have a reason to preserve some, you can add a WHERE slot_name LIKE 'bdr%' clause, but this is rarely useful.

Warning

Never run this on a live BDR node.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 359

16 Monitoring

Monitoring replication setups is important to ensure that your system performs optimally and does not run out of disk space or encounter other faults that
may halt operations.

It is important to have automated monitoring in place to ensure that if, for example, replication slots start falling badly behind, the administrator is alerted
and can take proactive action.

EDB provides Postgres Enterprise Manager (PEM), which supports BDR from version 8.1. Alternatively, tools or users can make their own calls into BDR
using the facilities discussed below.

Monitoring Overview

A BDR Group consists of multiple servers, often referred to as nodes. All of the nodes need to be monitored to ensure the health of the whole group.

The bdr_monitor role may execute the bdr.monitor functions to provide an assessment of BDR health using one of three levels:

OK - often shown as Green
WARNING - often shown as Yellow
CRITICAL - often shown as Red

as well as UNKNOWN - for unrecognized situations, often shown as Red

BDR also provides dynamic catalog views that show the instantaneous state of various internal metrics and also BDR metadata catalogs that store the
configuration defaults and/or configuration changes requested by the user. Some of those views and tables are accessible by bdr_monitor or
bdr_read_all_stats, but some contain user or internal information that has higher security requirements.

BDR allows you to monitor each of the nodes individually, or to monitor the whole group by access to a single node. If you wish to monitor each node
individually, simply connect to each node and issue monitoring requests. If you wish to monitor the group from a single node then use the views starting
with bdr.group since these requests make calls to other nodes to assemble a group-level information set.

If you have been granted access to the bdr.run_on_all_nodes() function by bdr_superuser then you may make your own calls to all nodes.

Monitoring Node Join and Removal

By default, the node management functions wait for the join or part operation to complete. This can be turned off using the respective
wait_for_completion function argument. If waiting is turned off, then to see when a join or part operation finishes, check the node state indirectly

via bdr.node_summary and bdr.state_journal_details .

When called, the helper function bdr.wait_for_join_completion() will cause a PostgreSQL session to pause until all outstanding node join
operations complete.

Here is an example output of a SELECT query from bdr.node_summary that indicates that two nodes are active and another one is joining:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 360

SELECT node_name, interface_connstr, peer_state_name,
node_seq_id, node_local_dbname
FROM bdr.node_summary;
-[RECORD 1]-----+---
node_name | node1
interface_connstr | host=localhost dbname=postgres port=7432
peer_state_name | ACTIVE
node_seq_id | 1
node_local_dbname | postgres
-[RECORD 2]-----+---
node_name | node2
interface_connstr | host=localhost dbname=postgres port=7433
peer_state_name | ACTIVE
node_seq_id | 2
node_local_dbname | postgres
-[RECORD 3]-----+---
node_name | node3
interface_connstr | host=localhost dbname=postgres port=7434
peer_state_name | JOINING
node_seq_id | 3
node_local_dbname | postgres

Also, the table bdr.node_catchup_info will give information on the catch-up state, which can be relevant to joining nodes or parting nodes.

When a node is parted, it could be that some nodes in the cluster did not receive all the data from that parting node. So it will create a temporary slot from a
node that already received that data and can forward it.

The catchup_state can be one of the following:

10 = setup
20 = start
30 = catchup
40 = done

Monitoring Replication Peers

There are two main views used for monitoring of replication activity:

bdr.node_slots for monitoring outgoing replication
bdr.subscription_summary for monitoring incoming replication

Most of the information provided by bdr.node_slots can be also obtained by querying the standard PostgreSQL replication monitoring views
pg_catalog.pg_stat_replication and pg_catalog.pg_replication_slots .

Each node has one BDR group slot which should never have a connection to it and will very rarely be marked as active. This is normal, and does not imply
something is down or disconnected. See Replication Slots created by BDR .

Monitoring Outgoing Replication

There is an additional view used for monitoring of outgoing replication activity:

bdr.node_replication_rates for monitoring outgoing replication

The bdr.node_replication_rates view gives an overall picture of the outgoing replication activity along with the catchup estimates for peer

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 361

https://www.postgresql.org/docs/current/static/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/current/view-pg-replication-slots.html

The bdr.node_replication_rates view gives an overall picture of the outgoing replication activity along with the catchup estimates for peer
nodes, specifically.

SELECT * FROM bdr.node_replication_rates;
-[RECORD 1]----+-----------
peer_node_id | 112898766
target_name | node1
sent_lsn | 0/28AF99C8
replay_lsn | 0/28AF99C8
replay_lag | 00:00:00
replay_lag_bytes | 0
replay_lag_size | 0 bytes
apply_rate | 822
catchup_interval | 00:00:00
-[RECORD 2]----+-----------
peer_node_id | 312494765
target_name | node3
sent_lsn | 0/28AF99C8
replay_lsn | 0/28AF99C8
replay_lag | 00:00:00
replay_lag_bytes | 0
replay_lag_size | 0 bytes
apply_rate | 853
catchup_interval | 00:00:00

The apply_rate above refers to the rate in bytes per second. It is the rate at which the peer is consuming data from the local node. The replay_lag
when a node reconnects to the cluster is immediately set to zero. We are working on fixing this information; as a workaround, we suggest you use the
catchup_interval column that refers to the time required for the peer node to catch up to the local node data. The other fields are also available via

the bdr.node_slots view, as explained below.

Note

This catalog is only present when bdr-enteprise extension is installed.

Administrators may query bdr.node_slots for outgoing replication from the local node. It shows information about replication status of all other
nodes in the group that are known to the current node, as well as any additional replication slots created by BDR on the current node.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 362

SELECT node_group_name, target_dbname, target_name, slot_name, active_pid,
catalog_xmin, client_addr, sent_lsn, replay_lsn, replay_lag,
replay_lag_bytes, replay_lag_size
FROM bdr.node_slots;
-[RECORD 1]---+----------------------------
node_group_name | bdrgroup
target_dbname | postgres
target_name | node3
slot_name | bdr_postgres_bdrgroup_node3
active_pid | 15089
catalog_xmin | 691
client_addr | 127.0.0.1
sent_lsn | 0/23F7B70
replay_lsn | 0/23F7B70
replay_lag | [NULL]
replay_lag_bytes| 120
replay_lag_size | 120 bytes
-[RECORD 2]---+----------------------------
node_group_name | bdrgroup
target_dbname | postgres
target_name | node2
slot_name | bdr_postgres_bdrgroup_node2
active_pid | 15031
catalog_xmin | 691
client_addr | 127.0.0.1
sent_lsn | 0/23F7B70
replay_lsn | 0/23F7B70
replay_lag | [NULL]
replay_lag_bytes| 84211
replay_lag_size | 82 kB

Note that because BDR is a mesh network, to get full view of lag in the cluster, this query has to be executed on all nodes participating.

replay_lag_bytes reports the difference in WAL positions between the local server's current WAL write position and replay_lsn , the last position
confirmed replayed by the peer node. replay_lag_size is just a human-readable form of the same. It is important to understand that WAL usually
contains a lot of writes that are not replicated but still count in replay_lag_bytes , including VACUUM activity, index changes, writes associated with
other databases on the same node, writes for tables that are not part of a replication set, etc. So the lag in bytes reported here is not the amount of data
that must be replicated on the wire to bring the peer node up to date, only the amount of server-side WAL that must be processed.

Similarly, replay_lag is not a measure of how long the peer node will take to catch up, or how long it will take to replay from its current position to the
write position at the time bdr.node_slots was queried. It measures the delay between when the peer confirmed the most recent commit and the
current wall-clock time. We suggest that you monitor replay_lag_bytes and replay_lag_size or catchup_interval in
bdr.node_replication_rates , as this column is set to zero immediately after the node reconnects.

The lag in both bytes and time does not advance while logical replication is streaming a transaction. It only changes when a commit is replicated. So the lag
will tend to "sawtooth", rising as a transaction is streamed, then falling again as the peer node commits it, flushes it, and sends confirmation. The reported
LSN positions will "stair-step" instead of advancing smoothly, for similar reasons.

When replication is disconnected (active = 'f'), the active_pid column will be NULL , as will client_addr and other fields that only make
sense with an active connection. The state field will be 'disconnected' . The _lsn fields will be the same as the confirmed_flush_lsn ,
since that is the last position that the client is known for certain to have replayed to and saved. The _lag fields will show the elapsed time between the
most recent confirmed flush on the client and the current time, and the _lag_size and _lag_bytes fields will report the distance between
confirmed_flush_lsn and the local server's current WAL insert position.

Note: It is normal for restart_lsn to be behind the other lsn columns; this does not indicate a problem with replication or a peer node lagging. The
restart_lsn is the position that PostgreSQL's internal logical decoding must be reading WAL at if interrupted, and generally reflects the position of

the oldest transaction that is not yet replicated and flushed. A very old restart_lsn can make replication slow to restart after disconnection and force
retention of more WAL than is desirable, but will otherwise be harmless. If you are concerned, look for very long running transactions and forgotten
prepared transactions.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 363

Monitoring Incoming Replication

Incoming replication (also called subscription) can be monitored by querying the bdr.subscription_summary view. This shows the list of known
subscriptions to other nodes in the EDB Postgres Distributed cluster and the state of the replication worker, e.g.:

SELECT node_group_name, origin_name, sub_enabled, sub_slot_name,
subscription_status
FROM bdr.subscription_summary;
-[RECORD 1]-------+----------------------------
node_group_name | bdrgroup
origin_name | node2
sub_enabled | t
sub_slot_name | bdr_postgres_bdrgroup_node1
subscription_status | replicating
-[RECORD 2]-------+----------------------------
node_group_name | bdrgroup
origin_name | node3
sub_enabled | t
sub_slot_name | bdr_postgres_bdrgroup_node1
subscription_status | replicating

Monitoring WAL senders using LCR

If the Decoding Worker is enabled, information about the current LCR (Logical Change Record) file for each WAL sender can be monitored via the
function bdr.wal_sender_stats, e.g.:

postgres=# SELECT * FROM bdr.wal_sender_stats();
 pid | is_using_lcr | decoder_slot_name | lcr_file_name
---------+--------------+-------------------------------+--
 2059904 | f | |
 2059909 | t | bdr_postgres_bdrgroup_decoder | 0000000000000000000000140000000000000000
 2059916 | t | bdr_postgres_bdrgroup_decoder | 0000000000000000000000140000000000000000
(3 rows)

If is_using_lcr is FALSE , decoder_slot_name / lcr_file_name will be NULL . This will be the case if the Decoding Worker is not enabled,
or the WAL sender is serving a logical standby.

Additionally, information about the Decoding Worker can be monitored via the function bdr.get_decoding_worker_stat, e.g.:

postgres=# SELECT * FROM bdr.get_decoding_worker_stat();
 pid | decoded_upto_lsn | waiting | waiting_for_lsn
---------+------------------+---------+-----------------
 1153091 | 0/1E5EEE8 | t | 0/1E5EF00
(1 row)

Monitoring BDR Replication Workers

All BDR workers show up in the system view bdr.stat_activity , which has the same columns and information content as pg_stat_activity. So this
view offers these insights into the state of a BDR system:

The wait_event column has enhanced information, if the reason for waiting is related to BDR.
The query column will be blank in BDR workers, except when a writer process is executing DDL

The bdr.workers view shows BDR worker specific details, that are not available from bdr.stat_activity .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 364

https://www.postgresql.org/docs/current/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW

The view bdr.worker_errors shows last error (if any) reported by any worker which has a problem continuing the work. This is persistent information,
so it's important to note the time of the error not just the existence of one, because most errors are transient in their nature and BDR workers will retry the
failed operation.

Monitoring BDR Writers

There is another system view bdr.writers to monitor writer activities. This views shows the current status of only writer workers. It includes:

sub_name to identify the subscription which the writer belongs to
pid of the writer process
streaming_allowed to know if the writer supports application of in-progress streaming transactions
is_streaming to know if the writer is currently applying a streaming transaction
commit_queue_position to check the position of the writer in the commit queue.

BDR honours commit ordering by following the same commit order as happened on the origin. In case of parallel writers, multiple writers could be applying
different transactions at the same time. The commit_queue_position shows in which order they will commit. Value 0 means that the writer is the
first one to commit. Value -1 means that the commit position is not yet known. This can happen for a streaming transaction or when the writer is not
applying any transaction at the moment.

Monitoring Global Locks

The global lock, which is currently only used for DDL replication, is a heavyweight lock that exists across the whole BDR group.

There are currently two types of global locks:

DDL lock, used for serializing all DDL operations on permanent (not temporary) objects (i.e. tables) in the database
DML relation lock, used for locking out writes to relations during DDL operations that change the relation definition

Either or both entry types may be created for the same transaction, depending on the type of DDL operation and the value of the bdr.ddl_locking
setting.

Global locks held on the local node are visible in the bdr.global_locks view. This view shows the type of the lock; for relation locks it shows which
relation is being locked, the PID holding the lock (if local), and whether the lock has been globally granted or not. In case of global advisory locks,
lock_type column shows GLOBAL_LOCK_ADVISORY and relation column shows the advisory key(s) on which the lock is acquired.

The following is an example output of bdr.global_locks while running an ALTER TABLE statement with bdr.ddl_locking = on :

SELECT lock_type, relation, pid FROM bdr.global_locks;
-[RECORD 1]--------------
lock_type | GLOBAL_LOCK_DDL
relation | [NULL]
pid | 15534
-[RECORD 2]--------------
lock_type | GLOBAL_LOCK_DML
relation | someschema.sometable
pid | 15534

See the catalog documentation for details on all fields including lock timing information.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 365

Monitoring Conflicts

Replication conflicts can arise when multiple nodes make changes that affect the same rows in ways that can interact with each other. The BDR system
should be monitored to ensure that conflicts are identified and, where possible, application changes are made to eliminate them or make them less
frequent.

By default, all conflicts are logged to bdr.conflict_history . Since this contains full details of conflicting data, the rows are protected by row-level
security to ensure they are visible only by owners of replicated tables. Owners should expect conflicts and analyze them to see which, if any, might be
considered as problems to be resolved.

For monitoring purposes use bdr.conflict_history_summary , which does not contain user data. An example query to count the number of
conflicts seen within the current day using an efficient query plan is:

External Monitoring

User supplied metadata can be stored to allow monitoring tools to understand and monitor the EDB Postgres Distributed cluster. By centralizing this
information, external tools can access any single node and read details about the whole cluster, such as network cost and warning/alarm thresholds for
specific connections.

bdr_superuser has the privileges on these functions and tables. The view bdr.network_monitoring is also accessible by the
bdr_read_all_stats role.

bdr.set_node_location

This function inserts node metadata into bdr.node_location

Synopsis

Parameters

node_group_name - name of the BDR group
node_name - name of the node
node_region - the datacenter site or Region
node_location - the server name, availability zone etc..

SELECT count(*)
FROM bdr.conflict_history_summary
WHERE local_time > date_trunc('day',
current_timestamp)
 AND local_time < date_trunc('day', current_timestamp + '1
day');

bdr.set_node_location(
 node_group_name text,
 node_name text,
 node_region
text,
 node_location
text);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 366

bdr.set_network_path_info

This function inserts network path metadata for network paths between nodes into the table bdr.network_path_info .

Synopsis

Parameters

node_group_name - name of the BDR group
region1 - the origin server name
region2 - the remote server name
location1 - the origin datacente name
location2 - the remote datacenter name
network_cost - an abstract value representing the cost of network transfer
warning_threshold - a delay above which a threshold should be raised
alarm_threshold - a delay above which an alarm should be raised

bdr.network_monitoring view

This view collects information about the network path between nodes.

The configuration of logging is defined by the bdr.alter_node_set_log_config function.

Apply Statistics

BDR collects statistics about replication apply, both for each subscription and for each table.

Two monitoring views exist: bdr.stat_subscription for subscription statistics and bdr.stat_relation for relation statistics. These views
both provide:

Number of INSERTs/UPDATEs/DELETEs/TRUNCATEs replicated
Block accesses and cache hit ratio
Total I/O time for read/write
Number of in-progress transactions streamed to file
Number of in-progress transactions streamed to writers
Number of in-progress streamed transactions committed/aborted

and for relations only, these statistics:

Total time spent processing replication for the relation
Total lock wait time to acquire lock (if any) for the relation (only)

and for subscriptions only, these statistics:

bdr.set_network_path_info(
 node_group_name text,
 region1 text,
 region2 text,
 location1 text,
 location2 text,
 network_cost numeric,
 warning_threshold numeric,
 alarm_threshold numeric)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 367

Number of COMMITs/DDL replicated for the subscription
Number of times this subscription has connected upstream

Tracking of these statistics is controlled by the BDR GUCs bdr.track_subscription_apply and bdr.track_relation_apply respectively.

The example output from these would look like this:

In this case the subscription connected 3 times to the upstream, inserted 10 rows and did 2 DDL commands inside 5 transactions.

Stats counters for these views can be reset to zero using the functions bdr.reset_subscription_stats and bdr.reset_relation_stats .

Standard PostgreSQL Statistics Views

Statistics on table and index usage are updated normally by the downstream master. This is essential for the correct function of autovacuum. If there are no
local writes on the downstream master and statistics have not been reset, these two views should show corresponding results between upstream and
downstream:

pg_stat_user_tables
pg_statio_user_tables

Note

We don't necessarily expect the upstream table statistics to be similar to the downstream ones; we only expect them to change by the same
amounts. Consider the example of a table whose statistics show 1M inserts and 1M updates; when a new node joins the BDR group, the statistics
for the same table in the new node will show 1M inserts and zero updates. However, from that moment, the upstream and downstream table
statistics will change by the same amounts, because all changes on one side will be replicated to the other side.

Since indexes are used to apply changes, the identifying indexes on the downstream side may appear more heavily used with workloads that perform
UPDATE s and DELETE s than non-identifying indexes are.

The built-in index monitoring views are:

pg_stat_user_indexes
pg_statio_user_indexes

All these views are discussed in detail in the PostgreSQL documentation on the statistics views.

SELECT sub_name, nconnect, ninsert, ncommit, nupdate, ndelete, ntruncate,
nddl
FROM bdr.stat_subscription;
-[RECORD 1]---------------------------------
-
sub_name |
bdr_regression_bdrgroup_node1_node2
nconnect |
3
ninsert |
10
ncommit |
5
nupdate |
0
ndelete |
0
ntruncate |
0
nddl |
2

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 368

https://www.postgresql.org/docs/current/static/routine-vacuuming.html
http://www.postgresql.org/docs/current/static/monitoring-stats.html#MONITORING-STATS-VIEWS-TABLE

Monitoring BDR Versions

BDR allows running different Postgres versions as well as different BDR versions across the nodes in the same cluster. This is useful for upgrading.

The view bdr.group_versions_details uses the function bdr.run_on_all_nodes() to retrieve Postgres and BDR versions from all nodes at
the same time. For example:

The recommended setup is to try to have all nodes running the same latest versions as soon as possible. It is recommended that the cluster does not run
different BDR versions for too long.

For monitoring purposes, we recommend the following alert levels:

status=UNKNOWN, message=This node is not part of any BDR group
status=OK, message=All nodes are running same BDR versions
status=WARNING, message=There is at least 1 node that is not accessible
status=WARNING, message=There are node(s) running different BDR versions when compared to other nodes

The described behavior is implemented in the function bdr.monitor_group_versions() , which uses BDR version information returned from the
view bdr.group_version_details to provide a cluster-wide version check. For example:

Monitoring Raft Consensus

Raft Consensus should be working cluster-wide at all times. The impact of running a EDB Postgres Distributed cluster without Raft Consensus working
might be as follows:

BDR data changes replication may still be working correctly
Global DDL/DML locks will not work
Galloc sequences will eventually run out of chunks
Eager Replication will not work
Cluster maintenance operations (join node, part node, promote standby) are still allowed but they might not finish (simply hang)
Node statuses might not be correctly synced among the BDR nodes
BDR group replication slot does not advance LSN, thus keeps WAL files on disk

The view bdr.group_raft_details uses the functions bdr.run_on_all_nodes() and bdr.get_raft_status() to retrieve Raft
Consensus status from all nodes at the same time. For example:

bdrdb=# SELECT node_name, postgres_version,
bdr_version
 FROM bdr.group_versions_details;
 node_name | postgres_version |
bdr_version
-----------+------------------+-------------
 node1 | 14.1 |
4.0.0
 node2 | 14.1 |
4.0.0

bdrdb=# SELECT * FROM
bdr.monitor_group_versions();
 status |
message
--------+---
 OK | All nodes are running same BDR
versions

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 369

We can say that Raft Consensus is working correctly if all below conditions are met:

A valid state (RAFT_LEADER or RAFT_FOLLOWER) is defined on all nodes
Only one of the nodes is the RAFT_LEADER
The leader_id is the same on all rows and must match the node_id of the row where state = RAFT_LEADER

From time to time, Raft Consensus will start a new election to define a new RAFT_LEADER . During an election, there might be an intermediary situation
where there is no RAFT_LEADER and some of the nodes consider themselves as RAFT_CANDIDATE . The whole election should not take longer than
bdr.raft_election_timeout (by default it is set to 6 seconds). If the query above returns an in-election situation, then simply wait for
bdr.raft_election_timeout and run the query again. If after bdr.raft_election_timeout has passed and some the conditions above are

still not met, then Raft Consensus is not working.

Raft Consensus might not be working correctly on a single node only; for example one of the nodes does not recognize the current leader and considers
itself as a RAFT_CANDIDATE . In this case, it is important to make sure that:

All BDR nodes are accessible to each other through both regular and replication connections (check file pg_hba.conf)
BDR versions are the same on all nodes
bdr.raft_election_timeout is the same on all nodes

In some cases, especially if nodes are geographically distant from each other and/or network latency is high, the default value of
bdr.raft_election_timeout (6 seconds) might not be enough. If Raft Consensus is still not working even after making sure everything is correct,

consider increasing bdr.raft_election_timeout to, say, 30 seconds on all nodes. From BDR 3.6.11 onwards, setting
bdr.raft_election_timeout requires only a server reload.

Given how Raft Consensus affects cluster operational tasks, and also as Raft Consensus is directly responsible for advancing the group slot, we can define
monitoring alert levels as follows:

status=UNKNOWN, message=This node is not part of any BDR group
status=OK, message=Raft Consensus is working correctly
status=WARNING, message=There is at least 1 node that is not accessible
status=WARNING, message=There are node(s) as RAFT_CANDIDATE, an election might be in progress
status=WARNING, message=There is no RAFT_LEADER, an election might be in progress
status=CRITICAL, message=There is a single node in Raft Consensus
status=CRITICAL, message=There are node(s) as RAFT_CANDIDATE while a RAFT_LEADER is defined
status=CRITICAL, message=There are node(s) following a leader different than the node set as RAFT_LEADER

The described behavior is implemented in the function bdr.monitor_group_raft() , which uses Raft Consensus status information returned from
the view bdr.group_raft_details to provide a cluster-wide Raft check. For example:

bdrdb=# SELECT node_id, node_name, state,
leader_id
FROM bdr.group_raft_details;
 node_id | node_name | state |
leader_id
------------+-----------+---------------+------------
 1148549230 | node1 | RAFT_LEADER |
1148549230
 3367056606 | node2 | RAFT_FOLLOWER |
1148549230

bdrdb=# SELECT * FROM bdr.monitor_group_raft();
 status |
message
--------+-------------------------------------
 OK | Raft Consensus is working
correctly

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 370

Monitoring Replication Slots

Each BDR node keeps:

One replication slot per active BDR peer
One group replication slot

For example:

Peer slot names follow the convention bdr_<DATABASE>_<GROUP>_<PEER> , while the BDR group slot name follows the convention
bdr_<DATABASE>_<GROUP> , which can be accessed using the function bdr.local_group_slot_name() .

Peer replication slots should be active on all nodes at all times. If a peer replication slot is not active, then it might mean:

The corresponding peer is shutdown or not accessible; or
BDR replication is broken.

Grep the log file for ERROR or FATAL and also check bdr.worker_errors on all nodes. The root cause might be, for example, an incompatible DDL
was executed with DDL replication disabled on one of the nodes.

The BDR group replication slot is however inactive most of the time. BDR maintains this slot and advances its LSN when all other peers have already
consumed the corresponding transactions. Consequently it is not necessary to monitor the status of the group slot.

The function bdr.monitor_local_replslots() provides a summary of whether all BDR node replication slots are working as expected, e.g.:

One of the following status summaries will be returned:

UNKNOWN : This node is not part of any BDR group
OK : All BDR replication slots are working correctly
OK : This node is part of a subscriber-only group
CRITICAL : There is at least 1 BDR replication slot which is inactive
CRITICAL : There is at least 1 BDR replication slot which is missing

bdrdb=# SELECT slot_name, database, active,
confirmed_flush_lsn
FROM pg_replication_slots ORDER BY slot_name;
 slot_name | database | active |
confirmed_flush_lsn
--------------------------+----------+--------+---------------------
 bdr_bdrdb_bdrgroup | bdrdb | f |
0/3110A08
 bdr_bdrdb_bdrgroup_node2 | bdrdb | t |
0/31F4670
 bdr_bdrdb_bdrgroup_node3 | bdrdb | t |
0/31F4670
 bdr_bdrdb_bdrgroup_node4 | bdrdb | t |
0/31F4670

bdrdb=# SELECT * FROM bdr.monitor_local_replslots();
 status |
message
--------+---
 OK | All BDR replication slots are working
correctly

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 371

Monitoring Transaction COMMITs

By default, BDR transactions commit only on the local node. In that case, transaction COMMIT will be processed quickly.

BDR can be used with standard PostgreSQL synchronous replication, while BDR also provides two new transaction commit modes: CAMO and Eager
replication. Each of these modes provides additional robustness features, though at the expense of additional latency at COMMIT . The additional time at
COMMIT can be monitored dynamically using the bdr.stat_activity catalog, where processes report different wait_event states. A transaction

in COMMIT waiting for confirmations from one or more synchronous standbys reports a SyncRep wait event, whereas the two new modes report
EagerRep .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 372

17 EDB Postgres Distributed Command Line Interface

The EDB Postgres Distributed Command Line Interface (PGD CLI) is a tool to manage your EDB Postgres Distributed cluster. It allows you to run commands
against EDB Postgres Distributed clusters.

See the Command reference for the available commands to inspect, manage, and get information on cluster resources.

See Installing PGD CLI for information about how TPAexec deploys PGD CLI, how to install PGD CLI on a standalone server manually, and specifying
connection strings.

Requirements

The PGD CLI requires postgres superuser privileges to run.

Using the PGD CLI

pgd is the command name for the PGD command line interface. See pgd in the Command reference for a description of the command options. See the
following sections for sample use cases.

Specifying a configuration file

If you rename the file or move it to another location, specify the new name and location using the optional -f or --config-file flag. For example:

Passing a database connection string

Use the --dsn flag to pass a database connection string directly to a command. You don't need a configuration file if you pass the connection string with
this flag. The flag takes precedence if a configuration file is present. For example:

Specifying the output format

The PGD CLI supports the following output formats:

Format Considerations

tabular Default format. Presents the data in tabular form.

json Presents the raw data with no formatting. For some commands, the json output may show more data than shown in the tabular output such
as extra fields and more detailed messages.

yaml Same as json except field order is alphabetical. Experimental and may not be fully supported in future versions.

Use the -o or --output flag to change the default output format to json or yaml. For example:

 pgd show-nodes -f /opt/my-
config.yml

pgd show-nodes --dsn "host=bdr-a1 port=5432 dbname=bdrdb user=postgres
"

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 373

Use the -o or --output flag to change the default output format to json or yaml. For example:

Accessing the command line help

To list the supported commands, enter:

For help for a specific command and its parameters, enter pgd help <command_name> . For example:

pgd show-nodes -o json

pgd help

pgd help show-nodes

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 374

17.1 Installing PGD CLI

TPAexec installs and configures PGD CLI on each BDR node, by default. If you wish to install PGD CLI on any non-BDR instance in the cluster, you simply
attach the pgdcli role to that instance in TPAexec's configuration file before deploying. See TPAexec for more information.

Installing manually

You can manually install the PGD CLI on any Linux machine using .deb and .rpm packages available from the BDR repository. The package name is
edb-pgd-cli . For example:

When the PGD CLI is configured by TPAexec, it connects automatically, but with a manual installation to a standalone EDB Postgres Distributed cluster you
need to provide a connection string.

Specifying database connection strings

You can either use a configuration file to specify the database connection strings for your cluster (see following section) or pass the connection string
directly to a command (see the sample use case).

Using a configuration file

Use the pgd-config.yml configuration file to specify the database connection string for your cluster. The configuration file should contain the
database connection string for at least one BDR node in the cluster. The cluster name is optional and not validated.

For example:

The pgd-config.yml , is located in the /etc/edb directory, by default. The PGD CLI searches for pgd-config.yml in the following locations
(precedence order - higher to lower):

1. /etc/edb (default)
2. $HOME/.edb
3. . (working directory)

If you rename the file or move it to another location, specify the new name and location using the optional -f or --config-file flag when entering a
command. See the sample use case.

for
Debian
sudo apt-get install edb-pgd-cli

cluster:
 name: cluster-
name
 endpoints:
 - "host=bdr-a1 port=5432 dbname=bdrdb user=postgres
"
 - "host=bdr-b1 port=5432 dbname=bdrdb user=postgres
"
 - "host=bdr-c1 port=5432 dbname=bdrdb user=postgres
"

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 375

https://techsupport.enterprisedb.com/software_subscriptions/add/products/bdr4/

17.2 Command reference

pgd is the command name for the PGD command line interface.

Synopsis

The EDB Postgres Distributed Command Line Interface (PGD CLI) is a tool to manage your EDB Postgres Distributed cluster. It allows you to run commands
against EDB Postgres Distributed clusters. You can use it to inspect and manage cluster resources.

Options

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -h, --help help for pgd
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

See also

check-health
show-camo
show-clockskew
show-events
show-nodes
show-raft
show-replslots
show-subscriptions
show-version

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 376

17.2.1 check-health

Checks the health of the EDB Postgres Distributed cluster.

Synopsis

Performs various checks such as if all nodes are accessible, all replication slots are working, and CAMO pairs are connected.

Please note that the current implementation of clock skew may return an inaccurate skew value if the cluster is under high load while running this
command or has large number of nodes in it.

Examples

pgd check-health
[flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 377

 Example 1 (3 node cluster, bdr-a1 and bdr-c1 are up, bdr-b1 is down; bdr-a1
 and bdr-b1 are CAMO partners)

 $ pgd check-health

 Check Status Message
 ----- ------ -------
 CAMO Critical At least 1 CAMO partner is not connected
 ClockSkew Critical Clockskew cannot be determined for at least 1 BDR node pair
 Connection Critical The node bdr-b1 is not accessible
 Raft Warning There is no RAFT_LEADER, an election might be in progress
 Replslots Critical There is at least 1 BDR replication slot which is inactive
 Version Warning There is at least 1 node that is not accessible

 Example 2 (3 node cluster, all nodes are up but system clocks are not in sync)

 $ pgd check-health

 Check Status Message
 ----- ------ -------
 CAMO Ok All CAMO pairs are connected
 ClockSkew Warning At least 1 BDR node pair has clockskew greater than 2 seconds
 Connection Ok All BDR nodes are accessible
 Raft Ok Raft Consensus is working correctly
 Replslots Ok All BDR replication slots are working correctly
 Version Ok All nodes are running same BDR versions

 Example 3 (3 node cluster, all nodes are up and all checks are Ok)

 $ pgd check-health

 Check Status Message
 ----- ------ -------
 CAMO Ok All CAMO pairs are connected
 ClockSkew Ok All BDR node pairs have clockskew within permissible limit
 Connection Ok All BDR nodes are accessible
 Raft Ok Raft Consensus is working correctly
 Replslots Ok All BDR replication slots are working correctly
 Version Ok All nodes are running same BDR versions

Options

 -h, --help help for check-health

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 378

17.2.2 show-camo

Shows BDR CAMO (Commit at Most Once) details.

Synopsis

Shows BDR CAMO (Commit at Most Once) details such as the name of the CAMO partner, connection and readiness status, any pending and unresolved
CAMO transactions, and differences between apply_lsn and receive_lsn. This command is available only for EDB Postgres Extended Server and EDB
Postgres Advanced Server (v14 and later).

Examples

 Example 1 (3 node cluster, bdr-a1 and bdr-b1 are CAMO partner but bdr-b1 is down)

 $ pgd show-camo

 Node CAMO Partner Connected Ready Transactions Resolved Apply LSN Receive LSN Apply Queue Size
 ---- ------------ --------- ----- --------------------- --------- ----------- ----------------
 bdr-a1 bdr-b1 false false true 0/E42C99B0 0/E42C99B0 0

 Example 2 (3 node cluster, bdr-b1 was down and it has just been restarted)

 $ pgd show-camo

 Node CAMO Partner Connected Ready Transactions Resolved Apply LSN Receive LSN Apply Queue Size
 ---- ------------ --------- ----- --------------------- --------- ----------- ----------------
 bdr-a1 bdr-b1 true true true 0/E533DAB8 0/E533DAB8 0
 bdr-b1 bdr-a1 true false true 3/7AE81A28 3/7AE81A28 0

 Example 3 (3 node cluster, all nodes are up and in 'streaming' state)

 $ pgd show-camo

 Node CAMO Partner Connected Ready Transactions Resolved Apply LSN Receive LSN Apply Queue Size
 ---- ------------ --------- ----- --------------------- --------- ----------- ----------------
 bdr-a1 bdr-b1 true true true 0/E56AE520 0/E56AE520 0
 bdr-b1 bdr-a1 true true true 3/7B180BA8 3/7B180BA8 0

Options

 -h, --help help for show-camo

pgd show-camo [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 379

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 380

17.2.3 show-clockskew

Shows the status of clock skew between each BDR node pair.

Synopsis

Shows the status of clock skew between each BDR node pair in the cluster.

Please note that the current implementation of clock skew may return an inaccurate skew value if the cluster is under high load while running this
command or has large number of nodes in it.

Symbol Meaning
------- --------
* ok
~ warning (skew > 2 seconds)
! critical (skew > 5 seconds)
x down / unreachable
? unknown
- n/a

Examples

 Example 1 (3 node cluster, bdr-a1 and bdr-c1 are up, bdr-b1 is down)

 $ pgd show-clockskew

 Node bdr-a1 bdr-b1 bdr-c1 Current Time
 ---- ------ ------ ------ ------------
 bdr-a1 * ? * 2022-03-30 07:02:21.334472
 bdr-b1 x * x x
 bdr-c1 * ? * 2022-03-30 07:02:21.186809

 Example 2 (3 node cluster, all nodes are up)

 $ pgd show-clockskew

 Node bdr-a1 bdr-b1 bdr-c1 Current Time
 ---- ------ ------ ------ ------------
 bdr-a1 * * * 2022-03-30 07:04:54.147017
 bdr-b1 * * * 2022-03-30 07:04:54.340543
 bdr-c1 * * * 2022-03-30 07:04:53.90451

Options

 -h, --help help for show-clockskew

pgd show-clockskew [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 381

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 382

17.2.4 show-events

Shows events such as background worker errors and node membership changes.

Synopsis

Shows events such as background worker errors and node membership changes. Output is sorted by Time column in descending order. Message column is
truncated after a few lines. To view complete message use json output format ('-o json').

For more details on each node state, see show-nodes command help ('pgd show-nodes -h').

Examples

 Example 1 (3 node cluster)

 $ pgd show-events --lines 10

 Time Observer Node Subject Node Type Message
 ---- ------------- ------------ ---- -------
 2022-04-19 19:45:43.077712+00 bdr-b1 bdr-c1 receiver worker error pglogical worker received
fast finish request, exiting
 2022-04-19 19:45:43.066804+00 bdr-c1 bdr-a1 receiver worker error pglogical worker received
fast finish request, exiting
 2022-04-19 19:45:43.057598+00 bdr-b1 bdr-a1 receiver worker error pglogical worker received
fast finish request, exiting
 2022-04-19 19:45:43.046515+00 bdr-c1 bdr-b1 receiver worker error pglogical worker received
fast finish request, exiting
 2022-04-19 19:45:43.033369+00 bdr-a1 bdr-c1 receiver worker error pglogical worker received
fast finish request, exiting
 2022-04-19 19:45:43.013203+00 bdr-a1 bdr-b1 receiver worker error pglogical worker received
fast finish request, exiting
 2022-04-19 19:45:40.024662+00 bdr-c1 bdr-c1 node state change ACTIVE
 2022-04-19 19:45:40.024575+00 bdr-b1 bdr-c1 node state change ACTIVE
 2022-04-19 19:45:40.022788+00 bdr-a1 bdr-c1 node state change ACTIVE
 2022-04-19 19:45:38.961424+00 bdr-c1 bdr-c1 node state change PROMOTING

Options

 -h, --help help for show-events
 -n, --lines int show top n lines

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

pgd show-events [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 383

17.2.5 show-nodes

Shows all nodes in the EDB Postgres Distributed cluster and their summary.

Synopsis

Shows all nodes in the EDB Postgres Distributed cluster and their summary including name, node id, group, and current/target state.

Node States

NONE: Node state is unset when the worker starts, expected to be set quickly to the current known state.
CREATED: bdr.create_node() has been executed, but the node is not a member of any EDB Postgres Distributed cluster yet.
JOIN_START: bdr.join_node_group() begins to join the local node to an existing EDB Postgres Distributed cluster.
JOINING: The node join has started and is currently at the initial sync phase, creating the schema and data on the node.
CATCHUP: Initial sync phase is completed; now the join is at the last step of retrieving and applying transactions that were performed on the
upstream peer node since the join started.
STANDBY: Node join has finished, but not yet started to broadcast changes. All joins spend some time in this state, but if defined as a Logical
Standby, the node will continue in this state.
PROMOTE: Node was a logical standby and we just called bdr.promote_node to move the node state to ACTIVE. These two PROMOTE states have to
be coherent to the fact, that only one node can be with a state higher than STANDBY but lower than ACTIVE.
PROMOTING: Promotion from logical standby to full BDR node is in progress.
ACTIVE: The node is a full BDR node and is currently ACTIVE. This is the most common node status.
PART_START: Node was ACTIVE or STANDBY and we just called bdr.part_node to remove the node from the EDB Postgres Distributed cluster.
PARTING: Node disconnects from other nodes and plays no further part in consensus or replication.
PART_CATCHUP: Non-parting nodes synchronize any missing data from the recently parted node.
PARTED: Node parting operation is now complete on all nodes.

Only one node at a time can be in either of the states PROMOTE or PROMOTING.

Note that the read-only state of a node, as shown in the Current State or in the Target State columns, is indicated as STANDBY.

Examples

pgd show-nodes [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 384

 Example 1 (3 node cluster, bdr-a1 and bdr-c1 are up, bdr-b1 is down)

 $ pgd show-nodes

 Node Node ID Node Group Current State Target State Status Seq ID
 ---- ------- ---------- ------------- ------------ ------ ------
 bdr-a1 3136956818 bdrgroup ACTIVE ACTIVE Up 1
 bdr-b1 2380210996 bdrgroup ACTIVE ACTIVE Unreachable 2
 bdr-c1 1804769977 bdrgroup ACTIVE ACTIVE Up 3

 Example 2 (3 node cluster, all nodes are up)

 $ pgd show-nodes

 Node Node ID Node Group Current State Target State Status Seq ID
 ---- ------- ---------- ------------- ------------ ------ ------
 bdr-a1 3136956818 bdrgroup ACTIVE ACTIVE Up 1
 bdr-b1 2380210996 bdrgroup ACTIVE ACTIVE Up 2
 bdr-c1 1804769977 bdrgroup ACTIVE ACTIVE Up 3

 Example 3 (cluster with witness, logical standby and subscriber-only nodes)
 Note: In contrast to logical standby, the subscriber-only nodes are fully
 joined node to the cluster

 $ pgd show-nodes

 Node Node ID Node Group Current State Target State Status Seq ID
 ---- ------- ---------- ------------- ------------ ------ ------
 bdr-a1 3136956818 bdrgroup ACTIVE ACTIVE Up 1
 bdr-b1 2380210996 bdrgroup ACTIVE ACTIVE Up 2
 witness-c1 1450365472 bdrgroup ACTIVE ACTIVE Up 3
 logical-standby-a1 1140256918 bdrgroup STANDBY STANDBY Up 4
 logical-standby-b1 3541792022 bdrgroup STANDBY STANDBY Up 5
 subscriber-only-c1 2448841809 subscriber-only ACTIVE ACTIVE Up 6

Options

 -h, --help help for show-nodes

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 385

17.2.6 show-raft

Shows BDR Raft (consensus protocol) details.

Synopsis

Shows BDR Raft (consensus protocol) details such as Raft state (leader, follower), Raft election id, and number of voting nodes.

Note: In some cases such as network partition, output may vary based on the node to which the CLI is connected.

Examples

pgd show-raft [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 386

 Example 1 (3 node cluster, bdr-a1 and bdr-c1 are up, bdr-b1 is down)

 $ pgd show-raft

 Node Raft State Raft Term Commit Index Nodes Voting Nodes Protocol Version
 ---- ---------- --------- ------------ ----- ------------ ----------------
 bdr-c1 RAFT_FOLLOWER 29 6081272 3 3 4002
 bdr-a1 RAFT_LEADER 29 6081272 3 3 4002
 bdr-b1

 Example 2 (3 node cluster, all nodes are up)

 $ pgd show-raft

 Node Raft State Raft Term Commit Index Nodes Voting Nodes Protocol Version
 ---- ---------- --------- ------------ ----- ------------ ----------------
 bdr-c1 RAFT_FOLLOWER 38 6132327 3 3 4002
 bdr-a1 RAFT_LEADER 38 6132331 3 3 4002
 bdr-b1 RAFT_FOLLOWER 38 6132336 3 3 4002

 Example 3 (3 node cluster, all nodes are up but bdr-a1 is not able to connect
 to other nodes; following is the output when cli is connected to bdr-a1)

 $ pgd show-raft

 Node Raft State Raft Term Commit Index Nodes Voting Nodes Protocol Version
 ---- ---------- --------- ------------ ----- ------------ ----------------
 bdr-c1
 bdr-a1 RAFT_FOLLOWER 40 6176769 3 3 4002
 bdr-b1

 Example 4 (cluster with witness, logical standby and subscriber-only nodes)
 Note: Unlike full-bdr (or witness node), logical standby and subscriber-only
 nodes don't have raft voting rights.

 $ pgd show-raft

 Node Raft State Raft Term Commit Index Nodes Voting Nodes Protocol Version
 ---- ---------- --------- ------------ ----- ------------ ----------------
 bdr-a1 RAFT_LEADER 0 10268 6 3 4003
 bdr-b1 RAFT_FOLLOWER 0 10279 6 3 4003
 witness-c1 RAFT_FOLLOWER 0 10281 6 3 4003
 logical-standby-a1 RAFT_FOLLOWER 0 10281 6 3 4003
 logical-standby-b1 RAFT_FOLLOWER 0 10281 6 3 4003
 subscriber-only-c1 RAFT_FOLLOWER 0 10281 6 3 4003

Options

 -h, --help help for show-raft

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 387

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 388

17.2.7 show-replslots

Shows the status of BDR replication slots.

Synopsis

Shows the status of BDR replication slots. Output with the verbose flag gives details such as is slot active, replication state (disconnected, streaming,
catchup), and approximate lag.

Symbol Meaning
------- --------
* ok
~ warning (lag > 10M)
! critical (lag > 100M OR slot is 'inactive' OR 'disconnected')
x down / unreachable
- n/a

In matrix view, sometimes byte lag is shown in parentheses. It is a
maxOf(WriteLag, FlushLag, ReplayLag, SentLag).

Examples

 Example 1 (3 node cluster, bdr-a1 and bdr-c1 are up, bdr-b1 is down)

 $ pgd show-replslots

 Node bdr-a1 bdr-b1 bdr-c1
 ---- ------ ------ ------
 bdr-a1 * !(6.6G) *
 bdr-b1 x * x
 bdr-c1 * !(6.9G) *

 $ pgd show-replslots --verbose

 Origin Node Target Node Status (active/state) Write Lag (bytes/duration) Flush Lag (bytes/duration)
Replay Lag (bytes/duration) Sent Lag (bytes)
 ----------- ----------- --------------------- -------------------------- -------------------------- ----
----------------------- ----------------
 bdr-a1 bdr-b1 f / disconnected 6.6G / 8 days 02:58:36.243723 6.6G / 8 days 02:58:36.243723
6.6G / 8 days 02:58:36.243723 6.6G
 bdr-a1 bdr-c1 t / streaming 0B / 00:00:00 0B / 00:00:00
0B / 00:00:00 0B
 bdr-c1 bdr-a1 t / streaming 0B / 00:00:00.000812 0B / 00:00:00.000812
0B / 00:00:00.000812 0B
 bdr-c1 bdr-b1 f / disconnected 6.9G / 8 days 02:58:36.004415 6.9G / 8 days 02:58:36.004415
6.9G / 8 days 02:58:36.004415 6.9G

 Example 2 (3 node cluster, bdr-b1 was down and it has just been restarted)

 $ pgd show-replslots

pgd show-replslots [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 389

 Node bdr-a1 bdr-b1 bdr-c1
 ---- ------ ------ ------
 bdr-a1 * !(6.9G) *
 bdr-b1 * * *
 bdr-c1 * !(5.8G) *

 $ pgd show-replslots --verbose

 Origin Node Target Node Status (active/state) Write Lag (bytes/duration) Flush Lag (bytes/duration)
Replay Lag (bytes/duration) Sent Lag (bytes)
 ----------- ----------- --------------------- -------------------------- -------------------------- ----------
----------------- ----------------
 bdr-a1 bdr-b1 t / catchup 6.9G / 00:00:00.000778 6.9G / 00:00:00.000778 6.9G /
00:00:00.000778 6.9G
 bdr-a1 bdr-c1 t / streaming 0B / 00:00:00.104121 0B / 00:00:00.104133 0B /
00:00:00.104133 0B
 bdr-b1 bdr-a1 t / streaming 0B / 00:00:00 0B / 00:00:00 0B /
00:00:00 0B
 bdr-b1 bdr-c1 t / streaming 0B / 00:00:00 0B / 00:00:00 0B /
00:00:00 0B
 bdr-c1 bdr-a1 t / streaming 6.8K / 00:00:00 6.8K / 00:00:00 6.8K /
00:00:00 6.8K
 bdr-c1 bdr-b1 t / catchup 5.5G / 00:00:00.008257 5.5G / 00:00:00.008257 5.5G /
00:00:00.008257 5.5G

 Example 3 (3 node cluster, all nodes are up and in 'streaming' state)

 $ pgd show-replslots

 Node bdr-a1 bdr-b1 bdr-c1
 ---- ------ ------ ------
 bdr-a1 * * *
 bdr-b1 * * *
 bdr-c1 * * *

 $ pgd show-replslots --verbose

 Origin Node Target Node Status (active/state) Write Lag (bytes/duration) Flush Lag (bytes/duration)
Replay Lag (bytes/duration) Sent Lag (bytes)
 ----------- ----------- --------------------- -------------------------- -------------------------- ----------
----------------- ----------------
 bdr-a1 bdr-b1 t / streaming 0B / 00:00:00 0B / 00:00:00 0B /
00:00:00 0B
 bdr-a1 bdr-c1 t / streaming 0B / 00:00:00 0B / 00:00:00 0B /
00:00:00 0B
 bdr-b1 bdr-a1 t / streaming 0B / 00:00:00 0B / 00:00:00 0B /
00:00:00 0B
 bdr-b1 bdr-c1 t / streaming 0B / 00:00:00 0B / 00:00:00 0B /
00:00:00 0B
 bdr-c1 bdr-a1 t / streaming 0B / 00:00:00 528B / 00:00:00 528B /
00:00:00 0B
 bdr-c1 bdr-b1 t / streaming 528B / 00:00:00 528B / 00:00:00 528B /
00:00:00 0B

 Example 4 (cluster with witness, logical standby and subscriber-only nodes;
 upstream for logical-standby-a1 is bdr-a1 and for logical-standby-b1 it is bdr-b1)
 Note:
 1. A logical standby is sent data only by one source node, but no other

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 390

 nodes receive replication changes from it
 2. Subscriber-only node subscribes to replication changes from other nodes
 in the cluster, but no other nodes receive replication changes from it

 $ pgd show-replslots

 Node bdr-a1 bdr-b1 logical-standby-a1 logical-standby-b1 subscriber-only-c1 witness-c1
 ---- ------ ------ ------------------ ------------------ ------------------ ----------
 bdr-a1 * * * - * *
 bdr-b1 * * - * * *
 logical-standby-a1 - - * - - -
 logical-standby-b1 - - - * - -
 subscriber-only-c1 - - - - * -
 witness-c1 * * - - * *

Options

 -h, --help help for show-replslots
 -v, --verbose verbose output

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 391

17.2.8 show-subscriptions

Shows BDR subscription (incoming replication) details.

Synopsis

Shows BDR subscription (incoming replication) details such as origin/target node, timestamp of the last replayed transaction, and lag between now and
the timestamp of the last replayed transaction.

Examples

 Example 1 (3 node cluster, bdr-a1 and bdr-c1 are up, bdr-b1 is down)

 $ pgd show-subscriptions

 Origin Node Target Node Last Transaction Replayed At Lag Duration (seconds)
 ----------- ----------- ---------------------------- ----------------------
 bdr-a1 bdr-c1 2022-04-23 13:13:40.854433+00 0.514275
 bdr-b1 bdr-a1
 bdr-b1 bdr-c1
 bdr-c1 bdr-a1 2022-04-23 13:13:40.852233+00 0.335464

 Example 2 (3 node cluster, bdr-b1 was down and it has just been restarted)

 $ pgd show-subscriptions

 Origin Node Target Node Last Transaction Replayed At Lag Duration (seconds)
 ----------- ----------- ---------------------------- ----------------------
 bdr-a1 bdr-b1 2022-04-23 13:14:45.669254+00 0.001686
 bdr-a1 bdr-c1 2022-04-23 13:14:46.157913+00 -0.002009
 bdr-b1 bdr-a1
 bdr-b1 bdr-c1
 bdr-c1 bdr-a1 2022-04-23 13:14:45.698472+00 0.259521
 bdr-c1 bdr-b1 2022-04-23 13:14:45.667979+00 0.002961

 Example 3 (3 node cluster, all nodes are up and in 'streaming' state)

 $ pgd show-subscriptions

 Origin Node Target Node Last Transaction Replayed At Lag Duration (seconds)
 ----------- ----------- ---------------------------- ----------------------
 bdr-a1 bdr-b1 2022-04-23 13:15:39.732375+00 0.034462
 bdr-a1 bdr-c1 2022-04-23 13:15:40.179618+00 0.002647
 bdr-b1 bdr-a1 2022-04-23 13:15:39.719994+00 0.305814
 bdr-b1 bdr-c1 2022-04-23 13:15:40.180886+00 0.001379
 bdr-c1 bdr-a1 2022-04-23 13:15:39.714397+00 0.311411
 bdr-c1 bdr-b1 2022-04-23 13:15:39.714397+00 0.052440

 Example 4 (cluster with witness, logical standby and subscriber-only nodes;
 upstream for logical-standby-a1 is bdr-a1 and for logical-standby-b1 it is bdr-b1)
 Note: Logical standby and subscriber-only nodes receive changes but do not

pgd show-subscriptions [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 392

 send changes made locally to other nodes

 $ pgd show-subscriptions

 Origin Node Target Node Last Transaction Replayed At Lag Duration (seconds)
 ----------- ----------- ---------------------------- ----------------------
 bdr-a1 bdr-b1 2022-04-23 13:40:49.106411+00 0.853665
 bdr-a1 logical-standby-a1 2022-04-23 13:40:50.72036+00 0.138430
 bdr-a1 logical-standby-b1
 bdr-a1 subscriber-only-c1 2022-04-23 13:40:50.72036+00 0.016226
 bdr-a1 witness-c1 2022-04-23 13:40:50.470142+00 0.001514
 bdr-b1 bdr-a1 2022-04-23 13:40:49.10174+00 1.095422
 bdr-b1 logical-standby-a1
 bdr-b1 logical-standby-b1 2022-04-23 13:40:50.713666+00 0.271213
 bdr-b1 subscriber-only-c1 2022-04-23 13:40:50.713666+00 0.022920
 bdr-b1 witness-c1 2022-04-23 13:40:50.471789+00 -0.000133
 witness-c1 bdr-a1 2022-04-23 13:40:49.107706+00 1.089456
 witness-c1 bdr-b1 2022-04-23 13:40:49.107706+00 0.852370
 witness-c1 logical-standby-a1
 witness-c1 logical-standby-b1
 witness-c1 subscriber-only-c1 2022-04-23 13:40:50.719844+00 0.016742

Options

 -h, --help help for show-subscriptions

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 393

17.2.9 show-version

Shows the version of BDR and Postgres installed on each node.

Synopsis

Shows the version of BDR and Postgres installed on each node in the cluster.

Examples

 Example 1 (3 node cluster, bdr-a1 and bdr-c1 are up, bdr-b1 is down)

 $ pgd show-version

 Node BDR Version Postgres Version
 ---- ----------- ----------------
 bdr-c1 4.1.0 14.2 (EDB Postgres Extended Server 14.2.0) (Debian 2:14.2.0edbpge-1.buster+1)
 bdr-a1 4.1.0 14.2 (EDB Postgres Extended Server 14.2.0) (Debian 2:14.2.0edbpge-1.buster+1)
 bdr-b1

 Example 2 (3 node cluster, all nodes are up)

 $ pgd show-version

 Node BDR Version Postgres Version
 ---- ----------- ----------------
 bdr-c1 4.1.0 14.2 (EDB Postgres Extended Server 14.2.0) (Debian 2:14.2.0edbpge-1.buster+1)
 bdr-a1 4.1.0 14.2 (EDB Postgres Extended Server 14.2.0) (Debian 2:14.2.0edbpge-1.buster+1)
 bdr-b1 4.1.0 14.2 (EDB Postgres Extended Server 14.2.0) (Debian 2:14.2.0edbpge-1.buster+1)

Options

 -h, --help help for show-version

Options inherited from parent commands

 -f, --config-file string config file; ignored if
 --dsn flag is present (default "/etc/edb/pgd-config.yml")
 --dsn string database connection string
 e.g."host=bdr-a1 port=5432 dbname=bdrdb user=postgres "
 -L, --log-level string logging level: debug, info, warn, error (default "error")
 -o, --output string output format: json, yaml

pgd show-version [flags]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 394

	1 EDB Postgres Distributed (PGD)
	Compatibility matrix

	2 EDB Postgres Distributed 4 release notes
	2.1 EDB Postgres Distributed 4.3.8 release notes
	Bug Fixes

	2.2 EDB Postgres Distributed 4.3.7 release notes
	Bug Fixes

	2.3 EDB Postgres Distributed 4.3.6 release notes
	Highlights
	Enhancements
	Bug Fixes

	2.4 Release notes for EDB Postgres Distributed version 4.3.5
	2.5 Release notes for EDB Postgres Distributed version 4.3.4
	2.6 Release notes for EDB Postgres Distributed version 4.3.3
	2.7 Release notes for EDB Postgres Distributed version 4.3.2+p1
	2.8 Release notes for EDB Postgres Distributed version 4.3.2
	2.9 Release notes for EDB Postgres Distributed version 4.3.1+p2
	2.10 Release notes for EDB Postgres Distributed version 4.3.1+p1
	2.11 Release notes for EDB Postgres Distributed version 4.3.1
	2.12 Release notes for EDB Postgres Distributed version 4.3.0+p1
	2.13 Release notes for EDB Postgres Distributed version 4.3.0
	2.14 Release notes for EDB Postgres Distributed version 4.2.2
	2.15 Release notes for EDB Postgres Distributed version 4.2.1
	2.16 Release notes for EDB Postgres Distributed version 4.2.0
	2.17 Release notes for EDB Postgres Distributed version 4.1.1
	2.18 Release notes for EDB Postgres Distributed version 4.1.0
	2.19 Release notes for EDB Postgres Distributed version 4.0.3
	2.20 Release notes for EDB Postgres Distributed version 4.0.2
	2.21 Release notes for EDB Postgres Distributed version 4.0.1
	2.22 Release notes for EDB Postgres Distributed version 4.0.0
	3 Known issues
	4 Terminology
	Asynchronous replication
	Availability
	CAMO or commit-at-most-once
	Clustering
	Data sharding
	Eager Replication for BDR
	Eventual consistency
	Failover
	Horizontal scaling** or **scale out
	Logical replication
	Nines
	Node
	Physical replication
	Read scalability
	Recovery point objective (RPO)
	Recovery time objective (RTO)
	Single point of failure (SPOF)
	Switchover
	Synchronous replication
	Two-phase commit (2PC)
	Vertical scaling** or **scale up
	Write scalability

	5 Overview
	Postgres server
	BDR
	HARP

	6 BDR (Bi-Directional Replication)
	Basic architecture
	Multiple groups
	Multiple masters
	Asynchronous, by default
	Mesh topology
	Logical replication
	High availability

	Architectural options and performance
	Always On architectures
	Supported PostgreSQL database servers
	Characteristics affecting BDR performance

	Deployment
	Clocks and timezones

	6.1 Application use
	Application behavior
	Nonreplicated statements
	DML and DDL replication
	Replicating between different release levels
	Replicating between nodes with differences
	Comparison between nodes with differences
	General rules for applications
	Timing considerations and synchronous replication
	Application testing
	TPAexec
	pgbench with CAMO/Failover options
	isolationtester with multi-node access

	Performance testing and tuning
	Assessing suitability
	Assessing updates of primary key/replica identity
	Assessing use of LOCK on tables or in SELECT queries

	6.2 PostgreSQL configuration for BDR
	PostgreSQL settings for BDR
	BDR-specific settings
	Conflict handling
	Global sequence parameters
	DDL handling
	Global locking
	Node management
	Generic replication
	bdr.standby_slot_names
	bdr.standby_slots_min_confirmed
	bdr.writer_input_queue_size
	bdr.writer_output_queue_size
	bdr.min_worker_backoff_delay
	CRDTs
	Max prepared transactions
	Eager Replication
	Commit At Most Once
	Transaction streaming
	Lag control
	Timestamp-based snapshots
	Monitoring and logging
	Internals

	6.3 Node management
	Creating and joining a BDR group
	Joining a heterogeneous cluster
	Connection DSNs and SSL (TLS)

	Witness nodes
	Logical standby nodes
	Physical standby nodes
	Subgroups
	Subscriber-only groups
	Notes

	Decoding worker
	Notes

	Node restart and down node recovery
	Replication slots created by BDR
	Group replication slot

	Hashing long identifiers

	Removing a node from a BDR group
	Uninstalling BDR

	Listing BDR topology
	Listing BDR groups
	Listing nodes in a BDR group
	List of node states

	Node management interfaces
	bdr.create_node
	Synopsis
	Parameters
	Notes

	bdr.drop_node
	Synopsis
	Parameters
	Notes

	bdr.create_node_group
	Synopsis
	Parameters
	Notes

	bdr.alter_node_group_config
	Synopsis
	Parameters
	Notes

	bdr.join_node_group
	Synopsis
	Parameters
	Notes

	bdr.promote_node
	Synopsis
	Notes

	bdr.wait_for_join_completion
	Synopsis
	Parameters
	Notes

	bdr.part_node
	Synopsis
	Parameters
	Notes

	bdr.alter_node_interface
	Synopsis
	Parameters
	Notes

	bdr.alter_subscription_enable
	Synopsis
	Parameters
	Notes

	bdr.alter_subscription_disable
	Synopsis
	Parameters
	Notes

	Node-management commands
	bdr_init_physical
	Synopsis
	Options
	Notes

	6.4 DDL replication
	DDL replication options
	Executing DDL on BDR systems
	DDL locking details
	Minimizing the impact of DDL
	Handling DDL with down nodes
	Statement-specific DDL replication concerns
	BDR DDL command handling matrix
	ALTER SEQUENCE
	ALTER TABLE
	ALTER TABLE disallowed commands
	ALTER TABLE locking
	ALTER TABLE examples

	ALTER TYPE
	COMMENT ON
	CREATE PROFILE or ALTER PROFILE
	CREATE SEQUENCE
	CREATE TABLE
	CREATE TABLE AS and SELECT INTO
	EXPLAIN
	EXPLAIN ANALYZE Replication
	EXPLAIN ANALYZE Locking

	GRANT and REVOKE
	LOCK TABLE
	SECURITY LABEL
	TRUNCATE Replication
	TRUNCATE Locking
	Role manipulation statements
	Restricted DDL workarounds
	Adding a CONSTRAINT
	Adding a column
	Changing a column's type
	Changing other types

	BDR functions that behave like DDL

	6.5 Security and roles
	Catalog tables
	BDR functions and operators
	Granting privileges on catalog objects
	Role management
	Roles and replication
	Connection role
	Privilege restrictions
	Foreign key privileges
	Triggers

	BDR default/predefined roles
	bdr_superuser
	bdr_read_all_stats
	bdr_monitor
	bdr_application
	bdr_read_all_conflicts

	6.6 Conflicts
	How conflicts happen
	Types of conflict
	PRIMARY KEY or UNIQUE conflicts
	INSERT/INSERT conflicts
	INSERT operations that violate multiple UNIQUE constraints
	UPDATE/UPDATE conflicts
	UPDATE conflicts on the PRIMARY KEY
	UPDATE operations that violate multiple UNIQUE constraints
	UPDATE/DELETE conflicts
	INSERT/UPDATE conflicts
	INSERT/DELETE conflicts
	DELETE/DELETE conflicts
	Conflicts with three or more nodes

	Foreign key constraint conflicts
	TRUNCATE conflicts
	Exclusion constraint conflicts
	Data conflicts for roles and tablespace differences
	Lock conflicts and deadlock aborts
	Divergent conflicts
	TOAST support details

	Avoiding or tolerating conflicts
	Conflict detection
	Origin conflict detection
	Row version conflict detection
	bdr.alter_table_conflict_detection
	Synopsis
	Parameters
	Notes

	List of conflict types

	Conflict resolution
	bdr.alter_node_set_conflict_resolver
	Synopsis
	Parameters
	Notes

	List of conflict resolvers
	Default conflict resolvers
	List of conflict resolutions

	Conflict logging
	bdr.alter_node_set_log_config
	Synopsis
	Parameters
	Notes
	Listing conflict logging configurations
	Logging conflicts to a table

	Conflict reporting

	Data verification with LiveCompare

	6.7 Sequences
	BDR global sequences
	SnowflakeId sequences
	Timeshard sequences

	Globally allocated range sequences
	Converting a local sequence to a galloc sequence

	UUIDs, KSUUIDs, and other approaches
	UUIDs and KSUUIDs
	Step and offset sequences
	Composite keys

	Global sequence management interfaces
	bdr.alter_sequence_set_kind
	Synopsis
	Parameters
	Notes

	bdr.extract_timestamp_from_snowflakeid
	Synopsis
	Parameters
	Notes

	bdr.extract_nodeid_from_snowflakeid
	Synopsis
	Parameters
	Notes

	bdr.extract_localseqid_from_snowflakeid
	Synopsis
	Parameters
	Notes

	bdr.timestamp_to_snowflakeid
	Synopsis
	Parameters
	Notes

	bdr.extract_timestamp_from_timeshard
	Synopsis
	Parameters
	Notes

	bdr.extract_nodeid_from_timeshard
	Synopsis
	Parameters
	Notes

	bdr.extract_localseqid_from_timeshard
	Synopsis
	Parameters
	Notes

	bdr.timestamp_to_timeshard
	Synopsis
	Parameters
	Notes

	KSUUID v2 Functions
	bdr.gen_ksuuid_v2
	Synopsis
	Notes

	bdr.ksuuid_v2_cmp
	Synopsis
	Parameters
	Notes

	bdr.extract_timestamp_from_ksuuid_v2
	Synopsis
	Parameters
	Notes

	KSUUID v1 functions
	bdr.gen_ksuuid
	Synopsis
	Notes

	bdr.uuid_v1_cmp
	Synopsis
	Notes
	Parameters

	bdr.extract_timestamp_from_ksuuid
	Synopsis
	Parameters
	Notes

	6.8 Column-level conflict detection
	Enabling and disabling column-level conflict resolution
	Example
	Listing table with column-level conflict resolution
	bdr.column_timestamps_create
	Synopsis
	Parameters

	DDL locking
	Current versus commit timestamp
	Inspecting column timestamps
	Handling column conflicts using CRDT data types
	Notes

	6.9 Conflict-free replicated data types
	State-based and operation-based CRDTs
	Operation-based CRDT types (CmCRDT)
	State-based CRDT types (CvCRDT)

	Disk-space requirements
	CRDT types versus conflicts handling
	CRDT types versus conflict reporting
	Resetting CRDT values
	Implemented CRDT data types
	grow-only counter (crdt_gcounter)
	grow-only sum (crdt_gsum)
	positive-negative counter (crdt_pncounter)
	positive-negative sum (crdt_pnsum)
	delta counter (crdt_delta_counter)
	delta sum (crdt_delta_sum)

	6.10 Transaction streaming
	BDR enhancements
	Caveats

	Configuration
	Node configuration using bdr.default_streaming_mode
	Group configuration using bdr.alter_node_group_config()
	Configuration setting effects

	Monitoring

	6.11 Durability and performance options
	Overview
	Terms and definitions
	Comparison
	Internal timing of operations
	Configuration
	Planned shutdown and restarts
	Legacy synchronous replication using BDR
	Usage
	Migration to Group Commit

	6.12 Group Commit
	Requirements
	Configuration
	Origin groups
	Confirmation levels

	Reference
	Commit scope grammar
	Adding a commit scope rule
	Synopsis

	Changing a commit scope rule
	Synopsis

	Removing a commit scope rule
	Synopsis

	6.13 Eager Replication
	Requirements
	Usage
	Error handling
	Eager All-Node Replication with CAMO
	Limitations

	Effects of Eager Replication in general
	Increased commit latency
	Increased abort rate

	6.14 Commit At Most Once
	Requirements
	Configuration
	CAMO with Eager All-Node Replication

	Failure scenarios
	Data persistence at receiver side
	Local mode
	Example: Symmetric node pair
	With local mode
	Without local mode

	Application use
	Overview and requirements
	Adding a CAMO pair
	Synopsis

	Changing the configuration of a CAMO pair
	Synopsis

	Removing a CAMO pair
	Synopsis

	CAMO partner connection status
	Synopsis
	Return value

	CAMO partner readiness
	Synopsis
	Return value

	Fetch the CAMO partner
	Wait for consumption of the apply queue from the CAMO partner
	Synopsis

	Transaction status between CAMO nodes
	Transaction status query function
	Synopsis
	Parameters
	Return value

	Connection pools and proxies
	Example

	Interaction with DDL and global locks
	Nontransactional DDL

	CAMO limitations
	Performance implications
	Client application testing
	CAMO versus group commit

	6.15 Lag control
	Requirements
	Configuration
	Overview
	Transaction application
	Limitations
	Caveats
	Meeting organizational objectives

	6.16 AutoPartition
	Auto creation of partitions
	Configure AutoPartition
	Synopsis
	Parameters
	Examples

	Create one AutoPartition
	Synopsis
	Parameters

	Stopping automatic creation of partitions
	Parameters

	Drop one AutoPartition
	Synopsis
	Parameters

	Notes
	Wait for partition creation
	Synopsis
	Parameters
	Synopsis
	Parameters

	Find partition
	Synopsis
	Parameters

	Enable or disable AutoPartitioning
	Synopsis
	Parameters
	Synopsis
	Parameters
	Synopsis

	Check AutoPartition workers
	Synopsis
	Parameters
	Notes

	6.17 Timestamp-based snapshots
	6.18 Replication sets
	Using replication sets
	Behavior of partitioned tables
	Behavior with foreign keys
	Replication set management
	bdr.create_replication_set
	Synopsis
	Parameters
	Notes

	bdr.alter_replication_set
	Synopsis
	Parameters
	Notes

	bdr.drop_replication_set
	Synopsis
	Parameters
	Notes

	bdr.alter_node_replication_sets
	Synopsis
	Parameters
	Notes

	Replication set membership
	bdr.replication_set_add_table
	Synopsis
	Parameters
	Notes

	bdr.replication_set_remove_table
	Synopsis
	Parameters
	Notes

	Listing replication sets
	DDL replication filtering
	bdr.replication_set_add_ddl_filter
	Synopsis
	Parameters
	Notes
	Examples

	bdr.replication_set_remove_ddl_filter
	Synopsis
	Parameters
	Notes

	6.19 Stream triggers
	Trigger execution during Apply
	Missing column conflict resolution
	Data loss and divergence risk

	Terminology of row-types
	Conflict triggers
	Transform triggers
	Stream triggers variables
	TG_NAME
	TG_WHEN
	TG_LEVEL
	TG_OP
	TG_RELID
	TG_TABLE_NAME
	TG_TABLE_SCHEMA
	TG_NARGS
	TG_ARGV[]

	Information functions
	bdr.trigger_get_row
	Synopsis
	Parameters

	bdr.trigger_get_committs
	Synopsis
	Parameters

	bdr.trigger_get_xid
	Synopsis
	Parameters

	bdr.trigger_get_type
	Synopsis

	bdr.trigger_get_conflict_type
	Synopsis

	bdr.trigger_get_origin_node_id
	Synopsis
	Parameters

	bdr.ri_fkey_on_del_trigger
	Synopsis

	Row contents
	Triggers notes
	Stream triggers manipulation interfaces
	bdr.create_conflict_trigger
	Synopsis
	Parameters
	Notes

	bdr.create_transform_trigger
	Synopsis
	Parameters
	Notes

	bdr.drop_trigger
	Synopsis
	Parameters
	Notes

	Stream triggers examples

	6.20 Explicit two-phase commit (2PC)
	Use

	6.21 Catalogs and views
	User-visible catalogs and views
	bdr.conflict_history
	bdr.conflict_history columns

	bdr.conflict_history_summary
	bdr.conflict_history_summary columns

	bdr.consensus_kv_data
	bdr.consensus_kv_data Columns

	bdr.camo_decision_journal
	bdr.camo_decision_journal columns

	bdr.crdt_handlers
	bdr.crdt_handlers Columns

	bdr.ddl_replication
	bdr.ddl_replication columns

	bdr.depend
	bdr.global_consensus_journal
	bdr.global_consensus_journal columns

	bdr.global_consensus_journal_details
	bdr.global_consensus_journal_details columns

	bdr.global_consensus_response_journal
	bdr.global_consensus_response_journal columns

	bdr.global_lock
	bdr.global_lock columns

	bdr.global_locks
	bdr.global_locks columns

	bdr.local_consensus_snapshot
	bdr.local_consensus_snapshot columns

	bdr.local_consensus_state
	bdr.local_consensus_state columns

	bdr.local_node
	bdr.local_node columns

	bdr.local_node_summary
	bdr.local_sync_status
	bdr.local_sync_status columns

	bdr.network_path_info
	bdr.network_path_info columns

	bdr.node
	bdr.node columns

	bdr.node_catchup_info
	bdr.node_catchup_info columns

	bdr.node_conflict_resolvers
	bdr.node_conflict_resolvers columns

	bdr.node_group
	bdr.node_group columns

	bdr.node_group_replication_sets
	bdr.node_group_replication_sets columns

	bdr.node_local_info
	bdr.node_local_info columns

	bdr.node_location
	bdr.node_location Columns

	bdr.node_log_config
	bdr.node_log_config columns

	bdr.node_peer_progress
	bdr.node_peer_progress columns

	bdr.node_pre_commit
	bdr.node_pre_commit columns

	bdr.node_replication_rates
	bdr.node_replication_rates columns

	bdr.node_slots
	bdr.node_slots columns

	bdr.node_summary
	bdr.node_summary columns

	bdr.queue
	bdr.queue columns

	bdr.replication_set
	bdr.replication_set columns

	bdr.replication_set_table
	bdr.replication_set_table columns

	bdr.replication_set_ddl
	bdr.replication_set_ddl Columns

	bdr.replication_sets
	bdr.replication_sets columns

	bdr.schema_changes
	bdr.schema_changes columns

	bdr.sequence_alloc
	bdr.sequence_alloc columns

	bdr.schema_changes
	bdr.schema_changes columns

	bdr.sequence_alloc
	bdr.sequence_alloc columns

	bdr.sequences
	bdr.sequences columns

	bdr.stat_activity
	bdr.stat_relation
	bdr.stat_relation columns

	bdr.stat_subscription
	bdr.stat_subscription columns

	bdr.subscription
	bdr.subscription columns

	bdr.subscription_summary
	bdr.subscription_summary columns

	bdr.replication_status
	bdr.replication_status columns

	bdr.tables
	bdr.tables columns

	bdr.trigger
	bdr.trigger columns

	bdr.triggers
	bdr.workers
	bdr.workers Columns

	bdr.worker_errors
	bdr.worker_errors Columns

	bdr.writers
	bdr.writers columns

	bdr.worker_tasks
	bdr.worker_tasks columns

	bdr.autopartition_work_queue
	bdr.autopartition_work_queue columns

	bdr.autopartition_workitem_status
	bdr.autopartition_workitem_status columns

	bdr.autopartition_local_work_queue
	bdr.autopartition_local_work_queue columns

	bdr.autopartition_local_workitem_status
	bdr.autopartition_local_workitem_status columns

	bdr.group_camo_details
	bdr.group_camo_details columns

	bdr.camo_pairs
	bdr.camo_pairs columns

	bdr.commit_scopes
	bdr.commit_scopes columns

	bdr.group_raft_details
	bdr.group_raft_details columns

	bdr.group_replslots_details
	bdr.group_replslots_details columns

	bdr.group_subscription_summary
	bdr.group_subscription_summary columns

	bdr.group_versions_details
	bdr.group_versions_details columns

	Internal catalogs and views
	bdr.ddl_epoch
	bdr.ddl_epoch columns

	bdr.internal_node_pre_commit
	bdr.sequence_kind
	bdr.sequence_kind columns

	bdr.state_journal
	bdr.state_journal_details
	bdr.state_journal_details columns

	6.22 BDR system functions
	Version information functions
	bdr.bdr_version
	bdr.bdr_version_num

	System information functions
	bdr.get_relation_stats
	bdr.get_subscription_stats

	System and progress information parameters
	bdr.local_node_id
	bdr.last_committed_lsn
	transaction_id
	bdr.is_node_connected
	Synopsis

	bdr.is_node_ready
	Synopsis

	Consensus function
	bdr.consensus_disable
	bdr.consensus_enable
	bdr.consensus_proto_version
	bdr.consensus_snapshot_export
	Synopsis

	bdr.consensus_snapshot_import
	Synopsis

	bdr.consensus_snapshot_verify
	Synopsis

	bdr.get_consensus_status
	bdr.get_raft_status
	bdr.raft_leadership_transfer
	Synopsis

	Utility functions
	bdr.wait_slot_confirm_lsn
	Synopsis
	Parameters

	bdr.wait_for_apply_queue
	Synopsis
	Parameters

	bdr.get_node_sub_receive_lsn
	Synopsis
	Parameters

	bdr.get_node_sub_apply_lsn
	Synopsis
	Parameters

	bdr.run_on_all_nodes
	Synopsis
	Parameters
	Notes
	Example

	bdr.run_on_nodes
	Synopsis
	Parameters
	Notes

	bdr.run_on_group
	Synopsis
	Parameters
	Notes

	bdr.global_lock_table
	Synopsis
	Parameters
	Notes

	bdr.wait_for_xid_progress
	Synopsis
	Parameters
	Notes

	bdr.local_group_slot_name
	Example

	bdr.node_group_type
	Example

	Global advisory locks
	bdr.global_advisory_lock
	Synopsis
	parameters
	Synopsis
	parameters

	bdr.global_advisory_unlock
	Synopsis
	Parameters
	Synopsis
	Parameters

	Monitoring functions
	bdr.monitor_group_versions
	Synopsis
	Notes

	bdr.monitor_group_raft
	Synopsis
	Notes

	bdr.monitor_local_replslots
	Synopsis
	Notes

	bdr.wal_sender_stats
	Synopsis
	Output columns

	bdr.get_decoding_worker_stat
	Synopsis
	Output columns
	Notes

	bdr.lag_control
	Synopsis
	Output columns

	Internal functions
	BDR message payload functions
	bdr.get_global_locks
	bdr.get_slot_flush_timestamp
	BDR internal function replication functions
	bdr.internal_submit_join_request
	bdr.isolation_test_session_is_blocked
	bdr.local_node_info
	bdr.msgb_connect
	bdr.msgb_deliver_message
	bdr.peer_state_name
	bdr.request_replay_progress_update
	bdr.seq_nextval
	Notes

	bdr.show_subscription_status
	bdr.get_node_conflict_resolvers
	bdr.reset_subscription_stats
	bdr.reset_relation_stats
	bdr.pg_xact_origin
	Synopsis
	Parameters

	bdr.difference_fix_origin_create
	Synopsis

	bdr.difference_fix_session_setup
	Synopsis

	bdr.difference_fix_session_reset
	Synopsis

	bdr.difference_fix_xact_set_avoid_conflict
	Synopsis

	bdr.resynchronize_table_from_node(node_name name, relation regclass)
	Synopsis
	Parameters
	Notes

	bdr.consensus_kv_store
	Synopsis
	Parameters
	Notes

	bdr.consensus_kv_fetch
	Synopsis
	Parameters
	Notes

	bdr.alter_subscription_skip_changes_upto
	Synopsis
	Example

	7 High Availability Routing for Postgres (HARP)
	The importance of quorum
	Reducing write targets
	Basic architecture
	How it works
	Determining a leader
	Connection routing
	Colocation

	Recommended architecture and use
	Location configuration
	Health check
	Readiness
	Liveness

	7.1 Installation
	Software versions
	TPAExec
	Package installation
	etcd packages

	Consensus layer
	etcd
	BDR

	7.2 Configuring HARP for cluster management
	Standard configuration
	Cluster name
	DCS settings
	Example

	Health check API settings
	Example

	HARP Manager specific
	HARP Proxy specific
	Example

	Runtime directives
	Cluster-wide
	Node directives
	Proxy directives

	7.3 Cluster bootstrapping
	Cluster-wide bootstrapping
	Location bootstrapping
	Node bootstrapping
	Proxy bootstrapping

	7.4 HARP Manager
	How it works
	Configuration
	Usage

	7.5 HARP Proxy
	Builtin proxy: how it works
	Configuration

	PgBouncer: how it works
	PgBouncer configuration file
	Disabling and reenabling HARP Proxy node management
	Passthrough user authentication
	Configuration
	Usage

	7.6 harpctl command-line tool
	Synopsis
	Configuration
	Execution
	harpctl apply
	harpctl fence
	harpctl get
	harpctl get cluster
	harpctl get leader
	harpctl get location
	harpctl get locations
	harpctl get node
	harpctl get nodes
	harpctl get proxy
	harpctl get proxies

	harpctl manage
	harpctl promote
	harpctl set
	harpctl set cluster
	harpctl set node
	harpctl set proxy

	harpctl unfence
	harpctl unmanage

	7.7 Consensus layer considerations
	BDR driver compatibility
	Maintaining quorum
	Multi-consensus variant
	TPAexec and consensus

	Leadership consensus storage
	Leader elections
	Detection and recovery

	7.8 Security and roles
	Postgres permissions
	BDR permissions
	BDR consensus permissions

	8 Choosing your architecture
	Standard EDB Always On architectures
	Architecture details
	Choosing your architecture

	8.1 Always On Bronze
	8.2 Always On Silver
	8.3 Always On Gold
	8.4 Always On Platinum
	9 Choosing a Postgres distribution
	10 Choosing durability
	11 Other considerations
	Data Consistency
	Deployment and sizing considerations
	Clocks and timezones

	12 Limitations
	Limits on nodes
	Limitations of multiple databases on a single instance
	Other limitations

	13 Deployment options
	13.1 TPAexec
	Incremental changes
	Extensible through Ansible
	Cluster management
	It's just Postgres
	Getting started

	13.1.1 Installing TPAexec
	Prerequisites
	Access
	Token

	Installing TPAexec

	13.1.2 Using TPAexec
	Configure
	Common configuration options
	Owner
	Platform options

	Subnet selection
	Disk space
	Distribution
	2ndQuadrant repositories
	Software versions
	Hostnames
	Locations
	Enable Commit At Most Once

	Provision
	Deploy
	Test

	13.1.3 Example: Deploying EDB Postgres Distributed
	13.2 Deploying PGD 4 manually
	13.2.1 Step 1 - Provisioning hosts
	Provisioning hosts
	Configuring hosts
	Create an admin user
	Ensure networking connectivity

	Worked example

	13.2.2 Step 2 - Installing Postgres
	Installing Postgres
	Worked example
	EDB account
	1: Configuring repositories
	2: Install Postgres

	13.2.3 Step 3 - Configuring PGD repositories
	Configuring PGD repositories
	Worked example
	Use your EDB account
	Set environment variables
	Configure the repository
	RHEL/Other RHEL-based

	13.2.4 Step 4 - Installing the PGD software
	Installing the PGD software
	Worked example
	Install the packages
	Ensure the database is initialized and started
	Configure the BDR extension
	Preload the BDR library
	Set the wal_level
	Enable commit timestamp tracking
	Raise max_worker_processes
	Add a password to the Postgres enterprisedb user
	Enable inter-node authentication in pg_hba.conf
	Enable authentication between nodes

	Restart the server
	Check the extension has been installed

	Create the replicated database

	Summaries
	Installing PGD4 for EDB Postgres Advanced Server
	Installing PGD for EDB Postgres Extended Server
	Installing PGD for PostgreSQL

	13.2.5 Step 5 - Creating the PGD cluster
	Creating the PGD cluster
	Worked example
	Create connection strings for each node
	Preparing the first node
	Create the first node
	Create the top-level group
	Create a subgroup

	Add the second node
	Create the second node
	Join the second node to the cluster

	Add the third node
	Create the third node
	Join the third node to the cluster

	13.2.6 Step 6 - Checking the cluster
	Checking the cluster
	Worked example
	Preparation
	Ensure the cluster is ready

	Create data
	On node-one create a table
	On node-one populate the table
	On node-one monitor performance
	On node-one get a checksum

	Check data
	Log into host-two's Postgres server.
	On node-two get a checksum
	Compare with the result from node-one
	Log into host-three's Postgres server
	On node-three get a checksum
	Compare with the result from node-one and node-two

	13.2.7 Step 7 - Using PGD CLI
	Using PGD CLI
	Configuring and connecting PGD CLI
	Use PGD CLI to explore the cluster

	Worked example
	Ensure PGD CLI is installed
	Create a configuration file
	Install the configuration file
	Add /usr/local/bin to the Path
	Run PGD CLI
	Using PGD CLI to explore the cluster
	Check the health of the cluster
	Show the nodes in the cluster

	14 Upgrading
	Upgrade Planning
	Rolling Upgrade considerations
	Rolling Server Software Upgrades
	Rolling Upgrade Using Node Join
	Upgrading a CAMO-Enabled Cluster

	Upgrade Preparation
	Server Software Upgrade
	BDR Extension Upgrade
	Stop Postgres
	Upgrade Packages
	Start Postgres

	Postgres Upgrade
	Minor Version Postgres Upgrade
	Major Version Postgres Upgrade

	Upgrade Check and Validation
	Application Schema Upgrades
	Rolling Application Schema Upgrades

	14.1 In-place Postgres Major Version Upgrades
	Terminology
	Precautions
	Usage
	bdr_pg_upgrade command-line
	Synopsis
	Options
	Environment Variables

	Example
	Steps Performed
	BDR Postgres Checks
	pg_upgrade Steps
	BDR Post-Upgrade Steps

	14.2 Supported BDR upgrade paths
	Upgrading within version 4
	Upgrading from version 3.7 to version 4
	Upgrading from version 3.6 to version 4

	15 Backup and recovery
	Backup
	pg_dump
	Physical Backup
	Eventual Consistency
	Point-In-Time Recovery (PITR)

	Restore
	EDB Postgres Distributed Cluster Failure or Seeding a New Cluster from a Backup
	Cleanup BDR Metadata
	Cleanup of Replication Origins
	Cleanup of Replication Slots

	16 Monitoring
	Monitoring Overview
	Monitoring Node Join and Removal
	Monitoring Replication Peers
	Monitoring Outgoing Replication
	Monitoring Incoming Replication
	Monitoring WAL senders using LCR

	Monitoring BDR Replication Workers
	Monitoring BDR Writers
	Monitoring Global Locks
	Monitoring Conflicts
	External Monitoring
	bdr.set_node_location
	Synopsis
	Parameters

	bdr.set_network_path_info
	Synopsis
	Parameters

	bdr.network_monitoring view

	Apply Statistics
	Standard PostgreSQL Statistics Views
	Monitoring BDR Versions
	Monitoring Raft Consensus
	Monitoring Replication Slots
	Monitoring Transaction COMMITs

	17 EDB Postgres Distributed Command Line Interface
	Requirements
	Using the PGD CLI
	Specifying a configuration file
	Passing a database connection string
	Specifying the output format
	Accessing the command line help

	17.1 Installing PGD CLI
	Installing manually
	Specifying database connection strings
	Using a configuration file

	17.2 Command reference
	Synopsis
	Options
	See also

	17.2.1 check-health
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	17.2.2 show-camo
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	17.2.3 show-clockskew
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	17.2.4 show-events
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	17.2.5 show-nodes
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	17.2.6 show-raft
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	17.2.7 show-replslots
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	17.2.8 show-subscriptions
	Synopsis
	Examples
	Options
	Options inherited from parent commands

	17.2.9 show-version
	Synopsis
	Examples
	Options
	Options inherited from parent commands

