
EDB Postgres Distributed (PGD)
Version 6.1.0

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. Built at 2026-01-27T09:53:32

8
9

10
11
13
14
16
18
23
24
25
26
27
28
29
30
31
32
33
34
37
40
41
45
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

1 EDB Postgres Distributed (PGD)
2 Get started with PGD
2.1 An introduction to PGD Essential
2.2 Creating your first cluster (PGD Essential)
2.3 First steps with your Quickstart PGD Cluster
2.3.1 Working with SQL and the PGD Cluster
2.3.2 Loading Data into your PGD Cluster
2.3.3 Using PGD CLI
2.4 Expanded Examples and Use Cases
3 Essential How-To
3.1 PGD Essential architectures
3.1.1 Standard PGD architecture
3.1.1.1 Manually deploying PGD Essential standard architecture
3.1.2 Near/far architecture
3.1.2.1 Manually Deploying PGD Essential near-far architecture
3.2 Installing and configuring EDB Postgres Distributed 6
3.2.1 1 - Prerequisites for Essential installation
3.2.2 Step 2 - Configure repositories
3.2.3 Step 3 - Installing the database and pgd
3.2.4 Step 4 - Configuring the cluster
3.2.5 Step 5 - Checking the cluster
3.3 Connections
3.4 Using PGD CLI
3.5 Durability in PGD Essential
3.6 Autopartitioning
3.7 Production Best Practices
3.7.1 Sizing
3.7.2 Time and PGD
3.8 Essential Standard Operating Procedures
3.8.1 How to use Standard Operating Procedures
3.8.2 Installation and Configuration SOPs
3.8.2.1 SOP - Adding a Node to an Existing Cluster
3.8.2.2 SOP - Creating a New Group
3.8.2.3 SOP - Installing PGD on a New Node
3.8.3 Data Movement SOPs
3.8.3.1 SOP - Moving Data into the Cluster
3.8.3.2 SOP - Moving Data Out of the Cluster
3.8.4 Monitoring SOPs
3.8.4.1 SOP - Monitoring PGD clusters using SQL
3.8.5 Backup and Restore SOPs
3.8.5.1 Backup and Restore with pg_dump
3.8.5.2 Backup and Restore with Barman
3.8.6 Upgrading Postgres
3.8.6.1 SOP - Minor upgrades of Postgres
3.8.6.2 SOP - Major upgrades of Postgres
3.8.6.3 SOP - Upgrading PGD in PGD clusters
3.8.7 Troubleshooting
3.8.7.1 SOP - Troubleshooting Cluster Operations

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 2

71
72
73
74
75
76
77
80
81
82
83
84
85
86
87
90
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

3.8.8 Maintenance SOPs
3.8.8.1 SOP - Performing Routine Maintenance
3.8.8.2 SOP - Handling Node Failures
3.8.8.3 SOP - Online Vacuuming
4 Expanded How-to
4.1 PGD Architectures
4.1.1 Always-On Architecture
4.1.2 Essential Architectures
4.1.3 Multi-Location Architectures
4.1.4 Geo-Distributed Architectures
4.2 Installing and configuring EDB Postgres Distributed 6
4.2.1 1 - Prerequisites for Expanded installation
4.2.2 Step 2 - Configure repositories
4.2.3 Step 3 - Installing the database and pgd
4.2.4 Step 4 - Configuring the cluster
4.2.5 Step 5 - Checking the cluster
4.3 Expanded Standard Operating Procedures
4.3.1 How to use Standard Operating Procedures
4.3.2 Installation and Configuration SOPs
4.3.2.1 SOP - Adding a Node to an Existing Cluster
4.3.2.2 SOP - Creating a New Group
4.3.2.3 SOP - Installing PGD on a New Node
4.3.3 Data Movement SOPs
4.3.3.1 SOP - Moving Data into the Cluster
4.3.3.2 SOP - Moving Data Out of the Cluster
4.3.4 Monitoring SOPs
4.3.4.1 SOP - Monitoring PGD clusters using SQL
4.3.5 Backup and Restore SOPs
4.3.5.1 Backup and Restore with pg_dump
4.3.5.2 Backup and Restore with Barman
4.3.6 Upgrading Postgres
4.3.6.1 SOP - Minor upgrades of Postgres
4.3.6.2 SOP - Major upgrades of Postgres
4.3.6.3 SOP - Upgrading PGD in PGD clusters
4.3.7 Troubleshooting
4.3.7.1 SOP - Troubleshooting Cluster Operations
4.3.8 Maintenance SOPs
4.3.8.1 SOP - Performing Routine Maintenance
4.3.8.2 SOP - Handling Node Failures
4.3.8.3 SOP - Online Vacuuming
5 PGD concepts explained
5.1 Replication
5.2 PGD Nodes and Groups
5.3 Connection Management
5.4 Locking
5.5 Durability
5.6 Lag Control
5.7 Expanded Commit Scopes

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 3

125
126
127
128
130
131
133
134
135
136
137
138
139
140
141
142
143
145
146
147
149
150
151
152
154
155
156
157
158
159
160
162
163
164
168
169
177
179
180
181
182
184
186
188
189
190
191
194

5.8 Geo-Distributed Clusters
5.9 Conflict Management
6 PGD overview
6.1 Architecture overview
6.2 PGD overview - architecture and performance
6.3 PGD compared
7 Node types and capabilities
7.1 An overview of PGD Node types
7.2 Witness nodes
7.3 Logical standby nodes
7.4 Subscriber-only nodes and groups
7.4.1 An overview of Subscriber-only nodes
7.4.2 Creating Subscriber-only groups and nodes
7.4.3 Joining nodes to a Subscriber-only group
7.4.4 Optimizing subscriber-only groups
8 Node management
8.1 Creating PGD nodes
8.2 Groups and subgroups
8.3 Creating and joining PGD groups
8.4 Viewing PGD topology
8.5 Removing nodes and groups
8.6 Connection DSNs and SSL (TLS)
8.7 Node restart and down node recovery
8.8 Automatic synchronization
8.9 Node UUIDs
8.10 Replication slots created by PGD
9 Connection Manager
9.1 Connection Manager overview
9.2 Connection Manager Authentication
9.3 Configuring Connection Manager
9.4 Load Balancing with Connection Manager
9.5 Monitoring the Connection Manager
10 Postgres configuration
11 Backup and recovery
12 Monitoring
12.1 Monitoring through SQL
13 AutoPartition in PGD
14 Commit Scopes
14.1 Overview of durability options
14.2 Durability terminology
14.3 Commit scopes
14.4 Origin groups
14.5 Commit scope rules
14.6 Comparing durability options
14.7 Degrading commit scope rules
14.8 Synchronous Commit
14.9 Group Commit
14.10 Commit At Most Once

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 4

198
201
202
203
204
205
206
207
208
214
215
216
217
218
219
220
221
223
224
225
227
228
229
230
231
236
237
238
241
242
244
245
248
258
259
260
261
262
263
269
270
271
272
273
275
277
283
284

14.11 Lag Control
14.12 Administering
14.13 Legacy synchronous replication using PGD
14.14 Predefined Commit Scopes
14.15 Internal timing of operations
15 Conflict Management
15.1 Conflicts
15.1.1 Overview
15.1.2 Types of Conflict
15.1.3 Conflict detection
15.1.4 Conflict resolution
15.1.5 Conflict logging
15.1.6 Data verification with LiveCompare
15.2 Column-level conflict detection
15.2.1 Overview
15.2.2 Enabling and disabling column-level conflict resolution
15.2.3 Timestamps in column-level conflict resolution
15.3 Conflict-free replicated data types
15.3.1 CRDTs Overview
15.3.2 Using CRDTs
15.3.3 Operation-based and state-based CRDTs
15.3.4 CRDT Disk-space requirements
15.3.5 CRDTs vs conflict handling/reporting
15.3.6 Resetting CRDT values
15.3.7 Implemented CRDTs
16 Testing and tuning PGD clusters
17 Upgrading
17.1 Upgrading PGD clusters manually
17.2 Supported PGD upgrade paths
17.3 Compatibility changes
17.4 Application schema upgrades
17.5 In-place Postgres or Postgres and PGD major version upgrades
17.6 Performing a Postgres major version rolling upgrade on a PGD cluster
18 DDL replication
18.1 DDL overview
18.2 DDL replication options
18.3 DDL locking details
18.4 Managing DDL with PGD replication
18.5 DDL command handling matrix
18.6 DDL and role manipulation statements
18.7 Workarounds for DDL restrictions
18.8 PGD functions that behave like DDL
19 Decoding worker
20 CDC Failover support
21 Parallel Apply
22 Replication sets
23 Security and roles
23.1 Roles

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 5

285
286
288
289
290
295
299
301
302
303
305
306
307
308
309
310
311
312
313
321
343
357
364
366
373
377
379
381
383
384
386
388
393
396
397
399
401
402
406
413
414
415
416
417
418
420
421
422

23.2 Role management
23.3 PGD predefined roles
23.4 Roles and replication
23.5 Access control
24 Sequences
25 Stream triggers
26 Transaction streaming
27 Explicit two-phase commit (2PC)
28 Application use
28.1 Application behavior
28.2 DML and DDL replication and nonreplication
28.3 Nodes with differences
28.4 General rules for applications
28.5 Timing considerations and synchronous replication
28.6 Using extensions with PGD
28.7 Use of table access methods (TAMs) in PGD
28.8 Feature compatibility
29 PGD Reference
29.1 Tables, views and functions reference
29.1.1 User visible catalogs and views
29.1.2 System functions
29.1.3 PGD settings
29.1.4 Node management
29.1.5 Node management interfaces
29.1.6 Commit scopes
29.1.7 Conflicts
29.1.8 Conflict functions
29.1.9 Replication set management
29.1.10 Replication set membership
29.1.11 DDL replication filtering
29.1.12 Testing and tuning commands
29.1.13 Global sequence management interfaces
29.1.14 Autopartition
29.1.15 Stream triggers reference
29.1.15.1 Stream triggers manipulation interfaces
29.1.15.2 Stream triggers row functions
29.1.15.3 Stream triggers row variables
29.1.16 Internal catalogs and views
29.1.17 Internal system functions
29.1.18 Column-level conflict functions
29.2 EDB Postgres Distributed Command Line Interface (PGD CLI)
29.2.1 Installing PGD CLI
29.2.1.1 Installing PGD CLI on Linux
29.2.1.2 Installing PGD CLI on macOS
29.2.2 Using PGD CLI
29.2.3 Configuring PGD CLI
29.2.4 Discovering connection strings
29.2.5 Command reference

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 6

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
442
444
446
447
448
449
450
451
453
454
455
456
458
460
461
462
463
464
465
466
468
471
472
473
474
475
476
479
480
484

29.2.5.1 pgd assess
29.2.5.2 pgd cluster
29.2.5.2.1 pgd cluster show
29.2.5.2.2 pgd cluster verify
29.2.5.3 pgd commit-scope
29.2.5.3.1 pgd commit-scope create
29.2.5.3.2 pgd commit-scope drop
29.2.5.3.3 pgd commit-scopes list
29.2.5.3.4 pgd commit-scope show
29.2.5.3.5 pgd commit-scope update
29.2.5.4 pgd completion
29.2.5.5 pgd events
29.2.5.5.1 pgd events show
29.2.5.6 pgd group
29.2.5.6.1 pgd group show
29.2.5.6.2 pgd group set-option
29.2.5.6.3 pgd group get-option
29.2.5.6.4 pgd group set-leader
29.2.5.7 pgd groups
29.2.5.7.1 pgd groups list
29.2.5.8 pgd node
29.2.5.8.1 pgd node get-config
29.2.5.8.2 pgd node get-option
29.2.5.8.3 pgd node part
29.2.5.8.4 pgd node set-config
29.2.5.8.5 pgd node set-option
29.2.5.8.6 pgd node setup
29.2.5.8.7 pgd node show
29.2.5.8.8 pgd node upgrade
29.2.5.9 pgd nodes
29.2.5.9.1 pgd nodes list
29.2.5.10 pgd raft
29.2.5.10.1 pgd raft show
29.2.5.11 pgd replication
29.2.5.11.1 pgd replication show
30 Terminology
31 Choosing a Postgres distribution
32 PGD compatibility
33 EDB Postgres Distributed 6 release notes
33.1 EDB Postgres Distributed 6.1.2 release notes
33.2 EDB Postgres Distributed 6.1.1 release notes
33.3 EDB Postgres Distributed 6.1.0 release notes
33.4 EDB Postgres Distributed 6.0.2 release notes
33.5 EDB Postgres Distributed 6.0.1 release notes
34 Known issues and limitations

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 7

1 EDB Postgres Distributed (PGD)

Welcome to the PGD 6.1 documentation. PGD 6.1 is available in two editions: Essential and Expanded.

Why PGD?

Modern data architectures require an extensible approach to data management, whether the requirement is for high availability, disaster recovery or multi-region data distribution. PGD is designed to meet these needs, and in PGD 6 we have
made it easier to get started with PGD, while also providing a pathway to using advanced features as your use case becomes more complex.

What does PGD enable?

PGD enables you to build a distributed database architecture that can span multiple regions, data centers, or cloud providers. It provides multi-master replication and data distribution. Postgres databases can be deployed into data groups
within the cluster and data within each node can be distributed across multiple nodes.

What are the differences between PGD Essential and PGD Expanded?

PGD Expanded is the full-featured version of PGD. It includes all the features of PGD Essential, as well as additional features such as advanced conflict management, data distribution, and support for large-scale deployments. PGD Expanded
is designed for users who need the most advanced features and capabilities of PGD.

PGD Essential is a simplified version of PGD Expanded. It is designed for users who want to get started with PGD quickly and easily, without the need for advanced features or complex configurations. PGD Essential includes the core features of
PGD but enables them in a way that makes replication and availability simple. It therefore does not include some of the more advanced features available in PGD Expanded.

PGD Essential limits the number of data nodes in a cluster to four and the number of groups to two. It also limits the number of nodes in a group to four. PGD Expanded does not have these limitations.

Learn more about PGD in Get Started with PGD.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 8

2 Get started with PGD

To begin using any edition of EDB Postgres Distributed, we recommend you first try our local installation and configuration guide.

This guide will help you install and configure the software, and create your first cluster.

What is EDB Postgres Distributed?

EDB Postgres Distributed (PGD) is a distributed database solution that provides high availability, scalability, and fault tolerance for PostgreSQL databases. It allows you to create clusters of PostgreSQL instances that can work together to
provide a single, unified database system.

What is EDB Postgres Distributed Essential?

EDB Postgres Distributed Essential is a streamlined version of PGD that focuses on delivering core distributed database functionality with minimal complexity. It is designed for users who need basic high availability and disaster recovery
features without the advanced capabilities offered by PGD Expanded, the full version.

What is the PGD Essential Standard architecture

Get to know what EDB Postgres Distributed Essential is all about in Essential Standard.

Create your first PGD Essential cluster with Docker Compose

Use the Docker Compose file to create your first PGD Essential cluster with three nodes. This is a great way to get started with PGD Essential and see how it works in a real-world scenario and a stepping stone to deploying a production cluster
with PGD Essential or PGD Expanded.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 9

https://docs.docker.com/compose/

2.1 An introduction to PGD Essential

EDB Postgres Distributed (PGD) Essential is a simplified version of PGD Expanded, designed to help you get started with distributed databases quickly and easily. It provides the core features of PGD, enabling high availability and disaster
recovery without the complexity of advanced configurations.

At the core of PGD are data nodes, Postgres databases that are part of a PGD cluster. PGD enables these databases to replicate data efficiently between nodes, ensuring that your data is always available and up-to-date. PGD Essential
simplifies this process by providing a standard architecture that is easy to set up and manage.

The standard architecture is built around a single data group, which is the basic architectural element for EDB Postgres Distributed systems. Within a group, nodes cooperate to select which nodes handle incoming write or read traffic, and
identify when nodes are available or out of sync with the rest of the group. Groups are most commonly used on a single location where the nodes are in the same data center and where you have just the one group in the cluster, we also call it
the one-location architecture.

Standard/One-location architecture

The one-location architecture consists of a single PGD cluster with three nodes. The nodes are located in the same data center or region. Ideally they are in different availability zones, but that isn't required. The nodes are connected to each
other using a high-speed network.

The nodes are configured as a data group which means that they replicate data to each other within the same group. While PGD can handle multiple writers in a network, this requires more advanced conflict management and is not supported
in PGD Essential.

Therefore, in the standard architecture, one node is designated as the write leader node, which handles all write transactions. The other nodes in the group are read-only nodes that replicate data from the write leader.

The write leader node is one node selected by the nodes in the group to handle all the writes. It is responsible for accepting write transactions and replicating them to the other nodes in the group. If the write leader node fails, the other nodes
in the group will elect a new write leader node.

Applications can connect to any node in the cluster using PGD's Connection Manager ports which runs on every data node. It will automatically route read and write transactions to the write leader. It can also route read only transactions to the
other nodes in the group.

In this diagram, you can see the applications connecting to the PGD cluster through the Connection Manager ports. The Connection Manager is responsible for routing the read and write transactions to the appropriate nodes in the group. The
write leader is responsible for handling all write transactions and is shown in at the top in AZ1 in green.

The other nodes in the group are read-only nodes that replicate data from the write leader. Applications connecting to the read-only nodes Connection Manager read/write ports will have their queries and changes routed to the write leader. All
the time, the nodes are talking to each other replicationing data to ensure they are in sync.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 10

2.2 Creating your first cluster (PGD Essential)

This part of the Getting Started guide will help you create a local cluster using Docker Compose. This is a great way to get familiar with the EDB Postgres Distributed (PGD) Essential features and functionality.

Prerequisites

Docker and Docker Compose installed on your local machine.

Install the PGD Docker Quickstart kit

To create your first PGD cluster, you can use the Docker Compose file provided by EDB. This will set up a local cluster with three nodes, which is perfect for testing and development purposes.

1. Make sure you have Docker and Docker Compose installed on your local machine. You can follow the Docker installation guide if you haven't done so already.

2. Open a terminal and on the machine where you have docker installed, create a new directory for your PGD cluster, for example:

3. Run the following command to download the PGD Docker Compose file:

This will download the PGD Docker Quickstart kit, which includes the Docker Compose file and other necessary files to get started with PGD Essential.

4. Once the download is complete, you will need to prepare the environment for the PGD cluster. This is done by running the following command:

This command will create the necessary directories and files for the PGD cluster.

5. Now you have to build the Docker images for the PGD cluster. You can do this by running the following command:

This command will build the Docker image needed for the PGD Quickstart cluster.

6. After the images are built, you can start the PGD cluster using Docker Compose. Run the following command:

This command will start the Docker containers and create a local cluster with the default configuration, running in the background.

Accessing the PGD Cluster

1. Once the containers are up and running, you can access the PGD cluster using the following command:

This command will connect you directly to the first node of the cluster using the psql command-line interface.

This is how you would connect to the database for maintenance and management tasks.

For application and user access you will usually connect using the connection manager which, by default, is running on TCP port 6432 of all the hosts in the cluster.

2. You can connect to the write leader node in the cluster using the following command:

You can replace -h host-1 with the name of any host in the cluster, as they all run the connection manager.

If you have the psql client installed on your local machine, you can also connect to the cluster using the following command:

This connects to the connection manager running on the host-3 container on port 6432. This is then routed to the write leader node in the cluster.

mkdir pgd-cluster
cd pgd-cluster

 curl -L https://enterprisedb.com/docs/pgd/latest/get-started/assets/pgd_quickstart.sh | bash

./qs.sh prepare

export EDB_SUBSCRIPTION_TOKEN=...
./qs.sh build

./qs.sh start

docker compose exec host-1 psql pgddb

docker compose exec host-1 psql -h host-1 -p 6432 pgddb

export PGPASSWORD=secret
psql -h localhost -p 6432 -U postgres
pgddb

pgddb=# select node_name from bdr.local_node_summary;
node_name

node-1
(1
row)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 11

https://docs.docker.com/get-docker/

3. To use the PGD CLI from outside the containers, you can run the following command:

output
 Node Name | Group Name | Node Kind | Join State | Node Status
-----------+------------+-----------+------------+-------------
 node-1 | group-1 | data | ACTIVE | Up
 node-2 | group-1 | data | ACTIVE | Up
 node-3 | group-1 | data | ACTIVE | Up

This pgd command will lists the nodes in the cluster and their status.

You can also get a shell on the host-1 container and run the pgd command directly:

output
 Node Name | Group Name | Node Kind | Join State | Node Status
-----------+------------+-----------+------------+-------------
 node-1 | group-1 | data | ACTIVE | Up
 node-2 | group-1 | data | ACTIVE | Up
 node-3 | group-1 | data | ACTIVE | Up

This will give you access to the PGD CLI and allow you to run any PGD commands directly on the host-1 container.

Next Steps

Now that you have created your first PGD cluster, you can explore the following topics:

Working with SQL and the cluster to understand how to connect and interact with the cluster using SQL commands.
Loading data into the cluster using the COPY command or pg_dump and pg_restore .
Using PGD CLI to monitor and manage the cluster.

docker compose exec host-1 pgd nodes list

docker compose exec host-1 bash
pgd nodes list

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 12

2.3 First steps with your Quickstart PGD Cluster

Now that you have created your first PGD cluster, you can start working with it. This guide will help you connect to the cluster, load data, and perform basic SQL operations.

Working with SQL and the PGD Cluster
Loading Data into your PGD Cluster
Using the PGD CLI

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 13

2.3.1 Working with SQL and the PGD Cluster

The first step in working with your PGD cluster is to connect to it using SQL. You can do this using the psql command-line interface or any other SQL client that supports PostgreSQL.

The psql command is already installed and configured, if you are using the Docker Compose setup of the Quickstart kit. That means all you have to do is get a shell on one of the hosts so you can start working with it. You can sign into the
host-1 container to run commands within the cluster.

This will give you a shell inside the host-1 container where you can run PGD and SQL commands against the PGD cluster.

Connecting within the PGD Cluster

With PGD Essential, unless you are performing maintenance tasks, you will usually connect to the cluster using the connection manager, which is running on TCP port 6432 of all the hosts in the cluster.

You can connect to the write leader node in the cluster using the following command:

As we have a new cluster running with no users (apart from the postgres superuser) and one replicated database (pgddb), you can connect to the cluster using the following command:

This connects to the connection manager running on the host-1 container on port 6432, which is then routed to the write leader node in the cluster. You can replace host-1 with the name of any host in the cluster, as they all run the
connection manager.

If we run the following command, we can see which node we are connected to in the cluster:

output
 node_name

 node-1

Which doesn't surprise us, as we connected to the host-1 container, which is running the node-1 node in the cluster.

If we exit psql , and reconnect with:

We can see that we are now connected to the node-1 node in the cluster:

That's the connection manager routing us to the write leader node in the cluster, which is node-1 . To confirm this, we can run:

output
 Group Property | Value
-------------------+---------
 Group Name | group-1
 Parent Group Name | pgd
 Group Type | data
 Write Leader | node-1
 Commit Scope |

(You can use the \! command in psql to run shell commands directly from within the psql session.)

Working with SQL

Now that you are connected to the cluster, you can start working with SQL commands. You can create tables, insert data, and run queries just like you would in a regular PostgreSQL database.

For example, you can create a table and insert some data:

docker compose exec host-1 bash

psql -h <host> -p 6432 -U <username>
<database>

psql -h host-1 -p 6432 -U postgres
pgddb

select node_name from bdr.local_node_summary;

psql -h host-2 -p 6432 -U postgres
pgddb

select node_name from bdr.local_node_summary;
 node_name

 node-1

\! pgd group group-1 show --
summary

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 14

You can then query the data:

output
 id | name | email
----+--------+---------------------
 2 | Alice | alice@example.com
 3 | Bob | bob@example.com
(2 rows)

You can also run more complex queries, join tables, and use all the features of PostgreSQL. It's not withing the scope of this guide to cover all SQL commands, but you can refer to the PostgreSQL documentation for more information on SQL
syntax and commands.

Differences with PGD

What is important is that those SQL commands are replicated across the cluster. PGD has taken care of the replication for you. For example, that serial key has automatically been converted to a globally unique key across the cluster, so
you can insert data on any node in the cluster and it will be replicated to all other nodes. For PGD Essential, this is less important as you are required to connect to the write leader, but with PGD Expanded, you can connect to any node in the
cluster and run SQL commands, and this automatic change enables you to do that without worrying about conflicts or duplicates. With PGD Essential you are future proofed and can easily move to PGD Expanded later, with no changes to your
SQL commands or application code.

Next Steps

Now that you have connected to your PGD cluster and run some SQL commands, you can explore the following topics:

Loading Data into your PGD Cluster to learn how to import data from external sources.
Using PGD CLI to manage your PGD cluster from the command line.

CREATE TABLE users
(
 id SERIAL PRIMARY
KEY,
 name VARCHAR(100),
 email VARCHAR(100) UNIQUE
);
INSERT INTO users (name, email)
VALUES
('Alice', 'alice@example.com'),
('Bob', 'bob@example.com');

SELECT * FROM
users;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 15

https://www.postgresql.org/docs/current/sql.html

2.3.2 Loading Data into your PGD Cluster

PGD is, at its core, a Postgres database, so you can use the same tools and methods to load data into your PGD cluster as you would with any PostgreSQL database. To get you started, this guide will walk you through the process of loading data
into your PGD cluster.

Online CSV Importing

First, we are going to show how you can import data from an online CSV file into your PGD cluster. In this case, it's some historical baseball data from Baseball Databank. We are going to use the \COPY command in psql to import directly
from a URL. One thing \COPY doesn't do is create the table for you, so we will need to create the table first.

Connect to your PGD cluster using psql , either using docker compose exec host-1 psql or if you have psql installed locally, using that to connect to port 6432 on your host machine.

Now we can import the CSV data into the batters table using the \COPY command:

This command uses curl to fetch the CSV file from the URL and pipes it directly into the \COPY command, which imports the data into the batters table. The batters(...) entry defines which fields in the row the CSV data should go to.
The DELIMITER ',' CSV HEADER options specify that the file is a CSV, using commas, with a header row, that gets skipped.

Copy and the command and paste it into your psql session. If everything is set up correctly, you should see the data being imported without any errors. You should see output indicating the number of rows copied, like this:

COPY 110495

To verify that the data has been loaded correctly, you can run a simple query:

You should see a result like this:

 count

 110495
(1 row)

This confirms that 110,495 rows have been successfully imported into the batters table.

Let's quickly user it to work out who 1998's home run leader was

You should see output like this:

CREATE TABLE batters
(
 id SERIAL,
 playerid
VARCHAR(9),
 yearid
INTEGER,
 stint INTEGER,
 teamid
VARCHAR(3),
 lgid VARCHAR(2),
 g
INTEGER,
 ab INTEGER,
 r
INTEGER,
 h
INTEGER,
 "2b" INTEGER,
 "3b" INTEGER,
 hr INTEGER,
 rbi
INTEGER,
 sb INTEGER,
 cs INTEGER,
 bb INTEGER,
 so INTEGER,
 ibb
INTEGER,
 hbp
INTEGER,
 sh INTEGER,
 sf INTEGER,
 gidp INTEGER,
 PRIMARY KEY
(id)
);

\COPY batters(playerid,yearid,stint,teamid,lgid,g,ab,r,h,"2b","3b",hr,rbi,sb,cs,bb,so,ibb,hbp,sh,sf,gidp) FROM PROGRAM 'curl
"https://raw.githubusercontent.com/cbwinslow/baseballdatabank/master/core/Batting.csv"' DELIMITER ',' CSV HEADER

SELECT COUNT(*) FROM
batters;

SELECT playerid, yearid, teamid, hr
FROM batters
WHERE yearid =
1998
ORDER BY hr DESC
LIMIT 1;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 16

https://github.com/cbwinslow/baseballdatabank

 playerid | yearid | teamid | hr
-----------+--------+--------+----
 mcgwima01 | 1998 | SLN | 70
(1 row)

And if we want to put that into the context of the top 5 highest ranked home run hitters in 1998, we can do:

You should see output like this:

 playerid | yearid | teamid | hr_rank | hr
-----------+--------+--------+---------+----
 mcgwima01 | 1998 | SLN | 1 | 70
 sosasa01 | 1998 | CHN | 2 | 66
 griffke02 | 1998 | SEA | 3 | 56
 vaughgr01 | 1998 | SDN | 4 | 50
 belleal01 | 1998 | CHA | 5 | 49
(5 rows)

With PGD, you can enjoy the full power of PostgreSQL, including advanced SQL features like window functions, to analyze your data, but with the added benefit of it being fully replicated and highly available across multiple nodes even when a
node goes offline.

Next Steps

Now that you have loaded some data into your PGD cluster, you can explore the following topics:

Using the PGD CLI to manage your PGD cluster from the command line.

SELECT playerid, yearid, teamid,
 rank() OVER (PARTITION BY yearid ORDER BY hr desc)
hr_rank,
 hr
FROM batters
WHERE yearid =
1998
ORDER BY hr_rank LIMIT 5;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 17

2.3.3 Using PGD CLI

PGD CLI is a command-line interface for managing and monitoring your EDB Postgres Distributed (PGD) clusters. It provides a set of commands to perform various operations on the cluster, such as creating nodes, joining nodes, and
managing replication.

It's already installed and configured if you are using the Quickstart Docker Compose kit.

Log into the first host in your PGD cluster:

docker compose exec host-1 bash

and check the version of PGD CLI:

output
pgd-cli version 6.1.0

Note

You can also run any of the following commands from outside the containers, using the docker compose exec command to run them in the context of the first host in your PGD cluster:

docker compose exec host-1 pgd <command>

And you can run the pgd command from any host in the cluster, as they all have the PGD CLI installed and configured.

Getting started with PGD CLI

Start by viewing the cluster's overall status with the pgd cluster show command:

pgd cluster show

output
Summary
 Group Name | Parent Group | Group Type | Node Name | Node Kind
------------+--------------+------------+-----------+-----------
 group-1 | pgd | data | node-1 | data
 group-1 | pgd | data | node-2 | data
 group-1 | pgd | data | node-3 | data
 pgd | | global | |

Health
 Check | Status | Details
-------------------+--------+---
 Connections | Ok | All BDR nodes are accessible
 Raft | Ok | Raft Consensus is working correctly
 Replication Slots | Ok | All PGD replication slots are working correctly
 Clock Skew | Ok | Clock drift is within permissible limit
 Versions | Ok | All nodes are running the same PGD version

Clock Drift
 Reference Node | Node Name | Clock Drift
----------------+-----------+-------------
 node-3 | node-2 | *
 node-3 | node-1 | *

This command provides a summary of the cluster, its nodes, and their health status. It also shows the clock drift between nodes, which is important for replication consistency.

You can also view the status of individual nodes using the pgd node show command:

pgd node node-1 show

output
Summary
 Node Property | Value
-----------------+------------
 Node Name | node-1
 Group Name | group-1
 Node Kind | data
 Join State | ACTIVE
 Node Status | Up
 Node ID | 4153941939
 Snowflake SeqID | 1
 Database | pgddb

Options
 Option Name | Option Value
----------------+--
 route_dsn | port=5432 dbname=pgddb host=host-1 user=postgres
 route_fence | false
 route_priority | -1
 route_reads | true
 route_writes | true

The structure of the pgd CLI commands is hierarchical, with commands grouped by functionality. You can view the available commands and their descriptions by running:

pgd --version

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 18

pgd --help

output
Manages PGD clusters

Usage: pgd [OPTIONS] <COMMAND>

Commands:
 cluster Cluster-level commands
 group Group related commands
 groups Groups listing commands
 node Node related commands
 nodes Nodes listing commands
 events Event log commands
 replication Replication related commands
 raft Raft related commands
 commit-scope Commit scope management commands
 assess PGD compatibility assessment of Postgres server
 completion Generate the autocompletion script for pgd for the specified shell

Options:
 -V, --version Print version

Global Options:
 -f, --config-file <CONFIG_FILE> Sets the configuration file path
 --dsn <DSN> Sets the PostgreSQL connection string e.g. "host=localhost port=6000 user=postgres dbname=postgres" [env: PGD_CLI_DSN=]
 -o, --output <OUTPUT_FORMAT> Sets the output format for tables [env: PGD_CLI_OUTPUT=] [default: psql] [possible values: json, psql, modern, markdown, simple]
 --debug Print debug messages, useful while troubleshooting [env: PGD_CLI_DEBUG=]
 -h, --help Print help

Commands such as group , node take a group or a node name as their next argument, followed by a specific command. Commands such as cluster , groups , and nodes do not require a group or node name, as they operate at the
cluster level or list all groups or nodes.

You can also get help for a specific command by running:

pgd <COMMAND> --help

Viewing cluster status

To view the overall status of your PGD cluster, we have already used the pgd cluster show command. This shows all the cluster information. To see just the health status of the cluster, you can use the --health option:

pgd cluster show --health

output
 Check | Status | Details
-------------------+--------+---
 Connections | Ok | All BDR nodes are accessible
 Raft | Ok | Raft Consensus is working correctly
 Replication Slots | Ok | All PGD replication slots are working correctly
 Clock Skew | Ok | Clock drift is within permissible limit
 Versions | Ok | All nodes are running the same PGD version

Or if you want to see the summary status only, you can use the --summary option:

pgd cluster show --summary

output
 Group Name | Parent Group | Group Type | Node Name | Node Kind
------------+--------------+------------+-----------+-----------
 group-1 | pgd | data | node-1 | data
 group-1 | pgd | data | node-2 | data
 group-1 | pgd | data | node-3 | data
 pgd | | global | |

Viewing groups and group status

To view the status of all groups in the cluster, you can use the pgd groups list command:

pgd groups list

output
 Group Name | Parent Group Name | Group Type | Nodes
------------+-------------------+------------+-------
 group-1 | pgd | data | 3
 pgd | | global | 0

Now we can see the top level group pgd and the data group group-1 with 3 nodes in it. All nodes are a member of the top-level group which coordinates all activity across the cluster. The data group group-1 is a group of three data
nodes which are replicating data between themselves, routing incoming queries within the group to the write leader node in the group.

We can dig deeper into the group details using the pgd group show command:

pgd group group-1 show

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 19

output
Summary
 Group Property | Value
-------------------+---------
 Group Name | group-1
 Parent Group Name | pgd
 Group Type | data
 Write Leader | node-1
 Commit Scope |

Nodes
 Node Name | Node Kind | Join State | Node Status
-----------+-----------+------------+-------------
 node-1 | data | ACTIVE | Up
 node-2 | data | ACTIVE | Up
 node-3 | data | ACTIVE | Up

Options
 Option Name | Option Value
-----------------------------------+----------------------
 analytics_storage_location | (inherited)
 apply_delay | 00:00:00 (inherited)
 check_constraints | true (inherited)
 default_commit_scope | (inherited)
 enable_raft | true
 enable_routing | true
 enable_wal_decoder | false (inherited)
 http_port | (inherited)
 location |
 num_writers | -1 (inherited)
 read_only_consensus_timeout | (inherited)
 read_only_max_client_connections | (inherited)
 read_only_max_server_connections | (inherited)
 read_only_port | (inherited)
 read_write_consensus_timeout | (inherited)
 read_write_max_client_connections | (inherited)
 read_write_max_server_connections | (inherited)
 read_write_port | (inherited)
 route_reader_max_lag | -1
 route_writer_max_lag | -1
 route_writer_wait_flush | false
 streaming_mode | default (inherited)
 use_https | true

This command provides a summary of the group, its nodes, and their status. It also shows the group options, such as whether routing is enabled, the HTTP port for monitoring, and other configuration settings.

Like the cluster command, you can also use the --summary options to view just the summary of the group:

pgd group group-1 show --summary

output
 Group Property | Value
-------------------+---------
 Group Name | group-1
 Parent Group Name | pgd
 Group Type | data
 Write Leader | node-1
 Commit Scope |

Now we can see the group is a child of the top-level group pgd , it is a data group, and the write leader node in the group is node-1 . There are no commit scopes set for this group, which means it is using the default commit scope.

The --nodes option can be used to view the nodes in the group:

pgd group group-1 show --nodes

output
 Node Name | Node Kind | Join State | Node Status
-----------+-----------+------------+-------------
 node-1 | data | ACTIVE | Up
 node-2 | data | ACTIVE | Up
 node-3 | data | ACTIVE | Up

And, similarly, you can use the --options option to view the group options:

pgd group group-1 show --options

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 20

output
 Option Name | Option Value
-----------------------------------+----------------------
 analytics_storage_location | (inherited)
 apply_delay | 00:00:00 (inherited)
 check_constraints | true (inherited)
 default_commit_scope | (inherited)
 enable_raft | true
 enable_routing | true
 enable_wal_decoder | false (inherited)
 http_port | (inherited)
 location |
 num_writers | -1 (inherited)
 read_only_consensus_timeout | (inherited)
 read_only_max_client_connections | (inherited)
 read_only_max_server_connections | (inherited)
 read_only_port | (inherited)
 read_write_consensus_timeout | (inherited)
 read_write_max_client_connections | (inherited)
 read_write_max_server_connections | (inherited)
 read_write_port | (inherited)
 route_reader_max_lag | -1
 route_writer_max_lag | -1
 route_writer_wait_flush | false
 streaming_mode | default (inherited)
 use_https | true

As you can see, many of the options are inherited from the parent group, which is the top-level group pgd . The enable_raft and enable_routing options are set to true , which means that the group is using Raft consensus for
replication and routing queries (that are made through the connection manager port) to the write leader node.

Let's take a look at the parent group pgd using the pgd group pgd show command:

pgd group pgd show

output
Summary
 Group Property | Value
-------------------+--------
 Group Name | pgd
 Parent Group Name |
 Group Type | global
 Write Leader |
 Commit Scope |

This shows that the top-level group pgd is a global group, which means it is not a data group and does not have any data nodes of its own. In this case, it is just userd to coordinate the activity of the data groups in the cluster. It does not have
a write leader, as it does not have any data nodes.

The next part of the output shows the nodes in the group, which is empty:

Nodes
 Node Name | Node Kind | Join State | Node Status
-----------+-----------+------------+-------------

The options for the pgd group are shown next:

Options
 Option Name | Option Value
-----------------------------------+--------------
 analytics_storage_location |
 apply_delay | 00:00:00
 check_constraints | true
 default_commit_scope |
 enable_raft | true
 enable_routing | false
 enable_wal_decoder | false
 http_port |
 location |
 num_writers | -1
 read_only_consensus_timeout |
 read_only_max_client_connections |
 read_only_max_server_connections |
 read_only_port |
 read_write_consensus_timeout |
 read_write_max_client_connections |
 read_write_max_server_connections |
 read_write_port |
 route_reader_max_lag | -1
 route_writer_max_lag | -1
 route_writer_wait_flush | false
 streaming_mode | default
 use_https | true

These are the options for the top-level group pgd . This is where group-1 inherits its options from. Here though, the enable_routing option is set to false , which means that the top-level group does not route queries to any data
nodes, because it does not have any data nodes of its own. The enable_raft option is set to true , which means that the top-level group uses Raft consensus to coordinate management of the cluster.

Where options are not set, the default values are used, such as the apply_delay option which is set to 00:00:00 , meaning there is no delay in applying changes to the cluster.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 21

Viewing nodes and node status

To view the status of all nodes in the cluster, you can use the pgd nodes list command:

pgd nodes list

output
 Node Name | Group Name | Node Kind | Join State | Node Status
------------+------------+-----------+------------+-------------
 node-1 | group-1 | data | ACTIVE | Up
 node-2 | group-1 | data | ACTIVE | Up
 node-3 | group-1 | data | ACTIVE | Up

You can also view the status of a specific node using the pgd node show command:

pgd node node-1 show

output
Summary
 Node Property | Value
-----------------+------------
 Node Name | node-1
 Group Name | group-1
 Node Kind | data
 Join State | ACTIVE
 Node Status | Up
 Node ID | 4153941939
 Snowflake SeqID | 1
 Database | pgddb

Options
 Option Name | Option Value
----------------+--
 route_dsn | port=5432 dbname=pgddb host=host-1 user=postgres
 route_fence | false
 route_priority | -1
 route_reads | true
 route_writes | true

Here we can see more about the node itself. We can see the node's name and group it belongs to, that it is a data node, that it is actively joined to the group and that it is up and running. The node ID is a unique identifier for the node, and the
Snowflake SeqID is used for ordering events in the cluster. Finally, we can see that its database is pgddb , which is the default database created in the Quickstart Docker Compose kit.

The options for the node are shown next, and these are specific to this particular node:

route_dsn is the connection string for the node, which is used by the connection manager to route queries to this node.
route_fence is set to false , which means that the node does not have a fence set up to prevent routing queries to it.
route_priority is set to -1 , which means that the node does not have a specific priority for routing queries.
route_reads and route_writes are both set to true , which means that the node can handle both read and write queries.

These are used by the connection manager when routing queries to the node. They are also how you can control which nodes are active, without taking them down. Setting route_fence to true will prevent the connection manager from
routing queries to this node, while still allowing it to be part of the cluster and replicate data.

Setting node options

You can set options for a node using the pgd node set command. For example, to set the route_fence option to true for the node-1 , you can run:

pgd node node-1 set-option route_fence true

If we now try and connect to the node-1 's connection manager:

psql -h host-1 -p 6432

We get a connection. But it is not routed to the node-1 node, as it is fenced off from routing queries. Instead, it is routed to the current write leader in the group, which is node-2 :

If we exit and undo the fencing by running:

pgd node node-1 set-option route_fence false

We can now connect to the node-1 node's connection manager again:

psql -h host-1 -p 6432

And we can see that we are now connected to the node-1 node:

select node_name from bdr.local_node_summary;
 node_name

 node-2
(1 row)

select node_name from bdr.local_node_summary;
 node_name

 node-1
(1 row)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 22

2.4 Expanded Examples and Use Cases

While PGD Essential delivers the core functionality needed to get high availability and/or disaster recover use cases up and running quickly, there are many advanced use cases that can be implemented with PGD Essential. This section
provides examples of how to implement some of these advanced use cases.

Use Cases

Use Case 1: Multi-Master Replication

By default, PGD Essential uses the PGD Connection Manager to send your requests to the right node. This node is the write leader and by directing your requests there, it allows conflicts to be rapidly resolved.

With PGD Expanded, you can send your requests to any node in the cluster, and PGD will replicate the changes to the other nodes. Configurable conflict management then allows you to choose how to resolve conflicts.

Use Case 2: Data Distribution

PGD Expanded allows you to distribute your data across multiple nodes in the cluster, including subscriber-only read-only nodes. These nodes can be located in multiple data centers or availability zones. This allows you to scale your database's
read capacity horizontally, adding more nodes to the cluster as needed.

Use Case 3: Geo-Distribution

PGD Expanded allows you to distribute your data across multiple regions, replicating data to all the nodes in the cluster. Multiple Data groups can be located in different locations to ensure high availability and resilience in that location.

Use Case 4: Tiered Tables

An optional element of PGD Expanded is the ability to create tiered tables. These tables can be used to tier data between hot data, being replicated within the cluster and cold data being written to a Iceberg/Delta tables data lake. The cold
data remains queryable as Tiered Tables uses PGAA which allows you to query the data lake as if it were a table in the database.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 23

3 Essential How-To

This section provides essential how-to guides for deploying and managing your PGD cluster. It includes information on architectures, deployment, durability, autopartition, production best practices, and standard operating procedures (SOPs).

Overview

PGD Essential offers a simplified approach to deploying and managing your PGD cluster. It is designed to help you get started quickly and easily, while also providing a pathway to using advanced features as your use case becomes more
complex.

At the core of PGD are data nodes, Postgres databases that are part of a PGD cluster. PGD enables these databases to replicate data efficiently between nodes, ensuring that your data is always available and up-to-date. PGD Essential
simplifies this process by providing a standard architecture that is easy to set up and manage.

The standard architecture is built around a single data group, which is the basic architectural element for EDB Postgres Distributed systems. Within a group, nodes cooperate to select which nodes handle incoming write or read traffic, and
identify when nodes are available or out of sync with the rest of the group. Groups are most commonly used on a single location where the nodes are in the same data center and where you have just the one group in the cluster, we also call it
the one-location architecture.

Essential features

Standard Architecture: Learn about the standard architecture for PGD Essential,which consists of a single data group with three nodes in the same data center or region.

Near/Far Architecture: Understand the near/far architecture, which consists of two data groups in different locations, with one group handling writes and the other group handling reads.

Connection Management: Learn how to connect to your PGD cluster using the Connection Manager ports, which automatically route read and write transactions to the appropriate nodes.

PGD CLI: Discover how to use the PGD CLI to manage your PGD cluster, including creating and managing data groups, nodes, and connections.

Durability: Understand the durability features of PGD Essential, which ensure that your data is always available and up-to-date.

Autopartition: Learn about the autopartition feature, which automatically partitions your data across nodes in the cluster for improved performance and scalability.

Essential How-To Guides

Simple PGD Essential Installation: Get step-by-step instructions for installing PGD Essential on your system using the PGD CLI.

Production Best Practices: Get best practices for deploying and managing your PGD cluster in a production environment, including performance tuning and monitoring.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 24

3.1 PGD Essential architectures

Choosing an architecture

There are two supported architectures for PGD Essential. Essential supports the two major use cases for replication: high availability and disaster recovery. The architecture you choose depends on your use case.

They are standard and near/far.

Standard architecture - Ideal for a highly available single location

The standard, or one-location, architecture is designed for a single location that needs to be highly available. Built around three data nodes, the Essential standard architecture ensures that data is replicated across all three nodes and that, in
the event of a failure, the system can continue to operate without data loss.

Learn more about the Standard architecture.

Near/far architecture - Ideal for disaster recovery

The Near/Far architecture is designed for a single location that needs to be reasonably highly available and needs to be able to recover from a disaster. It does this by having a two-data-node cluster in the primary location and a single data
node in a secondary location.

Learn more about the Near/far architecture.

For multi-region deployments

For multi-region deployments, geo-distributed architectures are available in PGD Expanded. These architectures are designed for use cases that require data to be distributed across multiple regions or data centers. They provide
advanced features such as conflict resolution, data distribution, and support for large-scale deployments. For more information on PGD Expanded, see the Expanded how-to.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 25

3.1.1 Standard PGD architecture

Using core PGD capabilites, the standard architecture configures the three nodes in a multi-master replication configuration. That is, each node operates as a master node and logically replicates its data to the other nodes. While PGD is
capable of handling conflicts between data changes on nodes, the Essential standard architecture uses PGD's integrated connection manager to ensure that all writes are directed to a single node, the write leader. Conflicts are avoided by
allowing that singular leader to handle all updates to the data. Changes are then replicated to the other nodes in the cluster.

If the write leader fails, the remaining nodes in the cluster will elect a new write leader, and the connection managers in those nodes then failover to send writes to the new leader. When the failed node comes back online, it rejoins the cluster
and begins replicating data from the new write leader.

The Essential standard architecture was created to be easy to deploy and manage, based on user experience. Unlike other high availability solutions, because Essential is built on PGD, moving to a more complex architecture is simple and
straightforward. Move to Expanded PGD, and then add new data groups to the cluster as needed.

See Manually deploying a standard architecture for more information on how to configure the standard architecture.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 26

3.1.1.1 Manually deploying PGD Essential standard architecture

Manually deploying the PGD Essential standard architecture is a straightforward process. This architecture is designed for a single location that needs to be highly available and can recover from a disaster. It does this by having three data
nodes in a multi-master replication configuration, with one node acting as the write leader.

PGD configuration

Install PGD on each of the three nodes using the instructions in the Essentials install guide. Specifically:

Configure repositories to enable installation of the PGD packages.
Install PGD and Postgres to install the PGD packages.
Configure the PGD cluster to configure the PGD cluster.

Worked example

This example create a three-node RHEL cluster with EDB Postgres Extended Server, using the PGD Essential Standard architecture and the following parameters:

The first node is called node1 and is located on host-1 .
The second node is called node2 and is located on host-2 .
The third node is called node3 and is located on host-3 .
the cluster name is pgd (the default name).
The group name is group1 .
The Postgres version is 17 .
The Postgres data directory is /var/lib/edb-pge/17/main/ .
The Postgres executable files are in /usr/edb/pge17/bin/ .
The Postgres database user is postgres .
The Postgres database port is 5432 .
The Postgres database name is pgddb .

For the first node

This is the common setup for all three nodes, installing the software:

On the first node, the following command creates the cluster and the group. It also creates the data directory and initializes the database.

For the second node

Repeat the software installation steps on the second node.

Then run the following command to initialize the node and join the cluster and group:

For the third node

Repeat the software installation steps on the third node.

The command to initialize the node and join the cluster and group is similar to the second node but with a different host and node name:

export EDB_SUBSCRIPTION_TOKEN=XXXXXXXXXXXXXX
export EDB_SUBSCRIPTION_PLAN=enterprise
export EDB_REPO_TYPE=rpm
curl -1sSLf " https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/$EDB_SUBSCRIPTION_PLAN/setup.$EDB_REPO_TYPE.sh" | sudo -E bash
export PG_VERSION=17
export PGD_EDITION=essential
export EDB_PACKAGES="edb-as$PG_VERSION-server edb-pgd6-$PGD_EDITION-epas$PG_VERSION"
sudo dnf install -y
$EDB_PACKAGES

sudo su -
postgres
export PATH=$PATH:/usr/edb/pge17/bin/
pgd node node1 setup "host=host-1 user=postgres port=5432 dbname=pgddb" --pgdata /var/lib/edb-pge/17/main/ --group-name group1 --cluster-name pgd --create-group --
initial-node-count 3

sudo su -
postgres
export PATH=$PATH:/usr/edb/pge17/bin/
pgd node node2 setup "host=host-2 user=postgres port=5432 dbname=pgddb" --pgdata /var/lib/edb-pge/17/main/ --cluster-dsn "host=host-1 user=postgres port=5432
dbname=pgddb"

sudo su -
postgres
export PATH=$PATH:/usr/edb/pge17/bin/
pgd node node3 setup "host=host-3 user=postgres port=5432 dbname=pgddb" --pgdata /var/lib/edb-pge/17/main/ --cluster-dsn "host=host-1 user=postgres port=5432
dbname=pgddb"

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 27

3.1.2 Near/far architecture

In the near/far architecture, there are two data nodes in the primary location and one data node in a secondary location. The primary location is where the majority of the data is stored and where most of the client connections are made. The
secondary location is used for disaster recovery and isn't used for client connections by default.

The data nodes are all configured in a multi-master replication configuration, just like the standard architecture. The difference is that the node at the secondary location is fenced off from the other nodes in the cluster and doesn't receive
client connections by default. In this configuration, the secondary location node has a complete replica of the data in the primary location.

Using a PGD commit scope, the data nodes in the primary location are configured to synchronously replicate data to the other node in the primary location and to the node in the secondary location. This ensures that the data is replicated to all
nodes before it's committed to on the primary location. In the case of a node going down, the commit scope rule detects the situation and degrades the replication to asynchronous replication. This behavior allows the system to continue to
operate.

In the event of a partial failure at the primary location, the system switches to the other data node, also with a complete replica of the data, and continues to operate. It also continues replication to the secondary location. When the failed node
at the primary location comes back, it rejoins and begins replicating data from the node that's currently primary.

In the event of a complete failure in the primary location, the secondary location's database has a complete replica of the data. Depending on the failure, options for recovery include restoring the primary location from the secondary location
or restoring the primary location from a backup of the secondary location. The secondary location can be configured to accept client connections, but this isn't the default configuration and requires some additional reconfiguration.

Synchronous replication in near/far architecture

For best results, configure the near/far architecture with synchronous replication. This ensures that the data is replicated to the secondary location before it's committed to the primary location.

See manually deploying a near/far architecture for more information on how to configure the near/far architecture with synchronous replication.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 28

3.1.2.1 Manually Deploying PGD Essential near-far architecture

The following instructions describe how to manually deploy the PGD Essential near-far architecture. This architecture is designed for a single location that needs to be reasonably highly available and needs to be able to recover from a disaster.
It does this by having a two-data-node cluster in the primary location and a single data node in a secondary location.

These instructions use the pgd command line tool to create the cluster and configure the nodes. They assume that you have already installed PGD Essential and have access to the pgd command line tool.

The primary location is referred to as the active location and the secondary location as the dr location.

PGD configuration

The primary location is configured with two data nodes, in their own group "active". This location is where the majority of the client connections will be made.

The secondary location is configured with one data node, in its own group "dr".

They are all members of the same cluster.

Once created with pgd-cli, the routing and fencing of the nodes needs to be configured.

First, disable the routing on both the "active" and "dr" groups:

pgd group dr set-option enable_routing off --dsn "host=localhost port=5432 dbname=pgddb user=pgdadmin"
pgd group active set-option enable_routing off --dsn "host=localhost port=5432 dbname=pgddb user=pgdadmin"

Then, enable the routing on the "pgd" top-level group:

pgd group pgd set-option enable_routing on --dsn "host=localhost port=5432 dbname=pgddb user=pgdadmin"

Finally, enable the fencing on the "dr" group:

pgd group dr set-option enable_fencing on --dsn "host=localhost port=5432 dbname=pgddb user=pgdadmin"

This approach ensures that the "dr" group is fenced off from the other nodes in the cluster and doesn't receive client connections by default. The "active" group will continue to operate normally and will continue to replicate data to the "dr"
group.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 29

3.2 Installing and configuring EDB Postgres Distributed 6

This section covers how to manually deploy and configure EDB Postgres Distributed 6.

Provisioning hosts
Configuring the EDB repository
Installing the database and PGD software
Configuring the cluster
Checking the cluster

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 30

3.2.1 1 - Prerequisites for Essential installation

This guide takes you through the steps to install EDB Postgres Distributed (PGD) Essential on your systems.

If you want to install a learning/test environment, we recommend using the PGD First Cluster.

Note

If you want to install EDB Postgres Distributed (PGD) Expanded, consult the Expanded installation guide.

Provisioning hosts

The first step in the process of deploying PGD is to provision and configure hosts.

You can deploy to virtual machine instances in the cloud with Linux installed, on-premises virtual machines with Linux installed, or on-premises physical hardware, also with Linux installed.

Whichever supported Linux operating system and whichever deployment platform you select, the result of provisioning a machine must be a Linux system that you can access using SSH with a user that has superuser, administrator, or sudo
privileges.

Each machine provisioned must be able to make connections to any other machine you're provisioning for your cluster.

On cloud deployments, you can do this over the public network or over a VPC.

On-premises deployments must be able to connect over the local network.

Cloud provisioning guides

If you're new to cloud provisioning, these guides may provide assistance:

Vendor Platform Guide

Amazon AWS Tutorial: Get started with Amazon EC2 Linux instances

Microsoft Azure Quickstart: Create a Linux virtual machine in the Azure portal

Google GCP Create a Linux VM instance in Compute Engine

Configuring hosts

Create an admin user

We recommend that you configure an admin user for each provisioned instance. The admin user must have superuser or sudo (to superuser) privileges. We also recommend that the admin user be configured for passwordless SSH access using
certificates.

Ensure networking connectivity

With the admin user created, ensure that each machine can communicate with the other machines you're provisioning.

In particular, the PostgreSQL TCP/IP port (5444 for EDB Postgres Advanced Server, 5432 for EDB Postgres Extended and community PostgreSQL) must be open to all machines in the cluster. The PGD Connection Manager must also be
accessible to all nodes in the cluster. By default, the Connection Manager uses port 6432 (or 6444 for EDB Postgres Advanced Server).

Worked example

For this serie of worked examples, three hosts with Red Hat Enterprise Linux 9 were provisioned:

host-1
host-2
host-3

These hosts were configured in the cloud. As such, each host has both a public and private IP address. We will use the private IP addresses for the cluster.

The private IP addresses are:

host-1: 192.168.254.166
host-2: 192.168.254.247
host-3: 192.168.254.135

For the example cluster, /etc/hosts was also edited to use those private IP addresses:

192.168.254.166 host-1
192.168.254.247 host-2
192.168.254.135 host-3

In production environments, you should use DNS to resolve hostnames to IP addresses.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 31

https://www.enterprisedb.com/resources/platform-compatibility#bdr
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://learn.microsoft.com/en-us/azure/virtual-machines/linux/quick-create-portal?tabs=ubuntu
https://cloud.google.com/compute/docs/create-linux-vm-instance

3.2.2 Step 2 - Configure repositories

On each host which you want to use as a PGD data node, you need to install the database and the PGD software.

Configure repositories

Set the following environment variables:

EDB_SUBSCRIPTION_TOKEN

This is the token you received when you registered for the EDB subscription. It is used to authenticate your access to the EDB repository.

EDB_REPO_TYPE

This is the type of package manager you use, which informs the installer which type of package you need. This can be deb for Ubuntu/Debian or rpm for CentOS/RHEL.

Install the repositories

There are two repositories you need to configure: one for the database software and one for the PGD software.

The following commands will download and run a script that configures your package manager to use the EDB repository for databases.

This will install the repository for the database software, which includes the EDB Postgres Extended Server and other related packages.

This command will download and run a script that configures your package manager to use the EDB repository. It will also install any necessary dependencies.

Worked example

In this example, we will configure the repositories on a CentOS/RHEL system that will allow us to install EDB Postgres Extended Server 17 with PGD Essential with a standard subscription.

Set the environment variables

The next step is to install the database and PGD software.

export EDB_SUBSCRIPTION_TOKEN=<your-token>

export EDB_REPO_TYPE=<your-repo-type>

curl -1sSLf "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/enterprise/setup.$EDB_REPO_TYPE.sh" | sudo -E bash

curl -1sSLf "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.$EDB_REPO_TYPE.sh" | sudo -E bash

export EDB_SUBSCRIPTION_TOKEN=XXXXXXXXXXXXXX
export EDB_REPO_TYPE=rpm
curl -1sSLf " https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/enterprise/setup.$EDB_REPO_TYPE.sh" | sudo -E bash
curl -1sSLf "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.$EDB_REPO_TYPE.sh" | sudo -E bash

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 32

3.2.3 Step 3 - Installing the database and pgd

On each host which you want to use as a PGD data node, you need to install the database and the PGD software.

After you have configured the EDB repository, you can install the database and PGD software using your package manager.

Install the database and PGD software

Set the Postgres version

Set an environment variable to specify the version of Postgres you want to install. This is typically 17 for Postgres 17.

Set the package names

Set an environment variable to specify the package names for the database and PGD software. The package names will vary depending on the database you are using and the platform you are on.

export EDB_PACKAGES="edb-as$PG_VERSION-server edb-pgd6-essential-epas$PG_VERSION"

export EDB_PACKAGES="edb-as$PG_VERSION-server edb-pgd6-essential-epas$PG_VERSION"

Not available

Community PostgreSQL is only operable with PGD Expanded.

Run the installation command

Run the installation command appropriate for your platform.

sudo apt install -y $EDB_PACKAGES

sudo dnf install -y $EDB_PACKAGES

This command will install the specified packages and any dependencies they require. Once the installation is complete, you will have the database and PGD software installed on your system.

Worked example

In this example, we will install EDB Postgres Extended Server 17 with PGD Essential on a CentOS/RHEL system using an enterprise subscription using the repository confiuguration we set up in the previous step's worked example.

The next step is to configure the cluster.

export PG_VERSION=17

export EDB_PACKAGES="edb-postgresextended-$PG_VERSION edb-pgd6-essential-pgextended$PG_VERSION"

export EDB_PACKAGES="edb-postgresextended$PG_VERSION-server edb-postgresextended$PG_VERSION-contrib edb-pgd6-essential-pgextended$PG_VERSION"

export PG_VERSION=17
 export EDB_PACKAGES="edb-postgresextended$PG_VERSION-server edb-postgresextended$PG_VERSION-contrib edb-pgd6-essential-pgextended$PG_VERSION"
 sudo dnf install -y
$EDB_PACKAGES

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 33

3.2.4 Step 4 - Configuring the cluster

Configuring the cluster

The next step in the process is to configure the database and the cluster.

This involves logging into each host and running the pgd command to create the cluster as the database user.

These steps will vary according to which platform you are using and which version of Postgres you are using.

Cluster name

You will need to choose a name for your cluster. This is the name that will be used to identify the cluster in the PGD CLI and in the database. It will be referred to as <cluster-name> in the examples. If not specified, the default name is
pgd .

Group names

You will also need to choose a name for the group. This is the name that will be used to identify the group in the PGD CLI and in the database. It will be referred to as <group-name> in the examples.

The group name must be unique within the cluster.

Node names

You will also need to choose a name for each node. This is the name that will be used to identify the node in the PGD CLI and in the database. It will be referred to as <node-name> in the examples. This is separate from the host name, which
is the name of the machine on which the node is running.

The node name must be unique within the group and within the cluster.

Paths and users

The paths and users used in the examples will vary according to which version of Postgres you are using and which platform you are using.

Postgres User enterprisedb

Postgres Port 5444

Postgres Executable
files

/usr/lib/edb-as/$PG_VERSION/bin/

Postgres Data Directory /var/lib/edb-as/$PG_VERSION/main/

sudo -iu enterprisedb
export PG_VERSION=<version>
export PATH=$PATH:/usr/lib/edb-as/$PG_VERSION/bin/
export PGDATA=/var/lib/edb-as/$PG_VERSION/main/
export PGPORT=5444

Postgres User enterprisedb

Postgres Port 5444

Postgres Executable
files

/usr/edb/as$PG_VERSION/bin/

Postgres Data Directory /var/lib/edb/as$PG_VERSION/data/

sudo -iu enterprisedb
export PG_VERSION=<version>
export PATH=$PATH:/usr/edb/as$PG_VERSION/bin/
export PGDATA=/var/lib/edb/as$PG_VERSION/data/
export PGPORT=5444

Postgres User postgres

Postgres Port 5432

Postgres Executable
files

/usr/lib/edb-pge/$PG_VERSION/bin/

Postgres Data Directory /var/lib/edb-pge/$PG_VERSION/main/

sudo -iu postgres
export PG_VERSION=<version>
export PATH=$PATH:/usr/lib/edb-pge/$PG_VERSION/bin/
export PGDATA=/var/lib/edb-pge/$PG_VERSION/main/
export PGPORT=5432

Postgres User postgres

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 34

Postgres Port 5432

Postgres Executable
files

/usr/edb/pge$PG_VERSION/bin/

Postgres Data Directory /var/lib/edb-pge/$PG_VERSION/data/

sudo -iu postgres
export PG_VERSION=<version>
export PATH=$PATH:/usr/edb/pge$PG_VERSION/bin/
export PGDATA=/var/lib/edb-pge/$PG_VERSION/data/
export PGPORT=5432

Not available

Community PostgreSQL is only operable with PGD Expanded.

On each host

Run the commands from the script/settings above to set the environment variables and paths for the Postgres user on each host. This will ensure that the pgd command can find the Postgres executable files and data directory.

1. Using the appropriate user, log in as the database user.

1. Set the Postgres version environment variable. Don't forget to replace <version> with the actual version number you are using, such as 17 .

1. Add the Postgres executable files to your path.

1. Set the Postgres data directory environment variable.

1. Set the Postgres password environment variable. Don't forget to replace <db-password> with the actual password you want for the database user.

On the first host

The first host in the cluster is also the first node and will be where we begin the cluster creation. On the first host, run the following command to create the cluster:

This command will create the data directory and initialize the database, then will create the cluster and the group on the first node.

On the second host

On the second host, run the following command to create the cluster:

This command will create the node on the second host, and then join the cluster using the cluster-dsn setting to connect to the first host.

On the third host

On the third host, run the following command to create the cluster:

This command will create the node on the third host, and then join the cluster using the cluster-dsn setting to connect to the first host.

sudo -iu <db-user>

export PG_VERSION=<version>

export PATH=$PATH:<executable-path>

export PGDATA=<data-directory>

export PGPASSWORD=<db-password>

pgd node <first-node-name> setup --dsn "host=<first-host> user=<db-user> port=<db-port> dbname=<dbname>" --group-name <group-name>

pgd node <second-node-name> setup --dsn "host=<second-host> user=<db-user> port=<db-port> dbname=<db-name>" --cluster-dsn "host=<first-host> user=<db-user> port=<db-
port> dbname=<db-name>"

pgd node <third-node-name> setup --dsn "host=<third-host> user=<db-user> port=<db-port> dbname=<db-name>" --cluster-dsn "host=<first-host> user=<db-user> port=<db-port>
dbname=<db-name>"

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 35

Worked example

In this example, we will configure the PGD Essential cluster with EDB Postgres Extended Server 17 on a CentOS/RHEL system that we configured and installed in the previous steps.

We will now create a cluster called pgd with three nodes called node-1 , node-2 , and node-3 .

The group name will be group-1 . The hosts are host-1 , host-2 , and host-3 .
The Postgres version is 17.
The database user is postgres .
The database port is 5432.
The database name is pgddb .
The Postgres executable files are in /usr/edb/pge17/bin/ .
The Postgres data directory is in /var/lib/edb-pge/17/main/ .
The Postgres password is secret .

(Note that we assume the Postgres version environment variable PG_VERSION is set to 17 from the previous step, and that we are preserving the environment variable when switching users.)

On the first host

On the second host

On the third host

The next step is to create the database.

sudo -iu
postgres
export PG_VERSION=17
export PATH=$PATH:/usr/edb/pge$PG_VERSION/bin/
export PGDATA=/var/lib/edb-pge/$PG_VERSION/data/
export PGPASSWORD=secret
pgd node node-1 setup --dsn "host=host-1 user=postgres port=5432 dbname=pgddb" --group-name group-
1

sudo -iu
postgres
export PG_VERSION=17
export PATH=$PATH:/usr/edb/pge$PG_VERSION/bin/
export PGDATA=/var/lib/edb-pge/$PG_VERSION/data/
export PGPASSWORD=secret
pgd node node-2 setup --dsn "host=host-2 user=postgres port=5432 dbname=pgddb" --cluster-dsn "host=host-1 user=postgres port=5432 dbname=pgddb"

sudo -iu
postgres
export PG_VERSION=17
export PATH=$PATH:/usr/edb/pge$PG_VERSION/bin/
export PGDATA=/var/lib/edb-pge/$PG_VERSION/data/
export PGPASSWORD=secret
pgd node node-3 setup --dsn "host=host-3 user=postgres port=5432 dbname=pgddb" --cluster-dsn "host=host-1 user=postgres port=5432 dbname=pgddb"

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 36

3.2.5 Step 5 - Checking the cluster

Checking the cluster

With the cluster up and running, it's worthwhile to run some basic checks to see how effectively it's replicating.

The following example shows one quick way to do this, but you must ensure that any testing you perform is appropriate for your use case.

On any of the installed and configured nodes, log in and run psql to connect to the database. If you are using EDB Postgres Advanced Server, use the enterprisedb user, otherwise use postgres :

Preparation

Ensure the cluster is ready:
Log in to the database on host-1/node-1.
Run select bdr.wait_slot_confirm_lsn(NULL, NULL); .
When the query returns, the cluster is ready.

Create data The simplest way to test that the cluster is replicating is to log in to one node, create a table, and populate it.

On node-1, create a table:

On node-1, populate the table:

On node-1, monitor performance:

On node-1, get a sum of the value column (for checking):

Check data

Log in to node-2. Log in to the database on host-2/node-2.
On node-2, get a sum of the value column (for checking):

Compare with the result from node-1.
Log in to node-3. Log in to the database on host-3/node-3.
On node-3, get a sum of the value column (for checking):

Compare with the result from node-1 and node-2.

Worked example

Preparation

Log in to host-1's Postgres server.

ssh admin@host-1
sudo -iu postgres psql "host=host-1 port=5432 username=postgres dbname=pgddb"

This is your connection to PGD's node-1.

Ensure the cluster is ready

To ensure that the cluster is ready to go, run:

This query blocks while the cluster is busy initializing and returns when the cluster is ready.

In another window, log in to host-2's Postgres server:

ssh admin@host-2
sudo -iu postgres psql "host=host-2 port=5432 username=postgres dbname=pgddb"

sudo -iu postgres psql "host=host-1 port=5432 username=postgres
dbname=pgddb"

CREATE TABLE quicktest (id SERIAL PRIMARY KEY, value INT);

INSERT INTO quicktest (value) SELECT random()*10000 FROM
generate_series(1,10000);

select * from bdr.node_replication_rates;

select COUNT(*),SUM(value) from quicktest;

select COUNT(*),SUM(value) from quicktest;

select COUNT(*),SUM(value) from quicktest;

select bdr.wait_slot_confirm_lsn(NULL,
NULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 37

Create data

On node-1, create a table

Run:

On node-1, populate the table

INSERT INTO quicktest (value) SELECT random()*10000 FROM generate_series(1,10000);

This command generates a table of 10000 rows of random values.

On node-1, monitor performance

As soon as possible, run:

The command shows statistics about how quickly that data was replicated to the other two nodes:

pgddb=# select * from bdr.node_replication_rates;
 peer_node_id | target_name | sent_lsn | replay_lsn | replay_lag | replay_lag_bytes | replay_lag_size | apply_rate | catchup_interv
al
--------------+-------------+-----------+------------+------------+------------------+-----------------+------------+---------------

 1954860017 | node-3 | 0/DDAA908 | 0/DDAA908 | 00:00:00 | 0 | 0 bytes | 13682 | 00:00:00
 2299992455 | node-2 | 0/DDAA908 | 0/DDAA908 | 00:00:00 | 0 | 0 bytes | 13763 | 00:00:00
(2 rows)

And it's already replicated.

On node-1 get a checksum

Run:

This command gets some values from the generated data:

output
 count | sum
--------+-----------
 100000 | 498884606
(1 row)

Check data

Log in to host-2's Postgres server

ssh admin@host-2
sudo -iu postgres psql "host=host-2 port=5432 username=postgres dbname=pgddb"

This is your connection to PGD's node-2.

On node-2, get a checksum

Run:

This command gets node-2's values for the generated data:

output
 count | sum
--------+-----------
 100000 | 498884606
(1 row)

CREATE TABLE quicktest (id SERIAL PRIMARY KEY, value INT);

select * from bdr.node_replication_rates;

select COUNT(*),SUM(value) from quicktest;

pgddb=# select COUNT(*),SUM(value) from quicktest;

select COUNT(*),SUM(value) from quicktest;

pgddb=# select COUNT(*),SUM(value) from quicktest;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 38

Compare with the result from node-one

The values are identical.

You can repeat the process with node-3 or generate new data on any node and see it replicate to the other nodes.

Log in to host-3's Postgres server

ssh admin@host-3
sudo -iu enterprisedb psql pgddb

This is your connection to PGD's node-3.

On node-3, get a checksum

Run:

This command gets node-3's values for the generated data:

output
 count | sum
--------+-----------
 100000 | 498884606
(1 row)

Compare with the result from node-one and node-two

The values are identical.

select COUNT(*),SUM(value) from quicktest;

pgddb=# select COUNT(*),SUM(value) from quicktest;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 39

3.3 Connections

PGD Essential uses the same connection methods as Postgres. The difference is that most of your connections to the cluster go through the connection manager that's built into every data node in the cluster.

Although you can connect directly to the data nodes, we don't recommend it for anything other than maintenance when you want to work on a particular node's database instance.

For PGD Essential, you must connect to the cluster through the connection manager. PGD Essential is designed to be simple to deploy and manage, and that means the cluster has a write leader node that handles all the writes to the cluster.
The connection manager is then responsible for directing your read-write connections to the write leader. All your client or application needs to do is to use the connection manager's port and the connection manager will handle the rest.

The connection manager is responsible for directing your writes to the write leader and ensuring that your reads are directed to the correct node in the cluster. If you connect directly to a data node, you may not be able to take advantage of
these features. For applications that only need to read data, the connection manager can direct your reads to a node that isn't the write leader. This can help to balance the load on the cluster and improve performance.

Connecting through the connection manager

Postgres is very flexible for configuring ports and connections, so for simplicity, this example uses the default port settings for Postgres and the connection manager. The default port for Postgres is 5432, and the default port for the connection
manager is 6432.

You can use that port in your connection strings to connect to the cluster. So, for example, if you're using the psql command line tool, you can connect to the cluster like this:

Where host-1 is the hostname of the node you're connecting to. The connection manager will then direct your connection to the write leader node in the cluster.

Connecting directly to a data node

You can connect directly to a data node in the cluster, but we don't recommend it. However, if you need to connect directly to a data node, you can use the following command:

psql -h host-1 -p 6432 -U pgdadmin -d
pgddb

psql -h host-1 -p 5432 -U pgdadmin -d
pgddb

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 40

3.4 Using PGD CLI

The PGD CLI is a powerful command line interface for managing your PGD cluster. It can be used to perform a variety of tasks, including:

Checking the health of the cluster
Listing the nodes in the cluster
Listing the groups in the cluster
Setting group options
Switching the write leader

If you have used the installation guide to install PGD, you will have already installed PGD CLI and used it to create the cluster.

Using PGD CLI

The PGD CLI command uses a configuration file to work out the hosts to connect to. There are options that allow you to override this to use alternative configuration files or explicitly point at a server. But, by default, PGD CLI looks for a
configuration file in preset locations.

The connection to the database is authenticated in the same way as other command line utilities, like the psql command, are authenticated.

Unlike other commands, PGD CLI doesn't interactively prompt for your password. Therefore, you must pass your password using one of the following methods:

Adding an entry to your .pgpass password file, which includes the host, port, database name, user name, and password
Setting the password in the PGPASSWORD environment variable
Including the password in the connection string

We recommend the first option, as the other options don't scale well with multiple database clusters, or they compromise password confidentiality.

Configuring and connecting PGD CLI

Ensure PGD CLI is installed.
If PGD CLI was already installed, move to the next step.
For any system, repeat the configure repositories step on that system.
Then run the package installation command appropriate for that platform.

RHEL and derivatives: sudo dnf install edb-pgd6-cli
Debian, Ubuntu, and derivatives: sudo apt-get install edb-pgd6-cli

Create a configuration file.
This is a YAML file that specifies the cluster and endpoints for PGD CLI to use.

Install the configuration file.
Copy the YAML configuration file to a default config directory /etc/edb/pgd-cli/ as pgd-cli-config.yml .
Repeat this process on any system where you want to run PGD CLI.

Run pgd-cli.

Use PGD CLI to explore the cluster

Check the health of the cluster with the cluster show --health command.
Show the nodes in the cluster with the nodes list command.
Show the groups in the cluster with the groups list command.
Set a group option with the group set-option command.
Switch write leader with the group set-leader command.

For more details about these commands, see the worked example that follows.

Also consult the PGD CLI documentation for details of other configuration options and a full command reference.

Worked example

Ensure PGD CLI is installed

In this worked example, you configure and use PGD CLI on host-1, where you've already installed Postgres and PGD. You don't need to install PGD CLI again.

(Optionally) Create a configuration file

The PGD CLI configuration file is a YAML file that contains a cluster object. This has two properties:

The name of the PGD cluster's top-level group (as name)
An array of endpoints of databases (as endpoints)

cluster:
 name: pgd
 endpoints:
 - host=host-1 dbname=pgddb port=5444
 - host=host-2 dbname=pgddb port=5444
 - host=host-3 dbname=pgddb port=5444

Note that the endpoints in this example specify port=5444 . This is necessary for EDB Postgres Advanced Server instances. For EDB Postgres Extended and community PostgreSQL, you can omit this.

Create the PGD CLI configuration directory:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 41

https://www.postgresql.org/docs/current/libpq-pgpass.html

sudo mkdir -p /etc/edb/pgd-cli

Then, write the configuration to the pgd-cli-config.yml file in the /etc/edb/pgd-cli directory.

For this example, you can run this on host-1 to create the file:

cat <<EOF | sudo tee /etc/edb/pgd-cli/pgd-cli-config.yml
cluster:
 name: pgd
 endpoints:
 - host=host-1 dbname=pgddb port=5444
 - host=host-2 dbname=pgddb port=5444
 - host=host-3 dbname=pgddb port=5444
EOF

You can repeat this process on any system where you need to use PGD CLI.

Running PGD CLI

With the configuration file in place, and logged in as the enterprisedb system user, you can run pgd-cli. For example, you can use the nodes list command to list the nodes in your cluster and their status:

pgd nodes list

output
Node Name Group Name Node Kind Join State Node Status
--------- ----------- --------- ---------- -----------
node-1 group-1 data ACTIVE Up
node-2 group-1 data ACTIVE Up
node-3 group-1 data ACTIVE Up

Using PGD CLI to explore the cluster

Once PGD CLI is configured, you can use it to get PGD-level views of the cluster.

Check the health of the cluster

The cluster show --health command provides a quick way to view the health of the cluster:

pgd cluster show --health

output
Check Status Details
----------------- ------ ---
Connections Ok All BDR nodes are accessible
Raft Ok Raft Consensus is working correctly
Replication Slots Ok All PGD replication slots are working correctly
Clock Skew Ok Clock drift is within permissible limit
Versions Ok All nodes are running the same PGD version

Show the nodes in the cluster

As previously seen, the nodes list command lists the nodes in the cluster:

pgd nodes list

output
Node Name Group Name Node Kind Join State Node Status
---------- ----------- --------- ---------- -----------
node-1 group-1 data ACTIVE Up
node-2 group-1 data ACTIVE Up
node-3 group-1 data ACTIVE Up

This view shows the group the node is a member of and its current status. To find out what versions of PGD and Postgres are running on the nodes, use nodes list --versions :

pgd nodes list --versions

output
Node Name BDR Version Postgres Version
---------- --------------------------- --------------------------------
node-1 5.7.0 (snapshot e2534db6d) 16.6 (Debian 16.6-1EDB.bullseye)
node-2 5.7.0 (snapshot e2534db6d) 16.6 (Debian 16.6-1EDB.bullseye)
node-3 5.7.0 (snapshot e2534db6d) 16.6 (Debian 16.6-1EDB.bullseye)

Show the groups in the cluster

Finally, the groups list command for PGD CLI shows which groups are configured, and more:

pgd groups list

output
Group Name Parent Group Name Group Type Nodes
------------ ----------------- ---------- -----
pgd global 0
group-1 pgd data 3

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 42

This command shows:

The groups
Their types
Their parent group
The number of nodes in each group

Set a group option

You can set group options using PGD CLI, too, using the group set-option command. If you wanted to set the group-1 group's location to London , you would run:

pgd group group-1 set-option location London

output
Status Message
------ -----------------------------
OK Command executed successfully

You can verity the new location using the group get-option command:

pgd group group-1 get-option location

output
Option Name Option Value
----------- ------------
location London

Set the write leader

If you need to change write leader in a group, to enable maintenance on a host, PGD CLI offers the group set-leader command. You enter a group name after group and the name of the node you want to switch to after set leader :

pgd group group-1 set-leader node-2

output
Status Message
------ -----------------------------
OK Command executed successfully

You can verify the write leader using the group show command with the --summary option :

pgd group group-1 show --summary

output
Group Property Value
----------------- ------------
Group Name group-1
Parent Group Name pgd
Group Type data
Write Leader node-2
Commit Scope

More details on the available commands in PGD CLI are available in the PGD CLI command reference.

PGD Essential constraints

Verify cluster architecture

The pgd cluster verify command will display a Warning if the cluster does not meet the below listed PGD Essential constraints.

A PGD Essential cluster must have at most three data nodes.
A PGD Essential cluster must have routing enabled for global group only.

pgd cluster verify --arch

output
 Check | Status | Groups
-----------------------------+---------+--------
 Cluster has data nodes | Ok |
 Max data nodes in a cluster | Warning | dc-1
 Witness nodes per group | Ok |
 Witness-only groups | Ok |
 Data nodes per group | Ok |
 Routing enabled groups | Warning | dc-1
 Empty groups | Ok |
 Nodes have node kind set | Ok |

PGD compatibility assessment

The pgd assess command will not perform the below listed assessments for a Postgres server for PGD Essential compatibility.

Tables with Multiple Unique Indexes
Row Level Lock Usage
Lock Table Usage
Listen Notify Usage

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 43

The command output for a PGD Essential cluster will look like below.

pgd assess --dsn "host=pgd-a2 port=5432 dbname=pgddb user=postgres "

output
 Assessment | Result | Details
------------------------------+----------------------------+---
 Multiple Databases | Compatible | Found only one user database
 Materialized Views | Compatible | No materialized views found
 EPAS Queue Tables | Compatible | No EPAS Queue Tables found
 DDL Command Usage | Requires workload analysis | Cannot be checked automatically at this time
 Advisory Lock Usage | Potentially compatible | No advisory lock commands found in pg_stat_statements
 Large Objects | Compatible | No large objects found
 Trigger/Reference Privileges | Compatible | No triggers with incompatible privileges found

Commit Scope management commands

The pgd commit-scope create , pgd commit-scope update , and pgd commit-scope drop commands are not supported in a PGD Essential cluster. The command will exit with the following advice:

Operation not supported for PGD Essential version.
HINT: This limit doesn't exist in the PGD Expanded version

Set group options

The pgd group set-option command will not allow update to the group options enable_raft , enable_routing , enable_wal_decoder , and streaming_mode for the PGD Essential cluster. The command will exit with
below advice.

Operation not supported for PGD Essential version.
HINT: This limit doesn't exist in the PGD Expanded version

PGD node setup

The pgd node setup command will enable routing for global group and disable the same for the subgroup(s) .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 44

3.5 Durability in PGD Essential

By default PGD Essential uses asynchronous replication between its nodes, but it can be configured to use synchronous replication as well. This allows for a high degree of flexibility in terms of data durability and availability. Asynchronous
replication offers lower latency and higher throughput, while synchronous replication provides stronger consistency guarantees at the cost of performance. PGD Essential allows you to choose the replication strategy through the use of
commit scopes.

Commit Scopes

Commit scopes are a powerful feature of PGD Essential that allow you to control the durability and availability of your data. They enable you to specify the level of durability required for each transaction, allowing you to balance performance
and consistency based on your application's needs. PGD Essential has four pre-defined commit scopes that you can use to control the durability of your transactions, among other things.

local protect
lag protect
majority protect
adaptive protect

The predefined commit scopes in PGD Essential are designed to provide a balance between performance and data safety. You cannot add, remove or modify a PGD Essential commit scope. In PGD Expanded, you can create and manage your
own commit scopes, allowing for more flexibility and control over the durability guarantees.

local protect

This is the default commit scope for PGD Essential. It provides asynchronous commit with no durability guarantees. This means that transactions are considered committed as soon as they are written to the local node's WAL, without waiting
for any confirmation from other nodes in the cluster.

lag protect

This commit scope ensures that transactions are considered committed only when the lag time is within a specified limit (30 seconds in this case) and the commit delay is also within a specified limit (10 seconds in this case). This helps to
prevent data loss in case of network issues or node failures.

majority protect

This commit scope provides a durability guarantee based on the majority origin group. It ensures that transactions are considered committed only when they are confirmed by the majority of nodes in the origin group. This helps to ensure data
consistency and durability in case of node failures or network issues.

adaptive protect

This commit scope provides a more flexible durability guarantee. It allows transactions to be considered committed based on the majority origin group synchronous commit, but it can degrade to asynchronous commit if the transaction cannot
be confirmed within a specified timeout (10 seconds in this case). This is useful in scenarios where network latency or node failures may cause delays in confirming transactions.

For more information on commit scopes, see the Commit Scopes reference section and the Predefined Commit Scopes reference page.

Using Commit Scopes

To use commit scopes in PGD Essential, you can specify the desired commit scope when executing a transaction. This allows you to control the durability and availability of your data based on your application's needs. For example, you can use
the lag protect commit scope for transactions that require a higher level of durability, while using the local protect commit scope for transactions that prioritize performance over durability.

Within a transaction

You can specify the commit scope for a transaction using the SET LOCAL command. For example, to use the lag protect commit scope for a transaction, you can execute the following commands:

This will ensure that the transaction is committed with the specified commit scope, providing the desired level of durability and availability.

For a session

You can also set the commit scope for the entire session using the SET command. For example, to set the majority protect commit scope for the entire session, you can execute the following command:

This will ensure that all transactions executed in the session will use the specified commit scope, providing the desired level of durability and availability.

For a group

You can also set the default commit scope for a PGD group using the bdr.alter_node_group_option() function. For example, to set the adaptive protect commit scope for a PGD group, you can execute the following command:

BEGIN;
SET LOCAL bdr.commit_scope = 'lag
protect';
-- Your transaction statements
here
COMMIT;

SET bdr.commit_scope = 'majority
protect';

SELECT bdr.alter_node_group_option(
 node_group_name:='mygroup',
 config_key:='default_commit_scope',
 config_value:='adaptive
protect');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 45

https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/predefined-commit-scopes/

This will ensure that all transactions executed in the specified PGD group will use the specified commit scope, providing the desired level of durability and availability, unless overridden by a session or transaction-level setting.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 46

3.6 Autopartitioning

Autopartitioning in PGD allows you to split tables into several partitions, other tables, creating and dropping those partitions are needed. Autopartitioning is useful for managing large tables that grow over time as it allows you to separate the
data into manageable chunks. For example, you can archive older data into its own partition, and then archive or drop the partition when the data is no longer needed.

Autopartitioning and replication

PGD autopartitioning is managed, by default, locally through the bdr.autopartition function. This function allows you to create or alter the definition of automatic range partitioning for a table. If no definition exists, it creates one;
otherwise, it alters the existing definition.

Range partitioning

PGD autopartitioning supports range partitioning using the RANGE keyword. Range partitioning allows you to partition a table based on the ranges of values in a column. For example, you can partition a table by date, where each partition
contains data for a specific date range. This is useful for managing large tables that grow over time, as it allows you to separate the data into manageable chunks.

For example, you can create a table that is partitioned by date:

Then, you can use the bdr.autopartition function to create daily partitions and keep data for one month:

This function creates a partition for each day and retains the data for 30 days. After 30 days, the partitions are automatically dropped. If you look at the database tables you'll see the partitions created for the measurement table:

pgddb=# \dt

output
 List of relations
 Schema | Name | Type | Owner
--------+--+-------------------+----------
 public | measurement | partitioned table | postgres
 public | measurement_part_1231354915_2103027132 | table | postgres
 public | measurement_part_1520219330_1231354915 | table | postgres
 public | measurement_part_1670975046_3921991865 | table | postgres
 public | measurement_part_2103027132_2095358725 | table | postgres
 public | measurement_part_2877346473_1670975046 | table | postgres
 public | measurement_part_3921991865_1520219330 | table | postgres
(7 rows)

Why are there so many partitions? Because, by default, the autopartition creates five advance partitions, for future use and will automatically do that whenever it uses all but two of the partitions. This means that it will always have at least two
partitions available for new data. You can change this behavior by setting the minimum_advance_partitions and maximum_advance_partitions parameters in the bdr.autopartition function.

CREATE TABLE measurement
(
 logdate date not null,
 peaktemp
int,
 unitsales int
) PARTITION BY RANGE (logdate);

select bdr.autopartition('measurement', '1 day', data_retention_period := '30
days');

bdr.autopartition(relation regclass,
 partition_increment
text,
 partition_initial_lowerbound text DEFAULT NULL,
 partition_autocreate_expression text DEFAULT
NULL,
 minimum_advance_partitions integer DEFAULT
2,
 maximum_advance_partitions integer DEFAULT
5,
 data_retention_period interval DEFAULT
NULL,
 enabled boolean DEFAULT on,

analytics_offload_period);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 47

3.7 Production Best Practices

There are a number of best practices to follow when deploying Postgres Distributed (PGD) in production. These practices help ensure the reliability, performance, and security of your PGD clusters. This section outlines some of the key best
practices to consider when deploying PGD in a production environment.

Sizing and Scaling PGD Clusters
Time and PGD Clusters

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 48

3.7.1 Sizing

CPU/Core sizing

For production deployments, EDB recommends a minimum of 4 cores for each Postgres data node. Witness nodes don't participate in the data replication operation and don't have to meet this requirement. One core is enough without
subgroup Raft. Two cores are enough when using subgroup Raft.

Always size logical standbys exactly like the data nodes to avoid performance degradations in case of a node promotion.

We recommend detailed benchmarking of your specific performance requirements to determine appropriate sizing based on your workload. The EDB Professional Services team is available to assist if needed.

For development purposes, don't assign Postgres data nodes fewer than two cores. The sizing of Barman nodes depends on the database size and the data change rate.

You can deploy Postgres data nodes and Barman nodes on virtual machines or in a bare metal deployment mode. However, don't deploy multiple data nodes on VMs that are on the same physical hardware, as that reduces resiliency.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 49

3.7.2 Time and PGD

Clocks and timezones

EDB Postgres Distributed is designed to operate with nodes in multiple timezones, allowing a truly worldwide database cluster. Individual servers don't need to be configured with matching timezones, though we do recommend using
log_timezone = UTC to ensure the human readable server log is more accessible and comparable.

Synchronize server clocks using NTP or other solutions.

Clock synchronization isn't critical to performance, as it is with some other solutions. Clock skew can affect origin conflict detection, though EDB Postgres Distributed provides controls to report and manage any skew that exists. EDB Postgres
Distributed also provides row-version conflict detection, as described in Conflict detection.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 50

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts/

3.8 Essential Standard Operating Procedures

Overview

Standard Operating Procedures (SOPs) are a set of procedures that are essential for the successful operation of EDB Postgres Distributed (PGD). These procedures cover various aspects of the system, including installation, configuration,
backup and restore, upgrades, monitoring, and troubleshooting.

SOPs are designed to address the most common tasks around using and maintaining a PGD cluster. They provide a structured approach to performing these tasks, ensuring consistency and reliability in operations. Read more about the
structure of SOPs in the How to Use SOPs.

This document provides an overview of the SOPs and links to detailed instructions for each procedure.

Installation and Configuration

The SOPs in this section cover the procedures for installing PGD, creating a new PGD cluster, adding a node to an existing cluster, and configuring PGD.

Data Movement

The SOPs in this section cover the procedures for moving data into or out of a PGD cluster. This include importing and exporting data efficiently.

Monitoring

The SOPs in this section cover the procedures for monitoring a Postgres Distributed (PGD) cluster. Monitoring is crucial for maintaining the health and performance of your database system.

Maintenance

The SOPs in this section cover the procedures for maintaining a Postgres Distributed (PGD) cluster. It covers routine maintenance tasks and how they should be performed when working with a PGD cluster.

Backup and Restore

The SOPs in this section cover the process of backing up and restoring the Postgres database servers running on the nodes in a PGD cluster.

Upgrade

The SOPs in this section cover the process of upgrading the Postgres database servers running on the nodes in a PGD cluster and upgrade PGD itself. This includes minor and major upgrades of Postgres.

Troubleshooting

The SOPs in this section cover the procedures for troubleshooting common issues that may arise in a Postgres Distributed (PGD) cluster. It includes steps to diagnose and resolve problems effectively.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 51

3.8.1 How to use Standard Operating Procedures

Standard Operating Procedures, or SOPs, are a set of instructions that cover the essential tasks for the successful operation of EDB Postgres Distributed (PGD).

They are designed to be easy to follow and provide step-by-step guidance for performing various tasks.

To make it easy to follow, each SOP is divided into sections that cover the following:

Overview: A brief description of the task and its purpose.
Prerequisites: Any requirements or dependencies that must be met before performing the task.
Instructions: Step-by-step generic instructions for performing the task.
Worked Example: A specific example of how to perform the task, including any relevant commands or configurations.
Notes: Additional information or tips that may be helpful.
Troubleshooting: Common issues that may arise during the task and how to resolve them.
References: Links to related documentation or resources.

How to use SOPs

TODO: Add a description of how to use SOPs.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 52

3.8.2 Installation and Configuration SOPs

Overview

This SOP covers the essential SOPs for installing PGD, creating a new PGD cluster, adding a node to an existing cluster, and configuring PGD.

SOPs

Installing PGD on a New Node
Adding a Node to an Existing Cluster
Creating a New Group

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 53

3.8.2.1 SOP - Adding a Node to an Existing Cluster

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 54

3.8.2.2 SOP - Creating a New Group

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 55

3.8.2.3 SOP - Installing PGD on a New Node

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 56

3.8.3 Data Movement SOPs

This section covers how to move data in and out of a Postgres Distributed cluster as efficiently as possible.

SOPs

Moving Data into a PGD Cluster
Moving Data out of a PGD Cluster

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 57

3.8.3.1 SOP - Moving Data into the Cluster

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 58

3.8.3.2 SOP - Moving Data Out of the Cluster

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 59

3.8.4 Monitoring SOPs

This section covers the essential SOPs for monitoring a Postgres Distributed (PGD) cluster. Monitoring is crucial for maintaining the health and performance of your database system.

SOPs

Monitoring with SQL

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 60

3.8.4.1 SOP - Monitoring PGD clusters using SQL

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 61

3.8.5 Backup and Restore SOPs

The SOPs in this section cover the process of backing up and restoring the Postgres database servers running on the nodes in a PGD cluster. It includes best practices for backup and restore, tools to use, and common issues that may arise
during the backup and restore process.

SOPs

Backup and Restore with pg_dump
Backup and Restore with Barman

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 62

3.8.5.1 Backup and Restore with pg_dump

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 63

3.8.5.2 Backup and Restore with Barman

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 64

3.8.6 Upgrading Postgres

These SOPs cover the process of upgrading the Postgres database servers running on the nodes in a PGD cluster and upgrading PGD itself. This includes minor and major upgrades of Postgres.

SOPs

Upgrading Postgres to a Minor Version
Upgrading Postgres to a Major Version
Upgrading Postgres Distributed

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 65

3.8.6.1 SOP - Minor upgrades of Postgres

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 66

3.8.6.2 SOP - Major upgrades of Postgres

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 67

3.8.6.3 SOP - Upgrading PGD in PGD clusters

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 68

3.8.7 Troubleshooting

This section provides troubleshooting guidance for common issues encountered in Postgres Distributed (PGD) clusters. It includes solutions for problems related to cluster operations, node management, and performance.

SOPs

Troubleshooting Cluster Operations

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 69

3.8.7.1 SOP - Troubleshooting Cluster Operations

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 70

3.8.8 Maintenance SOPs

This section covers the essential SOPs for maintaining a Postgres Distributed (PGD) cluster. Regular maintenance is crucial for ensuring the health and performance of your database system.

SOPs

Performing Routine Maintenance
Handling Node Failures
Online Vacuuming

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 71

3.8.8.1 SOP - Performing Routine Maintenance

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 72

3.8.8.2 SOP - Handling Node Failures

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 73

3.8.8.3 SOP - Online Vacuuming

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 74

4 Expanded How-to

Overview

PGD Expanded offers the full PGD capability set to users; where PGD Essential is a best practice, controlled and simplified version of PGD. The expanded version is for users who want to take advantage of the full set of features and capabilities
of PGD, including advanced architectures, custom configurations, and more complex use cases.

PGD Expanded is designed for users who need the highest level of flexibility and control over their database environments. It provides a comprehensive set of tools and features that allow users to customize their deployments and optimize
their performance.

Expanded Features

The following features are enabled in PGD Expanded:

Multi-master replication: PGD Expanded supports multi-master replication, allowing users to create a highly available and fault-tolerant database environment. This feature enables users to write to any node in the cluster, providing
maximum flexibility and scalability.

Conflict resolution: PGD Expanded's support for multi-master replication includes advanced conflict resolution capabilities, allowing users to handle conflicts that may arise during replication. This feature ensures that data consistency
is maintained across all nodes in the cluster.

Advanced durability: PGD Expanded opens up the full set of durability options in PGD with customizable commit scopes offering flexibility beyond PGD Essentials pre-defined commit scopes. This feature allows users to optimize their
database performance and durability based on their specific needs.

Custom configurations: PGD Expanded allows users to customize their database configurations to meet their specific needs. Where PGD Essential supports two basic architectures with limited numbers of nodes and groups, there are no
restrictions on the number of nodes, node types, or replication configurations that can be used in a PGD Expanded deployment.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 75

4.1 PGD Architectures

With PGD 6 Expanded, you can deploy a cluster in a wide range of architectures. Unlike PGD 6 Essential, which is limited to two architectures made with a limited number of groups, PGD 6 Expanded supports multiple architectures with
technically unlimited groups, including:

Always-on architecture: A single PGD cluster with two or more groups in the same data center or availability zone. This architecture is designed for high availability and disaster recovery, ensuring that the database remains operational
even if one group fails.
Essentials's Standard/One-location architecture: A single PGD cluster with three nodes in the same data center or availability zone; The PGD 6 Essential architecture.
Multi-location architecture: A single PGD cluster with two or more groups in different data centers or availability zones.
Geo-distributed architecture: A single PGD cluster with two or more groups in different regions, like a multi-location architecture but with higher latency and potential network partitioning issues.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 76

4.1.1 Always-On Architecture

PGD's architectures have evolved over time to meet the needs of organizations. At it's core is the Always-on architecture, which is designed to provide high availability and disaster recovery for Postgres databases. Defined in PGD 4 and 5, the
Always-on architecture been evolved to support PGD 6's new features and capabilities.

Always-on architectures reflect EDB’s Trusted Postgres architectures. They encapsulate practices and help you to achieve the highest possible service availability in multiple configurations. These configurations range from single-location
architectures to complex distributed systems that protect from hardware failures and data center failures. The architectures leverage EDB Postgres Distributed’s multi-master capability and its ability to achieve 99.999% availability, even
during maintenance operations.

You can use EDB Postgres Distributed for architectures beyond the examples described here. Use-case-specific variations have been successfully deployed in production. However, these variations must undergo rigorous architecture review
first.

Standard EDB Always-on architectures

EDB has identified a set of standardized architectures to support single- or multi-location deployments with varying levels of redundancy, depending on your recovery point objective (RPO) and recovery time objective (RTO) requirements.

The Always-on architecture uses three database node groups as a basic building block. You can also use a five-node group for extra redundancy.

EDB Postgres Distributed consists of the following major building blocks:

Bi-Directional Replication (BDR) — A Postgres extension that creates the multi-master mesh network
Connection Manager — A connection router that makes sure the application is connected to the right data nodes.

All Always-on architectures protect an increasing range of failure situations. For example, a single active location with two data nodes protects against local hardware failure but doesn't provide protection from location (data center or
availability zone) failure. Extending that architecture with a backup at a different location ensures some protection in case of the catastrophic loss of a location. However, you still must restore the database from backup first, which might
violate RTO requirements. Adding a second active location connected in a multi-master mesh network ensures that service remains available even if a location goes offline. Finally, adding a third location (this can be a witness-only location)
allows global Raft functionality to work even if one location goes offline. The global Raft is primarily needed to run administrative commands. Also, some features like DDL or sequence allocation might not work without it, while DML
replication can continue to work even without global Raft.

Each architecture can provide zero RPO, as data can be streamed synchronously to at least one local master, guaranteeing zero data loss in case of local hardware failure.

Increasing the availability guarantee always drives added cost for hardware and licenses, networking requirements, and operational complexity. It's important to carefully consider the availability and compliance requirements before choosing
an architecture.

Architecture details

By default, application transactions don't require cluster-wide consensus for DML (selects, inserts, updates, and deletes), allowing for lower latency and better performance. However, for certain operations, such as generating new global
sequences or performing distributed DDL, EDB Postgres Distributed requires an odd number of nodes to make decisions using a Raft-based consensus model. Thus, even the simpler architectures always have three nodes, even if not all of
them are storing data.

Applications connect to the standard Always-on architectures by way of multi-host connection strings, where each Connection Manager is a distinct entry in the multi-host connection string.

Other connection mechanisms have been successfully deployed in production. However, they aren't part of the standard Always-on architectures.

Always-on Single Location

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 77

https://raft.github.io/

Additional replication between data nodes 1 and 3 isn't shown but occurs as part of the replication mesh
Redundant hardware to quickly restore from local failures

3 PGD nodes
Can be 3 data nodes (recommended)
Can be 2 data nodes and 1 witness that doesn't hold data (not depicted)

Configuration and infrastructure symmetry of data nodes is expected to ensure proper resources are available to handle application workload when rerouted

Barman for backup and recovery (not depicted)
Offsite is optional but recommended
Can be shared by multiple PGD clusters

Postgres Enterprise Manager (PEM) for monitoring (not depicted)
Can be shared by multiple PGD clusters

Always-on Multi-location

Application can be Active/Active in each location or can be Active/Passive or Active DR with only one location taking writes.
Additional replication between data nodes 1 and 3 isn't shown but occurs as part of the replication mesh.
Redundant hardware to quickly restore from local failures.

6 PGD nodes total, 3 in each location
Can be 3 data nodes (recommended)
Can be 2 data nodes and 1 witness which does not hold data (not depicted)

Configuration and infrastructure symmetry of data nodes and locations is expected to ensure proper resources are available to handle application workload when rerouted

Barman for backup and recovery (not depicted).
Can be shared by multiple PGD clusters

Postgres Enterprise Manager (PEM) for monitoring (not depicted).
Can be shared by multiple PGD clusters

An optional witness node must be placed in a third region to increase tolerance for location failure.
Otherwise, when a location fails, actions requiring global consensus are blocked, such as adding new nodes and distributed DDL.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 78

Choosing your architecture

All architectures provide the following:

Hardware failure protection
Zero downtime upgrades
Support for availability zones in public/private cloud

Use these criteria to help you to select the appropriate Always-on architecture.

Single-data location Two data locations Two data locations + witness Three or more data
locations

Locations needed 1 2 3 3

Fast restoration of local HA after data node failure Yes - if 3 PGD data nodes
No - if 2 PGD data nodes

Yes - if 3 PGD data nodes
No - if 2 PGD data nodes

Yes - if 3 PGD data nodes
No - if 2 PGD data nodes

Yes - if 3 PGD data nodes
No - if 2 PGD data nodes

Data protection in case of location failure No (unless offsite backup) Yes Yes Yes

Global consensus in case of location failure N/A No Yes Yes

Data restore required after location failure Yes No No No

Immediate failover in case of location failure No - requires data restore from backup Yes - alternate Location Yes - alternate Location Yes - alternate Location

Cross-location network traffic Only if backup is offsite Full replication traffic Full replication traffic Full replication traffic

License cost 2 or 3 PGD data nodes 4 or 6 PGD data nodes 4 or 6 PGD data nodes 6+ PGD data nodes

Adding flexibility to the standard architectures

To provide the data resiliency needed and proximity to applications and to the users maintaining the data, you can deploy the single-location architecture in as many locations as you want. While EDB Postgres Distributed has a variety of
conflict-handling approaches available, do take care to minimize the number of expected collisions if allowing write activity from geographically disparate locations.

You can also expand the standard architectures with two additional types of nodes:

Subscriber-only nodes, which you can use to achieve additional read scalability and to have data closer to users when the majority of an application’s workload is read intensive with infrequent writes. You can also leverage them to
publish a subset of the data for reporting, archiving, and analytic needs.

Logical standbys, which receive replicated data from another node in the PGD cluster but don't participate in the replication mesh or consensus. They contain all the same data as the other PGD data nodes and can quickly be promoted
to a master if one of the data nodes fails to return the cluster to full capacity/consensus. You can use them in environments where network traffic between data centers is a concern. Otherwise, three PGD data nodes per location is
always preferred.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 79

4.1.2 Essential Architectures

PGD 6 Expanded supports a wide range of architectures, including the Essential editions standard and near-far architectures.

With Expanded, you can deploy an Essential architecture and then add more groups to it or build out a more complex architecture as your needs grow. The Essential architectures are designed to be simple to deploy and manage, while still
providing the core features of PGD.

You can read about the Essential architectures in the Essential How-to.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 80

4.1.3 Multi-Location Architectures

PGD 6 Expanded inherently supports architectures that span multiple locations, such as data centers or availability zones. This is a key feature of the Expanded edition, allowing you to build robust and resilient distributed databases that can
handle failures and maintain high availability across different geographic locations.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 81

4.1.4 Geo-Distributed Architectures

PGD supports clusters that span multiple geographic, as well as logical, locations. These clusters are known as geo-distributed architectures.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 82

4.2 Installing and configuring EDB Postgres Distributed 6

This section covers how to manually deploy and configure EDB Postgres Distributed 6.

Provisioning hosts
Configuring the EDB repository
Installing the database and PGD software
Configuring the cluster
Checking the cluster

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 83

4.2.1 1 - Prerequisites for Expanded installation

Provisioning hosts

The first step in the process of deploying PGD Expanded is to provision and configure hosts.

You can deploy to virtual machine instances in the cloud with Linux installed, on-premises virtual machines with Linux installed, or on-premises physical hardware, also with Linux installed.

Whichever supported Linux operating system and whichever deployment platform you select, the result of provisioning a machine must be a Linux system that you can access using SSH with a user that has superuser, administrator, or sudo
privileges.

Each machine provisioned must be able to make connections to any other machine you're provisioning for your cluster.

On cloud deployments, you can do this over the public network or over a VPC.

On-premises deployments must be able to connect over the local network.

Cloud provisioning guides

If you're new to cloud provisioning, these guides may provide assistance:

Vendor Platform Guide

Amazon AWS Tutorial: Get started with Amazon EC2 Linux instances

Microsoft Azure Quickstart: Create a Linux virtual machine in the Azure portal

Google GCP Create a Linux VM instance in Compute Engine

Configuring hosts

Create an admin user

We recommend that you configure an admin user for each provisioned instance. The admin user must have superuser or sudo (to superuser) privileges. We also recommend that the admin user be configured for passwordless SSH access using
certificates.

Ensure networking connectivity

With the admin user created, ensure that each machine can communicate with the other machines you're provisioning.

In particular, the PostgreSQL TCP/IP port (5444 for EDB Postgres Advanced Server, 5432 for EDB Postgres Extended and community PostgreSQL) must be open to all machines in the cluster. The PGD Connection Manager must also be
accessible to all nodes in the cluster. By default, the Connection Manager uses port 6432 (or 6444 for EDB Postgres Advanced Server).

Worked example

For this serie of worked examples, three hosts with Red Hat Enterprise Linux 9 were provisioned:

host-1
host-2
host-3

These hosts were configured in the cloud. As such, each host has both a public and private IP address. We will use the private IP addresses for the cluster.

The private IP addresses are:

host-1: 192.168.254.166
host-2: 192.168.254.247
host-3: 192.168.254.135

For the example cluster, /etc/hosts was also edited to use those private IP addresses:

192.168.254.166 host-1
192.168.254.247 host-2
192.168.254.135 host-3

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 84

https://www.enterprisedb.com/resources/platform-compatibility#bdr
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://learn.microsoft.com/en-us/azure/virtual-machines/linux/quick-create-portal?tabs=ubuntu
https://cloud.google.com/compute/docs/create-linux-vm-instance

4.2.2 Step 2 - Configure repositories

On each host which you want to use as a PGD data node, you need to install the database and the PGD software.

Configure repositories

Set the following environment variables:

EDB_SUBSCRIPTION_TOKEN

This is the token you received when you registered for the EDB subscription. It is used to authenticate your access to the EDB repository.

EDB_SUBSCRIPTION_PLAN

This is the type of subscription you have with EDB. It can be standard , enterprise , or community .

EDB_REPO_TYPE

This is the type of package manager you use, which informs the installer which type of package you need. This can be deb for Ubuntu/Debian or rpm for CentOS/RHEL.

Install the repository/repositories

There are two repositories you need to configure: one for the database software and one for the PGD software.

The following command will download and run a script that configures your package manager to use the EDB repository for databases.

The following command will download and run a script that configures your package manager to use the EDB repository for PGD.

Worked example

In this example, we will configure the repositories on a CentOS/RHEL system that will allow us to install EDB Postgres Advanced Server 17 with PGD Expanded using an enterprise subscription.

Set the environment variables

Install the repositories

The next step is to install the database and PGD software.

export EDB_SUBSCRIPTION_TOKEN=<your-token>

export EDB_SUBSCRIPTION_PLAN=<your-subscription-plan>

export EDB_REPO_TYPE=<your-repo-type>

curl -1sSLf "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/$EDB_SUBSCRIPTION_PLAN/setup.$EDB_REPO_TYPE.sh" | sudo -E bash

curl -1sSLf "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.$EDB_REPO_TYPE.sh" | sudo -E bash

export EDB_SUBSCRIPTION_TOKEN=XXXXXXXXXXXXXX
export EDB_SUBSCRIPTION_PLAN=enterprise
export EDB_REPO_TYPE=rpm

For PGD Expanded, there are two repositories to
install.
curl -1sSLf " https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/$EDB_SUBSCRIPTION_PLAN/setup.$EDB_REPO_TYPE.sh" | sudo -E bash
curl -1sSLf " https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.$EDB_REPO_TYPE.sh" | sudo -E bash

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 85

4.2.3 Step 3 - Installing the database and pgd

On each host which you want to use as a PGD data node, you need to install the database and the PGD software.

After you have configured the EDB repository, you can install the database and PGD software using your package manager.

Install the database and PGD software

Set the Postgres version

Set an environment variable to specify the version of Postgres you want to install. This is typically 17 for Postgres 17.

Set the package names

Set an environment variable to specify the package names for the database and PGD software. The package names will vary depending on the database you are using and the platform you are on.

EDB Postgres Advanced Server

export EDB_PACKAGES="edb-as$PG_VERSION-server edb-pgd6-expanded-epas$PG_VERSION"

export EDB_PACKAGES="edb-as$PG_VERSION-server edb-pgd6-expanded-epas$PG_VERSION"

EDB Postgres Extended

Community PostgreSQL

Run the installation command

Run the installation command appropriate for your platform.

sudo apt install -y $EDB_PACKAGES

sudo dnf install -y $EDB_PACKAGES

This command will install the specified packages and any dependencies they require. Once the installation is complete, you will have the database and PGD software installed on your system.

Worked example

In this example, we will install EDB Postgres Extended Server 17 with PGD Expanded on a CentOS/RHEL system using the repository configuration we set up in the previous step's worked example.

export PG_VERSION=17

export EDB_PACKAGES="edb-postgresextended-$PG_VERSION edb-pgd6-expanded-pgextended$PG_VERSION"

export EDB_PACKAGES="edb-postgresextended$PG_VERSION-server edb-postgresextended$PG_VERSION-contrib edb-pgd6-expanded-pgextended$PG_VERSION"

export EDB_PACKAGES="postgresql-$PG_VERSION edb-pgd6-expanded-pg$PG_VERSION"

 export EDB_PACKAGES="postgresql$PG_VERSION-server postgresql$PG_VERSION-contrib edb-pgd6-expanded-pg$PG_VERSION"

export PG_VERSION=17
export EDB_PACKAGES="edb-as$PG_VERSION edb-pgd6-expanded-epas$PG_VERSION"
sudo dnf install -y
$EDB_PACKAGES

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 86

4.2.4 Step 4 - Configuring the cluster

Configuring the cluster

The next step in the process is to configure the database and the cluster.

This involves logging into each host and running the pgd command to create the cluster as the database user.

These steps will vary according to which platform you are using and which version of Postgres you are using.

Cluster name

You will need to choose a name for your cluster. This is the name that will be used to identify the cluster in the PGD CLI and in the database. It will be referred to as <cluster-name> in the examples. If not specified, the default name is
pgd .

Group names

You will also need to choose a name for the group. This is the name that will be used to identify the group in the PGD CLI and in the database. It will be referred to as <group-name> in the examples.

The group name must be unique within the cluster.

Node names

You will also need to choose a name for each node. This is the name that will be used to identify the node in the PGD CLI and in the database. It will be referred to as <node-name> in the examples. This is separate from the host name, which
is the name of the machine on which the node is running.

The node name must be unique within the group and within the cluster.

Paths and users

The paths and users used in the examples will vary according to which version of Postgres you are using and which platform you are using.

Select your Postgres version:

Then select your platform:

Postgres User enterprisedb

Postgres Port 5444

Postgres Executable
files

/usr/lib/edb-as/$PG_VERSION/bin/

Postgres Data Directory /var/lib/edb-as/$PG_VERSION/main/

sudo -iu enterprisedb
export PG_VERSION=<version>
export PATH=$PATH:/usr/lib/edb-as/$PG_VERSION/bin/
export PGDATA=/var/lib/edb-as/$PG_VERSION/main/
export PGPORT=5444

Postgres User enterprisedb

Postgres Port 5444

Postgres Executable
files

/usr/edb/as$PG_VERSION/bin/

Postgres Data Directory /var/lib/edb/as$PG_VERSION/data/

sudo -iu enterprisedb
export PG_VERSION=<version>
export PATH=$PATH:/usr/edb/as$PG_VERSION/bin/
export PGDATA=/var/lib/edb/as$PG_VERSION/data/
export PGPORT=5444

Then select your platform:

Postgres User postgres

Postgres Port 5432

Postgres Executable
files

/usr/lib/edb-pge/$PG_VERSION/bin/

Postgres Data Directory /var/lib/edb-pge/$PG_VERSION/main/

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 87

sudo -iu postgres
export PG_VERSION=<version>
export PATH=$PATH:/usr/lib/edb-pge/$PG_VERSION/bin/
export PGDATA=/var/lib/edb-pge/$PG_VERSION/main/
export PGPORT=5432

Postgres User postgres

Postgres Port 5432

Postgres Executable
files

/usr/edb/pge$PG_VERSION/bin/

Postgres Data Directory /var/lib/edb-pge/$PG_VERSION/data/

sudo -iu postgres
export PG_VERSION=<version>
export PATH=$PATH:/usr/edb/pge$PG_VERSION/bin/
export PGDATA=/var/lib/edb-pge/$PG_VERSION/data/
export PGPORT=5432

Then select your platform:

Postgres User postgres

Postgres Port 5432

Postgres Executable
files

/usr/lib/postgresql/$PG_VERSION/bin/

Postgres Data Directory /var/lib/postgresql/$PG_VERSION/main/

sudo -iu postgres
export PG_VERSION=<version>
export PATH=$PATH:/usr/lib/postgresql/$PG_VERSION/bin/
export PGDATA=/var/lib/postgresql/$PG_VERSION/main/
export PGPORT=5432

Postgres User postgres

Postgres Port 5432

Postgres Executable
files

/usr/pgsql-$PG_VERSION/bin/

Postgres Data Directory /var/lib/pgsql/$PG_VERSION/data/

sudo -iu postgres
export PG_VERSION=<version>
export PATH=$PATH:/usr/pgsql-$PG_VERSION/bin/
export PGDATA=/var/lib/pgsql/$PG_VERSION/data/
export PGPORT=5432

On each host

Run the commands from the script/settings above to set the environment variables and paths for the Postgres user on each host. This will ensure that the pgd command can find the Postgres executable files and data directory.

1. Using the appropriate user, log in as the database user.

1. Set the Postgres version environment variable. Don't forget to replace <version> with the actual version number you are using, such as 17 .

1. Add the Postgres executable files to your path.

1. Set the Postgres data directory environment variable.

1. Set the Postgres password environment variable. Don't forget to replace <db-password> with the actual password you want for the database user.

On the first host

The first host in the cluster is also the first node and will be where we begin the cluster creation. On the first host, run the following command to create the cluster:

This command will create the data directory and initialize the database, then will create the cluster and the group on the first node.

sudo -iu <db-user>

export PG_VERSION=<version>

export PATH=$PATH:<executable-path>

export PGDATA=<data-directory>

export PGPASSWORD=<db-password>

pgd node <first-node-name> setup --dsn "host=<first-host> user=<db-user> port=<db-port> dbname=<dbname>" --group-name <group-name>

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 88

On the second host

On the second host, run the following command to create the cluster:

This command will create the node on the second host, and then join the cluster using the cluster-dsn setting to connect to the first host.

On the third host

On the third host, run the following command to create the cluster:

This command will create the node on the third host, and then join the cluster using the cluster-dsn setting to connect to the first host.

Worked example

In this example, we will configure the PGD Essential cluster with EDB Postgres Extended Server 17 on a CentOS/RHEL system that we configured and installed in the previous steps.

We will now create a cluster called pgd with three nodes called node-1 , node-2 , and node-3 .

The group name will be group-1 . The hosts are host-1 , host-2 , and host-3 .
The Postgres version is 17.
The database user is postgres .
The database port is 5432.
The database name is pgddb .
The Postgres executable files are in /usr/edb/pge17/bin/ .
The Postgres data directory is in /var/lib/edb-pge/17/main/ .
The Postgres password is secret .

(Note that we assume the Postgres version environment variable PG_VERSION is set to 17 from the previous step, and that we are preserving the environment variable when switching users.)

On the first host

On the second host

On the third host

The next step is to check the cluster.

pgd node <second-node-name> setup --dsn "host=<second-host> user=<db-user> port=<db-port> dbname=<db-name>" --cluster-dsn "host=<first-host> user=<db-user> port=<db-
port> dbname=<db-name>"

pgd node <third-node-name> setup --dsn "host=<third-host> user=<db-user> port=<db-port> dbname=<db-name>" --cluster-dsn "host=<first-host> user=<db-user> port=<db-port>
dbname=<db-name>"

sudo -iu
postgres
export PG_VERSION=17
export PATH=$PATH:/usr/edb/pge$PG_VERSION/bin/
export PGDATA=/var/lib/edb-pge/$PG_VERSION/data/
export PGPASSWORD=secret
pgd node node-1 setup --dsn "host=host-1 user=postgres port=5432 dbname=pgddb" --group-name group-
1

sudo -iu
postgres
export PG_VERSION=17
export PATH=$PATH:/usr/edb/pge$PG_VERSION/bin/
export PGDATA=/var/lib/edb-pge/$PG_VERSION/data/
export PGPASSWORD=secret
pgd node node-2 setup --dsn "host=host-2 user=postgres port=5432 dbname=pgddb" --cluster-dsn "host=host-1 user=postgres port=5432 dbname=pgddb"

sudo -iu
postgres
export PG_VERSION=17
export PATH=$PATH:/usr/edb/pge$PG_VERSION/bin/
export PGDATA=/var/lib/edb-pge/$PG_VERSION/data/
export PGPASSWORD=secret
pgd node node-3 setup --dsn "host=host-3 user=postgres port=5432 dbname=pgddb" --cluster-dsn "host=host-1 user=postgres port=5432 dbname=pgddb"

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 89

4.2.5 Step 5 - Checking the cluster

Checking the cluster

With the cluster up and running, it's worthwhile to run some basic checks to see how effectively it's replicating.

The following example shows one quick way to do this, but you must ensure that any testing you perform is appropriate for your use case.

On any of the installed and configured nodes, log in and run psql to connect to the database. If you are using EDB Postgres Advanced Server, use the enterprisedb user, otherwise use postgres :

This command connects you directly to the database on host-1/node-1.

Quick test

Preparation

Ensure the cluster is ready:
Log in to the database on host-1/node-1.
Run select bdr.wait_slot_confirm_lsn(NULL, NULL); .
When the query returns, the cluster is ready.

Create data The simplest way to test that the cluster is replicating is to log in to one node, create a table, and populate it.

On node-1, create a table:

On node-1, populate the table:

On node-1, monitor performance:

On node-1, get a sum of the value column (for checking):

Check data

Log in to node-2. Log in to the database on host-2/node-2.
On node-2, get a sum of the value column (for checking):

Compare with the result from node-1.
Log in to node-3. Log in to the database on host-3/node-3.
On node-3, get a sum of the value column (for checking):

Compare with the result from node-1 and node-2.

Worked example

Preparation

Log in to host-1's Postgres server.

ssh admin@host-1
sudo -iu postgres psql "host=host-1 port=5432 username=postgres dbname=pgddb"

This is your connection to PGD's node-1.

Ensure the cluster is ready

To ensure that the cluster is ready to go, run:

This query blocks while the cluster is busy initializing and returns when the cluster is ready.

In another window, log in to host-2's Postgres server:

ssh admin@host-2
sudo -iu postgres psql "host=host-2 port=5432 username=postgres dbname=pgddb"

sudo -iu postgres psql
pgddb

CREATE TABLE quicktest (id SERIAL PRIMARY KEY, value INT);

INSERT INTO quicktest (value) SELECT random()*10000 FROM
generate_series(1,10000);

select * from bdr.node_replication_rates;

select COUNT(*),SUM(value) from quicktest;

select COUNT(*),SUM(value) from quicktest;

select COUNT(*),SUM(value) from quicktest;

select bdr.wait_slot_confirm_lsn(NULL,
NULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 90

Create data

On node-1, create a table

Run:

On node-1, populate the table

This command generates a table of 10000 rows of random values.

On node-1, monitor performance

As soon as possible, run:

The command shows statistics about how quickly that data was replicated to the other two nodes:

pgddb=# select * from bdr.node_replication_rates;

output
 peer_node_id | target_name | sent_lsn | replay_lsn | replay_lag | replay_lag_bytes | replay_lag_size | apply_rate | catchup_interv
al
--------------+-------------+-----------+------------+------------+------------------+-----------------+------------+---------------

 1954860017 | node-3 | 0/DDAA908 | 0/DDAA908 | 00:00:00 | 0 | 0 bytes | 13682 | 00:00:00
 2299992455 | node-2 | 0/DDAA908 | 0/DDAA908 | 00:00:00 | 0 | 0 bytes | 13763 | 00:00:00
(2 rows)

And it's already replicated.

On node-1 get a checksum

Run:

This command gets some values from the generated data:

output
 count | sum
--------+-----------
 100000 | 498884606
(1 row)

Check data

Log in to host-2's Postgres server

ssh admin@host-2
sudo -iu postgres psql "host=host-2 port=5432 username=postgres dbname=pgddb"

This is your connection to PGD's node-2.

On node-2, get a checksum

Run:

This command gets node-2's values for the generated data:

output
 count | sum
--------+-----------
 100000 | 498884606
(1 row)

CREATE TABLE quicktest (id SERIAL PRIMARY KEY, value INT);

INSERT INTO quicktest (value) SELECT random()*10000 FROM
generate_series(1,10000);

select * from bdr.node_replication_rates;

select COUNT(*),SUM(value) from quicktest;

pgddb=# select COUNT(*),SUM(value) from quicktest;

select COUNT(*),SUM(value) from quicktest;

pgddb=# select COUNT(*),SUM(value) from quicktest;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 91

Compare with the result from node-one

The values are identical.

You can repeat the process with node-3 or generate new data on any node and see it replicate to the other nodes.

Log in to host-3's Postgres server

ssh admin@host-3
sudo -iu enterprisedb psql pgddb

This is your connection to PGD's node-3.

On node-3, get a checksum

Run:

This command gets node-3's values for the generated data:

output
 count | sum
--------+-----------
 100000 | 498884606
(1 row)

Compare with the result from node-one and node-two

The values are identical.

select COUNT(*),SUM(value) from quicktest;

pgddb=# select COUNT(*),SUM(value) from quicktest;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 92

4.3 Expanded Standard Operating Procedures

Overview

Standard Operating Procedures (SOPs) are a set of procedures that are expanded for the successful operation of EDB Postgres Distributed (PGD). These procedures cover various aspects of the system, including installation, configuration,
backup and restore, upgrades, monitoring, and troubleshooting.

SOPs are designed to address the most common tasks around using and maintaining a PGD cluster. They provide a structured approach to performing these tasks, ensuring consistency and reliability in operations. Read more about the
structure of SOPs in the How to Use SOPs.

This document provides an overview of the SOPs and links to detailed instructions for each procedure.

Installation and Configuration

The SOPs in this section cover the procedures for installing PGD, creating a new PGD cluster, adding a node to an existing cluster, and configuring PGD.

Data Movement

The SOPs in this section cover the procedures for moving data into or out of a PGD cluster. This include importing and exporting data efficiently.

Monitoring

The SOPs in this section cover the procedures for monitoring a Postgres Distributed (PGD) cluster. Monitoring is crucial for maintaining the health and performance of your database system.

Maintenance

The SOPs in this section cover the procedures for maintaining a Postgres Distributed (PGD) cluster. It covers routine maintenance tasks and how they should be performed when working with a PGD cluster.

Backup and Restore

The SOPs in this section cover the process of backing up and restoring the Postgres database servers running on the nodes in a PGD cluster.

Upgrade

The SOPs in this section cover the process of upgrading the Postgres database servers running on the nodes in a PGD cluster and upgrade PGD itself. This includes minor and major upgrades of Postgres.

Troubleshooting

The SOPs in this section cover the procedures for troubleshooting common issues that may arise in a Postgres Distributed (PGD) cluster. It includes steps to diagnose and resolve problems effectively.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 93

4.3.1 How to use Standard Operating Procedures

Standard Operating Procedures, or SOPs, are a set of instructions that cover the expanded tasks for the successful operation of EDB Postgres Distributed (PGD).

They are designed to be easy to follow and provide step-by-step guidance for performing various tasks.

To make it easy to follow, each SOP is divided into sections that cover the following:

Overview: A brief description of the task and its purpose.
Prerequisites: Any requirements or dependencies that must be met before performing the task.
Instructions: Step-by-step generic instructions for performing the task.
Worked Example: A specific example of how to perform the task, including any relevant commands or configurations.
Notes: Additional information or tips that may be helpful.
Troubleshooting: Common issues that may arise during the task and how to resolve them.
References: Links to related documentation or resources.

How to use SOPs

TODO: Add a description of how to use SOPs.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 94

4.3.2 Installation and Configuration SOPs

Overview

This SOP covers the expanded SOPs for installing PGD, creating a new PGD cluster, adding a node to an existing cluster, and configuring PGD.

SOPs

Installing PGD on a New Node
Adding a Node to an Existing Cluster
Creating a New Group

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 95

4.3.2.1 SOP - Adding a Node to an Existing Cluster

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 96

4.3.2.2 SOP - Creating a New Group

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 97

4.3.2.3 SOP - Installing PGD on a New Node

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 98

4.3.3 Data Movement SOPs

This section covers how to move data in and out of a Postgres Distributed cluster as efficiently as possible.

SOPs

Moving Data into a PGD Cluster
Moving Data out of a PGD Cluster

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 99

4.3.3.1 SOP - Moving Data into the Cluster

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 100

4.3.3.2 SOP - Moving Data Out of the Cluster

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 101

4.3.4 Monitoring SOPs

This section covers the expanded SOPs for monitoring a Postgres Distributed (PGD) cluster. Monitoring is crucial for maintaining the health and performance of your database system.

SOPs

Monitoring with SQL

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 102

4.3.4.1 SOP - Monitoring PGD clusters using SQL

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 103

4.3.5 Backup and Restore SOPs

The SOPs in this section cover the process of backing up and restoring the Postgres database servers running on the nodes in a PGD cluster. It includes best practices for backup and restore, tools to use, and common issues that may arise
during the backup and restore process.

SOPs

Backup and Restore with pg_dump
Backup and Restore with Barman

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 104

4.3.5.1 Backup and Restore with pg_dump

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 105

4.3.5.2 Backup and Restore with Barman

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 106

4.3.6 Upgrading Postgres

These SOPs cover the process of upgrading the Postgres database servers running on the nodes in a PGD cluster and upgrading PGD itself. This includes minor and major upgrades of Postgres.

SOPs

Upgrading Postgres to a Minor Version
Upgrading Postgres to a Major Version
Upgrading Postgres Distributed

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 107

4.3.6.1 SOP - Minor upgrades of Postgres

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 108

4.3.6.2 SOP - Major upgrades of Postgres

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 109

4.3.6.3 SOP - Upgrading PGD in PGD clusters

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 110

4.3.7 Troubleshooting

This section provides troubleshooting guidance for common issues encountered in Postgres Distributed (PGD) clusters. It includes solutions for problems related to cluster operations, node management, and performance.

SOPs

Troubleshooting Cluster Operations

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 111

4.3.7.1 SOP - Troubleshooting Cluster Operations

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 112

4.3.8 Maintenance SOPs

This section covers the expanded SOPs for maintaining a Postgres Distributed (PGD) cluster. Regular maintenance is crucial for ensuring the health and performance of your database system.

SOPs

Performing Routine Maintenance
Handling Node Failures
Online Vacuuming

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 113

4.3.8.1 SOP - Performing Routine Maintenance

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 114

4.3.8.2 SOP - Handling Node Failures

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 115

4.3.8.3 SOP - Online Vacuuming

Overview

A brief description of the task and its purpose.

Prerequisites

Any requirements or dependencies that must be met before performing the task.

Instructions

Step-by-step generic instructions for performing the task.

Worked Example

A specific example of how to perform the task, including any relevant commands or configurations.

Notes

Additional information or tips that may be helpful.

Troubleshooting

Common issues that may arise during the task and how to resolve them.

References

Links to related documentation or resources.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 116

5 PGD concepts explained

PGD concepts

Replication
Nodes and groups
Connection management
Locking
Durability
Commit scopes
Lag Control

PGD Expanded concepts

Commit scopes for PGD Expanded
Geo-distributed clusters
Advanced durability
Conflict management

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 117

https://www.enterprisedb.com/docs/pgd/6.1/concepts/commit-scopes
https://www.enterprisedb.com/docs/pgd/6.1/concepts/advanced-durability

5.1 Replication

At the heart of EDB Postgres Distributed (PGD) is the replication system, BDR. BDR stands for Bi-Directional Replication, and it is a multi-master replication system that allows you to create a distributed Postgres cluster with multiple write
nodes. This means that you can write to any node in the cluster, and the changes will be replicated to all other nodes in the cluster.

Just because you can write to any node in the cluster, it doesn't mean that you should. In most cases, you will want to write to a single node in the cluster, which is known as the write leader node. This is the node that is responsible for
coordinating the replication of changes to all other nodes in the cluster. In fact, in PGD Essential, you can only write to the write leader node, and all other nodes in the cluster are read-only.

There are though some cases where you may want to write to multiple nodes in the cluster, such as when you are using a geo-distributed cluster with multiple write nodes in different locations. In these cases, you can use the BDR replication
system to replicate changes between the write nodes. This, and other scenarios, are what PGD Expanded is designed for, and it activates additional features and functionality to support these use cases.

How Replication Works

PGD uses logical replication to replicate changes between nodes in the cluster. This means that changes are replicated at the logical level, rather than at the physical level. This allows for more flexibility in how changes are replicated, and it
also allows for more efficient replication of changes.

When a change is made to a table in the cluster, it is first written to the write leader node's write-ahead log (WAL). The WAL is a log of all changes made to the database, and it is used to ensure durability and consistency of the database. Once
the change is written to the WAL, it is then replicated to all other nodes in the cluster.

The replication process is asynchronous by default, which means that changes are not immediately replicated to all nodes in the cluster. Instead, changes are sent to the other nodes in the cluster in batches, which allows for more efficient
replication and reduces the load on the network.

Once the changes are received by the other nodes in the cluster, they are applied to the local copy of the database. This process is known as replaying the WAL, and it ensures that all nodes in the cluster have a consistent view of the data.

Commit scopes and replication

Asynchronous replication is the default mode of replication, but not the only one. PGD allows for definable replication configuration through what are called commit scopes. A commit scope can be applied to a transaction or to all transactions
in a group, and it defines how changes are replicated to other nodes in the cluster. This allows you to control how the replication process works, and it can be used to optimize performance, ensure that changes are replicated in a specific way or
to handle adverse network and server conditions gracefully.

PGD Expanded has fully definable commit scopes, which allow you to create custom replication configurations for your cluster. Read about the commit scopes in PGD Expanded for full details.
PGD Essential has has four pre-defined commit scopes that you can use to control how changes are replicated. Read about the commit scopes in PGD Essential for full details.

What is replicated?

In PGD, the following types of changes are replicated:

Data changes: Inserts, updates, and deletes to tables are replicated to all nodes in the cluster. This is called DML (Data Manipulation Language) replication.
Schema changes: Changes to the structure of the database, such as creating or dropping tables, are also replicated to all nodes in the cluster. This is called DDL (Data Definition Language) replication. But not all DDL changes are
replicated. For example, adding a column to a table is replicated, but dropping a column is not.
Configuration changes: Changes to the configuration of the database, such as changing the replication settings, are also replicated to all nodes in the cluster.

Currently, PGD only replicates one Postgres database per cluster. This means that if you have multiple databases in your Postgres instance, only the database that is configured for replication will be replicated to the other nodes in the cluster.
This is the same for both PGD Essential and PGD Expanded.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 118

https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/

5.2 PGD Nodes and Groups

A PGD cluster is made up of one or more nodes, with each node being an instance of Postgres.

Each node in the cluster is a full Postgres instance with the BDR extension installed and configured. Nodes can have different roles and responsibilities within the cluster. Nodes are then organized into groups, which are used to organize the
replication of data between the nodes. There's also the "top level" group, which is the cluster itself; every node in the cluster is also a member of this group, and it is the parent of all other groups in the cluster.

Data Nodes

The first node kind to know about is the data node. This is the basic building block of PGD clusters. It is configured to replicate data to and from the other data nodes in the cluster. Not the group, the cluster. By design, all nodes in a PGD cluster
replicate to all other nodes in the cluster.

Groups

Groups are used to localize how the nodes manage themselves. Each group selects it's own Raft leader from the group members. If the group is a data group that is made up of data nodes it also uses Raft to elect a write leader node for that
group. The write leader node will be sent all the read/write client connections for that group and will be the node that handles all write operations for that group, assuming that the client connections come in through the connection manager
of a node in that group.

Info

Raft is a consensus algorithm that is used to ensure that all nodes in a group agree on the state of the group. It allows a group of nodes to elect a leader node, and to ensure that all nodes in the group are in sync with each other over
decisions. The most important thing to know about Raft is that it needs an odd number of nodes in any group to function correctly. That's because Raft uses a majority vote between the nodes to agree on the state of the group.

Witness Nodes

Witness nodes are like data nodes, but they do not replicate or store any data. Their role is to provide a deadlock breaking vote in the event of a group of data nodes losing sufficient nodes as to not be able to complete a majority vote.

Witness nodes do not participate in the normal data replication process, but they can be used to help resolve conflicts and ensure that the cluster remains available even in the face of network partitions or other failures.

Subscriber-only Nodes

Subscriber-only nodes are used to provide a read-only replica of the data in the cluster. In PGD 6, you can configure a subscriber-only node as a member of a data group or a member of a subscriber-only group. The latter has no write leader
node, and all nodes in the group are read-only and allow for some optional optimizations in the replication process. The former allows for a read-only replica of the data in the group, but it does not allow for any optimizations in the replication
process.

A subscriber-only node can be used to offload read queries from the write leader node, which can help to improve performance and reduce the load on the write leader node. It can also be used to provide a read-only replica of the data in the
cluster for reporting or analytics purposes. You can connect to the read-only nodes like this using the connection manager's read-only connection string, which will direct the connections to the pool of read-only nodes in the cluster.

Logical Standby Nodes

Logical standby nodes are used to provide a read-only replica of the data in the cluster. They are similar to subscriber-only nodes, but they are designed to be more flexible and can be used in a wider range of scenarios.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 119

5.3 Connection Management

To ensure that clients can connect to the right nodes in the distributed cluster, EDB Postgres Distributed (PGD) provides a connection management system that allows clients to connect to the appropriate nodes based on their needs.

This system is designed to ensure that clients can access the data they need while maintaining the performance and availability of the cluster. Unlike Proxy systems, this connection management system is built into the database instance itself,
allowing for more efficient and reliable connections.

Read more about the Connection Management feature in PGD for full details of the implementation.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 120

https://www.enterprisedb.com/docs/pgd/latest/reference/connection-manager/

5.4 Locking

To prevent conflicts between various operations in the cluster, PGD uses a distributed locking mechanism to ensure the only one node can perform a specific operation at a time.

This is particularly important in a distributed environment where multiple nodes may attempt to modify the same data concurrently. As PGD Essential is a single-write node cluster, it does not have to deal with distributed locking in the same
way, as there is only one node that can perform write operations at any time. PGD Expaned, however, has multiple write nodes, and so it must will always use distributed locking to ensure integerity.

Kinds of Locks

PGD uses several kinds of locks to manage concurrent access to data and resources in the cluster:

DDL locking

DDL (Data Definition Language) locks are used to manage access to database objects such as tables, indexes, and schemas. When a DDL operation is performed, a lock is acquired on the object being modified to prevent other operations from
interfering with the change. This ensures that the structure of the database remains consistent and prevents conflicts between concurrent DDL operations. Read more about DDL locking in the DDL Locking reference documentation.

DML locking

DML locking is closly related to DDL locking and is used to add an extra layer of protection to a DDL operation being replicated by also halting any DML operations that would conflict with the DDL operation. Again, this is only needed in a
multi-write node cluster, and is not used in PGD Essential.

Which locks are used when?

The locks used in PGD depend on the type of operation being performed and the configuration of the cluster. In general, DDL locks are used for schema changes, while DML locks are used for data modifications. A full list of the locks used in
PGD can be found in the DDL command handling matrix documentation.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 121

https://www.enterprisedb.com/docs/pgd/latest/reference/ddl/ddl-locking/
https://www.enterprisedb.com/docs/pgd/latest/reference/ddl/ddl-command-handling

5.5 Durability

How does EDB Postgres Distributed (PGD) ensure durability of transactions?

Durability can be defined as the guarantee that once a transaction has been committed, it will remain so, even in the event of a system failure. In EDB Postgres Distributed (PGD), durability is achieved through a combination of write-ahead
logging (WAL) and replication, in combination with the commit scopes available in the cluster and the configuration of the nodes in the cluster.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 122

5.6 Lag Control

When a node is lagging behind the rest of the cluster, it can cause issues with data consistency and availability. Lag control is a mechanism to manage this situation by ensuring that the lagging node does not disrupt the overall performance of
the cluster.

Lag Control in PGD

When lag is detected in PGD, the Lag Control feature is activated. This feature is designed to manage the lagging node and ensure that it does not disrupt the overall performance of the cluster. It does this by transparently and temporarily
slowing client connections, introducing a commit delay to clients. This allows the lagging node to catch up with the rest of the cluster without impacting the performance of the other nodes.

Read more about the Lag Control feature in PGD for full details.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 123

https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/lag-control/

5.7 Expanded Commit Scopes

PGD Expanded allows you to define commit scopes that are more granular or more customised than the standard pre-defined commit scopes available in PGD. This feature is particularly useful for applications that require specific commit
behaviors or need to manage complex transaction scenarios.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 124

5.8 Geo-Distributed Clusters

Geo-distributed clusters are a powerful feature of PGD which allow you to create a distributed database system that spans multiple geographic locations. This setup is particularly useful for applications that require high availability, low
latency, and disaster recovery across different regions. As this feature needs multiple write nodes and multiple distributed groups, it is only available in PGD Expanded.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 125

5.9 Conflict Management

With PGD Expanded, the presence of multiple writers leads to the possibility, or even the likelihood, of conflicts. Changes to the same rows from different nodes can arrive on a node at any time. PGD Expanded provides a conflict management
system that allows you to define how conflicts are handled in your distributed database environment.

Read more about conflict management in the Conflict Management reference documentation.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 126

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/

6 PGD overview

EDB Postgres Distributed (PGD) provides multi-master replication and data distribution with advanced conflict management, data-loss protection, and throughput up to 5X faster than native logical replication. It also enables distributed
Postgres clusters with high availability up to five 9s.

Architecture overview
Architectural options and performance
Comparison with other replication solutions

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 127

https://www.enterprisedb.com/blog/performance-improvements-edb-postgres-distributed

6.1 Architecture overview

EDB Postgres Distributed (PGD) is a distributed database solution that extends PostgreSQL's capabilities, enabling highly available and fault-tolerant database deployments across multiple nodes. PGD provides data distribution with advanced
conflict management, data-loss protection, high availability up to five 9s, and throughput up to 5X faster than native logical replication.

PGD is built on a multi-master foundation (bi-directional replication, or BDR) which is then optimized for performance and availability through Connection Manager. You can run PGD without Connection Manager if you need a custom
deployment better utilizing the multi-master functionality. When running without Connection Manager, writes are distributed among the nodes and replicated to one another, and conflict resolution is relied upon for maintaining consistency.
This can be more efficient depending on your architectural needs. However, Connection Manager ensures lower contention and conflict through the use of a write leader. Raft is implemented to help the system make important decisions, like
deciding which node is the Raft election leader and which node is the write leader.

High-level architecture

At the highest level, PGD comprises two main components: Bi-Directional Replication (BDR) and Connection Manager. BDR is a Postgres extension that enables a multi-master replication mesh between different BDR-enabled Postgres
instances/nodes. Connection Manager sends requests to the write leader—ensuring a lower risk of conflicts (stronger consistency) between nodes.

Changes are replicated directly, row-by-row between all nodes. Logical replication in PGD is asynchronous by default, so only eventual consistency is guaranteed (within seconds usually). However, commit scope options offer immediate
consistency and durability guarantees via CAMO, group and synchronous commits.

The Raft algorithm provides a mechanism for electing leaders (both Raft leader and write leader), deciding which nodes to add or subtract from the cluster. It generally ensures that the distributed system remains consistent and fault tolerant,
even in the face of node failures.

Architectural elements

PGD comprises several key architectural elements that work together to provide its distributed database solution:

PGD nodes: These are individual Postgres instances that store and manage data. They are the basic building blocks of a PGD cluster.

Groups: By default, all nodes are also members of a top-level group with its own Raft leader but without a write leader. PGD nodes can be further organized into subgroups, which enhance manageability and high availability. Each group
can contain multiple nodes, allowing for redundancy and failover within the group. Groups facilitate organized replication and data consistency among nodes within the same group and across different groups. Each group has its own
write leader.

Replication mechanisms: PGD's replication mechanisms include BDR for efficient replication across nodes, enabling multi-master replication. BDR supports asynchronous replication by default but can be configured for varying levels of
synchronicity, such as Group Commit or Synchronous Commit, to enhance data durability.

Monitoring tools: To monitor performance, health, and usage with PGD, you can use its built-in command-line interface (CLI), which offers several useful commands. For example:

The pgd nodes list command provides a summary of all nodes in the cluster, including their state and status.
The pgd cluster show --health command checks the health of the cluster, reporting on node accessibility, replication slot health, and other critical metrics.
The pgd events show command lists significant events like background worker errors and node membership changes, which helps in tracking the operational status and issues within the cluster.

Furthermore, the BDR extension allows for monitoring your cluster using SQL using the bdr.monitor role.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 128

https://en.wikipedia.org/wiki/Raft_(algorithm)
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/commit-scopes
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/camo/
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/group-commit
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/synchronous_commit

Node types

All nodes in PGD are effectively data nodes. They vary only in their purpose in the cluster.

Data nodes: Store and manage data, handle read and write operations, and participate in replication.

There are then three types of nodes which, although built like a data node, have a specific purpose. These are:

Subscriber-only nodes: Subscribe to changes from data nodes for read-only purposes. Used in reporting or analytics.

Witness nodes: Participate in the consensus process without storing data, aiding in achieving quorum and maintaining high availability.

Logical standby nodes: Act as standby nodes that can be promoted to data nodes if needed, ensuring high availability and disaster recovery.

Node roles

Data nodes in a group can also take on particular roles to enable particular features. These roles are transient and can be transferred to any other capable node in the group if needed. These roles can include:

Raft leader: Arbitrates and manages consensus between a group's nodes.

Write leader: Receives all write operations when applications connect through the connection manager.

Architectural flexibility

PGD offers flexible options with how its architecture can be deployed, maintained, and scaled to meet various performance, availability, and compliance needs.

PGD supports rolling maintenance, including blue/green deployments for both Postgres upgrades and other system or application-level changes. This approach ensures that the database remains available during routine tasks, such as minor
or major version upgrades, schema changes, and vacuuming operations. The system seamlessly switches between active database versions, achieving zero downtime.

PGD provides automatic failover to ensure high availability. If a node in the cluster becomes unavailable, another node takes over its responsibilities, minimizing downtime. Also, PGD includes self-healing capabilities, where nodes that have
failed or disconnected reconnect to the cluster and resume normal operations once the issue is resolved.

PGD allows for selective replication, enabling users to replicate only a subset of data to specific nodes. This feature can be used to optimize performance by reducing unnecessary data traffic between nodes or to meet regulatory requirements,
such as geographical data restrictions. For instance, a healthcare application might only replicate patient data within a specific region to comply with local data privacy laws.

With commit scopes, PGD also provides configurable durability. Accordingly, durability can be increased from the default asynchronous behavior and tuned using various configurable commit scopes:

Synchronous Commit: Works a lot like PostgreSQL’s synchronous_commit option in its underlying operation. Requires writing to at least one other node at COMMIT time but can be tuned to require all nodes.

CAMO (Commit At Most Once): Works by tracking each transaction with a unique ID and using a pair of nodes to confirm the transaction's outcome, ensuring the application knows whether to retry the transaction or not.

Group Commit: An experimental commit scope, the goal of which is to protect against data loss in case of single-node failures of temporary outages by requiring more than one PGD node to successfully confirm a transaction at COMMIT
time.

Lag Control: If replication is running outside of set limits (taking too long for another node to be replicated to), a delay is injected into the node that originally received the transaction, slowing things down until other nodes have caught
up.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 129

https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/overview#data-nodes
https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/subscriber_only/
https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/witness_nodes/
https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/logical_standby_nodes/
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/synchronous_commit.mdx
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/camo.mdx
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/group-commit.mdx
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/lag-control.mdx

6.2 PGD overview - architecture and performance

Architectural options and performance

Always-on architectures

A number of different architectures can be configured, each of which has different performance and scalability characteristics.

The group is the basic building block consisting of 2+ nodes (servers). In a group, each node is in a different availability zone, with a dedicated router and backup, giving immediate switchover and high availability. Each group has a dedicated
replication set defined on it. If the group loses a node, you can easily repair or replace it by copying an existing node from the group.

The Always-on architectures are built from either one group in a single location or two groups in two separate locations. Each group provides high availability. When two groups are leveraged in remote locations, they together also provide
disaster recovery (DR).

Tables are created across both groups, so any change goes to all nodes, not just to nodes in the local group.

One node in each group is selected as the group's write leader. Proxies then direct application writes and queries to the write leader. The other nodes are replicas of the write leader. If, at any point, the write leader is seen to be unavailable, the
remaining nodes in the group select a new write leader from the group and the proxies direct traffic to that node. Scalability isn't the goal of this architecture.

Since writes are mainly to only one node, the possibility of contention between nodes is reduced to almost zero. As a result, performance impact is much reduced.

Secondary applications might execute against the shadow nodes, although these are reduced or interrupted if the main application begins using that node.

In the future, one node will be elected as the main replicator to other groups, limiting CPU overhead of replication as the cluster grows and minimizing the bandwidth to other groups.

Supported Postgres database servers

PGD is compatible with PostgreSQL, EDB Postgres Extended Server, and EDB Postgres Advanced Server and is deployed as a standard Postgres extension named BDR. See Compatibility for details about supported version combinations.

Some key PGD features depend on certain core capabilities being available in the target Postgres database server. Therefore, PGD users must also adopt the Postgres database server distribution that's best suited to their business needs. For
example, if having the PGD feature Commit At Most Once (CAMO) is mission critical to your use case, don't adopt the community PostgreSQL distribution. It doesn't have the core capability required to handle CAMO.

PGD offers close-to-native Postgres compatibility. However, some access patterns don't necessarily work as well in multi-node setup as they do on a single instance. There are also some limitations in what you can safely replicate in a multi-
node setting. Application usage goes into detail about how PGD behaves from an application development perspective.

Characteristics affecting performance

By default, PGD keeps one copy of each table on each node in the group, and any changes propagate to all nodes in the group.

Since copies of data are everywhere, SELECTs need only ever access the local node. On a read-only cluster, performance on any one node isn't affected by the number of nodes and is immune to replication conflicts on other nodes caused by
long-running SELECT queries. Thus, adding nodes increases linearly the total possible SELECT throughput.

If an INSERT, UPDATE, and DELETE (DML) is performed locally, then the changes propagate to all nodes in the group. The overhead of DML apply is less than the original execution. So if you run a pure write workload on multiple nodes
concurrently, a multi-node cluster can handle more TPS than a single node.

Conflict handling has a cost that acts to reduce the throughput. The throughput then depends on how much contention the application displays in practice. Applications with very low contention perform better than a single node. Applications
with high contention can perform worse than a single node. These results are consistent with any multimaster technology and aren't particular to PGD.

Synchronous replication options can send changes concurrently to multiple nodes so that the replication lag is minimized. Adding more nodes means using more CPU for replication, so peak TPS reduces slightly as each node is added.

If the workload tries to use all CPU resources, then this resource constrains replication, which can then affect the replication lag.

In summary, adding more master nodes to a PGD group doesn't result in significant write throughput increase when most tables are replicated because all the writes are replayed on all nodes. Because PGD writes are in general more effective
than writes coming from Postgres clients by way of SQL, you can increase performance. Read throughput generally scales linearly with the number of nodes.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 130

https://www.postgresql.org/
https://www.enterprisedb.com/docs/pge/latest
https://www.enterprisedb.com/docs/epas/latest

6.3 PGD compared

The following table compares EDB Postgres Distributed with other replication solutions.

PGD
Standalone

PGD
Managed PSR + EFM pglogical 2

PG Builtin
Logical
Replication

Version at
last update
(2025-06-19)

6.x 6.x 4.10 2.4.5 17

Deployment

On Premise Yes Yes Yes Yes Yes

Multi-cloud Yes Yes Yes Yes Yes

Hybrid (on-prem + cloud) Yes Coming Soon Yes Yes Yes

SLA 99.999 99.995 99.99 N/A N/A

Performance

Read Scalability Yes No Yes
- Physical standbys

Yes
- More nodes

Yes
- More nodes

Horizontal Scalability No No No No No

Transaction Streaming Yes Yes Yes No Yes

Parallel Apply (Vertical Scalability) Yes Yes No No
Partial
- for large transactions
only

Durability

Asynchronous Replication Yes Yes Yes Yes Yes

Optional RPO limit for asynchronous replication Yes Yes No No No

Synchronous Replication Yes Yes Yes Yes Yes

Consensus based replication Yes Yes No No No

Per transaction durability setting Yes Yes Yes Yes Yes

Consistenct

Automatic conflict management Yes Yes N/A Yes No

Conflict avoidance types Yes Yes N/A No No

Conflict avoidance at commit (pessimistic conflict handling) Yes Yes N/A No No

Builtin distributed sequence
Yes
- snowflake (bigint)
- galloc (int/bigint)

Yes
- snowflake (bigint)
- galloc (int/bigint)

N/A No No

Data Distibution

Data residency/selective replication Yes Yes No Yes Yes

Cluster level Active-Active (writers in different regions) Yes Yes No Manual setup No

Regional Active-Active (multiple writers within region) Yes
- not recommended unless specific setup

No No Manual setup No

Automatic partitioning Yes Yes Yes with EPAS No No

Offload cold data to cheaper storage Yes Yes No No No

Maintenance

Near-zero downtime major version upgrades by adding nodes Yes Yes
Yes
- using logical
replication

Yes Yes

Near-zero downtime inplace major version upgrades Yes Yes No No No

Rolling schema upgrades/green-blue (with application
assistance)

Yes Yes No No No

Rolling maintenance operations Yes Yes No Yes Yes

Connection Mgmt

Automatic failover Yes Yes Yes N/A N/A

Automatic connection failover for switchover Yes Yes Yes N/A N/A

Cluster level connection routing Yes Yes Yes N/A N/A

Region level connection routing Yes Yes No N/A N/A

pgbouncer support Yes No Yes N/A N/A

DDL Support

General DDL replication Yes Yes Yes Manual No

Granular (per-object) DDL locking Yes Yes Yes No No

Create and drop objects Yes Yes Yes Manual No

Add columns to table Yes Yes Yes Unsafe/manual No

Change column type
Yes
- rewrite requires
permit_unsafe_commands

Yes
- rewrite requires
permit_unsafe_commands

Yes Unsafe/manual No

CREATE TABLE AS Yes
- with restrictions

Yes
- with restrictions

Yes Unsafe/manual No

PG Compatibility

Latest supported version 17 17 17 17 17

Works on standard PG Yes No Yes Yes Yes

Supports TDE Yes with EPAS/PGE Yes with EPAS/PGE Yes with EPAS/PGE No Yes with EPAS/PGE

Supports custom types (i.e. Postgis) Yes Yes Yes Yes Yes

Supports extensions Many Many All Many Many

CDC failover support No No Yes N/A N/A

Large Object support No No Yes No No

Multiple DB support No No Yes N/A N/A

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 131

Management

CLI Yes Yes Yes No No

GUI PEM Yes PEM No No

Monitoring options
- SQL
- CLI
- PEM

- SQL
- CLI
- UPM

- SQL
- CLI
- PEM

SQL SQL

Licensing

Source available No No No Yes Yes

Open source No No No Yes Yes

PGD
Standalone

PGD
Managed PSR + EFM pglogical 2

PG Builtin
Logical
Replication

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 132

7 Node types and capabilities

A PGD cluster can contain several different types of node, each with its own role. This section describes the different types of node that can be configured in a PGD cluster.

Overview is an overview the kinds of node that can exist in PGD clusters and their associated roles.

Witness nodes looks at the witness node, a special class of PGD node, dedicated to establishing consensus in a group.

Logical standby nodes shows how to efficiently keep a node on standby synchronized and ready to step in as a primary in the case of failure.

Subscriber-only nodes and groups looks at how subscriber-only nodes work with subscriber-only groups, how they boost read scalability and the different options for configuring them.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 133

https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/overview
https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/witness_nodes
https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/logical_standby_nodes
https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/subscriber_only

7.1 An overview of PGD Node types

Data nodes

A data node in PGD is a node that runs a Postgres instance. It replicates data to all other data nodes. It also participates in the cluster-wide Raft decision-making around locking and leadership. It can be a member of one or more groups and is,
by default, a member of the "top level" group that spans all data nodes in the cluster.

The data node is also the foundation on which the other three nodes are built.

Witness nodes

A witness node behaves like a data node in that it participates in the cluster-wide Raft decision-making around locking and leadership. It doesn't replicate or store data, though. The purpose of a witness node is to be available to ensure that the
cluster can achieve a majority it seeks a consensus. Witness nodes has more details.

Logical standby nodes

Logical standby nodes are nodes that receive the logical data changes from another node and replicate them locally. PGD can use a logical standby node to replace the node it's replicating if that node becomes unavailable, with some caveats.
See Logical standby nodes for more details.

Subscriber-only nodes

A subscriber-only node is a data node that, as the name suggests, only subscribes to changes in the cluster but doesn't replicate changes to other nodes. You can use subscriber-only nodes as read-only nodes for applications. You create
subscriber-only nodes by specifying a data node is subscriber-only when you create the node and then adding it to a subscriber-only group. See Subscriber-only nodes and groups for more details.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 134

7.2 Witness nodes

A witness node is a lightweight node that functions as a data node but that doesn't store or replicate data. Use a witness node to allow a PGD cluster that uses Raft consensus to have an odd number of voting nodes and therefore be able to
achieve a majority when making decisions.

Witness nodes within PGD groups or regions

One typical use of witness nodes is when a PGD group has two data nodes but resources aren't available for the recommended three data nodes. In this case, you can add a witness node to the PGD group to provide a third voting node to local
Raft decision-making. These decisions are primarily about who will be electing a write leader for the proxies to use. With only two nodes, it's possible to have no consensus over which data node is write leader. With two data nodes and a
witness, there are two candidates (the data nodes) and three voters (the data nodes and the witness). When a data node is down, then, there are still two voters that can select a write leader.

Witness node outside regions

At a higher level, you can use witness nodes when multiple PGD groups are mapped to different regions. For example, with three data nodes per region in two regions, while running normally, all six data nodes can participate in Raft decisions
and obtain DDL and DML global locks. Even when a data node is down, there are sufficient data nodes to obtain a consensus. But if a network partition occurs and connectivity with the other region is lost, then now only three nodes out of six
are available, which isn't enough for a consensus. To avoid this scenario, you can deploy a witness node in a third region as part of the PGD cluster. This witness node will allow a consensus to be achieved for most operational requirements of
the PGD cluster while a region is unavailable.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 135

7.3 Logical standby nodes

PGD allows you to create a logical standby node, also known as an offload node, a read-only node, receive-only node, or logical-read replicas. A master node can have zero, one, or more logical standby nodes.

Note

Logical standby nodes can be used in environments where network traffic between data centers is a concern. Otherwise, having more data nodes per location is always preferred.

Logical standby nodes are nodes that are held in a state of continual recovery, constantly updating until they're required. This behavior is similar to how Postgres physical standbys operate, while using logical replication for better
performance. Logical standby nodes receive changes but don't send changes made locally to other nodes.

A logical standby is created by specifying the node_kind as standby when creating the node with bdr.create_node .

Later, if you want, use bdr.promote_node to move the logical standby into a full, normal send/receive node.

A logical standby is sent data by one source node, defined by the DSN in bdr.join_node_group . Changes from all other nodes are received from this one source node, minimizing bandwidth between multiple sites.

For high availability, if the source node dies, one logical standby can be promoted to a full node and replace the source in a failover operation similar to single-master operation. If there are multiple logical standby nodes, the other nodes can't
follow the new master, so the effectiveness of this technique is limited to one logical standby.

In case a new standby is created from an existing PGD node, the needed replication slots for operation aren't synced to the new standby until at least 16 MB of LSN has elapsed since the group slot was last advanced. In extreme cases, this
might require a full 16 MB before slots are synced or created on the streaming replica. If a failover or switchover occurs during this interval, the streaming standby can't be promoted to replace its PGD node, as the group slot and other
dependent slots don't exist yet.

The slot sync-up process on the standby solves this by invoking a function on the upstream. This function moves the group slot in the entire EDB Postgres Distributed cluster by performing WAL switches and requesting all PGD peer nodes to
replay their progress updates. This behavior causes the group slot to move ahead in a short time span. This reduces the time required by the standby for the initial slot's sync-up, allowing for faster failover to it, if required.

On PostgreSQL, it's important to ensure that the slot's sync-up completes on the standby before promoting it. You can run the following query on the standby in the target database to monitor and ensure that the slots synced up with the
upstream. The promotion can go ahead when this query returns true .

You can also nudge the slot sync-up process in the entire PGD cluster by manually performing WAL switches and by requesting all PGD peer nodes to replay their progress updates. This activity causes the group slot to move ahead in a short
time and also hastens the slot sync-up activity on the standby. You can run the following queries on any PGD peer node in the target database for this:

Use the monitoring query on the standby to check that these queries do help in faster slot sync-up on that standby.

A logical standby does allow write transactions. You can use this to great benefit, since it allows the logical standby to have additional indexes, longer retention periods for data, intermediate work tables, LISTEN/NOTIFY, temp tables,
materialized views, and other differences.

Any changes made locally to logical standbys that commit before the promotion aren't sent to other nodes. All transactions that commit after promotion are sent onwards. If you perform writes to a logical standby, take care to quiesce the
database before promotion.

You might make DDL changes to logical standby nodes, but they aren't replicated and they don't attempt to take global DDL locks. PGD functions that act similarly to DDL also aren't replicated. See DDL replication. If you made incompatible
DDL changes to a logical standby, then the database is a divergent node. Promotion of a divergent node currently results in replication failing. As a result, plan to either ensure that a logical standby node is kept free of divergent changes if you
intend to use it as a standby, or ensure that divergent nodes are never promoted.

SELECT true FROM pg_catalog.pg_replication_slots
WHERE
 slot_type = 'logical' AND confirmed_flush_lsn IS NOT
NULL;

SELECT bdr.run_on_all_nodes('SELECT
pg_catalog.pg_switch_wal()');
SELECT bdr.run_on_all_nodes('SELECT
bdr.request_replay_progress_update()');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 136

7.4 Subscriber-only nodes and groups

Subscriber-only nodes and groups offer a powerful way to build read scaling into your PGD cluster.

The Overview introduces how subscriber-only nodes and groups work in PGD.

Creating a subscriber-only group explains how to create a subscriber-only group and node.

Joining a node to a subscriber-only group explains how to join a node to an existing subscriber-only group which has members.

Optimizing subscriber-only groups provides details on how to configure the PGD subscriber-only optimized topology feature which uses a group leader for more efficient replication.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 137

7.4.1 An overview of Subscriber-only nodes

Overview

While many use cases rely on accessing a database node which can handle queries and updates, there are also use cases which only require access to a node that can handle read-only database queries. Read scaling like this, by moving the
read-only traffic away from active database nodes in the cluster, can improve the performance of the core cluster, whilst making database access more widely available.

Subscriber-only nodes

The basic idea of subscriber-only nodes is to provide a read-only node that you can use to offload read-only queries from the main cluster. The default topology of a PGD cluster is what's called a full mesh topology, where every node connects
to every other node. This is the most robust and fault-tolerant way to connect nodes, but it can be inefficient for some use cases.

Subscriber-only nodes can be a member of a subscriber-only group or, with PGD 6 and later, they can be part of a data group.

Subscriber-only groups

Subscriber-only groups in PGD gather together subscriber-only nodes. Each group can address different regions or different application demands.

Unlike data groups, a subscriber-only group has no raft consensus mechanism of its own. This also means that a subscriber-only group can have as many subscriber-only nodes as your need.

Previous to PGD 6, the existence of a subscriber-only group didn't change the replication topology. All nodes in the subscriber-only group, by default, independently receive replicated changes from all other nodes in the cluster.

Optimizing subscriber-only groups

In PGD 6 and later, you can optionally optimize the topology of subscriber-only groups.

For clusters using proxies and raft-enabled groups for their data nodes, subscriber-only groups can use a more efficient model for receiving replicated changes.

The optimized topology option creates a group leader in each subscriber-only group, similar to a write leader in PGD Proxies. The group leader receives all the changes from the cluster and then replicates them to the other nodes in its group.
See Optimizing subscriber-only groups for more information on this feature.

Subscriber-only nodes and DDL

Subscriber-only nodes can execute locally issued DDL commands but they don't replicate those changes to other nodes in the cluster and will not attempt to acquire locks on the cluster.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 138

7.4.2 Creating Subscriber-only groups and nodes

The process of creating a Subscriber-only node or nodes starts with creating a Subscriber-only group to contain the node or nodes. Perform this step on an existing fully joined node in the PGD cluster.

Creating a Subscriber-only group manually

To create a Subscriber-only group, you must specify the node_group_type as subscriber-only when creating the group. For example, here we are logged into the node "node-one" running on "host-one". It's a member of it's own data
group and as for all nodes, a member of the top-level group, here called topgroup . Log into this node directly to create a new Subscriber-only group named sogroup with the following SQL command:

or more explicitly with parameter names:

This creates a Subscriber-only group named sogroup which is a child of the topgroup group. The false parameter for join_node_group indicates that the node executing this command shouldn't join to the newly created group.
Automatically joining the group is the default behavior, which in this case needs to be supressed.

Adding a node to a new Subscriber-only group manually

You can now initialize a new data node and then add it to the Subscriber-only group. Create a data node and configure the bdr extension on it as you would for any other data node.

You now have to create this new node as a subscriber-only node. To do this, log into the new node and run the following SQL command:

Then, log into that new node and add it to the sogroup group with the following SQL command:

or more explicitly with parameter names:

This instructs the new node to join the sogroup group. As it has no knowledge of the cluster topology, it will connect to the node specified in the DSN to receive the necessary information to join the group. In this example, this happens to be
the same node as we used to create the subscriber-only group, but it could be any node that's fully joined to the cluster.

select bdr.create_node_group('sogroup', 'topgroup', false, 'subscriber-only');

select
bdr.create_node_group(node_group_name:='sogroup',
 parent_group_name:='topgroup',
 join_node_group:=false,
 node_group_type:='subscriber-only');

select bdr.create_node('so-node-1', 'host=so-host-1 dbname=pgddb port=5444', 'subscriber-
only');

 select bdr.join_node_group('host=host-one dbname=pgddb port=5444','sogroup');

select bdr.join_node_group(dsn:='host=host-one dbname=pgddb port=5444',
 node_group_name:='sogroup');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 139

7.4.3 Joining nodes to a Subscriber-only group

If you have no subscriber-only groups in your PGD cluster, you must create the groups following the process in Creating Subscriber-only groups and nodes. After you have created a subscriber-only group, you can join subscriber-only nodes to
it.

Joining a node to an existing subscriber-only group

Unlike joining a node to a new subscriber-only group, joining a node to an existing subscriber-only group is a simpler process.

First create the new node as a subscriber-only node. Run the following SQL command on the new node:

or more explicitly with parameter names:

This command creates a new node named so-node-2 on host so-host-2 and configures it as a subscriber-only node. The node won't be able to join the cluster until joins a group.

In creating a new subscriber-only group, you created a group named sogroup and added a subscriber-only node called so-node-1 on a host shost-1 . It used a node in an existing data group to facilitate that join. But you can't use this
new subscriber-only node to add another subscriber-only node. You must use any active data node that's fully joined to the cluster. In the creating examples, they use host-one in the cluster's data group for this task. You can use the
following SQL command on shost-2 to join it to the sogroup group:

or more explicitly with parameter names:

This command instructs the new node to join the sogroup group. As it has no knowledge of the cluster topology, it connects to the node specified in the DSN to receive the necessary information to join the group. That node must be fully
joined to the cluster as it acts as the source of the request for the new node to join the group.

Once the new node has joined the group, it starts by first synchronizing and then begins to receive replication changes from the other nodes in the cluster.

Note

Unless, the group is using the optimized topology, in which case it replicates changes from a subscriber-only group leader in the subscriber-only group it has joined.

select bdr.create_node('so-node-2', 'host=so-host-2 dbname=pgddb port=5444', 'subscriber-
only');

select bdr.create_node(node_name:='so-node-2',
 dsn:='host=so-host-2 dbname=pgddb
port=5444',
 node_type:='subscriber-only');

select bdr.join_node_group('host=host-one dbname=pgddb port=5444','sogroup');

select bdr.join_node_group(dsn:='host=host-one dbname=pgddb port=5444',
 node_group_name:='sogroup');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 140

7.4.4 Optimizing subscriber-only groups

With PGD 6 and later, it's possible to optimize the topology of subscriber-only groups.

In this optimized topology, a small number of fully active nodes—the write leaders of the data groups—replicate changes to the group leaders of subscriber-only groups. These group leaders then replicate changes to the other members of its
subscriber-only group.

Requirements for the optimized topology

You can't enable this model if a cluster has any of the following:

Data nodes that are directly members of the top-level group
No data-node subgroups
No data-node subgroups with proxy routing enabled

If any of these are the case, the nodes in subscriber-only groups revert to the full mesh topology.

To get the benefit of the new SO group and node replication, you must have your data nodes in subgroups, with proxy routing enabled on the subgroups.

How the optimized topology works

For clusters using groups for their data nodes, subscriber-only groups can use a more efficient model. This model uses subscriber-only group leaders, similar to write leaders in PGD proxies.

Each subscriber-only group uses that group leader to replicate changes to other subscriber-only nodes in its group. The group leader acts as a replication proxy for incoming changes.

The write leader nodes in data groups replicate changes to the group leaders of the subscriber-only groups. Other nodes in the data groups only replicate with nodes in their data group and with data nodes in other data groups. They do not
directly replicate their changes to the subscriber-only groups.

Subscriber-only group leaders

With PGD 6 and later, each subscriber-only group gets assigned a group leader of its own. This is because subscriber-only groups don't have a group Raft consensus mechanism of their own. Instead, the cluster’s top-level group uses its Raft
consensus mechanism to handle selecting each subscriber-only group’s group leader. This group leader selection is on by default in PGD 6, regardless of the topology optimization settings.

Group leaders in subscriber-only groups are regularly tested for connectivity and, if unavailable, the voting nodes of top-level group select a new subscriber-only node from the subscriber-only group to become group leader. The new group
leader is then selected.

With optimized technology turned off, this election has no effect on the replication topology. Without the optimized topology, all data nodes replicate changes to all other nodes in the cluster.

Group leaders in the optimized topology

With the optimized topology enabled, only the subscriber-only group's group leader receives changes from other data groups' write leaders in the cluster. The group leader takes on the responsibility of replicating those changes to the other
nodes in the subscriber-only group.

The other voting nodes choose the group leader from a subscriber-only group's nodes. Once the group leader is selected, the whole cluster becomes aware of the change, and any data group's write leaders then replicate data only to this newly
selected group leader node. Other data nodes in the data groups don't replicate data to the subscriber-only group's nodes.

This approach avoids the explosion of active connections that can happen when there are large numbers of SO nodes and reduces the amount of replication traffic.

The subscriber-only node and group form the building block for PGD tree topologies.

Enabling the optimized model

By default, PGD 6 forces the full mesh topology. This means the optimization described here is off. To enable the optimized topology, you must have your data nodes in subgroups, with proxy routing enabled on the subgroups. You can then set
the GUC bdr.force_full_mesh to off to allow the optimization to be activated.

Note

This GUC needs to be set in the postgresql.conf file on each data node and each node restarted for the change to take effect.

If any requirements of the optimized topology aren't met, the nodes in a subscriber-only group revert to the full mesh topology. When this happens, you'll find in the logs of the nodes in the cluster messages why the optimization wasn't
possible, such as:

When a data node is part of the top-level node group:

node: <nodename> is part of top-level nodegroup: <toplevelgroupname>: changing to full mesh".

When a data group doesn't have proxy routing enabled:

node: <nodename> is in nodegroup: <nodegroupname> that does not have proxy routing: changing to full mesh.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 141

8 Node management

All data nodes in a PGD cluster are members of one or more groups. By default, all data nodes are members of the top-level group, which spans all data nodes in the PGD cluster. Nodes can also belong to subgroups that can be configured to
reflect logical or geographical organization of the PGD cluster.

You can manage nodes and groups using the various options available with nodes and subgroups.

Creating nodes covers the steps needed to create a new node in a PGD cluster.

Groups and subgroups goes into more detail on how groups and subgroups work in PGD.

Creating and joining groups looks at how new PGD groups can be created and how to join PGD nodes to them.

Viewing topology details commands and SQL queries that can show the structure of a PGD cluster's nodes and groups.

Removing nodes and groups shows the process to follow to safely remove a node from a group or a group from a cluster.

Connection DSNs introduces the DSNs or connection strings needed to connect directly to a node in a PGD cluster. It also covers how to use SSL/TLS certificates to provide authentication and encryption between servers and between
clients.

Node recovery details the steps needed to bring a node back into service after a failure or scheduled downtime and the impact it has on the cluster as it returns.

Automatic Sync looks at how the automatic sync feature works in PGD and how it can be used to keep nodes in sync with each other.

Node UUIDs explains how the UUIDs of nodes are used in PGD and how they are generated.

Replication slots examines how the Postgres replication slots are consumed when PGD is operating.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 142

8.1 Creating PGD nodes

It's just Postgres

A PGD node is just a Postgres instance with the BDR extension installed. The BDR extension enables bidirectional replication between nodes and is the foundation of PGD.

That means, in the most general terms, you can create a PGD node by installing Postgres and the BDR extension, and then configuring the node to connect to the other nodes in the PGD group. But there are some specifics to consider.

Which Postgres version?

PGD is built on top of Postgres, so the distribution and version of Postgres you use for your PGD nodes is important. The version of Postgres you use must be compatible with the version of PGD you are using. You can find the compatibility
matrix in the release notes. Features and functionality in PGD may depend on the distribution of Postgres you are using. The EDB Postgres Advanced Server is the recommended distribution for PGD. PGD also supports EDB Postgres Extended
Server and Community Postgres.

Installing Postgres

You must install your selected Postgres distribution on each node you are configuring. You can find installation instructions for each distribution in the EDB Postgres Advanced Server documentation, EDB Postgres Extended Server
documentation, and the Postgres installation documentation. You can also refer to the PGD manual installation guide which covers the installation of Postgres.

Installing the BDR extension

The BDR extension is the key to PGD's distributed architecture. You need to install the BDR extension on each node in your PGD cluster. The BDR extension is available from the EDB Postgres Distributed repository. You need to add the
postgres_distributed repository to your package management system on Linux and then install the edb-bdr package. You can find the repository configuration instructions in the PGD manual installation guide.

Once the repository is configured, you can install the BDR package with your package manager. The package name is edb-pgd6-<postgresversion> where <postgresversion> is the version of Postgres you are using. For
example, if you are using Postgres 14, the package name is edb-pgd6-14 .

Configuring the database for PGD

This process is specific to PGD and involves configuring the Postgres instance to work with the BDR extension and adjusting various settings to work with the PGD cluster. The steps are as follows:

Add the BDR extension $libdir/bdr at the start of the shared_preload_libraries setting in postgresql.conf .

Set the wal_level GUC variable to logical in postgresql.conf .

Turn on commit timestamp tracking by setting track_commit_timestamp to 'on' in postgresql.conf .

Increase the maximum worker processes to 16 or higher by setting max_worker_processes to '16' in postgresql.conf .

The max_worker_processes value

The max_worker_processes value is derived from the topology of the cluster, the number of peers, number of databases, and other factors. To calculate the needed value, see Postgres configuration/settings. The value
of 16 was calculated for the size of cluster being deployed in this example. It must be increased for larger clusters.

Set a password on the EnterprisedDB/Postgres user.

Add rules to pg_hba.conf to allow nodes to connect to each other.

Ensure that these lines are present in pg_hba.conf :

host all all all md5
host replication all all md5

Add a .pgpass file to allow nodes to authenticate each other.

Configure a user with sufficient privileges to log in to the other nodes.
See The Password File in the Postgres documentation for more on the .pgpass file.

Once these steps are complete, restart the Postgres instance to apply the changes.

Initializing a PGD node

Log into the database instance you have configured and set up the BDR extension. You can do this by running the CREATE EXTENSION bdr; command as super user in the database. This command creates the BDR extension.

You also need to create a database within Postgres to use as PGD's replicated database. You can do this with the CREATE DATABASE command. The created database should be the name of the database that other nodes in the PGD cluster
replicate. The convention is to name the database pgddb .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 143

https://www.enterprisedb.com/docs/epas/latest/
https://www.enterprisedb.com/docs/pge/latest/
https://www.postgresql.org/
https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.enterprisedb.com/docs/pge/latest/installing/
https://www.enterprisedb.com/docs/supported-open-source/postgresql/installing/
https://www.enterprisedb.com/docs/pgd/latest/reference/postgres-configuration/#postgres-settings
https://www.postgresql.org/docs/current/libpq-pgpass.html

Next steps

The node is now configured and ready to be join a group, or start a group, in the PGD cluster. You can find instructions for joining a node to a group in the Joining a node to a group section.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 144

https://www.enterprisedb.com/docs/pgd/latest/reference/node_management/creating_and_joining

8.2 Groups and subgroups

Groups

A PGD cluster's nodes are gathered in groups. A "top level" group always exists and is the group to which all data nodes belong to automatically. The "top level" group can also be the direct parent of sub-groups.

Sub-groups

A group can also contain zero or more subgroups. Subgroups can be used to represent data centers or locations allowing commit scopes to refer to nodes in a particular region as a whole. Connection Manager can also make use of subgroups to
delineate nodes available to be write leader.

The node_group_type value specifies the type when the subgroup is created. Some sub-group types change the behavior of the nodes within the group. For example, a subscriber-only sub-group will make all the nodes within the group
into subscriber-only nodes.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 145

8.3 Creating and joining PGD groups

Creating and joining PGD groups

For PGD, every node must connect to every other node. To make configuration easy, when a new node joins, it configures all existing nodes to connect to it. For this reason, every node, including the first PGD node created, must know the
PostgreSQL connection string that other nodes can use to connect to it. This connection string is sometimes referred to as a data source name (DSN).

Both formats of connection string are supported. So you can use either key-value format, like host=myhost port=5432 dbname=mydb , or URI format, like postgresql://myhost:5432/mydb .

The SQL function bdr.create_node_group() creates the PGD group from the local node. Doing so activates PGD on that node and allows other nodes to join the PGD group, which consists of only one node at that point. At the time of
creation, you must specify the connection string for other nodes to use to connect to this node.

When the first PGD node group is created, a default replication set is also created, and all existing tables are added into the set. After that, all tables will have the bdr.default_replica_identity value configured as the REPLICA
IDENTITY for the table.

Once the node group is created, further nodes can join the PGD group using the bdr.join_node_group() function.

Alternatively, use the command line utility bdr_init_physical to create a new node, using pg_basebackup . If using pg_basebackup , the bdr_init_physical utility can optionally specify the base backup of only the target database. The
earlier behavior was to back up the entire database cluster. With this utility, the activity completes faster and also uses less space because it excludes unwanted databases. If you specify only the target database, then the excluded databases
get cleaned up and removed on the new node.

When a new PGD node is joined to an existing PGD group or a node subscribes to an upstream peer, before replication can begin the system must copy the existing data from the peer nodes to the local node. This copy must be carefully
coordinated so that the local and remote data starts out identical. It's not enough to use pg_dump yourself. The BDR extension provides built-in facilities for making this initial copy.

During the join process, the BDR extension synchronizes existing data using the provided source node as the basis and creates all metadata information needed for establishing itself in the mesh topology in the PGD group. If the connection
between the source and the new node disconnects during this initial copy, restart the join process from the beginning.

The node that's joining the cluster must not contain any schema or data that already exists on databases in the PGD group. We recommend that the newly joining database be empty except for the BDR extension. However, it's important that all
required database users and roles are created. Also, if a non-superuser is performing the joining operation, extensions that require superuser permission must be created manually. For more details, see Connections and roles.

Optionally, you can skip the schema synchronization using the synchronize_structure parameter of the bdr.join_node_group function. In this case, the schema must already exist on the newly joining node.

We recommend that you select the source node that has the best connection (logically close, ideally with low latency and high bandwidth) as the source node for joining. Doing so lowers the time needed for the join to finish.

Coordinate the join procedure using the Raft consensus algorithm, which requires most existing nodes to be online and reachable.

The logical join procedure (which uses the bdr.join_node_group function) performs data sync doing COPY operations and uses multiple writers (parallel apply) if those are enabled.

Node join can execute concurrently with other node joins for the majority of the time taken to join. However, only one regular node at a time can be in either of the states PROMOTE or PROMOTING. These states are typically fairly short if all
other nodes are up and running. Otherwise the join is serialized at this stage. The subscriber-only nodes are an exception to this rule, and they can be concurrently in PROMOTE and PROMOTING states as well, so their join process is fully
concurrent.

The join process uses only one node as the source, so it can be executed when nodes are down if a majority of nodes are available. This approach can cause a complexity when running logical join. During logical join, the commit timestamp of
rows copied from the source node is set to the latest commit timestamp on the source node. Committed changes on nodes that have a commit timestamp earlier than this (because nodes are down or have significant lag) can conflict with
changes from other nodes. In this case, the newly joined node can be resolved differently to other nodes, causing a divergence. As a result, we recommend not running a node join when significant replication lag exists between nodes. If this is
necessary, run LiveCompare on the newly joined node to correct any data divergence once all nodes are available and caught up.

pg_dump can fail when there's concurrent DDL activity on the source node because of cache-lookup failures. Since bdr.join_node_group uses pg_dump internally, it might fail if there's concurrent DDL activity on the source node.
Retrying the join works in that case.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 146

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

8.4 Viewing PGD topology

Listing PGD groups

Using pgd-cli

Use the pgd-cli groups list command to list all groups in the PGD cluster:

pgd groups list

 Group Name Parent Group Name Group Type Nodes
 ---------- ----------------- --------------- -----
 bdrgroup bdrgroup global 0
 group_a bdrgroup data 4
 group_b bdrgroup data 4
 group_c bdrgroup data 1
 group_so bdrgroup subscriber-only 1

Using SQL

The following simple query lists all the PGD node groups of which the current node is a member. It currently returns only one row from bdr.local_node_summary .

You can display the configuration of each node group using a more complex query:

Listing nodes in a PGD group

Using pgd-cli

Use the nodes list command to list all nodes in the PGD cluster:

pgd nodes list

 Node Name Group Name Node Kind Join State Node Status
 ------------------- ---------- --------------- ---------- -----------
 bdr-a1 group_a data ACTIVE Up
 bdr-a2 group_a data ACTIVE Up
 logical-standby-a1 group_a standby ACTIVE Up
 witness-a group_a witness ACTIVE Up
 bdr-b1 group_b data ACTIVE Up
 bdr-b2 group_b data ACTIVE Up
 logical-standby-b1 group_b standby ACTIVE Up
 witness-b group_b witness ACTIVE Up
 witness-c group_c witness ACTIVE Up
 subscriber-only-c1 group_so subscriber-only ACTIVE Up

Use grep with the group name to filter the list to a specific group:

pgd nodes list | grep group_b

 bdr-b1 group_b data ACTIVE Up
 bdr-b2 group_b data ACTIVE Up
 logical-standby-b1 group_b standby ACTIVE Up
 witness-b group_b witness ACTIVE Up

Using SQL

You can extract the list of all nodes in a given node group (such as mygroup) from the bdr.node_summary ` view. For example:

SELECT node_group_name
FROM bdr.local_node_summary;

SELECT g.node_group_name
,
ns.pub_repsets
,
ns.sub_repsets
, g.node_group_default_repset AS
default_repset
, node_group_check_constraints AS check_constraints
FROM bdr.local_node_summary ns
JOIN bdr.node_group g USING
(node_group_name);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 147

SELECT node_name AS name
, node_seq_id AS
ord
, peer_state_name AS current_state
, peer_target_state_name AS target_state
, interface_connstr AS
dsn
FROM
bdr.node_summary
WHERE node_group_name = 'mygroup';

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 148

8.5 Removing nodes and groups

Removing a node from a PGD group

Since PGD is designed to recover from extended node outages, you must explicitly tell the system if you're removing a node permanently. If you permanently shut down a node and don't tell the other nodes, then performance suffers and
eventually the whole system stops working.

Node removal, also called parting, is done using the bdr.part_node() function. You must specify the node name (as passed during node creation) to remove a node. You can call the bdr.part_node() function from any active node in
the PGD group, including the node that you're removing.

Just like the join procedure, parting is done using Raft consensus and requires a majority of nodes to be online to work.

The parting process affects all nodes. The Raft leader manages a vote between nodes to see which node has the most recent data from the parting node. Then all remaining nodes make a secondary, temporary connection to the most recent
node to allow them to catch up any missing data.

A parted node still is known to PGD but doesn't consume resources. A node might be added again under the same name as a parted node. In rare cases, you might want to clear all metadata of a parted node by using the function
bdr.drop_node() .

Removing a whole PGD group

PGD groups usually map to locations. When a location is no longer being deployed, it's likely that the PGD group for the location also needs to be removed.

The PGD group that's being removed must be empty. Before you can remove the group, you must part all the nodes in the group.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 149

8.6 Connection DSNs and SSL (TLS)

Because nodes connect using libpq , the DSN of a node is a libpq connection string. As such, the connection string can contain any permitted libpq connection parameter, including those for SSL. The DSN must work as the
connection string from the client connecting to the node in which it's specified. An example of such a set of parameters using a client certificate is:

With this setup, the files bdr_client.crt , bdr_client.key , and root.crt must be present in the data directory on each node, with the appropriate permissions. For verify-full mode, the server's SSL certificate is checked to
ensure that it's directly or indirectly signed with the root.crt certificate authority and that the host name or address used in the connection matches the contents of the certificate. In the case of a name, this can match a subject's
alternative name or, if there are no such names in the certificate, the subject's common name (CN) field. Postgres doesn't currently support subject alternative names for IP addresses, so if the connection is made by address rather than name,
it must match the CN field.

The CN of the client certificate must be the name of the user making the PGD connection, which is usually the user postgres. Each node requires matching lines permitting the connection in the pg_hba.conf file. For example:

Another setup might be to use SCRAM-SHA-256 passwords instead of client certificates and not verify the server identity as long as the certificate is properly signed. Here the DSN parameters might be:

The corresponding pg_hba.conf lines are:

In such a scenario, the postgres user needs a .pgpass file containing the correct password.

sslmode=verify-full sslcert=bdr_client.crt
sslkey=bdr_client.key
sslrootcert=root.crt

hostssl all postgres 10.1.2.3/24
cert
hostssl replication postgres 10.1.2.3/24
cert

sslmode=verify-ca sslrootcert=root.crt

hostssl all postgres 10.1.2.3/24 scram-sha-
256
hostssl replication postgres 10.1.2.3/24 scram-sha-
256

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 150

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLMODE
https://www.postgresql.org/docs/current/libpq-pgpass.html

8.7 Node restart and down node recovery

PGD is designed to recover from node restart or node disconnection. The disconnected node rejoins the group by reconnecting to each peer node and then replicating any missing data from that node.

When a node starts up, each connection begins showing up in bdr.node_slots with bdr.node_slots.state = catchup and begins replicating missing data. Catching up continues for a period of time that depends on the amount
of missing data from each peer node and will likely increase over time, depending on the server workload.

If the amount of write activity on each node isn't uniform, the catchup period from nodes with more data can take significantly longer than other nodes. Eventually, the slot state changes to bdr.node_slots.state = streaming .

Nodes that are offline for longer periods, such as hours or days, can begin to cause resource issues for various reasons. Don't plan on extended outages without understanding the following issues.

Each node retains change information (using one replication slot for each peer node) so it can later replay changes to a temporarily unreachable node. If a peer node remains offline indefinitely, this accumulated change information eventually
causes the node to run out of storage space for PostgreSQL transaction logs (WAL in pg_wal), and likely causes the database server to shut down with an error similar to this:

PANIC: could not write to file "pg_wal/xlogtemp.559": No space left on device

Or, it might report other out-of-disk related symptoms.

In addition, slots for offline nodes also hold back the catalog xmin, preventing vacuuming of catalog tables.

On EDB Postgres Extended Server and EDB Postgres Advanced Server, offline nodes also hold back freezing of data to prevent losing conflict-resolution data (see Origin conflict detection).

Administrators must monitor for node outages (see Monitoring) and make sure nodes have enough free disk space. If the workload is predictable, you might be able to calculate how much space is used over time, allowing a prediction of the
maximum time a node can be down before critical issues arise.

Don't manually remove replication slots created by PGD. If you do, the cluster becomes damaged and the node that was using the slot must be parted from the cluster, as described in Replication slots created by PGD.

While a node is offline, the other nodes might not yet have received the same set of data from the offline node, so this might appear as a slight divergence across nodes. The parting process corrects this imbalance across nodes.

During a phase of parting called part catchup, a node is selected that is furthest ahead from all other nodes with respect to the offline node. If other nodes are not equally caught up with respect to this furthest node, a sync is started with the
furthest-ahead node as source, offline node as origin and each of the nodes that are not equally caught up as targets. A sync is essentially a subscription on the target node to the source node (furthest ahead node), which forwards changes
from the offline node (origin) to the target node.

Depending on how far behind other nodes are, this sync may take some time during parting. Once the sync is complete and all nodes equally caught up, parting moves on to part the node. Without this sync, if a forced part is done, the state of
the cluster may not be consistent. This means data can diverge. The automatic sync feature ensures that when a node goes offline, this is detected and all nodes are equally caught up with respect to this offline node by a sync process. This
ensures that we do not have to wait until node parting to ensure data consistency.

When a node is down for an extended period or lost permanently, the recommended strategy is to part the failing node and rejoin a new one in its place. The new node can use the same name as the original.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 151

https://www.postgresql.org/docs/current/logicaldecoding-explanation.html
https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts
https://www.enterprisedb.com/docs/pgd/latest/reference/monitoring/

8.8 Automatic synchronization

Auto-triggering the Sync

The BDR manager process does the auto-triggering of sync requests. When there are no updates from a node for an interval of time greater than 3 times bdr.replay_progress_frequency , it is considered to be down.

Nodes are checked for their closeness to each other. If all nodes are equally caught up, no sync is needed. If not, the node that is furthest ahead from the "down" node is chosen as a source. Once a source is determined, for each target - nodes
other than the origin and source - a sync request is set up. Witness and standby nodes do not need to be targets in the sync.

The view bdr.sync_node_requests_summary tracks the sync requests.

Origin : origin node is the down node.
Source : source node is the node furthest ahead from origin.
Target : each of the other nodes that’s behind the source with respect to the origin.
Sync_start_lsn : Highest LSN received by the target from origin when sync started.
Sync_end_lsn : Target LSN of the target node from the origin when the sync ended.
Sync_status : status of the sync.
Sync_start_ts : Time when sync started.

Once a sync request is entered in the catalog, it is carried forward to completion.

Cancellation

If the source node chosen is found to be down, the manager will cancel the sync operation. This is because some other node can be up which if not furthest, is at least further ahead than some targets. And it may be used to sync the nodes.
Therefore the manager will cancel all sync operations which have the down node as source, and will choose another node that is not down as the source for sync. The state machine is described below for a successful sync as well as a
cancelled sync.

The sync cancellation API, bdr.sync_node_cancel() is meant only to be used manually and only if the sync request gets stuck for any reason and is blocking normal functioning of the cluster.

This cancels all sync node requests for all targets that have the given origin and source. This can be invoked only from a write lead.

Sync Request Life Cycle

A single sync request has an origin, source, target and a sync_end_lsn to reach. The sync request goes through various states and each state executes on a different node.

select bdr.sync_node_cancel(origin, source)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 152

The states are as follows:
setup: Executes on the write lead. It sets up the fields of the sync, except sync_end_lsn .
setup_source: Executes on the source. It populates sync_end_lsn and creates a slot for the sync subscription.
setup_target: This executes on the target node. In this state, the original subscription to the origin is disabled. A sync subscription is set up on the target which forwards the origin’s changes from the source node to the target.
start: This executes on the target. It monitors the progress of the target to see if sync_end_lsn is reached and if reached moves to synced state.
synced: subscription has synced to sync_end_lsn . In this state the slot is dropped.
complete: This state executes on the target. In this state, sync subscription is dropped on the target and original subscription is enabled. It then moves to to done state.
done: This means sync is successful.
cancel start: This executes on the target node. In this state, the sync subscription is disabled, in preparation for a drop later, and the original subscription to the origin is re-enabled.
cancel continue: This executes on the target node. In this state, the sync subscription is dropped.
cancel done: This executes on the source node. In this state, the slot is dropped.
failed: A sync ends-up in this state if a cancellation happens and all cleanup is done. This means the sync could not happen and needs to be retried.

A cancellation of sync can also happen automatically if the chosen source node is found to be down. During cancellation the subscription and slot needs to be cleaned up, and the original subscription enabled. A sync request can be stalled if
the source or target nodes are down.

GUC

The GUC that controls automatic sync is bdr.enable_auto_sync_reconcile and it is set to true by default. To turn it off, it needs to be set to false on all nodes and the server restarted.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 153

8.9 Node UUIDs

In PGD 6, each node now has a UUID that is used to identify the node in the cluster. This UUID is generated when the node is created and is unique to that node. The UUID can be found in various places in PGD, including:

The bdr.node table, which contains information about each node in the cluster.
The bdr.node_summary view, which provides a human-readable view of the nodes in the cluster.
The bdr.local_node table, which contains information about the local node.
The uuid values also appear in the naming of the replication slots that are created for each node.

Although used throughour PGD's node management, the use of UUIDs doesn't affect any existing functionality or features in PGD. The UUIDs are used internally to identify nodes and groups and don't change the way that users interact with
PGD.

Why UUIDs?

UUIDs are used in PGD to provide a unique identifier for each node in the cluster. Previous versions of PGD used the node name as an identifier, which could lead to conflicts if two nodes had the same name. By using UUIDs, PGD can ensure
that each node has a unique identifier that will not change over time. This is especially important in a distributed system like PGD where nodes may be added or removed from the cluster frequently. The UUID ensures that although a new node
may have the same name as an existing node, it has a different UUID and doesn't conflict with the existing node.

How are UUIDs generated?

When a new node is created, a UUID is generated for that node. This UUID is created using the kernel's strong random number generator and guaranteed to be uniformly random. This guarantee ensures that the UUID is unique and can't be
easily guessed. The generated UUID is then stored in the bdr.node table and is used to identify the node in the cluster.

What happens if a node is removed and a replacement added?

If a node is removed from the cluster and a replacement node is added, the replacement node is assigned a new UUID. This ensures that the replacement node is treated as a separate entity in the cluster and doesn't conflict with the existing
nodes. But PGD requires that the old node be fully parted from the cluster before it accepts the new node. The UUID of the replacement node is then used in the same way as the UUIDs of the other nodes in the cluster.

UUID-related changes in PGD 6

The generation field in the bdr.node table, which was previously used to differentiate between nodes, is no longer used. It remains at 0 for all nodes.
The node_uuid field in the bdr.node table is never null in PGD 6. It may be null in the future with a mixed version cluster.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 154

8.10 Replication slots created by PGD

In previous versions of PGD, replication slots had human-readable names. PGD 6 has switched over to using UUIDs for nodes and groups to ensure better identification.

Replication slots are used by PostgreSQL to track the progress of replication. They're used to ensure that the data being replicated isn't lost and that the replication process is consistent. In PGD, replication slots are used to track the progress
of replication from that node. There is one slot per downstream node. There's also a special replication slot used for tracking replication progress from a given node globally across all downstream nodes:

One group slot, named bdr_<topgroupuuid>_<dbhash>
N-1 node slots named bdr_node_<targetnodeuuid>_<dbhash> , where N is the total number of nodes in the cluster, including direct logical standbys, if any

Where topgroupuuid is the string representation of the top level-group's UUID (less the - characters) and dbhash is a hash of the database name. You can obtain the UUID of the top-level group using:

And dbhash is a hash of the database name. You can obtain the hash using:

And the targetnodeuuid is the string representation of the target node's UUID (less the - characters). You can obtain the UUID of the target node using:

The complete group slot name is returned by the function bdr.local_group_slot_name() .

Warning

Don't drop those slots. PGD creates and manages them and drops them when or if necessary.

Avoid touching slots prefixed with bdr_ slots directly.
Don't start slot names with the prefix bdr_ .

Group slot

The group slot is used to track the progress of replication of the nodes in a PGD cluster that are replicating from the node. Each node in a PGD cluster has its own group slot, which is used to track the progress of replication from that node.

The group slot is used to:

Join new nodes to the PGD group without having all existing nodes up and running (although the majority of nodes should be up). This process doesn't incur data loss in case the node that was down during join starts replicating again.
Part nodes from the cluster consistently, even if some nodes haven't caught up fully with the parted node.
Hold back the freeze point to avoid missing some conflicts.

The group slot is usually inactive and is fast forwarded only periodically in response to Raft progress messages from other nodes.

Warning

Don't drop the group slot. Although usually inactive, it's still vital to the proper operation of the EDB Postgres Distributed cluster. If you drop it, then some or all of PGD's features can stop working or have incorrect outcomes.

Other slot names

Other functionality within PGD makes use of replication slots.

For example, when a node is added to a group, a slot is created for that node to track its progress in the replication process.

This slot is named bdr_node_<targetnodeuuid>_<dbhash>_tmp .

There are also slots created for the analytics and decoding features of PGD. These slots have the following names.

Slot type Slot name

Forwarding slot, leader-to-leader slot bdr_node_<targetnodeuuid>_<originidhex>_<dbhash>

Analytics slot bdr_analytics_<groupuuid>_<dbhash>

Decoding slot bdr_decoder_<topgroupuuid>_<dbhash>

select node_group_uuid from bdr.node_group where
node_group_parent_id=0;

select
to_hex(hashtext('pgddb'));

select node_uuid from bdr.node where
node_name='<target_node_name>';

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 155

9 Connection Manager

PGD 6.0 introduces a new Connection Manager which replaces the PGD 5's proxy solution with a tightly integrated approach using a background worker to expose read-write, read-only and http-status network interfaces in PGD.

Overview covers the new features and benefits of the Connection Manager.
Authentication covers how authentication works with the Connection Manager.
Configuration details the configuration options available and how to set them.
Load Balancing how to use load balancing with the Connection Manager.
Monitoring covers the tables and HTTP endpoints available for monitoring.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 156

9.1 Connection Manager overview

About Connection Manager

Connection Manager is a new background worker for EDB Postgres Distributed (PGD) 6.0 that simplifies the process of connection to PGD clusters by providing a single point of entry for client applications. It replaces the PGD 5.x proxy
solution with a tightly integrated approach that exposes read-write, read-only, and HTTP status network interfaces in PGD.

Connection Manager is fully integrated into PGD and is designed to work seamlessly with the existing PGD architecture. Every PGD data node has a Connection Manager instance that listens for incoming connections and routes them to the
appropriate node in the cluster, specifically the current write leader in the cluster. It also provides a read-only interface for applications that only need to read data from the cluster.

Using Connection Manager

Connection Manager follows the Postgres server's configuration by default. There are three ports, the read-write port, the read-only port, and the HTTP port. The read-write port is used for write operations, while the read-only port is used for
read operations. The HTTP port is used for monitoring and management purposes.

The read-write port is, by default, set to the Postgres port + 1000 (usually 6432). The read-only port is set to the Postgres port + 1001 (usually 6433). The HTTP port is set to the Postgres port + 1002 (usually 6434).

To use Connection Manager, you need to configure your client applications to connect to the read-write or read-only port of the Connection Manager instance running on the data node. The Connection Manager will then route the connection
to the appropriate node in the cluster.

Note that the Connection Manager is not a replacement for a load balancer. It is designed to work in conjunction with a load balancer to provide a complete solution for managing connections to PGD clusters. The Connection Manager
provides a simple and efficient way to manage connections to PGD clusters, while the load balancer provides additional features such as load balancing and failover. See Load Balancing for more information.

Read-Only connections

Connecting a client to the read-only port provided by connection manager restricts that connection to read-only operations in a similar way to using SET TRANSACTION READ ONLY would, except that it's not possible to change it to read-
write. The transaction_read_only GUC correctly reports on in these connections.

TLS and Authentication

The Connection Manager performs TLS termination and pre-authentication. The configuration for these is taken directly from Postgres - pg_hba.conf and server key configuration are used transparently. See authentication for more
information.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 157

https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/17/runtime-config-client.html#GUC-TRANSACTION-READ-ONLY

9.2 Connection Manager Authentication

Connection Manager's authentication is configured through Postgres's own pg_hba.conf file. Connection Manager uses the same authentication methods as Postgres.

Connection Manager connection types

Connection Manager supports the following connection types in pg_hba.conf:

host - TCP/IP connections
hostssl - TCP/IP connections with SSL
hostnossl - TCP/IP connections without SSL

Connection Manager authentication methods

Connection Manager supports the following authentication methods in pg_hba.conf:

trust - No authentication
reject - Reject the connection
md5 - MD5 password authentication
scram-sha-256 - SCRAM-SHA-256 password authentication
cert - SSL certificate authentication

Note

Connection Manager needs to be able to authenticate to the PGD nodes as the client user. Configure the pg_hba.conf file on each PGD node to accept connections originating from other PGD nodes for replication and internal
communications.

When using a certificate authentication method, the Connection Manager presents its server key. You must configure the PGD node to accept this certificate from the Connection Manager address.

Connection Manager authentication options

Connection Manager also supports regular expression matching for the user and database fields in pg_hba.conf. This allows you to specify a pattern for matching user and database names, making it easier to manage authentication for
multiple users and databases.

Group membership checks are also supported. This allows you to specify a group of users that can connect to the database, rather than specifying each user individually.

Unsupported pg_hba.conf rules

Where a rule is not supported by Connection Manager, it will be logged as a warning and ignored.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 158

https://www.postgresql.org/docs/current/auth-pg-hba-conf.html

9.3 Configuring Connection Manager

Configuring Connection Manager

Connection Manager takes its configuration from the PGD Group options for the group the node is a member of.

These can be configured using the bdr.alter_node_group_option command, or using the pgd group set-option command.

The following options are available for configuring Connection Manager:

Option Default Description

listen_address Postgres's listen address which local addresses it should listen on for client connections

read_write_port Postgres's port + 1000
(usually 6432)

which port to listen on for read-write connections

read_only_port read_write_port + 1
(usually 6433)

which port to listen on for read-only connections

http_port read_write_port + 2
(usually 6434)

which http port to listen for REST API calls (for integration purposes)

use_https whether http listener should use HTTPS, if enabled, the server certificate is used to TLS

read_write_max_client_connections max_connection maximum read-write client connections allowed, defaults to max_connections

read_write_max_server_connections max_connections maximum read-write connections that will be opened to server

read_only_max_client_connections max_connections maximum read-only client connections allowed

read_only_max_server_connections max_connections maximum read-only connections that will be opened to server

read_write_consensus_timeout 0 (immediate action) how long to wait on loss of consensus before read-write connections are no longer accepted

read_only_consensus_timeout 0 (immediate action) how long to wait on loss of consensus before read-only connections are no longer accepted.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 159

9.4 Load Balancing with Connection Manager

You can use an external load balancer to distribute traffic across multiple Connection Manager instances. Treat the Connection Manager ports as you would with any other Postgres port, but use the read-write ports for write traffic and the
read-only ports for read traffic.

Depending on your load balancer, you have a number of options for how to configure it.

Connection Manager routing

If you want the Connection Manager to route traffic to the write leader, connect to the Connection Manager's read-write port. The Connection Manager routes the traffic to the write leader of the node group the node is a member of.

HAProxy example: Connection Manager routing

With HAProxy, you can use a configuration similar to the following example to load balance between three Connection Manager instances, each running on different hosts and ports. Read-write traffic to haproxy port 5010 is directed to
Connection Manager's read-write port (default 6432) on any one of the nodes. Read-only traffic to haproxy port 5011 is directed to Connection Manager's read-only port (default 6433). Port 5011 is used for read-only traffic, which is
distributed across the nodes in a round-robin fashion.

global
 maxconn 100

defaults
 log global
 mode tcp
 retries 2
 timeout client 30m
 timeout connect 4s
 timeout server 30m
 timeout check 5s

listen stats
 mode http
 bind 127.0.0.1:7000
 stats enable
 stats uri /

listen read-write
 bind *:5010
 option pgsql-check user checkuser postgres
 default-server inter 3s fall 3 rise 2 on-marked-down shutdown-sessions
 server node1 host1:6432 maxconn 100 check port 6432
 server node2 host2:6432 maxconn 100 check port 6432
 server node3 host3:6432 maxconn 100 check port 6432

listen read-only
 balance roundrobin
 bind *:5011
 option pgsql-check user checkuser postgres
 default-server inter 3s fall 3 rise 2 on-marked-down shutdown-sessions
 server node1 host1:6433 maxconn 100 check port 6433
 server node2 host2:6433 maxconn 100 check port 6433
 server node3 host3:6433 maxconn 100 check port 6433

Direct routing

You may want to connect directly to the nodes in your cluster, bypassing Connection Manager. To leverage Connection Manager in this scenario, consult its HTTP endpoints for information about the nodes in your cluster, such as which node is
the write leader. Then connect directly to that node. You can use the /node/is-read-write endpoint to check if a node is the write leader and the /node/is-read-only endpoint to get information about the read-only pool.

The main reason to configure the load balancer like this is if you want a layer 4 tcp proxy that looks more like a traditional Postgres connection, where TLS termination and authentication happen on the server. Connection Manager provides a
layer 7 proxy, which handles TLS termination and authentication at the proxy level, that is, within Connection Manager.

The drawback to this approach is that you won't benefit from Connection Manager's features, especially its ability to enforce read-only connections to the read-only pool. Connections will be directed to the non-write-leader nodes rather than
the write leader.

See Monitoring Connection Manager for more information on the available endpoints.

HAProxy example: Direct routing

This example shows a configuration that uses HAProxy to route traffic directly to the nodes based on their health status. The configuration checks the health of the nodes by querying the /node/is-read-write and /node/is-read-
only endpoints and routes traffic accordingly. As in the previous example, this example routes read-write traffic on port 5010 to the node that's the write leader and read-only traffic on port 5011 to the nodes that are read-only.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 160

https://www.haproxy.org/
https://www.haproxy.org/

global
 maxconn 100

defaults
 log global
 mode tcp
 retries 2
 timeout client 30m
 timeout connect 4s
 timeout server 30m
 timeout check 5s

listen stats
 mode http
 bind 127.0.0.1:7000
 stats enable
 stats uri /

listen read-write
 bind *:5010
 option httpchk GET /node/is-read-write
 http-check expect string true
 default-server inter 3s fall 3 rise 2 on-marked-down shutdown-sessions
 server node1 host1:5432 maxconn 100 check port 6434
 server node2 host2:5432 maxconn 100 check port 6434
 server node3 host3:5432 maxconn 100 check port 6434

listen read-only
 balance roundrobin
 bind *:5011
 option httpchk GET /node/is-read-only
 http-check expect string true
 default-server inter 3s fall 3 rise 2 on-marked-down shutdown-sessions
 server node1 host1:5432 maxconn 100 check port 6434
 server node2 host2:5432 maxconn 100 check port 6434
 server node3 host3:5432 maxconn 100 check port 6434

This configuration checks the health of the nodes by querying the /node/is-read-write and /node/is-read-only endpoints. It routes traffic only to nodes that are healthy and available for read-write or read-only operations,
respectively.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 161

9.5 Monitoring the Connection Manager

You can view the status of the Connection Manager and its connections through SQL queries and HTTP endpoints.

Available SQL tables and views

The Connection Manager provides a number of tables and views that can be used to monitor the status of the Connection Manager and its connections. These include:

bdr.stat_activity — which is information from pg_stat_activity enhanced with addition columns regarding the connection_manager_client_addr and connection_manager_client_port is the
connection has come through the connection manager, and session_read_only if it has connected through the read-only port.
bdr.stat_connection_manager — which is a view that provides statistics about the Connection Manager's status.
bdr.stat_connection_manager_connections — which is a view that provides statistics about the Connection Manager's connections.
bdr.stat_connection_manager_node_stats — which is a view that provides statistics about the Connection Manager on each of the data nodes.
bdr.stat_connection_manager_hba_file_rules — which is a view that shows which HBA file rules for the connection manager are being used on this node.

Available HTTP/HTTPS endpoints

The Connection Manager can be monitored through the HTTP API.

Endpoints returning true/false will also return a 200 status code for true and a 503 status code for false.

The following endpoints are available:

Endpoint Description

/connection/is-live Is the connection manager live (listening), always returns “true”, if the manager is not running, the client will simply fail to open the connection/url

/connection/is-
ready

Is the connection manager is ready, returns true(200)/false(503)

/node/is-read-
write

Is this PGD node, not the connection manager but the PGD node itself, a read-write node (is it write leader), returns true(200)/false(503)

/node/is-read-only Is this PGD node, not the connection manager but the PGD node itself, a read-only node (not the write leader), returns true(200)/false(503)node

/group/read-write-
info

Returns information about the read-write pool on this instance of connection manager - a list of nodes in the pool in JSON format with node id, node name, node host, node port and node dbname. For the read-write
pool, the pool only contains one entry.

/group/read-only-
info

Returns information about the read-only pool on this instance of connection manager - a list of nodes in the pool in JSON format with node id, node name, node host, node port and node dbname.

Below is an example of a response body from the /group/read-write-info endpoint:

Logging

All Connection Manager log messages are written to the PostgreSQL log.

The behavior of %r and %h escape sequences in log_line_prefix has been altered to log "proxy_address/client_address" and "proxy_port/client_port" respectively.

This is achieved by the proxy setting a GUC for the server connections it uses. As users can override this GUC, any security context derived from the client_address will need to be verified by referring to the full session logs.

[
 {
 "id": 683485707,
 "name": "node-1",
 "host": "host-1",
 "port": 5432,
 "dbname": "pgddb"
 }
]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 162

10 Postgres configuration

Several Postgres configuration parameters affect PGD nodes. You can set these parameters differently on each node, although we don't generally recommend it.

For PGD's own settings, see the PGD settings reference.

Postgres settings

To run correctly, PGD requires these Postgres settings:

wal_level — Must be set to logical , since PGD relies on logical decoding.
shared_preload_libraries — Must include bdr to enable the extension. Most other extensions can appear before or after the bdr entry in the comma-separated list. One exception to that is pgaudit , which must appear

in the list before bdr . Also, don't include pglogical in this list.
track_commit_timestamp — Must be set to on for conflict resolution to retrieve the timestamp for each conflicting row.

PGD requires these PostgreSQL settings to be set to appropriate values, which vary according to the size and scale of the cluster:

logical_decoding_work_mem — Memory buffer size used by logical decoding. Transactions larger than this size overflow the buffer and are stored temporarily on local disk. Default is 64MB, but you can set it much higher.
max_worker_processes — PGD uses background workers for replication and maintenance tasks, so you need enough worker slots for it to work correctly. The formula for the correct minimal number of workers for each database

is to add together these values:
One per PostgreSQL instance
One per database on that instance
Four per PGD-enabled database
One per peer node in the PGD group
The number of peer nodes times the (number of writers (bdr.num_writers) plus one) You might need more worker processes temporarily when a node is being removed from a PGD group.

max_wal_senders — Two needed for every peer node.
max_replication_slots — Two needed for every peer node.
wal_sender_timeout and wal_receiver_timeout — The default of one minute is usually sufficient, but large transactions may require longer than this amount of time to process. Since the WAL sender must process the full

size of the transaction before transmitting it to a waiting replication connection, Postgres can see that as a timeout. If the problem is actually due to a large transaction, raising wal_sender_timeout to a higher value, like 3600s or
higher, and reloading the server could solve the problem. Additionally, this setting determines how quickly a node considers its CAMO partner as disconnected or reconnected. See CAMO failure scenarios for details.

In normal running for a group with N peer nodes, PGD requires N slots and WAL senders. During synchronization, PGD temporarily uses another N-1 slots and WAL senders, so be careful to set the parameters high enough for this occasional
peak demand.

With Parallel Apply turned on, the number of slots must be increased to N slots from the formula * writers. This is because max_replication_slots also sets the maximum number of replication origins, and some of the functionality of
Parallel Apply uses an extra origin per writer.

When the decoding worker is enabled, this process requires one extra replication slot per PGD group.

Changing the max_worker_processes , max_wal_senders , and max_replication_slots parameters requires restarting the local node.

A legacy synchronous replication mode is supported using the following parameters. See Commit scopes for details and limitations.

synchronous_commit and synchronous_standby_names — Affects the durability and performance of PGD replication. in a similar way to physical replication.

Max prepared transactions

max_prepared_transactions

Needs to be set high enough to cope with the maximum number of concurrent prepared transactions across the cluster due to explicit two-phase commits, CAMO, or Eager transactions. Exceeding the limit prevents a node from running a local
two-phase commit or CAMO transaction and prevents all Eager transactions on the cluster. This parameter can be set only at Postgres server start.

Considerations for global configuration

While certain PostgreSQL configuration parameters are useful for standalone instances, they can negatively impact PGD cluster stability, background workers, and replication processes.

The following parameters should not be enabled globally in postgresql.conf , nor should they be included as options in PGD node data source names (DSNs):

idle_session_timeout
transaction_timeout

Set these parameters on a per-session basis instead to make sure that they do not interfere with system-level operations.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 163

https://www.postgresql.org/docs/11/runtime-config-wal.html#GUC-SYNCHRONOUS-COMMIT

11 Backup and recovery

PGD is designed to be a distributed, highly available system. If one or more nodes of a cluster are lost, the best way to replace them is to clone new nodes directly from the remaining nodes.

The role of backup and recovery in PGD is to provide for disaster recovery (DR), such as in the following situations:

Loss of all nodes in the cluster
Significant, uncorrectable data corruption across multiple nodes as a result of data corruption, application error, or security breach

Logical backup and restore

You can use pg_dump, sometimes referred to as logical backup, normally with PGD.

Temporary postgresql.conf settings

First, temporarily set the following settings in postgresql.conf :

Increase from the default of `1GB` to something large, but still a
fraction of your disk space since the non-WAL data must also fit.
This decreases the frequency of checkpoints.
max_wal_size = 100GB

Increase the amount of memory for building indexes. Default is
64MB. For example, 1GB assuming 128GB total RAM.
maintenance_work_mem = 1GB

Increase the receiver and sender timeout from 1 minute to 1hr to
allow large transactions through.
wal_receiver_timeout = 1h
wal_sender_timeout = 1h

Increase the number of writers to make better use of parallel
apply. Default is 2. Make sure this isn't overriden lower by the
node group config num_writers setting.
bdr.writers_per_subscription = 5

Increase Raft-related election timeouts with default values of 6s
and 3s.
bdr.raft_global_election_timeout = 20s
bdr.raft_group_election_timeout = 10s

Increase the size of the shared memory queue used by the receiver to
send data to the writer process from the default 1MB.
bdr.writer_input_queue_size = 32MB

Additionally:

Make sure the default bdr.streaming_mode = 'auto' is not overridden so that transactions are streamed.
Make sure any session or postgresql.conf settings listed above are not overriden by node group-level settings in general.

Now continue with pg_dump and pg_restore.

pg_dump / pg_restore

In order to reduce the risk of global lock timeouts, we recommend dumping pre-data, data, and post-data separately. For example:

pg_dump -h $PG_HOST -p $PG_PORT -U $PG_USER -d $PGD_DB -v --exclude-schema='"bdr"' --exclude-extension='"bdr"' --section=pre-data -Fc -f pgd-pre-data.dump
pg_dump -h $PG_HOST -p $PG_PORT -U $PG_USER -d $PGD_DB -v --exclude-schema='"bdr"' --exclude-extension='"bdr"' --section=data -Fc -f pgd-data.dump
pg_dump -h $PG_HOST -p $PG_PORT -U $PG_USER -d $PGD_DB -v --exclude-schema='"bdr"' --exclude-extension='"bdr"' --section=post-data -Fc -f pgd-post-data.dump

And restore by directly executing these SQL files on a node (do not run these on the connection manager port):

PGOPTIONS="-cbdr.commit_scope=local" pg_restore -h $PG_HOST -p $PG_PORT -U $PG_USER -d $PGD_DB --section=pre-data -f pgd-pre-data.dump
PGOPTIONS="-cbdr.commit_scope=local" pg_restore -h $PG_HOST -p $PG_PORT -U $PG_USER -d $PGD_DB --section=data -f pgd-data.dump
psql -h $PG_HOST -p $PG_PORT -U $PG_USER -d $PGD_DB -c 'SELECT bdr.wait_slot_confirm_lsn(NULL, NULL)'
PGOPTIONS="-cbdr.commit_scope=local" pg_restore -h $PG_HOST -p $PG_PORT -U $PG_USER -d $PGD_DB --section=post-data -f pgd-post-data.dump
psql -h $PG_HOST -p $PG_PORT -U $PG_USER -d $PGD_DB -c 'SELECT bdr.wait_slot_confirm_lsn(NULL, NULL)'

After which point the dump will be restored on all nodes in the cluster.

In contrast if you do not split sections out with a naive pg_dump and pg_restore, the restore will likely fail with a global lock timeout.

If you still get global lock timeouts with pg_restore, add -cbdr.ddl_locking=off to PGOPTIONS .

If you choose to run pg_restore with -j / --jobs you will need to increase max_worker_processes and max_parallel_maintenance_workers by the same amount.

Prefer restoring to a single node cluster

Especially when initially setting up a cluster from a Postgres dump, we recommend you restore to a cluster with a single PGD node. Then run pgd node setup for each node you want in the cluster which will do a physical join that uses
bdr_init_physical under the hood.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 164

Sequences

pg_dump dumps both local and global sequences as if they were local sequences. This behavior is intentional, to allow a PGD schema to be dumped and ported to other PostgreSQL databases. This means that sequence-kind metadata is lost at
the time of dump, so a restore effectively resets all sequence kinds to the value of bdr.default_sequence_kind at time of restore.

To create a post-restore script to reset the precise sequence kind for each sequence, you might want to use a SQL script like this:

If you run pg_dump using bdr.crdt_raw_value = on , then you can reload the dump only with bdr.crdt_raw_value = on .

Technical Support recommends the use of physical backup techniques for backup and recovery of PGD.

Physical backup and restore

You can take physical backups of a node in an EDB Postgres Distributed cluster using standard PostgreSQL software, such as Barman.

You can perform a physical backup of a PGD node using the same procedure that applies to any PostgreSQL node. A PGD node is just a PostgreSQL node running the BDR extension.

Consider these specific points when applying PostgreSQL backup techniques to PGD:

PGD operates at the level of a single database, while a physical backup includes all the databases in the instance. Plan your databases to allow them to be easily backed up and restored.

Backups make a copy of just one node. In the simplest case, every node has a copy of all data, so you need to back up only one node to capture all data. However, the goal of PGD isn't met if the site containing that single copy goes
down, so the minimum is at least one node backup per site (with many copies, and so on).

However, each node might have unreplicated local data, or the definition of replication sets might be complex so that all nodes don't subscribe to all replication sets. In these cases, backup planning must also include plans for how to
back up any unreplicated local data and a backup of at least one node that subscribes to each replication set.

Restore

While you can take a physical backup with the same procedure as a standard PostgreSQL node, it's slightly more complex to restore the physical backup of a PGD node.

EDB Postgres Distributed cluster failure or seeding a new cluster from a backup

The most common use case for restoring a physical backup involves the failure or replacement of all the PGD nodes in a cluster, for instance in the event of a data center failure.

You might also want to perform this procedure to clone the current contents of a EDB Postgres Distributed cluster to seed a QA or development instance.

In that case, you can restore PGD capabilities based on a physical backup of a single PGD node, optionally plus WAL archives:

If you still have some PGD nodes live and running, fence off the host you restored the PGD node to, so it can't connect to any surviving PGD nodes. This practice ensures that the new node doesn't confuse the existing cluster.
Restore a single PostgreSQL node from a physical backup of one of the PGD nodes.
If you have WAL archives associated with the backup, create a suitable postgresql.conf , and start PostgreSQL in recovery to replay up to the latest state. You can specify an alternative recovery_target here if needed.
Start the restored node, or promote it to read/write if it was in standby recovery. Keep it fenced from any surviving nodes!
Clean up any leftover PGD metadata that was included in the physical backup.
Fully stop and restart the PostgreSQL instance.
Add further PGD nodes with the standard procedure based on the bdr.join_node_group() function call.

Cleanup of PGD metadata

To clean up leftover PGD metadata:

1. Drop the PGD node using bdr.drop_node .
2. Fully stop and restart PostgreSQL (important!).

Cleanup of replication origins

You must explicitly remove replication origins with a separate step because they're recorded persistently in a system catalog. They're therefore included in the backup and in the restored instance. They aren't removed automatically when
dropping the BDR extension because they aren't explicitly recorded as its dependencies.

To track progress of incoming replication in a crash-safe way, PGD creates one replication origin for each remote master node. Therefore, for each node in the previous cluster run this once:

SELECT pg_replication_origin_drop('bdr_dbname_grpname_nodename');

You can list replication origins as follows:

SELECT * FROM pg_replication_origin;

Those created by PGD are easily recognized by their name.

Cleanup of replication slots

If a physical backup was created with pg_basebackup , replication slots are omitted from the backup.

Some other backup methods might preserve replications slots, likely in outdated or invalid states. Once you restore the backup, use these commands to drop all replication slots:

SELECT 'SELECT bdr.alter_sequence_set_kind('''||
 nspname||'.'||relname||''','''||seqkind||''');'
FROM bdr.sequences
WHERE seqkind != 'local';

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 165

https://www.enterprisedb.com/docs/supported-open-source/barman/

SELECT pg_drop_replication_slot(slot_name)
FROM pg_replication_slots;

If you have a reason to preserve some slots, you can add a WHERE slot_name LIKE 'bdr%' clause, but this is rarely useful.

Warning

Never use these commands to drop replication slots on a live PGD node

Eventual consistency

The nodes in an EDB Postgres Distributed cluster are eventually consistent but not entirely consistent. A physical backup of a given node provides point-in-time recovery capabilities limited to the states actually assumed by that node.

The following example shows how two nodes in the same EDB Postgres Distributed cluster might not (and usually don't) go through the same sequence of states.

Consider a cluster with two nodes, N1 and N2 , that's initially in state S . If transaction W1 is applied to node N1 , and at the same time a non-conflicting transaction W2 is applied to node N2 , then node N1 goes through the following
states:

(N1) S --> S + W1 --> S + W1 + W2

Node N2 goes through the following states:

(N2) S --> S + W2 --> S + W1 + W2

That is, node N1 never assumes state S + W2 , and node N2 likewise never assumes state S + W1 . However, both nodes end up in the same state S + W1 + W2 . Considering this situation might affect how you decide on your backup
strategy.

Point-in-time recovery (PITR)

The previous example showed that the changes are also inconsistent in time. W1 and W2 both occur at time T1 , but the change W1 isn't applied to N2 until T2 .

PostgreSQL PITR is designed around the assumption of changes arriving from a single master in COMMIT order. Thus, PITR is possible by scanning through changes until one particular point in time (PIT) is reached. With this scheme, you can
restore one node to a single PIT from its viewpoint, for example, T1 . However, that state doesn't include other data from other nodes that committed near that time but had not yet arrived on the node. As a result, the recovery might be
considered to be partially inconsistent, or at least consistent for only one replication origin.

With PostgreSQL PITR, you can use the standard syntax:

recovery_target_time = T1

PGD allows for changes from multiple masters, all recorded in the WAL log for one node, separately identified using replication origin identifiers.

PGD allows PITR of all or some replication origins to a specific point in time, providing a fully consistent viewpoint across all subsets of nodes.

Thus for multi-origins, you can view the WAL stream as containing multiple streams all mixed up into one larger stream. There's still just one PIT, but that's reached as different points for each origin separately.

The WAL stream is read until requested origins have found their PIT. All changes are applied up until that point, except that any transaction records aren't marked as committed for an origin after the PIT on that origin is reached.

You end up with one LSN "stopping point" in WAL, but you also have one single timestamp applied consistently, just as you do with single-origin PITR.

Once you reach the defined PIT, a later one might also be set to allow the recovery to continue, as needed.

After the desired stopping point is reached, if the recovered server will be promoted, shut it down first. Move the LSN forward to an LSN value higher than used on any timeline on this server using pg_resetwal . This approach ensures that
there are no duplicate LSNs produced by logical decoding.

In the specific example shown, N1 is restored to T1 . It also includes changes from other nodes that were committed by T1 , even though they weren't applied on N1 until later.

To request multi-origin PITR, use the standard syntax in the postgresql.conf file:

recovery_target_time = T1

You need to specify the list of replication origins that are restored to T1 in one of two ways. You can use a separate multi_recovery.conf file by way of a new parameter, recovery_target_origins :

recovery_target_origins = '*'

Or you can specify the origin subset as a list in recovery_target_origins :

recovery_target_origins = '1,3'

The local WAL activity recovery to the specified recovery_target_time is always performed implicitly. For origins that aren't specified in recovery_target_origins , recovery can stop at any point, depending on when the target
for the list mentioned in recovery_target_origins is achieved.

In the absence of the multi_recovery.conf file, the recovery defaults to the original PostgreSQL PITR behavior that's designed around the assumption of changes arriving from a single master in COMMIT order.

Note

This feature is available only with EDB Postgres Extended. Barman doesn't create a multi_recovery.conf file.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 166

Monitoring

Use the following queries to check on the progress of the restore process.

The above query shows the database size on the restoring node. The size should grow as the restore makes progress and approaches the size of the original node. However, due to bloat, logical restores are always a little smaller than the
original.

The above query shows the rate of replication. However, the progress info can be misleading for big transactions; lag and progress will appear to stair-step.

The above query shows information on what pg_restore is doing, if it's blocked/waiting (on what is waiting) or working, and changing its status continuously.

Check the following views to see issues with replication slots, accumulated lag, broken replication, etc.

pg_catalog.pg_stat_replication_slots
pg_catalog.pg_replication_slots
bdr.node_slots

And use bdr.stat_subscription to see statistics for each subscription, for example to check on parallel apply or transaction stream.

SELECT pg_size_pretty(pg_database_size('bdrdb'));

SELECT * FROM bdr.node_replication_rates;

SELECT
 application_name,

state,

wait_event_type,

wait_event,
 now() - state_change AS
state_change_ago
FROM

pg_stat_activity
WHERE
 application_name LIKE
'%pg_restore%';

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 167

12 Monitoring

Monitoring replication setups is important to ensure that your system:

Performs optimally
Doesn't run out of disk space
Doesn't encounter other faults that might halt operations

It's important to have automated monitoring in place to ensure that the administrator is alerted and can take proactive action when issues occur. For example, the administrator can be alerted if replication slots start falling badly behind.

EDB provides Postgres Enterprise Manager (PEM), which supports PGD starting with version 8.1. See Monitoring EDB Postgres Distributed for more information.

Alternatively, tools or users can make their own calls into information views and functions provided by the BDR extension. See Monitoring through SQL for details.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 168

https://www.enterprisedb.com/docs/pem/latest/monitoring_BDR_nodes/

12.1 Monitoring through SQL

EDB Postgres Distributed provides several monitoring and statistics views that are specific to its distributed nature. The standard Postgres monitoring is also useful for monitoring EDB Postgres Distributed.

Monitoring overview

A PGD group consists of multiple servers, often referred to as nodes. Monitor all of the nodes to ensure the health of the whole group.

The bdr_monitor role can execute the bdr.monitor functions to provide an assessment of PGD health using one of three levels:

OK — Often shown as green.
WARNING — Often shown as yellow.
CRITICAL — Often shown as red.
UNKNOWN — For unrecognized situations, often shown as red.

PGD also provides dynamic catalog views that show the instantaneous state of various internal metrics. It also provides metadata catalogs that store the configuration defaults and configuration changes the user requests. Some of those views
and tables are accessible by bdr_monitor or bdr_read_all_stats, but some contain user or internal information that has higher security requirements.

PGD allows you to monitor each of the nodes individually or to monitor the whole group by access to a single node. If you want to monitor each node individually, connect to each node and issue monitoring requests. If you want to monitor the
group from a single node, then use the views starting with bdr.group since these requests make calls to other nodes to assemble a group-level information set.

If you were granted access to the bdr.run_on_all_nodes() function by bdr_superuser, then you can make your own calls to all nodes.

Monitoring node join and removal

By default, the node management functions wait for the join or part operation to complete. You can turn waiting off using the respective wait_for_completion function argument. If waiting is turned off, then to see when a join or part
operation finishes, check the node state indirectly using bdr.node_summary and bdr.event_summary .

When called, the helper function bdr.wait_for_join_completion() causes a PostgreSQL session to pause until all outstanding node join operations area complete.

This example shows the output of a SELECT query from bdr.node_summary . It indicates that two nodes are active and another one is joining.

SELECT node_name, interface_connstr, peer_state_name,
node_seq_id, node_local_dbname
FROM bdr.node_summary;
-[RECORD 1]-----+---
node_name | node1
interface_connstr | host=localhost dbname=postgres port=7432
peer_state_name | ACTIVE
node_seq_id | 1
node_local_dbname | postgres
-[RECORD 2]-----+---
node_name | node2
interface_connstr | host=localhost dbname=postgres port=7433
peer_state_name | ACTIVE
node_seq_id | 2
node_local_dbname | postgres
-[RECORD 3]-----+---
node_name | node3
interface_connstr | host=localhost dbname=postgres port=7434
peer_state_name | JOINING
node_seq_id | 3
node_local_dbname | postgres

Also, the table bdr.node_catchup_info gives information on the catch-up state, which can be relevant to joining nodes or parting nodes.

When a node is parted, some nodes in the cluster might not receive all the data from that parting node. So parting a node creates a temporary slot from a node that already received that data and can forward it.

The catchup_state can be one of the following:

10 = setup
20 = start
30 = catchup
40 = done

Monitoring the manager worker

The manager worker is responsible for many background tasks, including the managing of all the other workers. As such it is important to know what it's doing, especially in cases where it might seem stuck.

Accordingly, the bdr.stat_worker view provides per worker statistics for PGD workers, including manager workers. With respect to ensuring manager workers do not get stuck, the current task they are executing would be reported in
their query field prefixed by "pgd manager:".

The worker_backend_state field for manager workers also reports whether the manager is idle or busy.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 169

Monitoring Routing

Routing is a critical part of PGD for ensuring a seemless application experience and conflict avoidance. Routing changes should happen quickly, including the detections of failures. At the same time we want to have as few disruptions as
possible. We also want to ensure good load balancing for use-cases where it's supported.

Monitoring all of these is important for noticing issues, debugging issues, as well as informing more optimal configurations. Accoringly, there are two main views for monitoring statistics to do with routing:

bdr.stat_routing_state for monitoring the state of the connection routing with Connection Manager uses to route the connections.
bdr.stat_routing_candidate_state for information about routing candidate nodes from the point of view of the Raft leader (the view is empty on other nodes).

Monitoring Replication Peers

You use two main views for monitoring of replication activity:

bdr.node_slots for monitoring outgoing replication
bdr.subscription_summary for monitoring incoming replication

You can also obtain most of the information provided by bdr.node_slots by querying the standard PostgreSQL replication monitoring views pg_catalog.pg_stat_replication and pg_catalog.pg_replication_slots .

Each node has one PGD group slot that must never have a connection to it and is very rarely be marked as active. This is normal and doesn't imply something is down or disconnected. See Replication slots in Node Management.

Monitoring outgoing replication

You can use another view for monitoring of outgoing replication activity:

bdr.node_replication_rates for monitoring outgoing replication

The bdr.node_replication_rates view gives an overall picture of the outgoing replication activity along with the catchup estimates for peer nodes, specifically.

SELECT * FROM bdr.node_replication_rates;
-[RECORD 1]----+-----------
peer_node_id | 112898766
target_name | node1
sent_lsn | 0/28AF99C8
replay_lsn | 0/28AF99C8
replay_lag | 00:00:00
replay_lag_bytes | 0
replay_lag_size | 0 bytes
apply_rate | 822
catchup_interval | 00:00:00
-[RECORD 2]----+-----------
peer_node_id | 312494765
target_name | node3
sent_lsn | 0/28AF99C8
replay_lsn | 0/28AF99C8
replay_lag | 00:00:00
replay_lag_bytes | 0
replay_lag_size | 0 bytes
apply_rate | 853
catchup_interval | 00:00:00

The apply_rate refers to the rate in bytes per second. It's the rate at which the peer is consuming data from the local node. The replay_lag when a node reconnects to the cluster is immediately set to zero. This information will be fixed
in a future release. As a workaround, we recommend using the catchup_interval column that refers to the time required for the peer node to catch up to the local node data. The other fields are also available from the
bdr.node_slots view.

Administrators can query bdr.node_slots for outgoing replication from the local node. It shows information about replication status of all other nodes in the group that are known to the current node as well as any additional replication
slots created by PGD on the current node.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 170

https://www.postgresql.org/docs/current/static/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/current/view-pg-replication-slots.html
https://www.enterprisedb.com/docs/pgd/latest/reference/node_management/replication_slots

SELECT node_group_name, target_dbname, target_name, slot_name, active_pid,
catalog_xmin, client_addr, sent_lsn, replay_lsn, replay_lag,
replay_lag_bytes, replay_lag_size
FROM bdr.node_slots;
-[RECORD 1]---+----------------------------
node_group_name | bdrgroup
target_dbname | postgres
target_name | node3
slot_name | bdr_postgres_bdrgroup_node3
active_pid | 15089
catalog_xmin | 691
client_addr | 127.0.0.1
sent_lsn | 0/23F7B70
replay_lsn | 0/23F7B70
replay_lag | [NULL]
replay_lag_bytes| 120
replay_lag_size | 120 bytes
-[RECORD 2]---+----------------------------
node_group_name | bdrgroup
target_dbname | postgres
target_name | node2
slot_name | bdr_postgres_bdrgroup_node2
active_pid | 15031
catalog_xmin | 691
client_addr | 127.0.0.1
sent_lsn | 0/23F7B70
replay_lsn | 0/23F7B70
replay_lag | [NULL]
replay_lag_bytes| 84211
replay_lag_size | 82 kB

Because PGD is a mesh network, to get the full view of lag in the cluster, you must execute this query on all nodes participating.

replay_lag_bytes reports the difference in WAL positions between the local server's current WAL write position and replay_lsn , the last position confirmed replayed by the peer node. replay_lag_size is a human-readable
form of the same. It's important to understand that WAL usually contains a lot of writes that aren't replicated but still count in replay_lag_bytes , including, for example:

VACUUM activity
Index changes
Writes associated with other databases on the same node
Writes for tables that are not part of a replication set

So the lag in bytes reported here isn't the amount of data that must be replicated on the wire to bring the peer node up to date, only the amount of server-side WAL that must be processed.

Similarly, replay_lag isn't a measure of how long the peer node takes to catch up or how long it takes to replay from its current position to the write position at the time bdr.node_slots was queried. It measures the delay between
when the peer confirmed the most recent commit and the current wall-clock time. We suggest that you monitor replay_lag_bytes and replay_lag_size or catchup_interval in bdr.node_replication_rates , as this
column is set to zero immediately after the node reconnects.

The lag in both bytes and time doesn't advance while logical replication is streaming a transaction. It changes only when a commit is replicated. So the lag tends to "sawtooth," rising as a transaction is streamed and then falling again as the
peer node commits it, flushes it, and sends confirmation. The reported LSN positions "stair-step" instead of advancing smoothly, for similar reasons.

When replication is disconnected (active = 'f'), the active_pid column is NULL , as is client_addr and the other fields that make sense only with an active connection. The state field is 'disconnected' . The _lsn
fields are the same as the confirmed_flush_lsn , since that's the last position that the client is known for certain to have replayed to and saved. The _lag fields show the elapsed time between the most recent confirmed flush on the
client and the current time. The _lag_size and _lag_bytes fields report the distance between confirmed_flush_lsn and the local server's current WAL insert position.

Note

It's normal for restart_lsn to be behind the other lsn columns. This doesn't indicate a problem with replication or a peer node lagging. The restart_lsn is the position that PostgreSQL's internal logical decoding must be
reading WAL at if interrupted. It generally reflects the position of the oldest transaction that's not yet replicated and flushed. A very old restart_lsn can make replication slow to restart after disconnection and force retention of
more WAL than is desirable, but it's otherwise harmless. If you're concerned, look for very long-running transactions and forgotten prepared transactions.

Monitoring incoming replication

You can monitor incoming replication (also called subscriptions) at a high level by querying the bdr.subscription_summary view. This query shows the list of known subscriptions to other nodes in the EDB Postgres Distributed cluster
and the state of the replication worker:

SELECT node_group_name, origin_name, sub_enabled, sub_slot_name,
subscription_status
FROM bdr.subscription_summary;
-[RECORD 1]-------+----------------------------
node_group_name | bdrgroup
origin_name | node2
sub_enabled | t
sub_slot_name | bdr_postgres_bdrgroup_node1
subscription_status | replicating
-[RECORD 2]-------+----------------------------
node_group_name | bdrgroup
origin_name | node3
sub_enabled | t
sub_slot_name | bdr_postgres_bdrgroup_node1
subscription_status | replicating

You can further monitor subscriptions by monitoring subscription summary statistics through bdr.stat_subscription , and by monitoring the subscription replication receivers and subscription replication writers, using
bdr.stat_receiver and bdr.stat_writer , respectively.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 171

Monitoring WAL senders using LCR

If the decoding worker is enabled, you can monitor information about the current logical change record (LCR) file for each WAL sender using the function bdr.wal_sender_stats() . For example:

postgres=# SELECT * FROM bdr.wal_sender_stats();
 pid | is_using_lcr | decoder_slot_name | lcr_file_name
---------+--------------+-------------------------------+--
 2059904 | f | |
 2059909 | t | bdr_postgres_bdrgroup_decoder | 0000000000000000000000140000000000000000
 2059916 | t | bdr_postgres_bdrgroup_decoder | 0000000000000000000000140000000000000000
(3 rows)

If is_using_lcr is FALSE , decoder_slot_name / lcr_file_name is NULL . This is the case if the decoding worker isn't enabled or the WAL sender is serving a logical standby.

Also, you can monitor information about the decoding worker using the function bdr.get_decoding_worker_stat() . For example:

postgres=# SELECT * FROM bdr.get_decoding_worker_stat();
 pid | decoded_upto_lsn | waiting | waiting_for_lsn
---------+------------------+---------+-----------------
 1153091 | 0/1E5EEE8 | t | 0/1E5EF00
(1 row)

Monitoring PGD replication workers

All PGD workers show up in the system view bdr.stat_activity , which has the same columns and information content as pg_stat_activity. So this view offers these insights into the state of a PGD system:

The wait_event column has enhanced information, if the reason for waiting is related to PGD.
The query column is blank in PGD workers, except when a writer process is executing DDL, or for when a manager worker is active (in which case the entry in the query column will be prefixed with " pgd manager: ").

The bdr.workers view shows PGD worker-specific details that aren't available from bdr.stat_activity .

The view bdr.event_summary shows the last error (if any) reported by any worker that has a problem continuing the work. This information is persistent, so it's important to note the time of the error and not just its existence. Most errors
are transient, and PGD workers will retry the failed operation.

Monitoring PGD writers

Another system view, bdr.writers , monitors writer activities. This view shows only the current status of writer workers. It includes:

sub_name to identify the subscription that the writer belongs to
pid of the writer process
streaming_allowed to know if the writer supports applying in-progress streaming transactions
is_streaming to know if the writer is currently applying a streaming transaction
commit_queue_position to check the position of the writer in the commit queue

PGD honors commit ordering by following the same commit order as happened on the origin. In case of parallel writers, multiple writers might apply different transactions at the same time. The commit_queue_position shows the order
in which they will commit. Value 0 means that the writer is the first one to commit. Value -1 means that the commit position isn't yet known, which can happen for a streaming transaction or when the writer isn't currently applying any
transaction.

Monitoring commit scopes

Commit scopes are our durability and consistency configuration framework. As such, they affect the performance of transactions, so it is important to get statistics on them. Moreover, because in failure scenarios transactions might appear to
be stuck due to the commit scope configuration, we need insight into what commit scope is being used, what it's waiting on, and so on.

Accordingly, these two views show relevant statistics about commit scopes:

bdr.stat_commit_scope for cumulative statistics for each commit scope.

bdr.stat_commit_scope_state for information about the current use of commit scopes by backend processes.

Monitoring global locks

The global lock, which is currently used only for DDL replication, is a heavyweight lock that exists across the whole PGD group.

There are currently two types of global locks:

DDL lock, used for serializing all DDL operations on permanent (not temporary) objects (that is, tables) in the database
DML relation lock, used for locking out writes to relations during DDL operations that change the relation definition

You can create either or both entry types for the same transaction, depending on the type of DDL operation and the value of the bdr.ddl_locking setting.

Global locks held on the local node are visible in the bdr.global_locks view. This view shows the type of the lock. For relation locks, it shows the relation that's being locked, the PID holding the lock (if local), and whether the lock was
globally granted. In case of global advisory locks, lock_type column shows GLOBAL_LOCK_ADVISORY , and relation column shows the advisory keys on which the lock is acquired.

This example shows the output of bdr.global_locks while running an ALTER TABLE statement with bdr.ddl_locking = 'all' :

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 172

https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/logical_standby_nodes/
https://www.postgresql.org/docs/current/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW

SELECT lock_type, relation, pid FROM bdr.global_locks;
-[RECORD 1]--------------
lock_type | GLOBAL_LOCK_DDL
relation | [NULL]
pid | 15534
-[RECORD 2]--------------
lock_type | GLOBAL_LOCK_DML
relation | someschema.sometable
pid | 15534

See Catalogs for details on all fields, including lock timing information.

Monitoring conflicts

Replication conflicts can arise when multiple nodes make changes that affect the same rows in ways that can interact with each other. Monitor the PGD system to identify conflicts and, where possible, make application changes to eliminate
the conflicts or make them less frequent.

By default, all conflicts are logged to bdr.conflict_history . Since this log contains full details of conflicting data, the rows are protected by row-level security to ensure they're visible only by owners of replicated tables. Owners
should expect conflicts and analyze them to see which, if any, might be considered as problems to resolve.

For monitoring purposes, use bdr.conflict_history_summary , which doesn't contain user data. This example shows a query to count the number of conflicts seen in the current day using an efficient query plan:

Apply statistics

PGD collects statistics about replication apply, both for each subscription and for each table.

Two monitoring views exist: bdr.stat_subscription for subscription statistics and bdr.stat_relation for relation statistics. These views both provide:

Number of INSERTs/UPDATEs/DELETEs/TRUNCATEs replicated
Block accesses and cache hit ratio
Total I/O time for read/write
Number of in-progress transactions streamed to file
Number of in-progress transactions streamed to writers
Number of in-progress streamed transactions committed/aborted

For relations only, bdr.stat_relation also includes:

Total time spent processing replication for the relation
Total lock wait time to acquire lock (if any) for the relation (only)

For subscriptions only, bdr.stat_subscription includes:

Number of COMMITs/DDL replicated for the subscription
Number of times this subscription has connected upstream

Tracking of these statistics is controlled by the PGD GUCs bdr.track_subscription_apply and bdr.track_relation_apply , respectively.

The following shows the example output from these:

In this case, the subscription connected three times to the upstream, inserted 10 rows, and performed two DDL commands inside five transactions.

You can reset the stats counters for these views to zero using the functions bdr.reset_subscription_stats and bdr.reset_relation_stats .

PGD also monitors statistics regarding subscription replication receivers and subscription replication writers for each subscription, using bdr.stat_receiver and bdr.stat_writer , respectively.

SELECT count(*)
FROM bdr.conflict_history_summary
WHERE local_time > date_trunc('day',
current_timestamp)
 AND local_time < date_trunc('day', current_timestamp + '1
day');

SELECT sub_name, nconnect, ninsert, ncommit, nupdate, ndelete, ntruncate,
nddl
FROM bdr.stat_subscription;
-[RECORD 1]---------------------------------
-
sub_name |
bdr_regression_bdrgroup_node1_node2
nconnect |
3
ninsert |
10
ncommit |
5
nupdate |
0
ndelete |
0
ntruncate |
0
nddl |
2

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 173

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts

Standard PostgreSQL statistics views

Statistics on table and index usage are normally updated by the downstream master. This is essential for the correct function of autovacuum. If there are no local writes on the downstream master and statistics haven't been reset, these two
views show corresponding results between upstream and downstream:

pg_stat_user_tables
pg_statio_user_tables

Note

We don't necessarily expect the upstream table statistics to be similar to the downstream ones. We only expect them to change by the same amounts. Consider the example of a table whose statistics show 1M inserts and 1M updates.
When a new node joins the PGD group, the statistics for the same table in the new node show 1M inserts and zero updates. However, from that moment, the upstream and downstream table statistics change by the same amounts
because all changes on one side are replicated to the other side.

Since indexes are used to apply changes, the identifying indexes on the downstream side might appear more heavily used with workloads that perform UPDATE and DELETE than non-identifying indexes are.

The built-in index monitoring views are:

pg_stat_user_indexes
pg_statio_user_indexes

All these views are discussed in detail in the PostgreSQL documentation on the statistics views.

Monitoring PGD versions

PGD allows running different Postgres versions as well as different BDR extension versions across the nodes in the same cluster. This capability is useful for upgrading.

The view bdr.group_versions_details uses the function bdr.run_on_all_nodes() to retrieve Postgres and BDR extension versions from all nodes at the same time. For example:

The recommended setup is to try to have all nodes running the same (and latest) versions as soon as possible. We recommend that the cluster doesn't run different versions of the BDR extension for too long.

For monitoring purposes, we recommend the following alert levels:

status=UNKNOWN, message=This node is not part of any PGD group
status=OK, message=All nodes are running same PGD versions
status=WARNING, message=There is at least 1 node that is not accessible
status=WARNING, message=There are node(s) running different PGD versions when compared to other nodes

The described behavior is implemented in the function bdr.monitor_group_versions() , which uses PGD version information returned from the view bdr.group_version_details to provide a cluster-wide version check. For
example:

Monitoring Raft consensus

Raft consensus must be working cluster-wide at all times. The impact of running an EDB Postgres Distributed cluster without Raft consensus working might be as follows:

The replication of PGD data changes might still work correctly.
Global DDL/DML locks doesn't work.
Galloc sequences eventually run out of chunks.
Eager Replication doesn't work.
Cluster maintenance operations (join node, part node, promote standby) are still allowed, but they might not finish (hanging instead).
Node statuses might not be correctly synced among the PGD nodes.
PGD group replication slot doesn't advance LSN and thus keeps WAL files on disk.

The view bdr.group_raft_details uses the functions bdr.run_on_all_nodes() and bdr.get_raft_status() to retrieve Raft consensus status from all nodes at the same time. For example:

Raft consensus is working correctly if all of these conditions are met:

A valid state (RAFT_LEADER or RAFT_FOLLOWER) is defined on all nodes.

Only one of the nodes is the RAFT_LEADER .

pgddb=# SELECT node_name, postgres_version,
bdr_version
 FROM bdr.group_versions_details;
 node_name | postgres_version |
bdr_version
-----------+------------------+-------------
 node1 | 15.2.0 |
5.0.0
 node2 | 15.2.0 |
5.0.0

pgddb=# SELECT * FROM
bdr.monitor_group_versions();
 status |
message
--------+---
 OK | All nodes are running same BDR
versions

pgddb=# SELECT node_id, node_name, state,
leader_id
FROM bdr.group_raft_details;
 node_id | node_name | node_group_name | state |
leader_id
------------+-----------+-----------------+---------------+------------
 1148549230 | node1 | top_group | RAFT_LEADER |
1148549230
 3367056606 | node2 | top_group | RAFT_FOLLOWER |
1148549230

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 174

https://www.postgresql.org/docs/current/static/routine-vacuuming.html
http://www.postgresql.org/docs/current/static/monitoring-stats.html#MONITORING-STATS-VIEWS-TABLE

Only one of the nodes is the RAFT_LEADER .
The leader_id is the same on all rows and must match the node_id of the row where state = RAFT_LEADER .

From time to time, Raft consensus starts a new election to define a new RAFT_LEADER . During an election, there might be an intermediary situation where there's no RAFT_LEADER , and some of the nodes consider themselves as
RAFT_CANDIDATE . The whole election can't take longer than bdr.raft_global_election_timeout (by default it's set to 6 seconds). If the query above returns an in-election situation, then wait for
bdr.raft_global_election_timeout , and run the query again. If after bdr.raft_global_election_timeout has passed and some the listed conditions are still not met, then Raft consensus isn't working.

Raft consensus might not be working correctly on only a single node. For example, one of the nodes doesn't recognize the current leader and considers itself as a RAFT_CANDIDATE . In this case, it's important to make sure that:

All PGD nodes are accessible to each other through both regular and replication connections (check file pg_hba.conf).
PGD versions are the same on all nodes.
bdr.raft_global_election_timeout is the same on all nodes.

In some cases, especially if nodes are geographically distant from each other or network latency is high, the default value of bdr.raft_global_election_timeout (6 seconds) might not be enough. If Raft consensus is still not
working even after making sure everything is correct, consider increasing bdr.raft_global_election_timeout to 30 seconds on all nodes.

Given how Raft consensus affects cluster operational tasks, and also as Raft consensus is directly responsible for advancing the group slot, monitoring alert levels are defined as follows:

status=UNKNOWN, message=This node is not part of any PGD group
status=OK, message=Raft Consensus is working correctly
status=WARNING, message=There is at least 1 node that is not accessible
status=WARNING, message=There are node(s) as RAFT_CANDIDATE, an election might be in progress
status=WARNING, message=There is no RAFT_LEADER, an election might be in progress
status=CRITICAL, message=There is a single node in Raft Consensus
status=CRITICAL, message=There are node(s) as RAFT_CANDIDATE while a RAFT_LEADER is defined
status=CRITICAL, message=There are node(s) following a leader different than the node set as RAFT_LEADER

The described behavior is implemented in the function bdr.monitor_group_raft() , which uses Raft consensus status information returned from the view bdr.group_raft_details to provide a cluster-wide Raft check. For
example:

Two further views that can give a finer-grained look at the state of Raft consensus are bdr.stat_raft_state , which provides the state of the Raft consensus on the local node, and bdr.stat_raft_followers_state , which
provides a view when on the Raft leader (it is empty on other nodes) regarding the state of the followers of that Raft leader.

Monitoring replication slots

Each PGD node keeps:

One replication slot per active PGD peer
One group replication slot

For example:

Peer slot names follow the convention bdr_<DATABASE>_<GROUP>_<PEER> , while the PGD group slot name follows the convention bdr_<DATABASE>_<GROUP> . You can access the group slot using the function
bdr.local_group_slot_name() .

Peer replication slots must be active on all nodes at all times. If a peer replication slot isn't active, then it might mean either:

The corresponding peer is shut down or not accessible.
PGD replication is broken.

Grep the log file for ERROR or FATAL , and also check bdr.event_summary on all nodes. The root cause might be, for example, an incompatible DDL was executed with DDL replication disabled on one of the nodes.

The PGD group replication slot is, however, inactive most of the time. PGD maintains this slot and advances its LSN when all other peers already consumed the corresponding transactions. Consequently, it's not necessary to monitor the status
of the group slot.

The function bdr.monitor_local_replslots() provides a summary of whether all PGD node replication slots are working as expected. This summary is also available on subscriber-only nodes that are operating as subscriber-only
group leaders in a PGD cluster when optimized topology is enabled. For example:

One of the following status summaries is returned:

pgddb=# SELECT * FROM bdr.monitor_group_raft();
node_group_name | status |
message
----------------|--------+-------------------------------------
mygroup | OK | Raft Consensus is working
correctly

pgddb=# SELECT slot_name, database, active,
confirmed_flush_lsn
FROM pg_replication_slots ORDER BY slot_name;
 slot_name | database | active |
confirmed_flush_lsn
--------------------------+----------+--------+---------------------
 bdr_pgddb_bdrgroup | pgddb | f |
0/3110A08
 bdr_pgddb_bdrgroup_node2 | pgddb | t |
0/31F4670
 bdr_pgddb_bdrgroup_node3 | pgddb | t |
0/31F4670
 bdr_pgddb_bdrgroup_node4 | pgddb | t |
0/31F4670

pgddb=# SELECT * FROM bdr.monitor_local_replslots();
 status |
message
--------+---
 OK | All BDR replication slots are working
correctly

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 175

https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/subscriber_only/optimizing-so

Status Message

UNKNOWN This node is not part of any BDR group

OK All BDR replication slots are working correctly

OK This node is part of a subscriber-only group

CRITICAL There is at least 1 BDR replication slot which is inactive

CRITICAL There is at least 1 BDR replication slot which is missing

Monitoring transaction COMMITs

By default, PGD transactions are committed only to the local node. In that case, a transaction's COMMIT is processed quickly.

PGD's Commit Scopes feature offers a range of synchronous transaction commit scopes that allow you to balance durability, consistency, and performance for your particular queries. You can monitor these transactions by examining the
bdr.stat_activity catalog. The processes report different wait_event states as a transaction is committed. This monitoring only covers transactions in progress and doesn't provide historical timing information.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 176

13 AutoPartition in PGD

PGD AutoPartition allows you to split tables into several partitions. It lets tables grow easily to large sizes using automatic partitioning management. This capability uses features of PGD, such as low-conflict locking of creating and dropping
partitions.

You can create new partitions regularly and then drop them when the data retention period expires.

You perform PGD management primarily by using functions that can be called by SQL. All functions in PGD are exposed in the bdr schema. Unless you put it into your search_path, you need to schema qualify the name of each function.

Auto creation of partitions

PGD AutoPartition uses the bdr.autopartition() function to create or alter the definition of automatic range partitioning for a table. If no definition exists, it's created. Otherwise, later executions will alter the definition.

PGD AutoPartition in PGD 5.5 and later leverages underlying Postgres features that allow a partition to be attached or detached/dropped without locking the rest of the table. Versions of PGD earlier than 5.5 don't support this feature and lock
the tables.

An error is raised if the table isn't RANGE partitioned or a multi-column partition key is used.

By default, AutoPartition manages partitions locally. Managing partitions locally is useful when the partitioned table isn't a replicated table. In that case, you might not need or want to have all partitions on all nodes. For example, the built-in
bdr.conflict_history table isn't a replicated table. It's managed by AutoPartition locally. Each node creates partitions for this table locally and drops them once they're old enough.

Also consider:

Activities are performed only when the entry is marked enabled = on .

We recommend that you don't manually create or drop partitions for tables managed by AutoPartition. Doing so can make the AutoPartition metadata inconsistent and might cause it to fail.

AutoPartition examples

Daily partitions, keep data for one month:

Create five advance partitions when there are only two more partitions remaining. Each partition can hold 1 billion orders.

RANGE-partitioned tables

A new partition is added for every partition_increment range of values. Lower and upper bound are partition_increment apart. For tables with a partition key of type timestamp or date , the partition_increment
must be a valid constant of type interval . For example, specifying 1 Day causes a new partition to be added each day, with partition bounds that are one day apart.

If the partition column is connected to a snowflakeid , timeshard , or ksuuid sequence, you must specify the partition_increment as type interval . Otherwise, if the partition key is integer or numeric, then the
partition_increment must be a valid constant of the same datatype. For example, specifying 1000000 causes new partitions to be added every 1 million values.

If the table has no existing partition, then the specified partition_initial_lowerbound is used as the lower bound for the first partition. If you don't specify partition_initial_lowerbound , then the system tries to derive its
value from the partition column type and the specified partition_increment . For example, if partition_increment is specified as 1 Day , then partition_initial_lowerbound is set to CURRENT DATE. If
partition_increment is specified as 1 Hour , then partition_initial_lowerbound is set to the current hour of the current date. The bounds for the subsequent partitions are set using the partition_increment value.

The system always tries to have a certain minimum number of advance partitions. To decide whether to create new partitions, it uses the specified partition_autocreate_expression . This can be an expression that can be evaluated
by SQL that's evaluated every time a check is performed. For example, for a partitioned table on column type date , suppose partition_autocreate_expression is specified as DATE_TRUNC('day',CURRENT_DATE) ,
partition_increment is specified as 1 Day , and minimum_advance_partitions is specified as 2 . New partitions are then created until the upper bound of the last partition is less than DATE_TRUNC('day',
CURRENT_DATE) + '2 Days'::interval .

The expression is evaluated each time the system checks for new partitions.

For a partitioned table on column type integer , you can specify the partition_autocreate_expression as SELECT max(partcol) FROM schema.partitioned_table . The system then regularly checks if the maximum
value of the partitioned column is within the distance of minimum_advance_partitions * partition_increment of the last partition's upper bound. Create an index on the partcol so that the query runs efficiently. If you don't
specify the partition_autocreate_expression for a partition table on column type integer , smallint , or bigint , then the system sets it to max(partcol) .

If the data_retention_period is set, partitions are dropped after this period. To minimize locking, partitions are dropped at the same time as new partitions are added. If you don't set this value, you must drop the partitions manually.

The data_retention_period parameter is supported only for timestamp-based (and related) partitions. The period is calculated by considering the upper bound of the partition. The partition is dropped if the given period expires, relative
to the upper bound.

CREATE TABLE measurement
(
logdate date not null,
peaktemp int,
unitsales int
) PARTITION BY RANGE (logdate);

bdr.autopartition('measurement', '1 day', data_retention_period := '30
days');

bdr.autopartition('Orders', '1000000000',
 partition_initial_lowerbound := '0',
 minimum_advance_partitions :=
2,
 maximum_advance_partitions :=
5
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 177

Stopping automatic creation of partitions

Use bdr.drop_autopartition() to drop the autopartitioning rule for the given relation. All pending work items for the relation are deleted, and no new work items are created.

Waiting for partition creation

Partition creation is an asynchronous process. AutoPartition provides a set of functions to wait for the partition to be created, locally or on all nodes.

Use bdr.autopartition_wait_for_partitions() to wait for the creation of partitions on the local node. The function takes the partitioned table name and a partition key column value and waits until the partition that holds that
value is created.

The function waits only for the partitions to be created locally. It doesn't guarantee that the partitions also exist on the remote nodes.

To wait for the partition to be created on all PGD nodes, use the bdr.autopartition_wait_for_partitions_on_all_nodes() function. This function internally checks local as well as all remote nodes and waits until the partition
is created everywhere.

Finding a partition

Use the bdr.autopartition_find_partition() function to find the partition for the given partition key value. If a partition to hold that value doesn't exist, then the function returns NULL. Otherwise it returns the Oid of the partition.

Enabling or disabling autopartitioning

Use bdr.autopartition_enable() to enable autopartitioning on the given table. If autopartitioning is already enabled, then no action occurs. Similarly, use bdr.autopartition_disable() to disable autopartitioning on the
given table.

Dropping or detaching a partition

By default, partitions of tables managed by autopartition() are detached and dropped once the data_retention_period expires. The drop_after_retention_period parameter can control this behavior so you can
choose to keep those partitions. When set to false , the partitions are only detached from the parent table, but not dropped. This allows users to potentially re-attach the partition to some other table or process them before finally dropping.
The default value of the parameter is true so in any existing or new autopartitioned tables, the partitions are dropped after data_retention_period expires.

To handle partitions that are detached but not dropped, manually re-attach those partitions to some other table or drop them.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 178

14 Commit Scopes

Fully managable and configurable commit scopes are a feature of PGD Expanded.

PGD Expanded offers a range of synchronous modes to complement its default asynchronous replication. You use commit scopes to configure these synchronous modes. Commit scopes are rules that define how PGD handles synchronous
operations and when the system considers a transaction committed.

PGD Essential offers a limited set of commit scopes that are pre-defined and cannot be changed.

Introducing

Overview introduces the concepts and some of the essential terminology that's used when discussing synchronous commits.

Durability terminology lists terms used around PGD's durability options, including how to refer to nodes in replication.

Commit scopes is a more in-depth look at the structure of commit scopes and how to define them for your needs.

Predefined commit scopes lists the pre-defined commit scopes that are available in PGD Essential.

Origin groups introduces the notion of an origin group, and how to leverage these when defining commit scopes rules.

Commit scope rules looks at the syntax of and how to formulate a commit scope rule.

Comparing durability options compares how commit scope options behave with regard to durability.

Degrading commit scope rules shows how to set up a commit scope rule that can gracefully degrade to a lower setting in case of timeouts with a stricter setting.

Commit scope kinds

Synchronous Commit is a commit scope mechanism that works in a similar fashion to legacy synchronous replication, but from within the commit scope framework.

Group Commit focuses on the Group Commit option, where you can define a transaction as done when a group of nodes agrees it's done.

CAMO focuses on the Commit At Most Once option, in which applications take responsibility for verifying that a transaction has been committed before retrying. This ensures that their commits only happen at most once.

Lag Control looks at the commit scope mechanism which dynamically throttle nodes according to the slowest node and regulates how far out of sync nodes may go when a database node goes out of service.

Working with commit scopes

Administering addresses how to manage a PGD cluster with Group Commit in use.

Legacy synchronous replication shows how you can still access traditional Postgres synchronous operations under PGD.

Internal timing of operations compares legacy replication with PGD's async and synchronous operations, especially the difference in the order by which transactions are flushed to disk or made visible.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 179

https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/overview
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/durabilityterminology
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/commit-scopes
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/predefined-commit-scopes
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/origin_groups
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/commit-scope-rules
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/comparing
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/degrading
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/synchronous_commit
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/group-commit
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/camo
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/lag-control
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/administering
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/legacy-sync
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/timing

14.1 Overview of durability options

Overview

EDB Postgres Distributed (PGD) allows you to choose from several replication configurations based on your durability, consistency, availability, and performance needs using commit scopes.

In its basic configuration, PGD uses asynchronous replication. However, commit scopes can change both the default and the per-transaction behavior.

It's also possible to configure the legacy Postgres synchronous replication using standard synchronous_standby_names in the same way as the built-in physical or logical replication. However, commit scopes provide much more
flexibility and control over the replication behavior.

The different synchronization settings affect three properties of interest to applications that are related but can all be implemented individually:

Durability: Writing to multiple nodes increases crash resilience and allows you to recover the data after a crash and restart.

Visibility: With the commit confirmation to the client, the database guarantees immediate visibility of the committed transaction on some sets of nodes.

Conflict handling: Conflicts can be handled optimistically postcommit, with conflicts resolved when the transaction is replicated based on commit timestamps. Or, they can be handled pessimistically precommit. The client can rely on
the transaction to eventually be applied on all nodes without further conflicts or get an abort, directly informing the client of an error.

Commit scopes allow four kinds of controlling durability of the transaction:

Synchronous Commit: This kind of commit scope allows for a behavior where the origin node awaits a majority of nodes to confirm and behaves more like a native Postgres synchronous commit.

Group Commit: This kind of commit scope controls which and how many nodes have to reach a consensus before the transaction is considered to be committable and at what stage of replication it can be considered committed. This
option also allows you to control the visibility ordering of the transaction.

CAMO: This kind of commit scope is a variant of Group Commit, in which the client takes on the responsibility for verifying that a transaction was committed before retrying.

Lag Control: This kind of commit scope controls how far behind nodes can be in terms of replication before allowing commit to proceed.

Synchronous commit, group commit, and CAMO each support degrading commit scope rules, for even further control of durability.

Legacy synchronization availability

For backward compatibility, PGD still supports configuring synchronous replication with synchronous_commit and synchronous_standby_names . See Legacy synchronous replication for more on this option. We
recommend that you use PGD Synchronous Commit instead.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 180

14.2 Durability terminology

Durability terminology

This page covers terms and definitions directly related to PGD's durability options. For other terms, see Terminology.

Nodes

PGD nodes take different roles during the replication of a transaction. These are implicitly assigned per transaction and are unrelated even for concurrent transactions.

The origin is the node that receives the transaction from the client or application. It's the node processing the transaction first, initiating replication to other PGD nodes and responding back to the client with a confirmation or an error.

The origin node group is a PGD group which includes the origin.

A partner node is a PGD node expected to confirm transactions according to Group Commit requirements.

A commit group is the group of all PGD nodes involved in the commit, that is, the origin and all of its partner nodes, which can be just a few or all peer nodes.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 181

14.3 Commit scopes

Commit scopes give applications granular control about durability and consistency of EDB Postgres Distributed.

A commit scope is a set of rules that describes the behavior of the system as transactions are committed. The actual behavior depends on which a kind of commit scope a commit scope's rule uses Synchronous Commit, Group Commit, Commit
At Most Once, Lag Control, or combination of these.

While most commit scope kinds control the processing of the transaction, Lag Control is the exception as it dynamically regulates the performance of the system in response to replication operations being slow or queued up. It is typically
used, though, in combination with other commit scope kinds

Commit scope structure

Every commit scope has a name (a commit_scope_name).

Each commit scope has one or more rules.

Each rule within the commit scope has an origin_node_group which together uniquely identify the commit scope rule.

The origin_node_group is a PGD group and it defines the nodes which will apply this rule when they are the originators of a transaction.

Finally there is the rule which defines what kind of commit scope or combination of commit scope kinds should be applied to those transactions.

So if a commit scope has a rule that reads:

origin_node_group := 'example_bdr_group',
rule := 'MAJORITY (example_bdr_group) GROUP COMMIT',

Then, the rule is applied when any node in the example_bdr_group issues a transaction.

The rule itself specifies how many nodes of a specified group will need to confirm the change - MAJORITY (example_bdr_group) - followed by the commit scope kind itself - GROUP COMMIT . This translates to requiring that any two
nodes in example_bdr_group must confirm the change before the change can be considered as comitted.

How a commit scope is selected

When any change takes place, PGD looks up which commit scope should be used for the transaction or node.

If a transaction specifies a commit scope, that scope will be used.

If not specified, the system will search for a default commit scope. Default commit scopes are a group level setting. The system consults the group tree. Starting at the bottom of the group tree with the node's group and working up, it searches
for any group which has a default_commit_scope setting defined. This commit scope will then be used.

If no default_commit_scope is found then the node's GUC, bdr.commit_scope is used. And if that isn't set or is set to local then no commit scope applies and PGD's async replication is used.

A commit scope will not be used if it is not local and the node where the commit is being run on is not directly or indirectly related to the origin_node_group.

Creating a Commit Scope

Use bdr.create_commit_scope to add our example rule to a commit scope. For example:

This will add the rule MAJORITY (example_bdr_group) GROUP COMMIT for any transaction originating from the example_bdr_group to a scope called example_scope .

If no rules previously existed in example_scope , then adding this rule would make the scope exist.

When a rule is added, the origin_node_group must already exist. If it does not, the whole add operation will be discarded with an error.

The rule will then be evaluated. If the rule mentions groups that don't exist or the settings on the group are incompatible with other configuration setting on the group's nodes, a warning will be emitted, but the rule will be added.

Once the rule is added, the commit scope will be available for use.

The wait_for_ready controls whether the bdr.create_commit_scope() call blocks until the rule has been added to the relevant nodes. The setting defaults to true and can be omitted.

Using a commit scope

To use our example scope, we can set bdr.commit_scope within a transaction

SELECT
bdr.create_commit_scope(
 commit_scope_name := 'example_scope',
 origin_node_group := 'example_bdr_group',
 rule := 'MAJORITY (example_bdr_group) GROUP
COMMIT',
 wait_for_ready :=
true
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 182

You must set the commit scope before the transaction writes any data.

You can set a commit scope as a default for a group or subgroup using bdr.alter_node_group_option :

To completely clear the default for a group or subgroup, set the default_commit_scope value to local :

You can also make this change using PGD CLI:

pgd set-group-options example-bdr-group --option default_commit_scope=example_scope

And you can clear the default using PGD CLI by setting the value to local :

pgd set-group-options example-bdr-group --option default_commit_scope=local

Finally, you can set the default commit_scope for a node using:

Set bdr.commit_scope to local to use the PGD default async replication.

BEGIN;
SET LOCAL bdr.commit_scope =
'example_scope';
...
COMMIT;

SELECT bdr.alter_node_group_option(
 node_group_name := 'example_bdr_group',
 config_key := 'default_commit_scope',
 config_value := 'example_scope'
);

SELECT bdr.alter_node_group_option(
 node_group_name := 'example_bdr_group',
 config_key := 'default_commit_scope',
 config_value := 'local'
);

SET bdr.commit_scope =
'example_scope';

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 183

14.4 Origin groups

Rules for commit scopes can depend on the node the transaction is committed on, that is, the node that acts as the origin for the transaction. The bottom group of the group tree to which that node belongs is the transaction's origin group. To
make this transparent for the application, PGD allows a commit scope to define different rules depending on the transaction's origin group.

For example, consider an EDB Postgres Distributed cluster with nodes spread across two data centers: a left (left_dc) and a right one (right_dc). Assume the top-level PGD node group is called top_group . You can use the following
commands to set up subgroups and create a commit scope requiring all nodes in the local data center to confirm the transaction but only one node from the remote one:

Now, using the example_scope on any node that's part of left_dc uses the first scope. Using the same scope on a node that's part of right_dc uses the second scope. By combining the left_dc and right_dc origin rules
under one commit scope name, an application can simply use example_scope on either data center and get the appropriate behavior for that data center.

Each group can also have a default commit scope specified using the bdr.alter_node_group_option admin interface.

Making the above scopes the default ones for all transactions originating on nodes in those groups looks like this:

ORIGIN_GROUP

You can also refer to the origin group of a transaction dynamically when creating a commit scope rule by using ORIGIN_GROUP .

This can make certain commit scopes rules like those above in example_scope , even easier to specify in that you can simply specify one rule instead of two.

For example, again suppose that for transactions originating from nodes in right_dc you want all nodes in right_dc to confirm and any 1 from left_dc to confirm before the transaction is committed. Also, again suppose that for
transactions originating in left_dc you want all nodes in left_dc and any 1 in right_dc to confirm before the transaction is commited. Above we used these two rules for this when defining example_scope :

However, with ORIGIN_GROUP , just adding and using the following single-rule commit scope, example_scope_2 , will have the same effect as the two individual rules we used above in example_scope :

-- create sub-
groups
SELECT bdr.create_node_group(
 node_group_name := 'left_dc',
 parent_group_name := 'top_group',
 join_node_group := false
);
SELECT bdr.create_node_group(
 node_group_name := 'right_dc',
 parent_group_name := 'top_group',
 join_node_group := false
);

-- create a commit scope with individual
rules
-- for each sub-
group
SELECT
bdr.create_commit_scope(
 commit_scope_name := 'example_scope',
 origin_node_group := 'left_dc',
 rule := 'ALL (left_dc) GROUP COMMIT (commit_decision=raft) AND ANY 1 (right_dc) GROUP
COMMIT',
 wait_for_ready :=
true
);
SELECT
bdr.create_commit_scope(
 commit_scope_name := 'example_scope',
 origin_node_group := 'right_dc',
 rule := 'ANY 1 (left_dc) GROUP COMMIT AND ALL (right_dc) GROUP COMMIT
(commit_decision=raft)',
 wait_for_ready :=
true
);

SELECT bdr.alter_node_group_option(
 node_group_name := 'left_dc',
 config_key := 'default_commit_scope',
 config_value := 'example_scope'
);
SELECT bdr.alter_node_group_option(
 node_group_name := 'right_dc',
 config_key := 'default_commit_scope',
 config_value := 'example_scope'
);

SELECT
bdr.create_commit_scope(
 commit_scope_name := 'example_scope',
 origin_node_group := 'left_dc',
 rule := 'ALL (left_dc) GROUP COMMIT (commit_decision=raft) AND ANY 1 (right_dc) GROUP
COMMIT',
 wait_for_ready :=
true
);
SELECT
bdr.create_commit_scope(
 commit_scope_name := 'example_scope',
 origin_node_group := 'right_dc',
 rule := 'ANY 1 (left_dc) GROUP COMMIT AND ALL (right_dc) GROUP COMMIT
(commit_decision=raft)',
 wait_for_ready :=
true
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 184

Under example_scope_2 , when a transaction originates from left_dc , ORIGIN_GROUP maps to left_dc and NOT ORIGIN_GROUP maps to right_dc . Likewise, when a transaction originates from right_dc ,
ORIGIN_GROUP maps to right_dc and NOT ORIGIN_GROUP maps to left_dc . So by only specifying one rule, you get the effect of two.

Note that if you added more subgroups, for instance a third child of top_group , middle_dc , then according to example_scope_2 above, for transactions originating from left_dc , all the nodes in left_dc must plus any 1 in
right_dc and any 1 in middle_dc must confirm before the transaction is committed. Of course then for transactions originating in right_dc all the nodes in right_dc plus any 1 node in left_dc and any 1 node in
middle_dc must confirm before the transaction is committed. Lastly, because middle_dc is a child of top_group , example_scope_2 also means that for transactions originating in middle_dc , all the nodes in middle_dc

plus any 1 node in left_dc and any 1 node in right_dc must confirm before the transaction is committed.

SELECT
bdr.create_commit_scope(
 commit_scope_name := 'example_scope_2',
 origin_node_group := 'top_group',
 rule := 'ALL ORIGIN_GROUP GROUP COMMIT (commit_decision=raft) AND ANY 1 NOT ORIGIN_GROUP GROUP
COMMIT';
 wait_for_ready :=
true
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 185

14.5 Commit scope rules

Commit scope rules are at the core of the commit scope mechanism. They define what the commit scope enforces.

Commit scope rules are composed of one or more operations that work in combination. Use an AND between rules.

Each operation is made up of two or three parts: the commit scope group, an optional confirmation level, and the kind of commit scope, which can have its own parameters.

commit_scope_group [confirmation_level] commit_scope_kind

A full formal syntax diagram is available in the Commit scopes reference.

A typical commit scope rule, such as ANY 2 (group) GROUP COMMIT , can be broken down into its components. ANY 2 (group) is the commit scope group specifying, for the rule, which nodes need to respond and confirm they
processed the transaction. In this example, any two nodes from the named group must confirm.

No confirmation level is specified, which means that the default is used. You can think of the rule in full, then, as:

ANY 2 (group) ON visible GROUP COMMIT

The visible setting means the nodes can confirm once all the transaction's changes are flushed to disk and visible to other transactions.

The last part of this operation is the commit scope kind, which in this example is GROUP COMMIT . GROUP COMMIT is a synchronous two-phase commit that's confirmed when any two nodes in the named group confirm they've flushed the
transactions changes and made them visible.

The commit scope group

There are three kinds of commit scope groups: ANY , ALL , and MAJORITY . They're all followed by a list of one or more groups in parentheses. This list of groups combines to make a pool of nodes this operation applies to. This list can be
preceded by NOT , which inverts the pool to be all other groups that aren't in the list.

ANY n is followed by an integer value, n . It translates to any n nodes in the listed groups' nodes.
ALL is followed by the groups and translates to all nodes in the listed groups' nodes.
MAJORITY is followed by the groups and translates to requiring a half, plus one, of the listed groups' nodes to confirm, to give a majority.
ANY n NOT is followed by an integer value, n . It translates to any n nodes that aren't in the listed groups' nodes.
ALL NOT is followed by the groups and translates to all nodes that aren't in the listed groups' nodes.
MAJORITY NOT is followed by the groups and translates to requiring a half, plus one, of the nodes that aren't in the listed groups' nodes to confirm, to give a majority.

All of the above expressions only consider data nodes in the groups in their evaluation. Witness nodes and other non-data nodes are ignored.

The confirmation level

PGD nodes can send confirmations for a transaction at different times. In increasing levels of protection, from the perspective of the confirming node, these are:

received — A remote PGD node confirms the transaction immediately after receiving it, prior to starting the local application.
replicated — Confirms after applying changes of the transaction but before flushing them to disk.
durable — Confirms the transaction after all of its changes are flushed to disk.
visible (default) — Confirms the transaction after all of its changes are flushed to disk and it's visible to concurrent transactions.

In rules for commit scopes, you can append these confirmation levels to the node group definition in parentheses with ON , as follows:

ANY 2 (right_dc) ON replicated
ALL (left_dc) ON visible (default)
ALL (left_dc) ON received AND ANY 1 (right_dc) ON durable

Note

If you're familiar with PostgreSQL's synchronous_standby_names feature, be aware that while the grammar for synchronous_standby_names and commit scopes can look similar, there's a subtle difference. The former
doesn't account for the origin node, but the latter does. For example, synchronous_standby_names = 'ANY 1 (..)' is equivalent to a commit scope of ANY 2 (...) . This difference makes reasoning about majority
easier and reflects that the origin node also contributes to the durability and visibility of the transaction.

The commit scope kinds

Currently, there are four commit scope kinds. The following is a summary, with links to more details.

SYNCHRONOUS COMMIT

Synchronous Commit is a commit scope option that's designed to behave like the native Postgres synchronous_commit option, but is usable from within the commit scope environment. Unlike GROUP COMMIT , it's a synchronous non-
two-phase commit operation. Like GROUP COMMIT , it supports an optional DEGRADE ON clause. The commit scope group that comes before this option controls the groups and confirmation requirements the SYNCHRONOUS COMMIT
uses.

For more details, see SYNCHRONOUS COMMIT .

GROUP COMMIT

Group Commit is a synchronous, two-phase commit that's confirmed according to the requirements of the commit scope group. GROUP COMMIT has options that control:

Whether to track transactions over interruptions (Boolean, defaults to off)
How to resolve conflicts (async or eager , defaults to async)
How to obtain a consensus (group , partner or raft , defaults to group)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 186

For more details, see GROUP COMMIT .

CAMO

Commit At Most Once, or CAMO, allows the client/application, origin node, and partner node to ensure that a transaction is committed to the database at most once. Because the client is involved in the process, an application will require
modifications to participate in the CAMO process.

For more details, see CAMO .

LAG CONTROL

With Lag Control, when the system's replication performance exceeds specified limits, a commit delay can be automatically injected into client interaction with the database, providing a back pressure on clients. Lag Control has parameters to
set the maximum commit delay that can be exerted. It also has limits in terms of time to process or queue size that trigger increases in that commit delay.

For more details, see LAG CONTROL .

Combining rules

Commit scope rules are composed of one or more operations that work in combination. Use an AND to form a single rule. For example:

MAJORITY (Region_A) SYNCHRONOUS COMMIT AND ANY 1 (Region_A) LAG CONTROL (MAX_LAG_SIZE = '50MB')

The first operation sets up a synchronous commit against a majority of Region_A . The second operation adds lag control that starts pushing the commit delay up when any one of the nodes in Region_A has more than 50MB of lag. This
combination of operations allows the lag control to operate when any node is lagging.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 187

14.6 Comparing durability options

Comparison

Most options for synchronous replication available to PGD allow for different levels of synchronization, offering different tradeoffs between performance and protection against node or network outages.

The following list of confirmation levels explains what a user should expect to see when that confirmation level is in effect and how that can affect performance, durability, and consistency.

ON RECEIVED

Expect: The peer node has received the changes. Nothing has been updated in the peer nodes tuple store or written to storage.

Confirmation on reception means that the peer operating normally can eventually, apply the transaction without requiring any further communication, even in the face of a full or partial network outage. A crash of a peer node might still
require retransmission of the transaction, as this confirmation doesn't involve persistent storage.

For: The origin node in the transaction only has to wait for the reception of the transaction. Where transactions are large, it may improve the TPS performance of the system.

Against: An increased likelihood of stale reads. Overall, ON RECEIVED is not robust because data can be lost when either a Postgres server or operating system crash occurs.

ON REPLICATED

Expect: The peer node has received the changes and applied them to the tuple store. The changes have been written to storage, but the storage has not been flushed to disk.

Confirmation on replication means the peer has received and applied the changes. Those changes have been written to storage, but will still be in operating system caches and buffers. The system has yet to persist them to disk.

For: This checkpoint is further down the timeline of transaction processing. The origin node only waits for the transaction to be applied, but not persisted.

Against: There's a slightly lower chance of stale reads over ON RECEIVED. Also, with ON REPLICATED data can survive a Postgres crash but will still not survive an operating system crash.

ON DURABLE

Expect: The peer node has received the changes, applied them to the tuple store and persisted the changes to storage. It has yet to make the changes available to other sessions.

Durable confirmation means that the transaction has been written and flushed to the peer node's storage. This protects against loss of data after a crash and recovery of the peer node. But, if a session commits a transaction with an ON
DURABLE rule before disconnecting and reconnecting, the transaction's changes are not guaranteed to be visible to the reconnected session.

When used with the Group Commit commit scope kind, this also means the changes are visible.

For: More robust, able to recover without retransmission in the event of a crash.

Against: Doesn't guarantee consistency in cases of failover.

ON VISIBLE

Expect: The peer node has received and applied the changes, persisted and flushed those changes to storage.

Confirmation of visibility means that the transaction was fully applied remotely. If a session commits a transaction with an ON VISIBLE rule before disconnecting and reconnecting, the transaction's changes are guaranteed to be visible to the
reconnected session.

For: Robust and consistent.

Against: Lower performance.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 188

14.7 Degrading commit scope rules

SYNCHRONOUS COMMIT and CAMO each have the optional capability of degrading the requirements for transactions when particular performance thresholds are crossed. GROUP COMMIT cannot degrade, but can abort on timing out.

When a node is applying a transaction and that transaction times out, it can be useful to trigger a process of degrading the requirements of the transaction to be completed, rather than just rolling back.

DEGRADE ON offers a route for gracefully degrading the commit scope rule of a transaction. At its simplest, DEGRADE ON takes a timeout and a second set of commit scope operations that the commit scope can gracefully degrade to.

For instance, after 20ms or 30ms timeout, the requirements for satisfying a commit scope could degrade from ALL (node_group_name) SYNCHRONOUS COMMIT to MAJORITY (node_group_name) SYNCHRONOUS COMMIT ,
making the transactions apply more steadily.

You can also require that the write leader be the originator of a transaction in order for the degrade clause to be triggered. This can be helpful in "split brain scenarios" where you have, say, 2 data nodes and a witness node. Supposing there is a
network split between the two data nodes and you have connections to both of the data nodes, only one of them will be allowed to degrade, because only one of them will be elected leader through the raft election with the witness node.

Behavior

There are two parts to how the generalized DEGRADE clause behaves as it is applied to transactions.

Once during the commit, while the commit being processed is waiting for responses that satisfy the commit scope rule, PGD checks for a timeout and, if the timeout has expired, the commit being processed is reconfigured to wait for the
commit scope rule in the DEGRADE clause. In fact, by this point, the commit scope rule in the DEGRADE clause might already be satisfied.

This mechanism alone is insufficient for the intended behavior, as this alone would mean that every transaction—even those that were certain to degrade due to connectivity issues—must wait for the timeout to expire before degraded mode
kicks in, which would severely affect performance in such degrading-cluster scenarios.

To avoid this, the PGD manager process also periodically (every 5s) checks the connectivity and apply rate (the one in bdr.node_replication_rates) and if there are commit scopes that would degrade at that point based on the current state of
replication, they will be automatically degraded—such that any transaction using that commit scope when processing after that uses the degraded rule instead of waiting for timeout—until the manager process detects that replication is
moving swiftly enough again.

SYNCHRONOUS COMMIT and GROUP COMMIT

Both SYNCHRONOUS COMMIT and GROUP COMMIT have timeout and require_write_lead parameters, with defaults of 0 and false respectively. You should probably always set the timeout , as the default of 0 causes
an instant degrade. You can also require that the write leader be the originator of the transaction in order to switch to degraded mode (again, default is false). For SYNCHRONOUS COMMIT the timeout and require_write_lead
apply to degrade, and for GROUP COMMIT these parameters apply to abort. A GROUP COMMIT commit scope cannot degrade and a SYNCHRONOUS COMMIT commit scope cannot abort, since it is already committed on the primary prior
to waiting for confirmations from other nodes.

SYNCHRONOUS COMMIT also has options regarding which rule you can degrade to—which depends on which rule you are degrading from.

First of all, you can degrade to asynchronous operation:

You can also degrade to a less restrictive commit group with the same commit scope kind (again as long as the kind is either SYNCHRONOUS_COMMIT or GROUP COMMIT). For instance, you can degrade as follows:

or as follows:

But you cannot degrade from SYNCHRONOUS COMMIT to GROUP COMMIT .

CAMO

While CAMO supports both the same timeout and require_write_lead parameters (with the same defaults, 0 and false respectively), the options are simpler in that you can only degrade to asynchronous operation.

Again, you should set the timeout parameter, as the default is 0 .

ALL (left_dc) SYNCHRONOUS COMMIT DEGRADE ON (timeout=20s) TO
ASYNC

ALL (left_dc) SYNCHRONOUS COMMIT DEGRADE ON (timeout=20s) TO MAJORITY (left_dc) SYNCHRONOUS
COMMIT

ANY 3 (left_dc) SYNCHRONOUS COMMIT DEGRADE ON (timeout=20s) TO ANY 2 (left_dc) SYNCHRONOUS
COMMIT

ALL (left_dc) CAMO DEGRADE ON (timeout=20ms, require_write_lead=true) TO
ASYNC

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 189

14.8 Synchronous Commit

Commit scope kind: SYNCHRONOUS COMMIT

Overview

PGD's SYNCHRONOUS COMMIT is a commit scope kind that works in a way that's more like PostgreSQL's synchronous_commit option in its underlying operation. Unlike the PostgreSQL option, though, it's configured as a commit scope
and is easier to configure and interact with in PGD.

Unlike other commit scope kinds, such as GROUP COMMIT and CAMO , the transactions in a SYNCHRONOUS COMMIT operation aren't transformed into a two-phase commit (2PC) transaction. They work more like a Postgres
synchronous_commit .

Example

In this example, when this commit scope is in use, any node in the left_dc group uses SYNCHRONOUS COMMIT to replicate changes to the other nodes in the left_dc group. It looks for a majority of nodes in the left_dc group to
confirm that they committed the transaction.

SELECT bdr.create_commit_scope(
 commit_scope_name := 'example_sc_scope',
 origin_node_group := 'left_dc',
 rule := 'MAJORITY (left_dc) SYNCHRONOUS COMMIT',
 wait_for_ready := true
);

Configuration

SYNCHRONOUS COMMIT supports the optional DEGRADE ON clause. See the SYNCHRONOUS COMMIT commit scope reference for specific configuration parameters or see this section regarding Degrade on options.

Confirmation

Confirmation level PGD Synchronous Commit handling

received A remote PGD node confirms the transaction once it's been fully received and is in the in-memory write queue.

replicated Same behavior as received .

durable Confirms the transaction after all of its changes are flushed to disk. Analogous to synchronous_commit = on in legacy synchronous replication.

visible (default) Confirms the transaction after all of its changes are flushed to disk and it's visible to concurrent transactions. Analogous to synchronous_commit = remote_apply in legacy synchronous
replication.

Details

Currently SYNCHRONOUS COMMIT doesn't use the confirmation levels of the commit scope rule syntax.

In commit scope rules, the original keyword SYNCHRONOUS_COMMIT is now aliased to SYNCHRONOUS COMMIT . The use of a space instead of an underscore helps distinguish it from Postgres's native SYNCHRONOUS_COMMIT .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 190

https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-SYNCHRONOUS-COMMIT

14.9 Group Commit

Commit scope kind: GROUP COMMIT

Overview

The goal of Group Commit is to protect against data loss in case of single node failures or temporary outages. You achieve this by requiring more than one PGD node to successfully confirm a transaction at COMMIT time. Confirmation can be
sent at a number of points in the transaction processing but defaults to "visible" when the transaction has been flushed to disk and is visible to all other transactions.

Warning

Group commit is currently offered as an experimental feature intended for preview and evaluation purposes. While it provides valuable capabilities, it has known limitations and challenges that make it unsuitable for production
environments. We recommend that customers avoid using this feature in production scenarios until these limitations are addressed in future releases.

Example

This example creates a commit scope where all the nodes in the left_dc group and any one of the nodes in the right_dc group must receive and successfully confirm a committed transaction.

Requirements

During normal operation, Group Commit is transparent to the application. Transactions that were in progress during failover need the reconciliation phase triggered or consolidated by either the application or a proxy in between. This activity
currently happens only when either the origin node recovers or when it's parted from the cluster. This behavior is the same as with Postgres legacy built-in synchronous replication.

Transactions committed with Group Commit use two-phase commit underneath. Therefore, configure max_prepared_transactions high enough to handle all such transactions originating per node.

Limitations

See the Group Commit section of Known Issues and Limitations.

Configuration

GROUP_COMMIT supports optional GROUP COMMIT parameters, as well as ABORT ON and DEGRADE ON clauses. For a full description of configuration parameters, see the GROUP_COMMIT commit scope reference or for more
regarding DEGRADE ON options in general, see the Degrade options section.

Confirmation

Confirmation level Group Commit handling

received A remote PGD node confirms the transaction immediately after receiving it, prior to starting the local application.

replicated Confirms after applying changes of the transaction but before flushing them to disk.

durable Confirms the transaction after all of its changes are flushed to disk.

visible (default) Confirms the transaction after all of its changes are flushed to disk and it's visible to concurrent transactions.

Behavior

The behavior of Group Commit depends on the configuration applied by the commit scope.

Commit decisions

You can configure Group Commit to decide commits in three different ways: group , partner , and raft .

The group decision is the default. It specifies that the commit is confirmed by the origin node upon receiving as many confirmations as required by the commit scope group. The difference is that the commit decision is made based on
PREPARE replication while the durability checks COMMIT (PREPARED) replication.

The partner decision is what Commit At Most Once (CAMO) uses. This approach works only when there are two data nodes in the node group. These two nodes are partners of each other, and the replica rather than origin decides whether to
commit something. This approach requires application changes to use the CAMO transaction protocol to work correctly, as the application is in some way part of the consensus. For more on this approach, see CAMO.

The raft decision uses PGDs built-in Raft consensus for commit decisions. Use of the raft decision can reduce performance. It's currently required only when using GROUP COMMIT with an ALL commit scope group.

Using an ALL commit scope group requires that the commit decision must be set to raft to avoid reconciliation issues.

SELECT
bdr.create_commit_scope(
 commit_scope_name := 'example_scope',
 origin_node_group := 'left_dc',
 rule := 'ALL (left_dc) GROUP COMMIT(commit_decision=raft) AND ANY 1 (right_dc) GROUP
COMMIT',
 wait_for_ready :=
true
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 191

Conflict resolution

Conflict resolution can be async or eager .

Async means that PGD does optimistic conflict resolution during replication using the row-level resolution as configured for a given node. This happens regardless of whether the origin transaction committed or is still in progress. See
Conflicts for details about how the asynchronous conflict resolution works.

Eager means that conflicts are resolved eagerly (as part of agreement on COMMIT), and conflicting transactions get aborted with a serialization error. This approach provides greater isolation than the asynchronous resolution at the price of
performance.

Using an ALL commit scope group requires that the commit decision must be set to raft to avoid reconciliation issues.

For details about how Eager conflict resolution works, see Eager conflict resolution.

Aborts

To prevent a transaction that can't get consensus on the COMMIT from hanging forever, the ABORT ON clause allows specifying timeout. After the timeout, the transaction abort is requested. If the transaction is already decided to be
committed at the time the abort request is sent, the transaction does eventually COMMIT even though the client might receive an abort message.

See also Limitations.

Transaction reconciliation

A Group Commit transaction's commit on the origin node is implicitly converted into a two-phase commit.

In the first phase (prepare), the transaction is prepared locally and made ready to commit. The data is made durable but is uncomitted at this stage, so other transactions can't see the changes made by this transaction. This prepared
transaction gets copied to all remaining nodes through normal logical replication.

The origin node seeks confirmations from other nodes, as per rules in the Group Commit grammar. If it gets confirmations from the minimum required nodes in the cluster, it decides to commit this transaction moving onto the second phase
(commit). In the commit phase, it also sends this decision by way of replication to other nodes. Those nodes will also eventually commit on getting this message.

There's a possibility of failure at various stages. For example, the origin node may crash after preparing the transaction. Or the origin and one or more replicas may crash.

This leaves the prepared transactions in the system. The pg_prepared_xacts view in Postgres can show prepared transactions on a system. The prepared transactions might be holding locks and other resources. To release those locks and
resources, either abort or commit the transaction. That decision must be made with a consensus of nodes.

When commit_decision is raft , then, Raft acts as the reconciliator, and these transactions are eventually reconciled automatically.

When the commit_decision is group , then, transactions don't use Raft. Instead the write lead in the cluster performs the role of reconciliator. This is because it's the node that's most ahead with respect to changes in its subgroup. It
detects when a node is down and initiates reconciliation for such a node by looking for prepared transactions it has with the down node as the origin.

For all such transactions, it sees if the nodes as per the rules of the commit scope have the prepared transaction, it takes a decision. This decision is conveyed over Raft and needs the majority of the nodes to be up to do reconciliation.

This process happens in the background. There's no command for you to use to control or issue this.

Eager conflict resolution

Eager conflict resolution (also known as Eager Replication) prevents conflicts by aborting transactions that conflict with each other with serializable errors during the COMMIT decision process.

You configure it using commit scopes as one of the conflict resolution options for Group Commit.

Usage

To enable Eager conflict resolution, the client needs to switch to a commit scope, which uses it at session level or for individual transactions as shown here:

The client can continue to issue a COMMIT at the end of the transaction and let PGD manage the two phases:

In this case, the eager_scope commit scope is defined something like this:

The commit scope group for the Eager conflict resolution rule can only be ALL or MAJORITY . Where ALL is used, the commit_decision setting must also be set to raft .

BEGIN;

SET LOCAL bdr.commit_scope =
'eager_scope';

... other commands
possible...

COMMIT;

SELECT
bdr.create_commit_scope(
 commit_scope_name := 'eager_scope',
 origin_node_group := 'top_group',
 rule := 'ALL (top_group) GROUP COMMIT (conflict_resolution = eager, commit_decision = raft) ABORT ON (timeout =
60s)',
 wait_for_ready :=
true
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 192

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts

Error handling

Given that PGD manages the transaction, the client needs to check only the result of the COMMIT . This is advisable in any case, including single-node Postgres.

In case of an origin node failure, the remaining nodes eventually (after at least ABORT ON timeout) decide to roll back the globally prepared transaction. Raft prevents inconsistent commit versus rollback decisions. However, this requires
a majority of connected nodes. Disconnected nodes keep the transactions prepared to eventually commit them (or roll back) as needed to reconcile with the majority of nodes that might have decided and made further progress.

Effects of Eager Replication in general

Increased abort rate

With single-node Postgres, or even with PGD in its default asynchronous replication mode, errors at COMMIT time are rare. The added synchronization step due to the use of a commit scope using eager for conflict resolution also adds a
source of errors. Applications need to be prepared to properly handle such errors, usually by applying a retry loop.

The rate of aborts depends solely on the workload. Large transactions changing many rows are much more likely to conflict with other concurrent transactions.

Effects of MAJORITY and ALL node replication in general

Increased commit latency

Adding a synchronization step due to the use of a commit scope means more communication between the nodes, resulting in more latency at commit time. When ALL is used in the commit scope, this also means that the availability of the
system is reduced, since any node going down causes transactions to fail.

If one or more nodes are lagging behind, the round-trip delay in getting confirmations can be large, causing high latencies. ALL or MAJORITY node replication adds roughly two network round trips (to the furthest peer node in the worst case).
Logical standby nodes and nodes still in the process of joining or catching up aren't included but eventually receive changes.

Before a peer node can confirm its local preparation of the transaction, it also needs to apply it locally. This further adds to the commit latency, depending on the size of the transaction. This setting is independent of the
synchronous_commit setting.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 193

14.10 Commit At Most Once

Commit scope kind: CAMO

Overview

The objective of the Commit At Most Once (CAMO) feature is to prevent the application from committing more than once.

Without CAMO, when a client loses connection after a COMMIT is submitted, the application might not receive a reply from the server and is therefore unsure whether the transaction committed.

The application can't easily decide between the two options of:

Retrying the transaction with the same data, since this can in some cases cause the data to be entered twice

Not retrying the transaction and risk that the data doesn't get processed at all

Either of those is a critical error with high-value data.

One way to avoid this situation is to make sure that the transaction includes at least one INSERT into a table with a unique index. However, that depends on the application design and requires application-specific error-handling logic, so it
isn't effective in all cases.

The CAMO feature in PGD offers a more general solution and doesn't require an INSERT . When activated by bdr.commit_scope , the application receives a message containing the transaction identifier, if already assigned. Otherwise,
the first write statement in a transaction sends that information to the client.

If the application sends an explicit COMMIT , the protocol ensures that the application receives the notification of the transaction identifier before the COMMIT is sent. If the server doesn't reply to the COMMIT , the application can handle
this error by using the transaction identifier to request the final status of the transaction from another PGD node. If the prior transaction status is known, then the application can safely decide whether to retry the transaction.

CAMO works by creating a pair of partner nodes that are two PGD nodes from the same PGD group. In this operation mode, each node in the pair knows the outcome of any recent transaction executed on the other peer and especially (for our
need) knows the outcome of any transaction disconnected during COMMIT . The node that receives the transactions from the application might be referred to as "origin" and the node that confirms these transactions as "partner." However,
there's no difference in the CAMO configuration for the nodes in the CAMO pair. The pair is symmetric.

Warning

CAMO requires changes to the user's application to take advantage of the advanced error handling. Enabling a parameter isn't enough to gain protection. Reference client implementations are provided to customers on request.

Note

The CAMO commit scope kind is mostly an alias for GROUP COMMIT (transaction_tracking = true, commit_decision = partner) with an additional DEGRADE ON clause.

Requirements

To use CAMO, an application must issue an explicit COMMIT message as a separate request, not as part of a multi-statement request. CAMO can't provide status for transactions issued from procedures or from single-statement transactions
that use implicit commits.

Configuration

See the CAMO commit scope reference for configuration parameters.

Confirmation

Confirmation Level CAMO handling

received Not applicable, only uses the default, VISIBLE .

replicated Not applicable, only uses the default, VISIBLE .

durable Not applicable, only uses the default, VISIBLE .

visible (default) Confirms the transaction after all of its changes are flushed to disk and it's visible to concurrent transactions.

Limitations

See the CAMO section of Limitations.

Failure scenarios

Different failure scenarios occur in different configurations.

Data persistence at receiver side

By default, a PGL writer operates in bdr.synchronous_commit = off mode when applying transactions from remote nodes. This holds true for CAMO as well, meaning that transactions are confirmed to the origin node possibly before
reaching the disk of the CAMO partner. In case of a crash or hardware failure, a confirmed transaction might be unrecoverable on the CAMO partner by itself. This isn't an issue as long as the CAMO origin node remains operational, as it
redistributes the transaction once the CAMO partner node recovers.

This in turn means CAMO can protect against a single-node failure, which is correct for local mode as well as or even in combination with remote write.

To cover an outage of both nodes of a CAMO pair, you can use bdr.synchronous_commit = local to enforce a flush prior to the pre-commit confirmation. This doesn't work with either remote write or local mode and has a

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 194

To cover an outage of both nodes of a CAMO pair, you can use bdr.synchronous_commit = local to enforce a flush prior to the pre-commit confirmation. This doesn't work with either remote write or local mode and has a
performance impact due to I/O requirements on the CAMO partner in the latency sensitive commit path.

Asynchronous mode

When the DEGRADE ON ... TO ASYNC clause is used in the commit scope, a node detects whether its CAMO partner is ready. If not, it temporarily switches to asynchronous (local) mode. When in this mode, a node commits transactions
locally until switching back to CAMO mode.

This doesn't allow COMMIT status to be retrieved, but it does let you choose availability over consistency. This mode can tolerate a single-node failure. In case both nodes of a CAMO pair fail, they might choose incongruent commit decisions to
maintain availability, leading to data inconsistencies.

For a CAMO partner to switch to ready, it needs to be connected, and the estimated catchup interval needs to drop below the timeout value of TO ASYNC . You can check the current readiness status of a CAMO partner with
bdr.is_camo_partner_ready() , while bdr.node_replication_rates provides the current estimate of the catchup time.

The switch from CAMO-protected to asynchronous mode is only ever triggered by an actual CAMO transaction. This is true either because the commit exceeds the timeout value of TO ASYNC or, in case the CAMO partner is already
known, disconnected at the time of commit. This switch is independent of the estimated catchup interval. If the CAMO pair is configured to require the current node to be the write lead of a group as configured through the enable_routing
node group option. See Commit scopes for syntax. This can prevent a split brain situation due to an isolated node from switching to asynchronous mode. If enable_routing isn't set for the CAMO group, the origin node switches to
asynchronous mode immediately.

The switch from asynchronous mode to CAMO mode depends on the CAMO partner node, which initiates the connection. The CAMO partner tries to reconnect at least every 30 seconds. After connectivity is reestablished, it might therefore take
up to 30 seconds until the CAMO partner connects back to its origin node. Any lag that accumulated on the CAMO partner further delays the switch back to CAMO protected mode.

Unlike during normal CAMO operation, in asynchronous mode there's no added commit overhead. This can be problematic, as it allows the node to continuously process more transactions than the CAMO pair can normally process. Even if the
CAMO partner eventually reconnects and applies transactions, its lag only ever increases in such a situation, preventing reestablishing the CAMO protection. To artificially throttle transactional throughput, PGD provides the
bdr.camo_local_mode_delay setting, which allows you to delay a COMMIT in local mode by an arbitrary amount of time. We recommend measuring commit times in normal CAMO mode during expected workloads and configuring this

delay accordingly. The default is 5 ms, which reflects a asynchronous network and a relatively quick CAMO partner response.

Consider the choice of whether to allow asynchronous mode in view of the architecture and the availability requirements. The following examples provide some detail.

Example

This example considers a setup with two PGD nodes that are the CAMO partner of each other:

For this CAMO commit scope to be legal, the number of nodes in the group must equal exactly 2. Using ALL or ANY 2 on a group consisting of several nodes is an error because the unquantified group expression doesn't resolve to a definite pair
of nodes.

With asynchronous mode

If asynchronous mode is allowed, there's no single point of failure. When one node fails:

The other node can determine the status of all transactions that were disconnected during COMMIT on the failed node.
New write transactions are allowed. If the second node also fails, then the outcome of those transactions that were being committed at that time is unknown.

Without asynchronous mode

If asynchronous mode isn't allowed, then each node requires the other node for committing transactions, that is, each node is a single point of failure. When one node fails:

The other node can determine the status of all transactions that were disconnected during COMMIT on the failed node.
New write transactions are prevented until the node recovers.

Application use

Overview and requirements

CAMO relies on a retry loop and specific error handling on the client side. There are three aspects to it:

The result of a transaction's COMMIT needs to be checked and, in case of a temporary error, the client must retry the transaction.
Prior to COMMIT , the client must retrieve a global identifier for the transaction, consisting of a node id and a transaction id (both 32-bit integers).
If the current server fails while attempting a COMMIT of a transaction, the application must connect to its CAMO partner, retrieve the status of that transaction, and retry depending on the response.

The application must store the global transaction identifier only for the purpose of verifying the transaction status in case of disconnection during COMMIT . In particular, the application doesn't need another persistence layer. If the
application fails, it needs only the information in the database to restart.

To illustrate this, this example shows a retry loop in a CAMO-aware client application, written in a C-like pseudo-code. It expects two DSNs, origin_dsn and partner_dsn , providing connection information. These usually are the same
DSNs as used for the initial call to bdr.create_node and can be looked up in bdr.node_summary , column interface_connstr .

PGconn *conn = PQconnectdb(origin_dsn);

The process starts connecting to the origin node. Now enter the loop:

-- create a CAMO commit scope for a group
over
-- a definite pair of
nodes
SELECT
bdr.create_commit_scope(
 commit_scope_name := 'example_scope',
 origin_node_group := 'camo_dc',
 rule := 'ALL (left_dc) CAMO DEGRADE ON (timeout=500ms) TO
ASYNC'
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 195

loop {
 PQexec(conn, "BEGIN");

Next, start the transaction and begin populating it with changes:

 PQexec(conn, "INSERT INTO ...");
 ...

Once you're done, you need to make a record of the local node id and the transaction id. Both are available as parameters.

 node_id = PQparameterStatus(conn, "bdr.local_node_id");
 xid = PQparameterStatus(conn, "transaction_id");

Now it's ready to try to commit.

 PQexec(conn, "COMMIT");
 if (PQresultStatus(res) == PGRES_COMMAND_OK)
 return SUCCESS;

If the result is PGRES_COMMAND_OK , that's good, and you can move on. But if it isn't, you need to use CAMO to track the transaction to completion. The first question to ask is, "Was the connection bad?"

 else if (PQstatus(res) == CONNECTION_BAD)
 {

If it was a bad connection, then you can check on the CAMO partner node to see if the transaction made it there.

 conn = PQconnectdb(partner_dsn);
 if (!connectionEstablished())
 panic();

If you can't connect to the partner node, there's not a lot you can do. In this case, panic, or take similar actions.

But if you can connect, you can use bdr.logical_transaction_status() to find out how the transaction did. The code recorded the required values, node_id and xid (the transaction id), just before committing the transaction.

 sql = "SELECT bdr.logical_transaction_status($node_id, $xid)";
 txn_status = PQexec(conn, sql);
 if (txn_status == "committed")
 return SUCCESS;
 else
 continue; // to retry the transaction on the partner
 }

If the transaction reports it's been committed, then you can call this transaction a success. No more action is required. If, on the other hand, it doesn't report it's been committed, continue in the loop so the transaction can be retried on the
partner node.

 else
 {
 if (isPermanentError())
 return FAILURE;
 else
 {
 sleep(increasing_retry_delay);

 continue;
 }
 }
}

If status of the transaction wasn't success or bad connection, check if the problem was a permanent error. If so, report a failure of the transaction. If not, you can still retry it. Have the code sleep for a period of time that increases with each
retry, and then retry the transaction.

Working with the CAMO partner

Permissions required

A number of the following CAMO functions require permission. Any user wanting to use CAMO must have at least the bdr_application role assigned to them.

The function bdr.is_camo_partner_connected() allows checking the connection status of a CAMO partner node configured in pair mode. There currently is no equivalent for CAMO used with Eager Replication.

To check that the CAMO partner is ready, use the function bdr.is_camo_partner_ready . Underneath, this triggers the switch to and from local mode.

To find out more about the configured CAMO partner, use bdr.get_configured_camo_partner() . This function returns the local node's CAMO partner.

You can wait on the CAMO partner to process the queue with the function bdr.wait_for_camo_partner_queue() . This function is a wrapper of bdr.wait_for_apply_queue . The difference is that
bdr.wait_for_camo_partner_queue() defaults to querying the CAMO partner node. It returns an error if the local node isn't part of a CAMO pair.

To check the status of a transaction that was being committed when the node failed, the application must use the function bdr.logical_transaction_status() .

You pass this function the the node_id and transaction_id of the transaction you want to check on. With CAMO used in pair mode, you can use this function only on a node that's part of a CAMO pair. Along with Eager Replication, you can use it
on all nodes.

In all cases, you must call the function within 15 minutes after of issuing the commit. The CAMO partner must regularly purge such meta-information and therefore can't provide correct answers for older transactions.

Before querying the status of a transaction, this function waits for the receive queue to be consumed and fully applied. This mechanism prevents early negative answers for transactions that were received but not yet applied.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 196

Despite its name, it's not always a read-only operation. If the status is unknown, the CAMO partner decides whether to commit or abort the transaction, storing that decision locally to ensure consistency going forward.

The client must not call this function before attempting to commit on the origin. Otherwise the transaction might be forced to roll back.

Connection pools and proxies

Consider the effect of connection pools and proxies when designing a CAMO cluster. A proxy might freely distribute transactions to all nodes in the commit group, that is, to both nodes of a CAMO pair or to all PGD nodes in case of Eager All-
Node Replication.

Take care to ensure that the application fetches the proper node id. When using session pooling, the client remains connected to the same node, so the node id remains constant for the lifetime of the client session. However, with finer-grained
transaction pooling, the client needs to fetch the node id for every transaction, as in the example that follows.

A client that isn't directly connected to the PGD nodes might not even notice a failover or switchover. But it can always use the bdr.local_node_id parameter to determine the node it's currently connected to. In the crucial situation of a
disconnect during COMMIT, the proxy must properly forward that disconnect as an error to the client applying the CAMO protocol.

For CAMO in received mode, a proxy that potentially switches between the CAMO pairs must use the bdr.wait_for_camo_partner_queue function to prevent stale reads.

CAMO limitations

CAMO limitations are covered in Known Issues and Limitations.

Performance implications

CAMO extends the Postgres replication protocol by adding a message roundtrip at commit. Applications have a higher commit latency than with asynchronous replication, mostly determined by the round-trip time between involved nodes.
Increasing the number of concurrent sessions can help to increase parallelism to obtain reasonable transaction throughput.

The CAMO partner confirming transactions must store transaction states. Compared to non-CAMO operation, this might require an added seek for each transaction applied from the origin.

Client application testing

Proper use of CAMO on the client side isn't trivial. We strongly recommend testing the application behavior with the PGD cluster against failure scenarios, such as node crashes or network outages.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 197

14.11 Lag Control

Commit scope kind: LAG CONTROL

Overview

Lag Control provides a mechanism where, if replication is running outside of limits set, a delay is injected into the origin node's client connections after processing transactions that make replicable updates. This delay is designed to slow the
incoming transactions and bring replication back within the defined limits.

Background

The data throughput of database applications on a PGD origin node can exceed the rate at which committed data can replicate to downstream peer nodes.

If this imbalance persists, it can put satisfying organizational objectives, such as RPO, RCO, and GEO, at risk.

Recovery point objective (RPO) specifies the maximum-tolerated amount of data that can be lost due to unplanned events, usually expressed as an amount of time. In PGD, RPO determines the acceptable amount of committed data that
hasn't been applied to one or more peer nodes.

Resource constraint objective (RCO) acknowledges that finite storage is available. In PGD, the demands on these storage resources increase as lag increases.

Group elasticity objective (GEO) ensures that any node isn't originating new data at a rate that can't be saved to its peer nodes.

To allow organizations to achieve their objectives, PGD offers Lag Control. This feature provides a means to precisely regulate the potential imbalance without intruding on applications. It does so by transparently introducing a delay to READ
WRITE transactions that modify data. This delay, the PGD commit delay, starts at 0ms.

Using the LAG CONTROL commit scope kind, you can set a maximum time that commits can be delayed between nodes in a group, maximum lag time, or maximum lag size (based on the size of the WAL).

If the nodes can process transactions within the specified maximums on enough nodes, the PGD commit delay will stay at 0ms or be reduced toward 0ms. If the maximums are exceeded on enough nodes, though, the PGD commit delay on the
originating node is increased. It will continue increasing until the Lag Control constraints are met on enough nodes again.

The PGD commit delay happens after a transaction has completed and released all its locks and resources. This timing of the delay allows concurrent active transactions to carry on observing and modifying the delayed transactions values and
acquiring its resources.

Strictly speaking, the PGD commit delay isn't a per-transaction delay. It's the mean value of commit delays over a stream of transactions for a particular client connection. This technique allows the commit delay and fine-grained adjustments
of the value to escape the coarse granularity of OS schedulers, clock interrupts, and variation due to system load. It also allows the PGD runtime commit delay to settle within microseconds of the lowest duration possible to maintain a lag
measure threshold.

PGD commit delay != Postgres commit delay

Don't conflate the PGD commit delay with the Postgres commit delay. They are unrelated and perform different functions. Don't substitute one for the other.

Requirements

To get started using Lag Control:

Determine the maximum acceptable commit delay time max_commit_delay that all database applications can tolerate.

Decide on the lag measure to use. Choose either lag size max_lag_size or lag time max_lag_time .

Decide on the groups or subgroups involved and the minimum number of nodes in each collection required to satisfy confirmation. This information forms the basis for the definition of a commit scope rule.

Configuration

You specify Lag Control in a commit scope, which allows consistent and coordinated parameter settings across the nodes spanned by the commit scope rule. You can include a Lag Control specification in the default commit scope of a top
group or as part of an origin group commit scope.

As in example, take a configuration with two datacenters, left_dc and right_dc , represented as subgroups:

The following code adds Lag Control rules for those two data centers, using individual rules for each subgroup:

SELECT bdr.create_node_group(
 node_group_name := 'left_dc',
 parent_group_name := 'top_group',
 join_node_group := false
);
SELECT bdr.create_node_group(
 node_group_name := 'right_dc',
 parent_group_name := 'top_group',
 join_node_group := false
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 198

https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-COMMIT-DELAY

You can add a Lag Control commit scope rule to existing commit scope rules that also include Group Commit and CAMO rule specifications.

The max_commit_delay is an interval, typically specified in milliseconds (1ms). Using fractional values for sub-millisecond precision is supported.

The max_lag_size is an integer that specifies the maximum allowed lag in terms of WAL bytes.

The max_lag_time is an interval, typically specified in seconds, that specifies the maximum allowed lag in terms of time.

The maximum commit delay (max_commit_delay) is a ceiling value representing a hard limit, which means that a commit delay never exceeds the configured value.

The maximum lag size and time (max_lag_size and max_lag_time) are soft limits that can be exceeded. When the maximum commit delay is reached, there's no additional back pressure on the lag measures to prevent their continued
increase.

Confirmation

Confirmation level Lag Control handling

received Not applicable, only uses the default, VISIBLE .

replicated Not applicable, only uses the default, VISIBLE .

durable Not applicable, only uses the default, VISIBLE .

visible (default) Not applicable, only uses the default, VISIBLE .

Transaction application

The PGD commit delay is applied to all READ WRITE transactions that modify data for user applications. This behavior implies that any transaction that doesn't modify data, including declared READ WRITE transactions, is exempt from the
commit delay.

Asynchronous transaction commit also executes a PGD commit delay. This might appear counterintuitive, but asynchronous commit, by virtue of its performance, can be one of the greatest sources of replication lag.

Postgres and PGD auxillary processes don't delay at transaction commit. Most notably, PGD writers don't execute a commit delay when applying remote transactions on the local node. This is by design, as PGD writers contribute nothing to
outgoing replication lag and can reduce incoming replication lag the most by not having their transaction commits throttled by a delay.

Limitations

The maximum commit delay is a ceiling value representing a hard limit, which means that a commit delay never exceeds the configured value. Conversely, the maximum lag measures both by size and time and are soft limits that can be
exceeded. When the maximum commit delay is reached, there's no additional back pressure on the lag measures to prevent their continued increase.

There's no way to exempt origin transactions that don't modify PGD replication sets from the commit delay. For these transactions, it can be useful to SET LOCAL the maximum transaction delay to 0.

Caveats

Application TPS is one of many factors that can affect replication lag. Other factors include the average size of transactions for which PGD commit delay can be less effective. In particular, bulk load operations can cause replication lag to rise,
which can trigger a concomitant rise in the PGD runtime commit delay beyond the level reasonably expected by normal applications, although still under the maximum allowed delay.

Similarly, an application with a very high OLTP requirement and modest data changes can be unduly restrained by the acceptable PGD commit delay setting.

In these cases, it can be useful to use the SET [SESSION|LOCAL] command to custom configure Lag Control settings for those applications or modify those applications. For example, bulk load operations are sometimes split into multiple
smaller transactions to limit transaction snapshot duration and WAL retention size or establish a restart point if the bulk load fails. In deference to Lag Control, those transaction commits can also schedule very long PGD commit delays to
allow digestion of the lag contributed by the prior partial bulk load.

Meeting organizational objectives

In the example objectives listed earlier:

RPO can be met by setting an appropriate maximum lag time.
RCO can be met by setting an appropriate maximum lag size.
GEO can be met by monitoring the PGD runtime commit delay and the PGD runtime lag measures,

As mentioned, when the maximum PGD runtime commit delay is pegged at the PGD-configured commit-delay limit, and the lag measures consistently exceed their PGD-configured maximum levels, this scenario can be a marker for PGD group
expansion.

SELECT
bdr.create_commit_scope(
 commit_scope_name := 'example_scope',
 origin_node_group := 'left_dc',
 rule := 'ALL (left_dc) LAG CONTROL (max_commit_delay=500ms, max_lag_time=30s) AND ANY 1 (right_dc) LAG CONTROL (max_commit_delay=500ms,
max_lag_time=30s)',
 wait_for_ready :=
true
);
SELECT
bdr.create_commit_scope(
 commit_scope_name := 'example_scope',
 origin_node_group := 'right_dc',
 rule := 'ANY 1 (left_dc) LAG CONTROL (max_commit_delay=0.250ms, max_lag_size=100MB) AND ALL (right_dc) LAG CONTROL (max_commit_delay=0.250ms,
max_lag_size=100MB)',
 wait_for_ready :=
true
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 199

Lag Control and extensions

The PGD commit delay is a post-commit delay. It occurs after the transaction has committed and after all Postgres resources locked or acquired by the transaction are released. Therefore, the delay doesn't prevent concurrent active
transactions from observing or modifying its values or acquiring its resources. The same guarantee can't be made for external resources managed by Postgres extensions. Regardless of extension dependencies, the same guarantee can be
made if the PGD extension is listed before extension-based resource managers in postgresql.conf.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 200

14.12 Administering

When running a PGD cluster with Group Commit, you need to be aware of some things when administering the system, such as how to safely shut down and restart nodes.

Planned shutdown and restarts

When using Group Commit with receive confirmations, take care with planned shutdown or restart. By default, the apply queue is processed prior to shutting down. However, in the immediate shutdown mode, the queue is discarded at
shutdown, leading to the stopped node "forgetting" transactions in the queue. A concurrent failure of the origin node can lead to loss of data, as if both nodes failed.

To ensure the apply queue gets flushed to disk, use either smart or fast shutdown for maintenance tasks. This approach maintains the required synchronization level and prevents loss of data.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 201

https://www.postgresql.org/docs/current/server-shutdown.html

14.13 Legacy synchronous replication using PGD

Important

We highly recommend PGD Synchronous Commit instead of legacy synchronous replication.

Postgres provides physical streaming replication (PSR), which is unidirectional but offers a synchronous variant.

For backward compatibility, PGD still supports configuring synchronous replication with synchronous_commit and synchronous_standby_names . Consider using Group Commit or Synchronous Commit instead.

Unlike PGD replication options, PSR sync persists first, replicating after the WAL flush of commit record.

Usage

To enable synchronous replication using PGD, you need to add the application name of the relevant PGD peer nodes to synchronous_standby_names . The use of FIRST x or ANY x offers some flexibility if this doesn't conflict with
the requirements of non-PGD standby nodes.

Once you've added it, you can configure the level of synchronization per transaction using synchronous_commit , which defaults to on . This setting means that adding the application name to synchronous_standby_names already
enables synchronous replication. Setting synchronous_commit to local or off turns off synchronous replication.

Due to PGD applying the transaction before persisting it, the values on and remote_apply are equivalent for logical replication.

Comparison

The following table summarizes what a client can expect from a peer node replicated to after receiving a COMMIT confirmation from the origin node the transaction was issued to. The Mode column takes on different meaning depending on the
variant. For PSR and legacy synchronous replication with PGD, it refers to the synchronous_commit setting.

Variant Mode Received Visible Durable

PSR Async off (default) no no no

PSR Sync remote_write (2) yes no no (3)

PSR Sync on (2) yes no yes

PSR Sync remote_apply (2) yes yes yes

PGD Legacy Sync (1) remote_write (2) yes no no

PGD Legacy Sync (1) on (2) yes yes yes

PGD Legacy Sync (1) remote_apply (2) yes yes yes

(1) Consider using Group Commit instead.

(2) Unless switched to local mode (if allowed) by setting synchronous_replication_availability to async' , otherwise the values for the asynchronous PGD default apply.

(3) Written to the OS, durable if the OS remains running and only Postgres crashes.

Postgres configuration parameters

The following table provides an overview of the configuration settings that you must set to a non-default value (req) and those that are optional (opt) but affect a specific variant.

Setting (GUC) Group Commit Lag Control PSR Legacy Sync

synchronous_standby_names n/a n/a req req

synchronous_commit n/a n/a opt opt

synchronous_replication_availability n/a n/a opt opt

Migration to commit scopes

You configure the Group Commit feature of PGD independent of synchronous_commit and synchronous_standby_names . Instead, the bdr.commit_scope GUC allows you to select the scope per transaction. And instead of
configuring synchronous_standby_names on each node individually, Group Commit uses globally synchronized commit scopes.

Note

While the grammar for synchronous_standby_names and commit scopes looks similar, the former doesn't account for the origin node, but the latter does. Therefore, for example, synchronous_standby_names = 'ANY
1 (..)' is equivalent to a commit scope of ANY 2 (...) . This choice makes reasoning about majority easier and reflects that the origin node also contributes to the durability and visibility of the transaction.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 202

https://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION
https://www.postgresql.org/docs/current/warm-standby.html#SYNCHRONOUS-REPLICATION

14.14 Predefined Commit Scopes

Both PGD Essential and PGD Expanded provide a set of predefined commit scopes that are available for use.

The difference between the two editions is that PGD Essential has a limited set of predefined commit scopes that cannot be changed, while PGD Expanded allows for fully manageable and configurable commit scopes. The predefined commit
scopes in PGD Essential are designed to provide a balance between performance and data safety, while the configurable commit scopes in PGD Expanded offer more flexibility and control over the durability guarantees.

local protect

ASYNCHRONOUS COMMIT

The local protect commit scope is the default commit scope for PGD Essential. It provides asynchronous commit with no durability guarantees. This means that transactions are considered committed as soon as they are written to the
local node's WAL, without waiting for any confirmation from other nodes in the cluster.

This commit scope is suitable for scenarios where high availability and low latency are more important than data durability. However, it does not provide any guarantees against data loss in case of node failures or network issues.

lag protect

MAJORITY ORIGIN GROUP LAG CONTROL (max_lag_time = 30s, max_commit_delay = 10s)

The lag protect commit scope provides a durability guarantee based on the lag time of the majority origin group. It ensures that transactions are considered committed only when the lag time is within a specified limit (30 seconds in this
case) and the commit delay is also within a specified limit (10 seconds in this case). This helps to prevent data loss in case of network issues or node failures.

This commit scope is useful in scenarios where data consistency and durability are important, but some latency is acceptable. It allows for a balance between performance and data safety by ensuring that transactions are not considered
committed until they have been confirmed by the majority of nodes in the origin group within the specified lag and commit delay limits.

majority protect

MAJORITY ORIGIN GROUP SYNCHRONOUS COMMIT

The majority protect commit scope provides a durability guarantee based on the majority origin group. It ensures that transactions are considered committed only when they are confirmed by the majority of nodes in the origin group.
This helps to ensure data consistency and durability in case of node failures or network issues.

This commit scope is suitable for scenarios where data consistency and durability are critical, and it provides a higher level of protection against data loss compared to the local protect commit scope. However, it may introduce some
latency due to the need for confirmation from multiple nodes before considering a transaction as committed.

adaptive protect

MAJORITY ORIGIN GROUP SYNCHRONOUS COMMIT DEGRADE ON (timeout = 10s, require_write_lead = true) TO ASYNCHRONOUS COMMIT

The adaptive protect commit scope provides a more flexible durability guarantee. It allows transactions to be considered committed based on the majority origin group synchronous commit, but it can degrade to asynchronous commit if
the transaction cannot be confirmed within a specified timeout (10 seconds in this case). This is useful in scenarios where network latency or node failures may cause delays in confirming transactions.

This commit scope is suitable for scenarios where data consistency and durability are important, but some flexibility is needed to handle potential delays. It provides a balance between performance and data safety by allowing transactions to
be considered committed even if they cannot be confirmed by the majority of nodes within the specified timeout, while still providing a higher level of protection compared to the local protect commit scope.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 203

14.15 Internal timing of operations

For a better understanding of how the different modes work, it's helpful to know that legacy physical streaming replication (PSR) and PGD apply transactions in different ways.

With Legacy PSR, the order of operations is:

1. Origin flushes a commit record to WAL, making the transaction visible locally.
2. Peer node receives changes and issues a write.
3. Peer flushes the received changes to disk.
4. Peer applies changes, making the transaction visible on the peer.

Note that the change is written to the disk before applying the changes.

With PGD, by default and with Lag Control, the order of operations is different. In these cases, the change becomes visible on the peer before the transaction is flushed to the peer's disk:

1. Origin flushes a commit record to WAL, making the transaction visible locally.
2. Peer node receives changes into its apply queue in memory.
3. Peer applies changes, making the transaction visible on the peer.
4. Peer persists the transaction by flushing to disk.

For PGD's Group Commit and CAMO, the origin node waits for a certain number of confirmations prior to making the transaction visible locally. The order of operations is:

1. Origin flushes a prepare or precommit record to WAL.
2. Peer node receives changes into its apply queue in memory.
3. Peer applies changes, making the transaction visible on the peer.
4. Peer persists the transaction by flushing to disk.
5. Origin commits and makes the transaction visible locally.

The following table summarizes the differences.

Variant Order of apply vs
persist

Replication before or after
commit

PSR persist first after WAL flush of commit record

PGD Async apply first after WAL flush of commit record

PGD Lag Control apply first after WAL flush of commit record

PGD Group Commit apply first before COMMIT on origin

PGD CAMO apply first before COMMIT on origin

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 204

15 Conflict Management

EDB Postgres Distributed is an active/active or multi-master DBMS. If used asynchronously, writes to the same or related rows from multiple different nodes can result in data conflicts when using standard data types.

Conflicts aren't errors. In most cases, they're events that PGD can detect and resolve as they occur. Resolution depends on the nature of the application and the meaning of the data, so it's important that PGD provides the application a range of
choices as to how to resolve them.

By default, conflicts are resolved at the row level. When changes from two nodes conflict, either the local or remote tuple is picked and the other is discarded. For example, the commit timestamps might be compared for the two conflicting
changes and the newer one kept. This approach ensures that all nodes converge to the same result and establishes commit-order-like semantics on the whole cluster.

Column-level conflict detection and resolution is available with PGD, described in CLCD.

If you want to avoid conflicts, you can use Group Commit with Eager conflict resolution or conflict-free data types (CRDTs), described in CRDT. You can also use Connection Manager to route all writes to one write-leader, eliminating the chance
for inter-nodal conflicts.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 205

https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/group-commit/
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/group-commit/#eager-conflict-resolution

15.1 Conflicts

EDB Postgres Distributed is an active/active or multi-master DBMS. If used asynchronously, writes to the same or related rows from multiple different nodes can result in data conflicts when using standard data types.

Conflicts aren't errors. In most cases, they are events that PGD can detect and resolve as they occur. This section introduces the PGD functionality that allows you to manage that detection and resolution.

Overview introduces the idea of conflicts in PGD and explains how they can happen.

Types of conflicts lists and discusses the various sorts of conflicts you might run across in PGD.

Conflict detection introduces the mechanisms PGD provides for conflict detection.

Conflict resolution explains how PGD resolves conflicts and how you can change the default behavior.

Conflict logging points out where PGD keeps conflict logs and explains how you can perform conflict reporting.

Data verification with LiveCompare explains how LiveCompare can help keep data consistent by pointing out conflicts as they arise.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 206

15.1.1 Overview

EDB Postgres Distributed is an active/active or multi-master DBMS. If used asynchronously, writes to the same or related rows from multiple different nodes can result in data conflicts when using standard data types.

Conflicts aren't errors. In most cases, they are events that PGD can detect and resolve as they occur. Resolving them depends on the nature of the application and the meaning of the data, so it's important for PGD to provide the application
with a range of choices for how to resolve conflicts.

By default, conflicts are resolved at the row level. When changes from two nodes conflict, PGD picks either the local or remote tuple and the discards the other. For example, the commit timestamps might be compared for the two conflicting
changes and the newer one kept. This approach ensures that all nodes converge to the same result and establishes commit-order-like semantics on the whole cluster.

Conflict handling is configurable, as described in Conflict resolution. PGD can detect conflicts and handle them differently for each table using conflict triggers, described in Stream triggers.

Column-level conflict detection and resolution is available with PGD, as described in CLCD.

By default, all conflicts are logged to bdr.conflict_history . If conflicts are possible, then table owners must monitor for them and analyze how to avoid them or make plans to handle them regularly as an application task. The
LiveCompare tool is also available to scan regularly for divergence.

Some clustering systems use distributed lock mechanisms to prevent concurrent access to data. These can perform reasonably when servers are very close to each other but can't support geographically distributed applications where very low
latency is critical for acceptable performance.

Distributed locking is essentially a pessimistic approach. PGD advocates an optimistic approach, which is to avoid conflicts where possible but allow some types of conflicts to occur and resolve them when they arise.

How conflicts happen

Inter-node conflicts arise as a result of sequences of events that can't happen if all the involved transactions happen concurrently on the same node. Because the nodes exchange changes only after the transactions commit, each transaction is
individually valid on the node it committed on. It isn't valid if applied on another node that did other conflicting work at the same time.

Since PGD replication essentially replays the transaction on the other nodes, the replay operation can fail if there's a conflict between a transaction being applied and a transaction that was committed on the receiving node.

Most conflicts can't happen when all transactions run on a single node because Postgres has inter-transaction communication mechanisms to prevent it. Examples of these mechanisms are UNIQUE indexes, SEQUENCE operations, row and
relation locking, and SERIALIZABLE dependency tracking. All of these mechanisms are ways to communicate between ongoing transactions to prevent undesirable concurrency issues.

PGD doesn't have a distributed transaction manager or lock manager. That's part of why it performs well with latency and network partitions. As a result, transactions on different nodes execute entirely independently from each other when
using the default, which is lazy replication. Less independence between nodes can avoid conflicts altogether, which is why PGD also offers Eager Replication for when this is important.

Avoiding or tolerating conflicts

In most cases, you can design the application to avoid or tolerate conflicts.

Conflicts can happen only if things are happening at the same time on multiple nodes. The simplest way to avoid conflicts is to only ever write to one node or to only ever write to a specific row in a specific way from one specific node at a time.

This avoidance happens naturally in many applications. For example, many consumer applications allow only the owning user to change data, such as changing the default billing address on an account. Such data changes seldom have update
conflicts.

You might make a change just before a node goes down, so the change seems to be lost. You might then make the same change again, leading to two updates on different nodes. When the down node comes back up, it tries to send the older
change to other nodes. It's rejected because the last update of the data is kept.

For INSERT / INSERT conflicts, use global sequences to prevent this type of conflict.

For applications that assign relationships between objects, such as a room-booking application, applying update_if_newer might not give an acceptable business outcome. That is, it isn't useful to confirm to two people separately that
they have booked the same room. The simplest resolution is to use Eager Replication to ensure that only one booking succeeds. More complex ways might be possible depending on the application. For example, you can assign 100 seats to
each node and allow those to be booked by a writer on that node. But if none are available locally, use a distributed locking scheme or Eager Replication after most seats are reserved.

Another technique for ensuring certain types of updates occur only from one specific node is to route different types of transactions through different nodes. For example:

Receiving parcels on one node but delivering parcels using another node
A service application where orders are input on one node and work is prepared on a second node and then served back to customers on another

Frequently, the best course is to allow conflicts to occur and design the application to work with PGD's conflict resolution mechanisms to cope with the conflict.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 207

https://www.enterprisedb.com/docs/livecompare/latest
https://www.enterprisedb.com/docs/pgd/latest/reference/sequences#pgd-global-sequences

15.1.2 Types of Conflict

PRIMARY KEY or UNIQUE conflicts

The most common conflicts are row conflicts, where two operations affect a row with the same key in ways they can't on a single node. PGD can detect most of those and applies the update_if_newer conflict resolver.

Row conflicts include:

INSERT versus INSERT
UPDATE versus UPDATE
UPDATE versus DELETE
INSERT versus UPDATE
INSERT versus DELETE
DELETE versus DELETE

The view bdr.node_conflict_resolvers provides information on how conflict resolution is currently configured for all known conflict types.

INSERT/INSERT conflicts

The most common conflict, INSERT / INSERT , arises where INSERT operations on two different nodes create a tuple with the same PRIMARY KEY values (or if no PRIMARY KEY exists, the same values for a single UNIQUE
constraint).

PGD handles this situation by retaining the most recently inserted tuple of the two according to the originating node's timestamps. (A user-defined conflict handler can override this behavior.)

This conflict generates the insert_exists conflict type, which is by default resolved by choosing the newer row, based on commit time, and keeping only that one (update_if_newer resolver). You can configure other resolvers. See
Conflict resolution for details.

To resolve this conflict type, you can also use column-level conflict resolution and user-defined conflict triggers.

You can effectively eliminate this type of conflict by using global sequences.

INSERT operations that violate UNIQUE or EXCLUDE constraints

An INSERT / INSERT conflict can violate more than one UNIQUE constraint, one of which might be the PRIMARY KEY , or violate one or more EXCLUDE constraints.

In either of the following cases, applying the replication change produces a multiple_unique_conflicts conflict. Both of these cases result in a conflict against more than one other row.

If a new row violates more than one UNIQUE constraint and that results in a conflict against more than one other row.

If a new row violates more than one EXCLUDE constraint or a single EXCLUDE constraint.

In case of such a conflict, for replication to continue, you must remove some rows. Depending on the resolver setting for multiple_unique_conflicts , the apply process either exits with an error, skips the incoming row, or deletes
some of the rows. The deletion tries to preserve the row with the correct PRIMARY KEY and delete the others.

Warning

In case of multiple rows conflicting this way, if the result of conflict resolution is to proceed with the insert operation, some of the data is always deleted.

You can also define a different behavior using a conflict trigger.

UPDATE/UPDATE conflicts

Where two concurrent UPDATE operations on different nodes change the same tuple but not its PRIMARY KEY , an UPDATE / UPDATE conflict can occur on replay.

These can generate different conflict kinds based on the configuration and situation. If the table is configured with row version conflict detection, then the original (key) row is compared with the local row. If they're different, the
update_differing conflict is generated. When using origin conflict detection, the origin of the row is checked. (The origin is the node that the current local row came from.) If that changed, the update_origin_change conflict is

generated. In all other cases, the UPDATE is normally applied without generating a conflict.

Both of these conflicts are resolved the same way as insert_exists , described in INSERT/INSERT conflicts.

UPDATE conflicts on the PRIMARY KEY

PGD can't currently perform conflict resolution where the PRIMARY KEY is changed by an UPDATE operation. You can update the primary key, but you must ensure that no conflict with existing values is possible.

Conflicts on the update of the primary key are divergent conflicts and require manual intervention.

Updating a primary key is possible in Postgres, but there are issues in both Postgres and PGD.

A simple schema provides an example that explains:

Updating the Primary Key column is possible, so this SQL succeeds:

However, suppose the table has multiple rows:

CREATE TABLE pktest (pk integer primary key, val
integer);
INSERT INTO pktest VALUES
(1,1);

UPDATE pktest SET pk=2 WHERE
pk=1;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 208

https://www.enterprisedb.com/docs/pgd/latest/reference/sequences#pgd-global-sequences
https://www.enterprisedb.com/docs/pgd/latest/reference/stream-triggers/#conflict-triggers

Some UPDATE operations succeed:

Other UPDATE operations fail with constraint errors:

So for Postgres applications that update primary keys, be careful to avoid runtime errors, even without PGD.

With PGD, the situation becomes more complex if UPDATE operations are allowed from multiple locations at same time.

Executing these two changes concurrently works:

Executing these next two changes concurrently causes a divergent error, since both changes are accepted. But applying the changes on the other node results in update_missing conflicts.

This scenario leaves the data different on each node:

You can identify and resolve this situation using LiveCompare.

Concurrent conflicts present problems. Executing these two changes concurrently isn't easy to resolve:

Both changes are applied locally, causing a divergence between the nodes. But the apply on the target fails on both nodes with a duplicate key-value violation error. This error causes the replication to halt and requires manual resolution.

You can avoid this duplicate key violation error, and replication doesn't break, if you set the conflict_type update_pkey_exists to skip , update , or update_if_newer . This approach can still lead to divergence depending on the
nature of the update.

You can avoid divergence in cases where the same old key is being updated by the same new key concurrently by setting update_pkey_exists to update_if_newer . However, in certain situations, divergence occurs even with

INSERT INTO pktest VALUES
(3,3);

UPDATE pktest SET pk=4 WHERE
pk=3;

SELECT * FROM pktest;
 pk |
val
----+-----
 2 |
1
 4 |
3
(2 rows)

UPDATE pktest SET pk=4 WHERE
pk=2;
ERROR: duplicate key value violates unique constraint
"pktest_pkey"
DETAIL: Key (pk)=(4) already exists

node1: UPDATE pktest SET pk=pk+1 WHERE pk =
2;
node2: UPDATE pktest SET pk=pk+1 WHERE pk =
4;

SELECT * FROM pktest;
 pk |
val
----+-----
 3 |
1
 5 |
3
(2 rows)

node1: UPDATE pktest SET pk=1 WHERE pk =
3;
node2: UPDATE pktest SET pk=2 WHERE pk =
3;

node1:
SELECT * FROM pktest;
 pk |
val
----+-----
 1 |
1
 5 |
3
(2 rows)

node2:
SELECT * FROM pktest;
 pk |
val
----+-----
 2 |
1
 5 |
3
(2 rows)

node1: UPDATE pktest SET pk=6, val=8 WHERE pk =
5;
node2: UPDATE pktest SET pk=6, val=9 WHERE pk =
5;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 209

https://www.enterprisedb.com/docs/livecompare/latest

You can avoid divergence in cases where the same old key is being updated by the same new key concurrently by setting update_pkey_exists to update_if_newer . However, in certain situations, divergence occurs even with
update_if_newer , namely when two different rows both are updated concurrently to the same new primary key.

As a result, we recommend strongly against allowing primary key UPDATE operations in your applications, especially with PGD. If parts of your application change primary keys, then to avoid concurrent changes, make those changes using
Eager Replication.

Warning

In case the conflict resolution of update_pkey_exists conflict results in update, one of the rows is always deleted.

UPDATE operations that violate UNIQUE or EXCLUDE constraints

Like INSERT operations that violate multiple UNIQUE/EXCLUDE constraints, when an incoming UPDATE violates more than one UNIQUE / EXCLUDE index (including the PRIMARY KEY) or violates a single EXCLUDE index such that
more than one row is in conflict, PGD raises a multiple_unique_conflicts conflict.

PGD supports deferred unique constraints. If a transaction can commit on the source, then it applies cleanly on target, unless it sees conflicts. However, you can't use a deferred primary key as a REPLICA IDENTITY, so the use cases are already
limited by that and the warning about using multiple unique constraints.

UPDATE/DELETE conflicts

One node can update a row that another node deletes at the same time. In this case an UPDATE / DELETE conflict can occur on replay.

If the deleted row is still detectable (the deleted row wasn't removed by VACUUM), the update_recently_deleted conflict is generated. By default, the UPDATE is skipped, but you can configure the resolution for this. See Conflict
resolution for details.

The database can clean up the deleted row by the time the UPDATE is received in case the local node is lagging behind in replication. In this case, PGD can't differentiate between UPDATE / DELETE conflicts and INSERT/UPDATE conflicts.
It generates the update_missing conflict.

Another type of conflicting DELETE and UPDATE is a DELETE that comes after the row was updated locally. In this situation, the outcome depends on the type of conflict detection used. When using the default, origin conflict detection,
no conflict is detected, leading to the DELETE being applied and the row removed. If you enable row version conflict detection, a delete_recently_updated conflict is generated. The default resolution for a
delete_recently_updated conflict is to skip the deletion. However, you can configure the resolution or a conflict trigger can be configured to handle it.

INSERT/UPDATE conflicts

When using the default asynchronous mode of operation, a node might receive an UPDATE of a row before the original INSERT was received. This can happen only when three or more nodes are active (see Conflicts with three or more
nodes).

When this happens, the update_missing conflict is generated. The default conflict resolver is insert_or_skip , though you can use insert_or_error or skip instead. Resolvers that do insert-or-action first try to INSERT a
new row based on data from the UPDATE when possible (when the whole row was received). For reconstructing the row to be possible, the table either needs to have REPLICA IDENTITY FULL or the row must not contain any toasted
data.

See TOAST support details for more info about toasted data.

INSERT/DELETE conflicts

Similar to the INSERT / UPDATE conflict, the node might also receive a DELETE operation on a row for which it didn't yet receive an INSERT . This is again possible only with three or more nodes set up (see Conflicts with three or more
nodes).

PGD can't currently detect this conflict type. The INSERT operation doesn't generate any conflict type, and the INSERT is applied.

The DELETE operation always generates a delete_missing conflict, which is by default resolved by skipping the operation.

DELETE/DELETE conflicts

A DELETE / DELETE conflict arises when two different nodes concurrently delete the same tuple.

This scenario always generates a delete_missing conflict, which is by default resolved by skipping the operation.

This conflict is harmless since both DELETE operations have the same effect. You can safely ignroe one of them.

Conflicts with three or more nodes

If one node inserts a row that's then replayed to a second node and updated there, a third node can receive the UPDATE from the second node before it receives the INSERT from the first node. This scenario is an INSERT / UPDATE
conflict.

These conflicts are handled by discarding the UPDATE , which can lead to different data on different nodes. These are divergent conflicts.

This conflict type can happen only with three or more masters. At least two masters must be actively writing.

Also, the replication lag from node 1 to node 3 must be high enough to allow the following sequence of actions:

1. node 2 receives INSERT from node 1
2. node 2 performs UPDATE
3. node 3 receives UPDATE from node 2
4. node 3 receives INSERT from node 1

Using insert_or_error (or in some cases the insert_or_skip conflict resolver for the update_missing conflict type) is a viable mitigation strategy for these conflicts. However, enabling this option opens the door for
INSERT / DELETE conflicts:

1. node 1 performs UPDATE
2. node 2 performs DELETE
3. node 3 receives DELETE from node 2
4. node 3 receives UPDATE from node 1, turning it into an INSERT

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 210

If these are problems, we recommend tuning freezing settings for a table or database so that they're correctly detected as update_recently_deleted .

Another alternative is to use Eager Replication to prevent these conflicts.

INSERT / DELETE conflicts can also occur with three or more nodes. Such a conflict is identical to INSERT / UPDATE except with the UPDATE replaced by a DELETE . This can result in a delete_missing conflict.

PGD could choose to make each INSERT into a check-for-recently deleted, as occurs with an update_missing conflict. However, the cost of doing this penalizes the majority of users, so at this time it instead logs delete_missing .

Future releases will automatically resolve INSERT / DELETE anomalies by way of rechecks using LiveCompare when delete_missing conflicts occur. Applications can perform these manually by checking the
bdr.conflict_history_summary view.

These conflicts can occur in two main problem use cases:

INSERT followed rapidly by a DELETE , as can be used in queuing applications
Any case where the primary key identifier of a table is reused

Neither of these cases is common. We recommend not replicating the affected tables if these problem use cases occur.

PGD has problems with the latter case because PGD relies on the uniqueness of identifiers to make replication work correctly.

Applications that insert, delete, and then later reuse the same unique identifiers can cause difficulties. This is known as the ABA problem. PGD has no way of knowing whether the rows are the current row, the last row, or much older rows.

Unique identifier reuse is also a business problem, since it prevents unique identification over time, which prevents auditing, traceability, and sensible data quality. Applications don't need to reuse unique identifiers.

Any identifier reuse that occurs in the time interval it takes for changes to pass across the system causes difficulties. Although that time might be short in normal operation, down nodes can extend that interval to hours or days.

We recommend that applications don't reuse unique identifiers. If they do, take steps to avoid reuse in less than a year.

This problem doesn't occur in applications that use sequences or UUIDs.

Foreign key constraint conflicts

Conflicts between a remote transaction being applied and existing local data can also occur for FOREIGN KEY (FK) constraints.

PGD applies changes with session_replication_role = 'replica' , so foreign keys aren't rechecked when applying changes. In an active/active environment, this situation can result in FK violations if deletes occur to the
referenced table at the same time as inserts into the referencing table. This scenario is similar to an INSERT / DELETE conflict.

In single-master Postgres, any INSERT / UPDATE that refers to a value in the referenced table must wait for DELETE operations to finish before they can gain a row-level lock. If a DELETE removes a referenced value, then the
INSERT / UPDATE fails the FK check.

In multi-master PGD. there are no inter-node row-level locks. An INSERT on the referencing table doesn't wait behind a DELETE on the referenced table, so both actions can occur concurrently. Thus an INSERT / UPDATE on one node on
the referencing table can use a value at the same time as a DELETE on the referenced table on another node. The result, then, is a value in the referencing table that's no longer present in the referenced table.

In practice, this situation occurs if the DELETE operations occur on referenced tables in separate transactions from DELETE operations on referencing tables, which isn't a common operation.

In a parent-child relationship such as Orders -> OrderItems, it isn't typical to do this. It's more likely to mark an OrderItem as canceled than to remove it completely. For reference/lookup data, it's unusual to completely remove entries at the
same time as using those same values for new fact data.

While dangling FKs are possible, the risk of this in general is very low. Thus PGD doesn't impose a generic solution to cover this case. Once you understand the situation in which this occurs, two solutions are possible.

The first solution is to restrict the use of FKs to closely related entities that are generally modified from only one node at a time, are infrequently modified, or where the modification's concurrency is application mediated. This approach avoids
any FK violations at the application level.

The second solution is to add triggers to protect against this case using the PGD-provided functions bdr.ri_fkey_trigger() and bdr.ri_fkey_on_del_trigger() . When called as BEFORE triggers, these functions use
FOREIGN KEY information to avoid FK anomalies by setting referencing columns to NULL, much as if you had a SET NULL constraint. This approach rechecks all FKs in one trigger, so you need to add only one trigger per table to prevent FK

violation.

As an example, suppose you have two tables: Fact and RefData. Fact has an FK that references RefData. Fact is the referencing table, and RefData is the referenced table. You need to add one trigger to each table.

Add a trigger that sets columns to NULL in Fact if the referenced row in RefData was already deleted:

Add a trigger that sets columns to NULL in Fact at the time a DELETE occurs on the RefData table:

Adding both triggers avoids dangling foreign keys.

CREATE TRIGGER
bdr_replica_fk_iu_trg
 BEFORE INSERT OR UPDATE ON fact
 FOR EACH ROW
 EXECUTE PROCEDURE bdr.ri_fkey_trigger();

ALTER TABLE fact
 ENABLE REPLICA TRIGGER bdr_replica_fk_iu_trg;

CREATE TRIGGER bdr_replica_fk_d_trg
 BEFORE DELETE ON refdata
 FOR EACH ROW
 EXECUTE PROCEDURE
bdr.ri_fkey_on_del_trigger();

ALTER TABLE refdata
 ENABLE REPLICA TRIGGER
bdr_replica_fk_d_trg;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 211

https://www.enterprisedb.com/docs/livecompare/latest/
https://en.wikipedia.org/wiki/ABA_problem

TRUNCATE conflicts

TRUNCATE behaves similarly to a DELETE of all rows but performs this action by physically removing the table data rather than row-by-row deletion. As a result, row-level conflict handling isn't available, so TRUNCATE commands don't
generate conflicts with other DML actions, even when there's a clear conflict.

As a result, the ordering of replay can cause divergent changes if another DML is executed concurrently on other nodes to the TRUNCATE .

You can take one of the following actions:

Ensure TRUNCATE isn't executed alongside other concurrent DML. Rely on LiveCompare to highlight any such inconsistency.

Replace TRUNCATE with a DELETE statement with no WHERE clause. This approach is likely to have poor performance on larger tables.

Set bdr.truncate_locking = 'on' to set the TRUNCATE command’s locking behavior. This setting determines whether TRUNCATE obeys the bdr.ddl_locking setting. This isn't the default behavior for TRUNCATE
since it requires all nodes to be up. This configuration might not be possible or wanted in all cases.

Data conflicts for roles and tablespace differences

Conflicts can also arise where nodes have global (Postgres-system-wide) data, like roles, that differ. This conflict can result in operations—mainly DDL —that can run successfully and commit on one node but then fail to apply to other nodes.

For example, node1 might have a user named fred, and that user wasn't created on node2. If fred on node1 creates a table, the table is replicated with its owner set to fred. When the DDL command is applied to node2, the DDL fails because
there's no user named fred. This failure generates an error in the Postgres logs.

Administrator intervention is required to resolve this conflict by creating the user fred in the database where PGD is running. You can set bdr.role_replication = on to resolve this in future.

Lock conflicts and deadlock aborts

Because PGD writer processes operate much like normal user sessions, they're subject to the usual rules around row and table locking. This can sometimes lead to PGD writer processes waiting on locks held by user transactions or even by
each other.

Relevant locking includes:

Explicit table-level locking (LOCK TABLE ...) by user sessions
Explicit row-level locking (SELECT ... FOR UPDATE/FOR SHARE) by user sessions
Implicit locking because of row UPDATE , INSERT , or DELETE operations, either from local activity or from replication from other nodes

A PGD writer process can deadlock with a user transaction, where the user transaction is waiting on a lock held by the writer process and vice versa. Two writer processes can also deadlock with each other. Postgres's deadlock detector steps in
and terminates one of the problem transactions. If the PGD writer process is terminated, it retries and generally succeeds.

All these issues are transient and generally require no administrator action. If a writer process is stuck for a long time behind a lock on an idle user session, the administrator can terminate the user session to get replication flowing again.
However, this is no different from a user holding a long lock that impacts another user session.

Use of the log_lock_waits facility in Postgres can help identify locking related replay stalls.

Divergent conflicts

Divergent conflicts arise when data that should be the same on different nodes differs unexpectedly. Divergent conflicts shouldn't occur, but not all such conflicts can be reliably prevented at the time of writing.

Changing the PRIMARY KEY of a row can lead to a divergent conflict if another node changes the key of the same row before all nodes have replayed the change. Avoid changing primary keys, or change them only on one designated node.

Divergent conflicts involving row data generally require administrator action to manually adjust the data on one of the nodes to be consistent with the other one. Such conflicts don't arise so long as you use PGD as documented and avoid
settings or functions marked as unsafe.

The administrator must manually resolve such conflicts. You might need to use the advanced options such as bdr.ddl_replication and bdr.ddl_locking depending on the nature of the conflict. However, careless use of these
options can make things much worse and create a conflict that generic instructions can't address.

TOAST support details

Postgres uses out-of-line storage for larger columns called TOAST.

The TOAST values handling in logical decoding (which PGD is built on top of) and logical replication is different from inline data stored as part of the main row in the table.

The TOAST value is logged into the transaction log (WAL) only if the value changed. This can cause problems, especially when handling UPDATE conflicts, because an UPDATE statement that didn't change a value of a toasted column
produces a row without that column. As mentioned in INSERT/UPDATE conflicts, PGD reports an error if an update_missing conflict is resolved using insert_or_error and there are missing TOAST columns.

However, more subtle issues than this one occur in case of concurrent workloads with asynchronous replication. (Eager transactions aren't affected.) Imagine, for example, the following workload on an EDB Postgres Distributed cluster with
three nodes called A, B, and C:

1. On node A: txn A1 does an UPDATE SET col1 = 'toast data...' and commits first.
2. On node B: txn B1 does UPDATE SET other_column = 'anything else'; and commits after A1.
3. On node C: the connection to node A lags behind.
4. On node C: txn B1 is applied first, it misses the TOASTed column in col1, but gets applied without conflict.
5. On node C: txn A1 conflicts (on update_origin_change) and is skipped.
6. Node C misses the toasted data from A1 forever.

This scenario isn't usually a problem when using PGD. (It is when using either built-in logical replication or plain pglogical for multi-master.) PGD adds its own logging of TOAST columns when it detects a local UPDATE to a row that recently
replicated a TOAST column modification and the local UPDATE isn't modifying the TOAST. Thus PGD prevents any inconsistency for toasted data across different nodes. This situation causes increased WAL logging when updates occur on
multiple nodes, that is, when origin changes for a tuple. Additional WAL overhead is zero if all updates are made from a single node, as is normally the case with PGD AlwaysOn architecture.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 212

https://www.enterprisedb.com/docs/livecompare/latest
https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-LOCK-WAITS
https://www.postgresql.org/docs/current/storage-toast.html

Note

Running VACUUM FULL or CLUSTER on just the TOAST table without doing same on the main table removes metadata needed for the extra logging to work. This means that, for a short period after such a statement, the
protection against these concurrency issues isn't present.

Warning

The additional WAL logging of TOAST is done using the BEFORE UPDATE trigger on standard Postgres. This trigger must be sorted alphabetically last based on trigger name among all BEFORE UPDATE triggers on the table. It's
prefixed with zzzz_bdr_ to make this easier, but make sure you don't create any trigger with a name that sorts after it. Otherwise you won't have the protection against the concurrency issues.

For the insert_or_error conflict resolution, the use of REPLICA IDENTITY FULL is still required.

None of these problems associated with toasted columns affect tables with REPLICA IDENTITY FULL . This setting always logs a toasted value as part of the key since the whole row is considered to be part of the key. PGD can reconstruct
the new row, filling the missing data from the key row. As a result, using REPLICA IDENTITY FULL can increase WAL size significantly.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 213

15.1.3 Conflict detection

PGD provides these mechanisms for conflict detection:

Origin conflict detection (default)
Row version conflict detection
Column-level conflict detection

Origin conflict detection

Origin conflict detection uses and relies on commit timestamps as recorded on the node the transaction originates from. This requires clocks to be in sync to work correctly or to be within a tolerance of the fastest message between two nodes.
If this isn't the case, conflict resolution tends to favor the node that's further ahead. You can manage clock skew between nodes using the parameters bdr.maximum_clock_skew and bdr.maximum_clock_skew_action .

Row origins are available only if track_commit_timestamp = on .

Conflicts are first detected based on whether the replication origin changed, so conflict triggers are called in situations that might not turn out to be conflicts. Hence, this mechanism isn't precise, since it can generate false-positive conflicts.

Origin info is available only up to the point where a row is frozen. Updates arriving for a row after it was frozen don't raise a conflict so are applied in all cases. This is the normal case when adding a new node by bdr_init_physical , so
raising conflicts causes many false-positive results in that case.

A node that was offline that reconnects and begins sending data changes can cause divergent errors if the newly arrived updates are older than the frozen rows that they update. Inserts and deletes aren't affected by this situation.

We suggest that you don't leave down nodes for extended outages, as discussed in Node restart and down node recovery.

On EDB Postgres Extended Server and EDB Postgres Advanced Server, PGD holds back the freezing of rows while a node is down. This mechanism handles this situation gracefully so you don't need to change parameter settings.

On other variants of Postgres, you might need to manage this situation with some care.

Freezing normally occurs when a row being vacuumed is older than vacuum_freeze_min_age xids from the current xid, which means that you need to configure suitably high values for these parameters:

vacuum_freeze_min_age
vacuum_freeze_table_age
autovacuum_freeze_max_age

Choose values based on the transaction rate, giving a grace period of downtime before removing any conflict data from the database node. For example, when vacuum_freeze_min_age is set to 500 million, a node performing 1000 TPS
can be down for just over 5.5 days before conflict data is removed. The CommitTS data structure takes on-disk space of 5 GB with that setting, so lower transaction rate systems can benefit from lower settings.

Initially, recommended settings are:

Note that:

You can set autovacuum_freeze_max_age only at node start.
You can set vacuum_freeze_min_age , so using a low value freezes rows early and can result in conflicts being ignored. You can also set autovacuum_freeze_min_age and toast.autovacuum_freeze_min_age for
individual tables.
Running the CLUSTER or VACUUM FREEZE commands also freezes rows early and can result in conflicts being ignored.

Row version conflict detection

PGD provides the option to use row versioning and make conflict detection independent of the nodes' system clock.

Row version conflict detection requires that you enable three things. If any of these steps aren't performed correctly then origin conflict detection is used.

Enable REPLICA IDENTITY FULL on all tables that use row version conflict detection.

Enable row version tracking on the table by using bdr.alter_table_conflict_detection . This function adds a column with a name you specify and an UPDATE trigger that manages the new column value. The column is
created as INTEGER type.

Although the counter is incremented only on UPDATE , this technique allows conflict detection for both UPDATE and DELETE .

This approach resembles Lamport timestamps and fully prevents the ABA problem for conflict detection.

Note

The row-level conflict resolution is still handled based on the conflict resolution configuration even with row versioning. The way the row version is generated is useful only for detecting conflicts. Don't rely on it as authoritative
information about which version of row is newer.

To determine the current conflict detection strategy used for a specific table, refer to the column conflict_detection of the view bdr.tables .

To change the current conflict detection strategy, use bdr.alter_table_conflict_detection.

1 billion = 10GB
autovacuum_freeze_max_age = 1000000000

vacuum_freeze_min_age = 500000000

90% of autovacuum_freeze_max_age
vacuum_freeze_table_age = 900000000

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 214

15.1.4 Conflict resolution

Most conflicts can be resolved automatically. PGD defaults to a last-update-wins mechanism or, more accurately, the update_if_newer conflict resolver. This mechanism retains the most recently inserted or changed row of the two
conflicting ones based on the same commit timestamps used for conflict detection. The behavior in certain corner-case scenarios depends on the settings used for bdr.create_node_group and alternatively for
bdr.alter_node_group .

PGD lets you override the default behavior of conflict resolution by using bdr.alter_node_set_conflict_resolver.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 215

15.1.5 Conflict logging

Starting with PGD 6.0, conflict-logging is not enabled by default. You can enable conflict logging on a per-node basis. This allows you to log conflicts that occur on a specific node, which can be useful for debugging and monitoring purposes.

Run this command on the named node to enable logging of all conflicts on that particular node. If you want to enable logging on all nodes, run this command on each node in the PGD group.

The other parameters after the nodename control, respectively, specify whether to log conflicts into the PGD logfile, and whether to log conflicts into the bdr.conflict_history table. The last two parameters take arrays of strings which
specify the conflict types and conflict resolutions to log. See Conflicts in the reference section for a full list of both. If you set these parameters to NULL , PGD will log all conflict types and resolutions.

PGD logs every conflict into the bdr.conflict_history table. You can change this behavior with more granularity using bdr.alter_node_set_log_config.

Conflict reporting

You can summarize conflicts logged to tables in reports. Reports allow application owners to identify, understand, and resolve conflicts and introduce application changes to prevent them.

SELECT bdr.alter_node_set_log_config(`nodename`, false, true, NULL, NULL);

SELECT nspname,
relname
, date_trunc('day', local_time) :: date AS
date
, count(*)
FROM bdr.conflict_history
WHERE local_time > date_trunc('day',
current_timestamp)
GROUP BY 1,2,3
ORDER BY 1,2;

 nspname | relname | date |
count
---------+---------+------------+-------
 my_app | test | 2019-04-05 |
1
(1 row)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 216

15.1.6 Data verification with LiveCompare

LiveCompare is a utility program designed to compare any two databases to verify that they are identical.

LiveCompare is included as part of the PGD stack and can be aimed at any pair of PGD nodes. By default, it compares all replicated tables and reports differences. LiveCompare also works with non-PGD data sources such as Postgres and
Oracle.

You can also use LiveCompare to continuously monitor incoming rows. You can stop and start it without losing context information, so you can run it at convenient times.

LiveCompare allows concurrent checking of multiple tables. You can configure it to allow checking of a few tables or just a section of rows in a table. Checks are performed by first comparing whole row hashes. If different, LiveCompare then
compares whole rows. LiveCompare avoids overheads by comparing rows in useful-sized batches.

If differences are found, they can be rechecked over time, allowing for the delays of eventual consistency.

See the LiveCompare documentation for further details.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 217

https://www.enterprisedb.com/docs/livecompare/latest/

15.2 Column-level conflict detection

By default, conflicts are resolved at row level. When changes from two nodes conflict, either the local or remote tuple is selected and the other is discarded. For example, commit timestamps for the two conflicting changes might be compared
and the newer one kept. This approach ensures that all nodes converge to the same result and establishes commit-order-like semantics on the whole cluster.

However, it might sometimes be appropriate to resolve conflicts at the column level rather than the row level, at least in some cases.

Overview introduces column-level conflict resolution in contrast to row-level conflict resolution, suggesting where it might be a better fit than row-level conflict resolution.

Enabling and disabling provides an example of enabling column-level conflict resolution and explains how to list tables with column-level conflict resolution enabled.

Timestamps explicates the difference between using column_modify_timestamp and column_commit_timestamp and shows how the timestamps associated with column-level conflict resolution can be selected and
inspected.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 218

15.2.1 Overview

By default, conflicts are resolved at row level. When changes from two nodes conflict, either the local or remote tuple is selected and the other is discarded. For example, commit timestamps for the two conflicting changes might be compared
and the newer one kept. This approach ensures that all nodes converge to the same result and establishes commit-order-like semantics on the whole cluster.

However, it might sometimes be appropriate to resolve conflicts at the column level rather than the row level, at least in some cases.

When to resolve at the column level

Consider a simple example in which table t has two integer columns, a and b, and a single row (1,1) . On one node execute:

On another node, before receiving the preceding UPDATE , concurrently execute:

Note

The attributes modified by an UPDATE are determined by comparing the old and new row in a trigger. This means that if the attribute doesn't change a value, it isn't detected as modified even if it's explicitly set. For example,
UPDATE t SET a = a doesn't mark a as modified for any row. Similarly, UPDATE t SET a = 1 doesn't mark a as modified for rows that are already set to 1 .

This sequence results in an UPDATE-UPDATE conflict. With the update_if_newer conflict resolution, the commit timestamps are compared, and the new row version is kept. Assuming the second node committed last, the result is
(1,100) , which effectively discards the change to column a.

For many use cases, this behavior is desired and expected. However, for some use cases, this might be an issue. Consider, for example, a multi-node cluster where each part of the application is connected to a different node, updating a
dedicated subset of columns in a shared table. In that case, the different components might conflict and overwrite changes.

For such use cases, it might be more appropriate to resolve conflicts on a given table at the column level. To achieve that, PGD tracks the timestamp of the last change for each column separately and uses that to pick the most recent value,
essentially performing update_if_newer .

Applied to the previous example, the result is (100,100) on both nodes, despite neither of the nodes ever seeing such a row.

When thinking about column-level conflict resolution, it can be useful to see tables as vertically partitioned, so that each update affects data in only one slice. This approach eliminates conflicts between changes to different subsets of
columns. In fact, vertical partitioning can even be a practical alternative to column-level conflict resolution.

Column-level conflict resolution requires the table to have REPLICA IDENTITY FULL . The bdr.alter_table_conflict_detection() function checks that and fails with an error if this setting is missing.

Special problems for column-level conflict resolution

By treating the columns independently, it's easy to violate constraints in a way that isn't possible when all changes happen on the same node. Consider, for example, a table like this:

Assume one node does:

Another node concurrently does:

Each of those updates is valid when executed on the initial row and so passes on each node. But when replicating to the other node, the resulting row violates the CHECK (a > b) constraint, and the replication stops until the issue is
resolved manually.

Handling column-level conflicts using CRDT data types

By default, column-level conflict resolution picks the value with a higher timestamp and discards the other one. You can, however, reconcile the conflict in different, more elaborate ways. For example, you can use CRDT types that allow
merging the conflicting values without discarding any information.

UPDATE t SET a =
100

UPDATE t SET b =
100

CREATE TABLE t (id INT PRIMARY KEY, a INT, b INT, CHECK (a >
b));
INSERT INTO t VALUES (1, 1000,
1);

UPDATE t SET a =
100;

UPDATE t SET b =
500;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 219

15.2.2 Enabling and disabling column-level conflict resolution

Permissions required

Column-level conflict detection uses the column_timestamps type. This type requires any user needing to detect column-level conflicts to have at least the bdr_application role assigned.

The bdr.alter_table_conflict_detection() function manages column-level conflict resolution.

Using bdr.alter_table_conflict_detection to enable column-level conflict resolution

The bdr.alter_table_conflict_detection function takes a table name and column name as its arguments. The column is added to the table as a column_modify_timestamp column. The function also adds two triggers (BEFORE INSERT and
BEFORE UPDATE) that are responsible for maintaining timestamps in the new column before each change.

The new column specifies NOT NULL with a default value, which means that ALTER TABLE ... ADD COLUMN doesn't perform a table rewrite.

Note

Avoid using columns with the bdr.column_timestamps data type for other purposes, as doing so can have negative effects. For example, it switches the table to column-level conflict resolution, which doesn't work correctly
without the triggers.

Listing tables with column-level conflict resolution

You can list tables having column-level conflict resolution enabled with the following query.

This query detects the presence of a column of type bdr.column_timestamp .

db=# CREATE TABLE my_app.test_table (id SERIAL PRIMARY KEY, val
INT);
CREATE TABLE

db=# ALTER TABLE my_app.test_table REPLICA IDENTITY
FULL;
ALTER TABLE

db=# SELECT bdr.alter_table_conflict_detection(
db(# 'my_app.test_table'::regclass,
db(# 'column_modify_timestamp', 'cts');
 alter_table_conflict_detection

t

db=# \d my_app.test_table
 Table "my_app.test_table"
 Column | Type | Collation | Nullable |
Default
--------+-----------------------+-----------+----------+--
 id | integer | | not null |
nextval('my_app.test_table_id_seq'::regclass)
 val | integer | |
|
 cts | bdr.column_timestamps | | not null | 's 1 775297963454602 0
0'::bdr.column_timestamps
Indexes:
 "test_table_pkey" PRIMARY KEY, btree
(id)
Triggers:
 bdr_clcd_before_insert BEFORE INSERT ON my_app.test_table FOR EACH ROW EXECUTE FUNCTION bdr.column_timestamps_current_insert()
 bdr_clcd_before_update BEFORE UPDATE ON my_app.test_table FOR EACH ROW EXECUTE FUNCTION bdr.column_timestamps_current_update()

SELECT nc.nspname,
c.relname
FROM pg_attribute
a
JOIN (pg_class c JOIN pg_namespace nc ON c.relnamespace =
nc.oid)
 ON a.attrelid = c.oid
JOIN (pg_type t JOIN pg_namespace nt ON t.typnamespace =
nt.oid)
 ON a.atttypid = t.oid
WHERE NOT pg_is_other_temp_schema(nc.oid)
 AND nt.nspname = 'bdr'
 AND t.typname = 'column_timestamps'
 AND NOT
a.attisdropped
 AND c.relkind IN ('r', 'v', 'f',
'p');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 220

15.2.3 Timestamps in column-level conflict resolution

Column-level conflict resolution depends on a timestamp column being included in the table.

Comparing column_modify_timestamp and column_commit_timestamp

When you select one of the two column-level conflict detection methods, a column is added to the table that contains a mapping of modified columns and timestamps.

The column that stores timestamp mapping is managed automatically. Don't specify or override the value in your queries, as the results can be unpredictable. When possible, user attempts to override the value are ignored.

When enabling or disabling column timestamps on a table, the code uses DDL locking to ensure that there are no pending changes from before the switch. This approach ensures only conflicts with timestamps in both tuples or in neither of
them are seen. Otherwise, the code might unexpectedly see timestamps in the local tuple and NULL in the remote one. It also ensures that the changes are resolved the same way (column-level or row-level) on all nodes.

column_modify_timestamp

When column_modify_timestamp is selected as the conflict detection method, the timestamp assigned to the modified columns is the current timestamp, similar to the value you might get running select_clock_timestamp() .

This approach is simple and, for many cases, it's correct, for example, when the conflicting rows modify non-overlapping subsets of columns. Its simplicity can, though, lead to unexpected effects.

For example, if an UPDATE affects multiple rows, the clock continues ticking while the UPDATE runs. So each row gets a slightly different timestamp, even if they're being modified concurrently by the one UPDATE . This behavior, in turn,
means that the effects of concurrent changes might get "mixed" in various ways, depending on how the changes performed on different nodes interleaves.

Another possible issue is clock skew. When the clocks on different nodes drift, the timestamps generated by those nodes also drift. This clock skew can induce unexpected behavior such as newer changes being discarded because the
timestamps are apparently switched around. However, you can manage clock skew between nodes using the parameters bdr.maximum_clock_skew and bdr.maximum_clock_skew_action.

As the current timestamp is unrelated to the commit timestamp, using it to resolve conflicts means that the result isn't equivalent to the commit order, which means it probably can't be serialized.

When using current timestamps to order changes or commits, the conflicting changes might have exactly the same timestamp because two or more nodes happened to generate the same timestamp. This risk isn't unique to column-level
conflict resolution, as it can happen even for regular row-level conflict resolution. The node id is used as the tiebreaker in this situation. The higher node id wins. This approach ensures that the same changes are applied on all nodes.

column_commit_timestamp

You can also use the actual commit timestamp specified with column_commit_timestamp as the conflict detection method. This approach has the advantage of using the commit time, which is the same for all changes made in an
UPDATE .

Note

Statement transactions might be added in the future, which will address issues with mixing effects of concurrent statements or transactions. Still, neither of these options can ever produce results equivalent to commit order.

Inspecting column timestamps

The column storing timestamps for modified columns is maintained by triggers. Don't modify it directly. It can be useful to inspect the current timestamp's value, for example, while investigating how a conflict was resolved.

Note

The timestamp mapping is maintained by triggers, and the order in which triggers execute matters. If your custom triggers modify tuples and are executed after the pgl_clcd_ triggers, the modified columns aren't detected correctly.
This can lead to incorrect conflict resolution. If you need to modify tuples in your triggers, make sure they're executed before the pgl_clcd_ triggers.

The following functions are useful for inspecting timestamps.

bdr.column_timestamps_to_text(bdr.column_timestamps)

This function returns a human-readable representation of the timestamp mapping and is used when casting the value to text:

bdr.column_timestamps_to_jsonb(bdr.column_timestamps)

This function turns a JSONB representation of the timestamps mapping and is used when casting the value to jsonb:

db=# select cts::text from
test_table;

cts

 {source: current, default: 2018-09-23 19:24:52.118583+02, map: [2 : 2018-09-23
19:25:02.590677+02]}
(1 row)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 221

bdr.column_timestamps_resolve(bdr.column_timestamps, xid)

This function updates the mapping with the commit timestamp for the attributes modified by the most recent transaction if it already committed. This matters only when using the commit timestamp. For example, in this case, the last
transaction updated the second attribute (with attnum = 2):

db=# select jsonb_pretty(cts::jsonb) from
test_table;
 jsonb_pretty

 {
+
 "map": {
+
 "2": "2018-09-23T19:24:52.118583+02:00" +
 }, +
 "source": "current", +
 "default": "2018-09-23T19:24:52.118583+02:00"+

}
(1 row)

test=# select cts::jsonb from
test_table;

cts
--
 {"map": {"2": "2018-09-23T19:29:55.581823+02:00"}, "source": "commit", "default": "2018-09-23T19:29:55.581823+02:00", "modified":
[2]}
(1 row)

db=# select bdr.column_timestamps_resolve(cts, xmin)::jsonb from
test_table;
 column_timestamps_resolve

 {"map": {"2": "2018-09-23T19:29:55.581823+02:00"}, "source": "commit", "default": "2018-09-
23T19:29:55.581823+02:00"}
(1 row)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 222

15.3 Conflict-free replicated data types

Conflict-free replicated data types (CRDTs) support merging values from concurrently modified rows instead of discarding one of the rows as the traditional resolution does.

Overview provides an introduction to CRDTs, including how to use CRDTs in tables, configuration options, and examples of CRDTs.

Using CRDTs investigates how to use CRDTs in tables, reviews some configuration options, and reviews some examples of CRDTs and how they work.

Operation-based and state-based CRDTs reviews the differences between operation-based and state-based CRDTs.

Disk-space requirements covers disk-size considerations for CRDTs, especially state-based CRDTs.

CRDTs vs conflict handling/reporting explains how conflict handling and reporting works with CRDTs.

Resetting CRDT values discusses the challenges of resetting CRDT values and provides some guidance on doing so successfully.

Implemented CRDTs details each of the 6 available CRDTs available in PGD, with implementation examples.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 223

15.3.1 CRDTs Overview

Introduction to CRDTs

Conflict-free replicated data types (CRDTs) support merging values from concurrently modified rows instead of discarding one of the rows as the traditional resolution does.

Each CRDT type is implemented as a separate PostgreSQL data type with an extra callback added to the bdr.crdt_handlers catalog. The merge process happens inside the PGD writer on the apply side without any user action needed.

CRDTs require the table to have column-level conflict resolution enabled, as described in Column-level conflict resolution.

CRDTs in PostgreSQL

The CRDTs are installed as part of bdr into the bdr schema. For convenience, the basic operators (+ , # and !) and a number of common aggregate functions (min , max , sum , and avg) are created in pg_catalog . Thus they are
available without having to tweak search_path .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 224

15.3.2 Using CRDTs

Using CRDTs in tables

Permissions required

PGD CRDTs requires usage access to CRDT types. Therefore, any user needing to access CRDT types must have at least the bdr_application role assigned to them.

To use CRDTs, you need to use a particular data type in CREATE/ALTER TABLE rather than standard built-in data types such as integer . For example, consider the following table with one regular integer counter and a single row:

Non-CRDT example

Suppose you issue the following SQL on two different nodes at same time:

After both updates are applied, you can see the resulting values using this query:

This code shows that you lost one of the increments due to the update_if_newer conflict resolver.

CRDT example

To use a CRDT counter data type instead, you would follow these steps:

Create the table but with a CRDT (bdr.crdt_gcounter) as the counters data type.

Configure the table for column-level conflict resolution:

And then insert a row with a value for this example.

INSERT INTO crdt_example (id) VALUES (1);

If you now issue, as before, the same SQL on two nodes at same time.

Once the changes are applied, you find that the counter has managed to concurrenct updates.

This example shows that the CRDT correctly allows the accumulator columns to work, even in the face of asynchronous concurrent updates that otherwise conflict.

CREATE TABLE non_crdt_example
(
 id integer PRIMARY KEY,
 counter integer NOT NULL DEFAULT 0
);

INSERT INTO non_crdt_example (id) VALUES
(1);

UPDATE
non_crdt_example
 SET counter = counter + 1 -- "reflexive"
update
 WHERE id = 1;

SELECT * FROM non_crdt_example WHERE id =
1;
 id |
counter
 -----+-----------
 1 |
1
(1 row)

CREATE TABLE crdt_example
(
 id integer PRIMARY KEY,
 counter bdr.crdt_gcounter NOT NULL DEFAULT 0
);

ALTER TABLE crdt_example REPLICA IDENTITY
FULL;

SELECT bdr.alter_table_conflict_detection('crdt_example',
 'column_modify_timestamp', 'cts');

UPDATE crdt_example
 SET counter = counter + 1 -- "reflexive"
update
 WHERE id = 1;

SELECT id, counter FROM crdt_example WHERE id = 1;
 id |
counter
 -----+-----------
 1 |
2
(1 row)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 225

Configuration options

The bdr.crdt_raw_value configuration option determines whether queries return the current value or the full internal state of the CRDT type. By default, only the current numeric value is returned. When set to true , queries return
representation of the full state. You can use the special hash operator (#) to request only the current numeric value without using the special operator (the default behavior). If the full state is dumped using bdr.crdt_raw_value = on ,
then the value can reload only with bdr.crdt_raw_value = on .

Note

The bdr.crdt_raw_value applies formatting only of data returned to clients, that is, simple column references in the select list. Any column references in other parts of the query (such as WHERE clause or even expressions in
the select list) might still require use of the # operator.

Different types of CRDTs

The crdt_gcounter type is an example of state-based CRDT types that work only with reflexive UPDATE SQL, such as x = x + 1 , as the example shows.

Another class of CRDTs are delta CRDT types. These are a special subclass of operation-based CRDT.

With delta CRDTs, any update to a value is compared to the previous value on the same node. Then a change is applied as a delta on all other nodes.

Suppose you issue the following SQL on two nodes at same time:

After both updates are applied, you can see the resulting values using this query:

With a regular integer column, the result is 2 . But when you update the row with a delta CRDT counter, you start with the OLD row version, make a NEW row version, and send both to the remote node. There, compare them with the version
found there (e.g., the LOCAL version). Standard CRDTs merge the NEW and the LOCAL version, while delta CRDTs compare the OLD and NEW versions and apply the delta to the LOCAL version.

Query planning and optimization

An important question is how query planning and optimization works with these new data types. CRDT types are handled transparently. Both ANALYZE and the optimizer work, so estimation and query planning works fine without having to
do anything else.

CREATE TABLE crdt_delta_example
(
 id integer PRIMARY KEY,
 counter bdr.crdt_delta_counter NOT NULL DEFAULT 0
);

ALTER TABLE crdt_delta_example REPLICA IDENTITY
FULL;

SELECT bdr.alter_table_conflict_detection('crdt_delta_example',
 'column_modify_timestamp', 'cts');

INSERT INTO crdt_delta_example (id) VALUES
(1);

UPDATE crdt_delta_example
 SET counter = 2 -- notice NOT counter = counter +
2
 WHERE id = 1;

SELECT id, counter FROM crdt_delta_example WHERE id = 1;
 id |
counter
 -----+---------
 1 |
4
(1 row)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 226

15.3.3 Operation-based and state-based CRDTs

Operation-based CRDT types (CmCRDT)

The implementation of operation-based types is trivial because the operation isn't transferred explicitly but computed from the old and new row received from the remote node.

Currently, these operation-based CRDTs are implemented:

crdt_delta_counter — bigint counter (increments/decrements)
crdt_delta_sum — numeric sum (increments/decrements)

These types leverage existing data types with a little bit of code to compute the delta. For example, crdt_delta_counter is a domain on a bigint .

This approach is possible only for types for which the method for computing the delta is known, but the result is simple and cheap (both in terms of space and CPU) and has a couple of added benefits. For example, it can leverage
operators/syntax for the underlying data type.

The main disadvantage is that you can't reset this value reliably in an asynchronous and concurrent environment.

Note

Implementing more complicated operation-based types by creating custom data types is possible, storing the state and the last operation. (Every change is decoded and transferred, so multiple operations aren't needed). But at that
point, the main benefits (simplicity, reuse of existing data types) are lost without gaining any advantage compared to state-based types (for example, still no capability to reset) except for the space requirements. (A per-node state
isn't needed.)

State-based CRDT types (CvCRDT)

State-based types require a more complex internal state and so can't use the regular data types directly the way operation-based types do.

Currently, four state-based CRDTs are implemented:

crdt_gcounter — bigint counter (increment-only)
crdt_gsum — numeric sum/counter (increment-only)
crdt_pncounter — bigint counter (increments/decrements)
crdt_pnsum — numeric sum/counter (increments/decrements)

The internal state typically includes per-node information, increasing the on-disk size but allowing added benefits. The need to implement custom data types implies more code (in/out functions and operators).

The advantage is the ability to reliably reset the values, a somewhat self-healing nature in the presence of lost changes (which doesn't happen in a cluster that operates properly), and the ability to receive changes from other than source
nodes.

Consider, for example, that a value is modified on node A, and the change gets replicated to B but not C due to network issue between A and C. If B modifies the value and this change gets replicated to C, it includes even the original change
from A. With operation-based CRDTs, node C doesn't receive the change until the A-C network connection starts working again.

The main disadvantages of CvCRDTs are higher costs in terms of disk space and CPU usage. A bit of information for each node is needed, including nodes that were already removed from the cluster. The complex nature of the state (serialized
into varlena types) means increased CPU use.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 227

15.3.4 CRDT Disk-space requirements

An important consideration is the overhead associated with CRDT types, particularly the on-disk size.

Operation-based CRDT disk-space reqs

For operation-based types, this is trivial because the types are merely domains on top of other types. They have the same disk space requirements no matter how many nodes are there:

crdt_delta_counter — Same as bigint (8 bytes)
crdt_delta_sum — Same as numeric (variable, depending on precision and scale)

There's no dependency on the number of nodes because operation-based CRDT types don't store any per-node information.

State-based CRDT disk-space reqs

For state-based types, the situation is more complicated. All the types are variable length (stored essentially as a bytea column) and consist of a header and a certain amount of per-node information for each node that modified the value.

For the bigint variants, formulas computing approximate size are:

crdt_gcounter — 32B (header) + N * 12B (per-node)

crdt_pncounter -— 48B (header) + N * 20B (per-node)

N denotes the number of nodes that modified this value.

For the numeric variants, there's no exact formula because both the header and per-node parts include numeric variable-length values. To give you an idea of how many such values you need to keep:

crdt_gsum
fixed: 20B (header) + N * 4B (per-node)
variable: (2 + N) numeric values

crdt_pnsum
fixed: 20B (header) + N * 4B (per-node)
variable: (4 + 2 * N) numeric values

Note

It doesn't matter how many nodes are in the cluster if the values are never updated on multiple nodes. It also doesn't matter whether the updates were concurrent (causing a conflict).

In addition, it doesn't matter how many of those nodes were already removed from the cluster. There's no way to compact the state yet.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 228

15.3.5 CRDTs vs conflict handling/reporting

CRDT types versus conflicts handling

As tables can contain both CRDT and non-CRDT columns (most columns are expected to be non-CRDT), you need to do both the regular conflict resolution and CRDT merge.

The conflict resolution happens first and is responsible for deciding the tuple to keep (applytuple) and the one to discard. The merge phase happens next, merging data for CRDT columns from the discarded tuple into the applytuple.

Note

This handling makes CRDT types somewhat more expensive compared to plain conflict resolution because the merge needs to happen every time. This is the case even when the conflict resolution can use one of the fast paths (such
as those modified in the current transaction).

CRDT types versus conflict reporting

By default, detected conflicts are individually reported. Without CRDT types, this makes sense because the conflict resolution essentially throws away half of the available information (local or remote row, depending on configuration). This
presents a data loss.

CRDT types allow both parts of the information to be combined without throwing anything away, eliminating the data loss issue. This approach makes the conflict reporting unnecessary.

For this reason, conflict reporting is skipped when the conflict can be fully resolved by CRDT merge. Each column must meet at least one of these two conditions:

The values in local and remote tuple are the same (NULL or equal).
It uses a CRDT data type and so can be merged.

Note

Conflict reporting is also skipped when there are no CRDT columns but all values in local/remote tuples are equal.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 229

15.3.6 Resetting CRDT values

Resetting CRDT values is possible but requires special handling. The asynchronous nature of the cluster means that different nodes might see the reset operation at different places in the change stream no matter how it's implemented.
Different nodes might also initiate a reset concurrently, that is, before observing the reset from the other node.

In other words, to make the reset operation behave correctly, it needs to be commutative with respect to the regular operations. Many naive ways to reset a value that might work well on a single-node fail for this reason.

Challenges when resetting CRDT values

For example, the simplest approach to resetting a value might be:

UPDATE crdt_table SET cnt = 0 WHERE id = 1;

With state-based CRDTs this doesn't work. It throws away the state for the other nodes but only locally. It's added back by merge functions on remote nodes, causing diverging values and eventually receiving it back due to changes on the
other nodes.

With operation-based CRDTs, this might seem to work because the update is interpreted as a subtraction of -cnt . But it works only in the absence of concurrent resets. Once two nodes attempt to do a reset at the same time, the delta is
applied twice, getting a negative value (which isn't expected from a reset).

It might also seem that you can use DELETE + INSERT as a reset, but this approach has a couple of weaknesses, too. If the row is reinserted with the same key, it's not guaranteed that all nodes see it at the same position in the stream of
operations with respect to changes from other nodes. PGD specifically discourages reusing the same primary key value since it can lead to data anomalies in concurrent cases.

How to reliably handle resetting CRDT values

State-based CRDT types can reliably handle resets using a special ! operator like this:

UPDATE tab SET counter = !counter WHERE ...;

"Reliably" means the values don't have the two issues of multiple concurrent resets and divergence.

Operation-based CRDT types can be reset reliably only using Eager Replication, since this avoids multiple concurrent resets. You can also use Eager Replication to set either kind of CRDT to a specific value.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 230

15.3.7 Implemented CRDTs

Currently, six CRDT data types are implemented:

Grow-only counter and sum
Positive-negative counter and sum
Delta counter and sum

The counters and sums behave mostly the same, except that the counter types are integer based (bigint), while the sum types are decimal-based (numeric).

You can list the currently implemented CRDT data types with the following query:

Grow-only counter (crdt_gcounter)

Supports only increments with nonnegative values (value + int and counter + bigint operators).

You can obtain the current value of the counter either using # operator or by casting it to bigint .

Isn't compatible with simple assignments like counter = value (which is common pattern when the new value is computed somewhere in the application).

Allows simple reset of the counter using the ! operator (counter = !counter).

You can inspect the internal state using crdt_gcounter_to_text .

Grow-only sum (crdt_gsum)

Supports only increments with nonnegative values (sum + numeric).

You can obtain the current value of the sum either by using the # operator or by casting it to numeric .

Isn't compatible with simple assignments like sum = value , which is the common pattern when the new value is computed somewhere in the application.

Allows simple reset of the sum using the ! operator (sum = !sum).

SELECT n.nspname, t.typname
FROM bdr.crdt_handlers
c
JOIN (pg_type t JOIN pg_namespace n ON t.typnamespace =
n.oid)
 ON t.oid = c.crdt_type_id;

CREATE TABLE crdt_test
(
 id INT PRIMARY KEY,
 cnt bdr.crdt_gcounter NOT NULL DEFAULT
0
);

INSERT INTO crdt_test VALUES (1, 0); -- initialized to
0
INSERT INTO crdt_test VALUES (2, 129824); -- initialized to
129824
INSERT INTO crdt_test VALUES (3, -4531); -- error: negative
value

-- enable CLCD on the
table
ALTER TABLE crdt_test REPLICA IDENTITY
FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment
counters
UPDATE crdt_test SET cnt = cnt + 1 WHERE id =
1;
UPDATE crdt_test SET cnt = cnt + 120 WHERE id =
2;

-- error: minus operator not
defined
UPDATE crdt_test SET cnt = cnt - 1 WHERE id =
1;

-- error: increment has to be non-
negative
UPDATE crdt_test SET cnt = cnt + (-1) WHERE id =
1;

-- reset counter
UPDATE crdt_test SET cnt = !cnt WHERE id =
1;

-- get current counter
value
SELECT id, cnt::bigint, cnt FROM
crdt_test;

-- show internal structure of
counters
SELECT id, bdr.crdt_gcounter_to_text(cnt) FROM crdt_test;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 231

Can inspect internal state using crdt_gsum_to_text .

Positive-negative counter (crdt_pncounter)

Supports increments with both positive and negative values (through counter + int and counter + bigint operators).

You can obtain the current value of the counter either by using the # operator or by casting to bigint .

Isn't compatible with simple assignments like counter = value , which is the common pattern when the new value is computed somewhere in the application.

Allows simple reset of the counter using the ! operator (counter = !counter).

You can inspect the internal state using crdt_pncounter_to_text .

CREATE TABLE crdt_test
(
 id INT PRIMARY KEY,
 gsum bdr.crdt_gsum NOT NULL DEFAULT 0.0
);

INSERT INTO crdt_test VALUES (1, 0.0); -- initialized to
0
INSERT INTO crdt_test VALUES (2, 1298.24); -- initialized to
1298.24
INSERT INTO crdt_test VALUES (3, -45.31); -- error: negative
value

-- enable CLCD on the
table
ALTER TABLE crdt_test REPLICA IDENTITY
FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment
sum
UPDATE crdt_test SET gsum = gsum + 11.5 WHERE id = 1;
UPDATE crdt_test SET gsum = gsum + 120.33 WHERE id = 2;

-- error: minus operator not
defined
UPDATE crdt_test SET gsum = gsum - 15.2 WHERE id = 1;

-- error: increment has to be non-
negative
UPDATE crdt_test SET gsum = gsum + (-1.56) WHERE id =
1;

-- reset
sum
UPDATE crdt_test SET gsum = !gsum WHERE id = 1;

-- get current sum
value
SELECT id, gsum::numeric, gsum FROM crdt_test;

-- show internal structure of
sums
SELECT id, bdr.crdt_gsum_to_text(gsum) FROM crdt_test;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 232

Positive-negative sum (crdt_pnsum)

Supports increments with both positive and negative values through sum + numeric .

You can obtain the current value of the sum either by using then # operator or by casting to numeric .

Isn't compatible with simple assignments like sum = value , which is the common pattern when the new value is computed somewhere in the application.

Allows simple reset of the sum using the ! operator (sum = !sum).

You can inspect the internal state using crdt_pnsum_to_text .

CREATE TABLE crdt_test
(
 id INT PRIMARY KEY,
 cnt bdr.crdt_pncounter NOT NULL DEFAULT
0
);

INSERT INTO crdt_test VALUES (1, 0); -- initialized to
0
INSERT INTO crdt_test VALUES (2, 129824); -- initialized to
129824
INSERT INTO crdt_test VALUES (3, -4531); -- initialized to -
4531

-- enable CLCD on the
table
ALTER TABLE crdt_test REPLICA IDENTITY
FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment
counters
UPDATE crdt_test SET cnt = cnt + 1 WHERE id =
1;
UPDATE crdt_test SET cnt = cnt + 120 WHERE id =
2;
UPDATE crdt_test SET cnt = cnt + (-244) WHERE id =
3;

-- decrement
counters
UPDATE crdt_test SET cnt = cnt - 73 WHERE id =
1;
UPDATE crdt_test SET cnt = cnt - 19283 WHERE id =
2;
UPDATE crdt_test SET cnt = cnt - (-12) WHERE id =
3;

-- get current counter
value
SELECT id, cnt::bigint, cnt FROM
crdt_test;

-- show internal structure of
counters
SELECT id, bdr.crdt_pncounter_to_text(cnt) FROM
crdt_test;

-- reset counter
UPDATE crdt_test SET cnt = !cnt WHERE id =
1;

-- get current counter value after the
reset
SELECT id, cnt::bigint, cnt FROM
crdt_test;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 233

Delta counter (crdt_delta_counter)

Is defined a bigint domain, so works exactly like a bigint column.

Supports increments with both positive and negative values.

Is compatible with simple assignments like counter = value , which is common when the new value is computed somewhere in the application.

There's no simple way to reset the value reliably.

CREATE TABLE crdt_test
(
 id INT PRIMARY KEY,
 pnsum bdr.crdt_pnsum NOT NULL DEFAULT
0
);

INSERT INTO crdt_test VALUES (1, 0); -- initialized to
0
INSERT INTO crdt_test VALUES (2, 1298.24); -- initialized to
1298.24
INSERT INTO crdt_test VALUES (3, -45.31); -- initialized to -
45.31

-- enable CLCD on the
table
ALTER TABLE crdt_test REPLICA IDENTITY
FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment sums
UPDATE crdt_test SET pnsum = pnsum + 1.44 WHERE id = 1;
UPDATE crdt_test SET pnsum = pnsum + 12.20 WHERE id = 2;
UPDATE crdt_test SET pnsum = pnsum + (-24.34) WHERE id =
3;

-- decrement sums
UPDATE crdt_test SET pnsum = pnsum - 7.3 WHERE id = 1;
UPDATE crdt_test SET pnsum = pnsum - 192.83 WHERE id = 2;
UPDATE crdt_test SET pnsum = pnsum - (-12.22) WHERE id =
3;

-- get current sum
value
SELECT id, pnsum::numeric, pnsum FROM
crdt_test;

-- show internal structure of
sum
SELECT id, bdr.crdt_pnsum_to_text(pnsum) FROM
crdt_test;

-- reset
sum
UPDATE crdt_test SET pnsum = !pnsum WHERE id =
1;

-- get current sum value after the
reset
SELECT id, pnsum::numeric, pnsum FROM
crdt_test;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 234

Delta sum (crdt_delta_sum)

Is defined as a numeric domain so works exactly like a numeric column.

Supports increments with both positive and negative values.

Is compatible with simple assignments like sum = value , which is common when the new value is computed somewhere in the application.

There's no simple way to reset the value reliably.

CREATE TABLE crdt_test
(
 id INT PRIMARY KEY,
 cnt bdr.crdt_delta_counter NOT NULL DEFAULT
0
);

INSERT INTO crdt_test VALUES (1, 0); -- initialized to
0
INSERT INTO crdt_test VALUES (2, 129824); -- initialized to
129824
INSERT INTO crdt_test VALUES (3, -4531); -- initialized to -
4531

-- enable CLCD on the
table
ALTER TABLE crdt_test REPLICA IDENTITY
FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment
counters
UPDATE crdt_test SET cnt = cnt + 1 WHERE id =
1;
UPDATE crdt_test SET cnt = cnt + 120 WHERE id =
2;
UPDATE crdt_test SET cnt = cnt + (-244) WHERE id =
3;

-- decrement
counters
UPDATE crdt_test SET cnt = cnt - 73 WHERE id =
1;
UPDATE crdt_test SET cnt = cnt - 19283 WHERE id =
2;
UPDATE crdt_test SET cnt = cnt - (-12) WHERE id =
3;

-- get current counter
value
SELECT id, cnt FROM
crdt_test;

CREATE TABLE crdt_test
(
 id INT PRIMARY KEY,
 dsum bdr.crdt_delta_sum NOT NULL DEFAULT 0
);

INSERT INTO crdt_test VALUES (1, 0); -- initialized to
0
INSERT INTO crdt_test VALUES (2, 129.824); -- initialized to
129824
INSERT INTO crdt_test VALUES (3, -4.531); -- initialized to -
4531

-- enable CLCD on the
table
ALTER TABLE crdt_test REPLICA IDENTITY
FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment
counters
UPDATE crdt_test SET dsum = dsum + 1.32 WHERE id = 1;
UPDATE crdt_test SET dsum = dsum + 12.01 WHERE id = 2;
UPDATE crdt_test SET dsum = dsum + (-2.4) WHERE id =
3;

-- decrement
counters
UPDATE crdt_test SET dsum = dsum - 7.33 WHERE id = 1;
UPDATE crdt_test SET dsum = dsum - 19.83 WHERE id = 2;
UPDATE crdt_test SET dsum = dsum - (-1.2) WHERE id =
3;

-- get current counter
value
SELECT id, cnt FROM
crdt_test;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 235

16 Testing and tuning PGD clusters

You can test PGD applications using the following approaches:

pgd_bench

The Postgres benchmarking application pgbench was extended in the form of a new application: pgd_bench.

pgd_bench is a regular command-line utility that's added to the PostgreSQL bin directory. The utility is based on the PostgreSQL pgbench tool but supports benchmarking CAMO transactions and PGD-specific workloads.

Functionality of pgd_bench is a superset of pgbench functionality but requires the BDR extension to be installed to work properly.

Key differences include:

Adjustments to the initialization (-i flag) with the standard pgbench scenario to prevent global lock timeouts in certain cases.
VACUUM command in the standard scenario is executed on all nodes.

pgd_bench releases are tied to the releases of the BDR extension and are built against the corresponding Postgres distribution. This information is reflected in the output of the --version flag.

The current version allows you to run failover tests while using CAMO or regular PGD deployments.

The following options were added:

-m, --mode=regular|camo|failover
mode in which pgbench should run (default: regular)

Use -m camo or -m failover to specify the mode for pgd_bench. You can use the -m failover specification to test failover in regular PGD deployments.

--retry
retry transactions on failover

Use --retry to specify whether to retry transactions when failover happens with -m failover mode. This option is enabled by default for -m camo mode.

In addition to these options, you must specify the connection information about the peer node for failover in DSN form.

Here's an example in a CAMO environment:

This command runs in CAMO mode. It connects to node1 and runs the tests. If the connection to node1 is lost, then pgd_bench connects to node2. It queries node2 to get the status of in-flight transactions. Aborted and in-flight transactions
are retried in CAMO mode.

In failover mode, if you specify --retry , then in-flight transactions are retried. In this scenario, there's no way to find the status of in-flight transactions.

Notes on pgd_bench usage

When using custom init-scripts, it's important to understand implications behind the DDL commands. We generally recommend waiting for the secondary nodes to catch up on the data-load steps before proceeding with DDL operations
such as CREATE INDEX . The latter acquire global locks that can't be acquired until the data load is complete and thus might time out.

No extra steps are taken to suppress client messages, such as NOTICE and WARNING messages emitted by PostgreSQL and or any possible extensions, including the BDR extension. It's your responsibility to suppress them by setting
appropriate variables, such as client_min_messages , bdr.camo_enable_client_warnings , and so on.

pgd_bench doesn't initiate SQL transactions for custom scripts. Scripts that are intended to run in an SQL transaction need to include the transaction start and end commands. If pgd_bench is executed with the -m / --mode option
set to camo , any custom scripts provided must wrap the SQL commands in a transaction, otherwise CAMO functionality will not work as expected.

Performance testing and tuning

PGD allows you to issue write transactions onto multiple nodes. Bringing those writes back together onto each node has a performance cost.

First, replaying changes from another node has a CPU cost and an I/O cost, and it generates WAL records. The resource use is usually less than in the original transaction since CPU overhead is lower as a result of not needing to reexecute SQL.
In the case of UPDATE and DELETE transactions, there might be I/O costs on replay if data isn't cached.

Second, replaying changes holds table-level and row-level locks that can produce contention against local workloads. The conflict-free replicated data types (CRDT) and column-level conflict detection (CLCD) features ensure you get the
correct answers even for concurrent updates, but they don't remove the normal locking overheads. If you get locking contention, try to avoid conflicting updates, or keep transactions as short as possible. A heavily updated row in a larger
transaction causes a bottleneck on performance for that transaction. Complex applications require some thought to maintain scalability.

If you think you're having performance problems, develop performance tests using the benchmarking tools. pgd_bench allows you to write custom test scripts specific to your use case so you can understand the overhead of your SQL and
measure the impact of concurrent execution.

If PGD is running slow, then we suggest the following:

1. Write a custom test script for pgd_bench, as close as you can make it to the production system's problem case.
2. Run the script on one node to give you a baseline figure.
3. Run the script on as many nodes as occur in production, using the same number of sessions in total as you did on one node. This technique shows you the effect of moving to multiple nodes.
4. Increase the number of sessions for these two tests so you can plot the effect of increased contention on your application.
5. Make sure your tests are long enough to account for replication delays.
6. Ensure that replication delay isn't growing during your tests.

Use all of the normal Postgres tuning features to improve the speed of critical parts of your application.

 pgd_bench -m camo -p $node1_port -h $node1_host bdrdemo \
 "host=$node2_host user=postgres port=$node2_port dbname=bdrdemo"

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 236

https://www.postgresql.org/docs/current/pgbench.html
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

17 Upgrading

While PGD and Postgres are closely related, they're separate products with separate upgrade paths. This section covers how to upgrade both PGD and Postgres.

Upgrading PGD

EDB Postgres Distributed is a flexible platform. This means that your upgrade path depends largely on how you installed PGD.

Upgrading manually — If you manually installed and configured your PGD cluster, you can move a cluster between versions, both minor and major.

Upgrade paths — Several supported upgrade paths are available.

Compatibility changes — If you're upgrading from PGD 3.x or 4.x to PGD 5.x or later, you need to understand the compatibility changes between versions.

Upgrading Postgres or Postgres and PGD major versions

In-place Postgres major version upgrades — How to use pgd node upgrade to manually upgrade the Postgres version or Postgres and PGD major version on one or more nodes.

Rolling major version upgrades — How to perform a major version upgrade of Postgres on a cluster.

Other upgrades

Application schema upgrades — A guide for safely upgrading your application's schema when running multiple distributed servers with PGD.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 237

17.1 Upgrading PGD clusters manually

Because EDB Postgres Distributed consists of multiple software components, the upgrade strategy depends partially on the components that are being upgraded.

In general, you can upgrade the cluster with almost zero downtime by using an approach called rolling upgrade. Using this approach, nodes are upgraded one by one, and the application connections are switched over to already upgraded
nodes.

You can also stop all nodes, perform the upgrade on all nodes, and only then restart the entire cluster. This approach is the same as with a standard PostgreSQL setup. This strategy of upgrading all nodes at the same time avoids running with
mixed versions of software and therefore is the simplest. However, it incurs downtime and we don't recommend it unless you can't perform the rolling upgrade for some reason.

To upgrade an EDB Postgres Distributed cluster:

1. Plan the upgrade.
2. Prepare for the upgrade.
3. Upgrade the server software.
4. Check and validate the upgrade.

Upgrade planning

There are broadly two ways to upgrade each node:

Upgrade nodes in place to the newer software version. See Rolling server software upgrades.
Replace nodes with ones that have the newer version installed. See Rolling upgrade using node join.

You can use both of these approaches in a rolling manner.

Rolling upgrade considerations

While the cluster is going through a rolling upgrade, mixed versions of software are running in the cluster. For example, suppose nodeA has PGD 4.3.6, while nodeB and nodeC have 5.6.1. In this state, the replication and group management
uses the protocol and features from the oldest version (4.3.6 in this example), so any new features provided by the newer version that require changes in the protocol are disabled. Once all nodes are upgraded to the same version, the new
features are enabled.

Similarly, when a cluster with WAL-decoder-enabled nodes is going through a rolling upgrade, WAL decoder on a higher version of PGD node produces logical change records (LCRs) with a higher pglogical version. WAL decoder on a lower
version of PGD node produces LCRs with a lower pglogical version. As a result, WAL senders on a higher version of PGD nodes aren't expected to use LCRs due to a mismatch in protocol versions. On a lower version of PGD nodes, WAL senders
can continue to use LCRs. Once all the PGD nodes are on the same PGD version, WAL senders use LCRs.

A rolling upgrade starts with a cluster with all nodes at a prior release. It then proceeds by upgrading one node at a time to the newer release, until all nodes are at the newer release. There must be no more than two versions of the software
running at the same time. An upgrade must be completed, with all nodes fully upgraded, before starting another upgrade.

Where additional caution is required to reduce business risk, more time may be required to perform an upgrade. For maximum caution and to reduce the time required upgrading production systems, we suggest performing the upgrades in a
separate test environment first.

Don't run with mixed versions of the software for any longer than is absolutely necessary to complete the upgrade. You can check on the versions in the cluster using the pgd nodes list --versions command.

The longer you run with mixed versions, the more likely you are to encounter issues, the more difficult it is to diagnose and resolve them.
We recommend upgrading in off peak hours for your business, and over a short period of time.

While you can use a rolling upgrade for upgrading a major version of the software, we don't support mixing PostgreSQL, EDB Postgres Extended, and EDB Postgres Advanced Server in one cluster. So you can't use this approach to change the
Postgres variant.

Warning

Downgrades of EDB Postgres Distributed aren't supported. They require that you manually rebuild the cluster.

Rolling server software upgrades

A rolling upgrade is where the server software upgrade is upgraded sequentially on each node in a cluster without stopping the cluster. Each node is temporarily stopped from participating in the cluster and its server software is upgraded.
Once updated, it's returned to the cluster, and it then catches up with the cluster's activity during its absence.

The actual procedure depends on whether the Postgres component is being upgraded to a new major version.

During the upgrade process, you can switch the application over to a node that's currently not being upgraded to provide continuous availability of the database for applications.

Rolling upgrade using node join

The other method to upgrade the server software is to join a new node to the cluster and later drop one of the existing nodes running the older version of the software.

For this approach, the procedure is always the same. However, because it includes node join, a potentially large data transfer is required.

Take care not to use features that are available only in the newer Postgres version until all nodes are upgraded to the newer and same release of Postgres. This is especially true for any new DDL syntax that was added to a newer release of
Postgres.

Note

bdr_init_physical makes a byte-by-byte copy of the source node so you can't use it while upgrading from one major Postgres version to another. In fact, currently bdr_init_physical requires that even the PGD version
of the source and the joining node be exactly the same. You can't use it for rolling upgrades by way of joining a new node method. Instead, use a logical join.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 238

https://www.enterprisedb.com/docs/pgd/latest/reference/decoding_worker/#enabling
https://www.enterprisedb.com/docs/pgd/5.8/cli/command_ref/nodes/list/

Upgrading a CAMO-enabled cluster

Upgrading a CAMO-enabled cluster requires upgrading CAMO groups one by one while disabling the CAMO protection for the group being upgraded and reconfiguring it using the new commit scope-based settings.

We recommended the following approach for upgrading two BDR nodes that constitute a CAMO pair to PGD 5.0:

1. Ensure bdr.enable_camo remains off for transactions on any of the two nodes, or redirect clients away from the two nodes. Removing the CAMO pairing while attempting to use CAMO leads to errors and prevents further
transactions.

2. For BDR 4.x, deconfigure CAMO by using bdr.remove_camo_pair to uncouple the pair.
3. Upgrade the two nodes to PGD 5.0.
4. Create a dedicated node group for the two nodes and move them into that node group.
5. Create a commit scope for this node group and thus the pair of nodes to use CAMO.
6. Reactivate CAMO protection again either by setting a default_commit_scope or by changing the clients to explicitly set bdr.commit_scope instead of bdr.enable_camo for their sessions or transactions.
7. If necessary, allow clients to connect to the CAMO-protected nodes again.

Upgrade preparation

Each major release of the software contains several changes that might affect compatibility with previous releases. These might affect the Postgres configuration, deployment scripts, as well as applications using PGD. We recommend
considering these changes and making any needed adjustments in advance of the upgrade.

See individual changes mentioned in the release notes and any version-specific upgrade notes.

Server software upgrade

Upgrading EDB Postgres Distributed on individual nodes happens in place. You don't need to back up and restore when upgrading the BDR extension.

BDR extension upgrade

The BDR extension upgrade process consists of the following high-level steps:

Fence the node

To make sure the node being upgraded does not become a write leader until the upgrade is complete, you should fence the node before initiating the upgrade.

Stop Postgres

During the upgrade of binary packages, it's usually best to stop the running Postgres server first. Doing so ensures that mixed versions don't get loaded in case of an unexpected restart during the upgrade.

Upgrade packages

The first step in the upgrade is to install the new version of the BDR packages. This installation installs both the new binary and the extension SQL script. This step is specific to the operating system.

Start Postgres

Once packages are upgraded, you can start the Postgres instance. The BDR extension is upgraded upon start when the new binaries detect the older version of the extension.

Unfence the node

You can unfence the node after the node upgrade is completed.

Note

A PGD 4 cluster must be running PGD 4.4 before upgrading to PGD 6.1.

Upgrading from PGD 4.4 to PGD 6.1 requires additional steps to move from Harp proxy to Connection Manager. For more information, see the worked example: Upgrade PGD 4 to PGD 6.1.

A PGD 5 cluster must be running PGD 5.9 before upgrading to PGD 6.1.

Upgrading from PGD 5.9 to PGD 6.1 requires additional steps to move from PGD proxy to Connection Manager.
For more information, see the worked example: Upgrade PGD 5 to PGD 6.1.

Postgres upgrade

The process of in-place upgrade of Postgres depends on whether you're upgrading to a new minor version of Postgres or to a new major version of Postgres.

Minor version Postgres upgrade

Upgrading to a new minor version of Postgres is similar to upgrading the BDR extension. Stopping Postgres, upgrading packages, and starting Postgres again is typically all that's needed.

However, sometimes more steps, like reindexing, might be recommended for specific minor version upgrades. Refer to the release notes of the version of Postgres you're upgrading to.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 239

https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/commit-scopes/
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/commit-scopes/

Major version Postgres upgrade

Upgrading to a new major version of Postgres is more complicated than upgrading to a minor version.

EDB Postgres Distributed provides a pgd node upgrade command line utility, which you can use to do in-place Postgres major version upgrades.

Note

When upgrading to a new major version of any software, including Postgres, the BDR extension, and others, it's always important to ensure your application is compatible with the target version of the software you're upgrading.

Upgrade check and validation

After you upgrade your PGD node, you can verify the current version of the binary:

Always check your monitoring after upgrading a node to confirm that the upgraded node is working as expected.

PGD 5 - Moving from PGD Proxy to Connection Manager

Use the following steps to move from PGD Proxy to Connection Manager:

1. From one of the PGD 5.9 nodes, run the following query to ensure that SCRAM hashes of all user passwords are the same across all nodes:

Note

No new users should be added to 5.9 after executing this. If they are added, run the query again. The above block does not change the passwords, it just ensure SCRAM hashes are same across the cluster on all nodes.

2. Fence a node in this cluster with pgd node <node-name> set-option route_fence true so that it does not become the write leader.
3. Enable the GUC bdr.enable_builtin_connection_manager to true.
4. Restart the server.
5. Stop PGD Proxy running on the server.
6. Restart the server. It will start with the Connection Manager running on the default port. If the proxy read and write ports were different, the Connection Manager port read and write ports can be changed to be the same as proxy

by bdr.alter_node_group_option() .
7. Unfence the node. This node can now accept connections from the user and route to the write leader via Connection Manager.
8. Repeat this for each node in the cluster. This will ensure all nodes are now routing via Connection Manager.
9. If you're also performing a major version upgrade from PGD 5 to PGD 6.1, proceed with the rolling upgrade steps.

SELECT bdr.bdr_version();

DO $$
DECLARE
 rec
RECORD;
 command TEXT; password TEXT;
BEGIN
 FOR rec IN SELECT rolname,rolpassword FROM pg_authid WHERE rolcanlogin = true AND rolpassword like 'SCRAM-
SHA%'
 LOOP
 password :=
rec.rolpassword;
 command := 'ALTER ROLE ' || quote_ident(rec.rolname) || ' WITH ENCRYPTED PASSWORD ' ||
quote_literal(password);
 EXECUTE
command;
 END LOOP;
END;
$$;
SELECT wait_slot_confirm_lsn(NULL, NULL);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 240

https://www.enterprisedb.com/docs/pgd/latest/reference/monitoring/

17.2 Supported PGD upgrade paths

Upgrading to version 6.1.0

EDB Postgres Distributed uses semantic versioning. All changes within the same major version are backward compatible, lowering the risk when upgrading and allowing you to choose any later minor or patch release as the upgrade target.

The following upgrade paths are supported for PGD 6.1:

Source version Target version

4.4.0 6.1.0

5.9.0 6.1.0

6.0.2 6.1.0

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 241

https://semver.org/

17.3 Compatibility changes

Summary

There are some changes in PGD 6.1 that are not compatible with 5.x and other previous versions. For users of 4.x, the version 5.x compatibility changes still apply.

Connection Manager

PGD 6 introduces a new Connection Manager which replaces the PGD 5's proxy solution with a tightly integrated approach using a background worker to expose read-write, read-only and http-status network interfaces in PGD. This means that
all the old proxy functions were removed, as there are no longer separate PGD-Proxy instances to manage and the connection manager uses group configuration.

Moreover, bdr.proxy_conifg table and bdr.proxy_config_summary view were removed. You should now use bdr.node_group_config_summary for the connection manager's configuration. This also includes all the other
group settings, including routing.

For more details see Connection Manager.

DDL Locking changes

There is a new global lock type, ddl_locking = leader that's used by PGD 6.1 by default instead of the global DML lock. This lock ensures that a table is exclusively locked on all group leaders (as opposed to all nodes). For PGD
Essential this means that in practice the lock is engaged immediately as there is only one leader, which means the system exhibits the same behavior as a single node Postgres setup. LOCK TABLE and TRUNCATE TABLE now use this new
lock type by default (before the default behavior was to not lock outside of the origin node).

LOCK TABLE now uses DDL lock for ACCESS SHARE , ROW SHARE , ROW EXCLUSIVE , SHARE UPDATE EXCLUSIVE and DML lock for SHARE ROW EXCLUSIVE , EXCLUSIVE , and ACCESS EXCLUSIVE . This means that
SHARE+ blocks DMLs, but lower levels don't (which is more closely aligned with how these levels work in Postgres). LOCK TABLE used to always use DML lock.

Join/part behavior

Function and node state changes

For bdr.part_node :

wait_for_completion works on the local node
the force option is deprecated and has the same behavior as bdr.drop_node(force:=true)

For bdr.drop_node :

the cascade option was removed
force now always immediately drops the node locally and assumes previous cascade behavior as well

For bdr.join_node_group :

the pause_in_standby option was removed
now whether the node is in standby is determined by node_kind when running bdr.create_node

A new node state PART_CLEANUP was added, which waits for the group slot to move past any records relevant to the parting node and cleans up origin records related to the node.

Sequences conversion

When creating a PGD cluster, existing sequences are automatically converted to distributed ones.

Parting a node drops it

When a node is parted, it is eventually dropped and the node will not be seen in the PARTED state at the end of the parting. Therefore, scripts that wait for the node to reach PARTED state may need change. Parting can also take longer than
earlier versions since this operation waits till the group slot on all crosses of the last transaction from the parting node to ensure consistency.

Administration function changes

The enable_proxy_routing node group option is now enable_routing , although bdr.alter_node_group_option still supports the older syntax for backwards compatibility. The views only show the new name.
The already deprecated bdr.alter_node_group_config() was removed. Use bdr.alter_node_group_option() instead.
The managed_locally option in bdr.autopartition() was removed. Only locally managed partitions are now supported. At the same time ap_is_local was removed from bdr.autopartition_rules catalog as
well.

Other

Replica identity

Replica identity defaults to FULL now.
This removes some edge cases in conflict detection between inserts, updates, and deletes across node crashes and recovery.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 242

https://www.enterprisedb.com/docs/pgd/5.8/upgrades/compatibility/
https://www.enterprisedb.com/docs/pgd/6.1/reference/connection-manager/
https://www.enterprisedb.com/docs/pgd/6.1/reference/sequences.mdx

Run on (all) writes

Run on (all) writes is now not replicated.
The bdr.xact_replicate is set to off by default, reducing possible accidental issues with replication of commands sent via the run on (all) nodes command.
Some log messages were reworded to be easier to understand.
Some internal log messages' log levels were lowered from LOG to DEBUG so they may no longer appear in logs.

General UI improvements

Workers renamed to not contain 'pglogical'
Previously deprecated configuration parameters (GUCs) now removed (this includes, for example, all the pglogical prefixed GUCs).
Conflicts are logged neither to Postgres log or conflict_history table by default

Changes to defaults

Global lock timeout

bdr.global_lock_timeout is set to 1 minute by default.

Auto sync

bdr.enable_auto_sync_reconcile is set to ON by default. This feature is documented in Automatic synchronization. It enables changes from a down node to be synced to all other nodes.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 243

https://www.enterprisedb.com/docs/pgd/6.1/reference/node_management/automatic_sync/

17.4 Application schema upgrades

Similar to the upgrade of EDB Postgres Distributed, there are two approaches to upgrading the application schema. The simpler option is to stop all applications affected, preform the schema upgrade, and restart the application upgraded to
use the new schema variant. This approach imposes some downtime.

To eliminate this downtime, EDB Postgres Distributed offers useful tools to perform a rolling application schema upgrade.

The following recommendations and tips reduce the impact of the application schema upgrade on the cluster.

Rolling application schema upgrades

By default, DDL is automatically sent to all nodes. You can control this behavior manually, as described in DDL replication. You can use this approach to create differences between database schemas across nodes.

PGD is designed to allow replication to continue even with minor differences between nodes. These features are designed to allow application schema migration without downtime or to allow logical standby nodes for reporting or testing.

Careful scripting is required to make this work correctly on production clusters. We recommend extensive testing.

See Replicating between nodes with differences for details.

When one node runs DDL that adds a new table, nodes that haven't yet received the latest DDL need to handle the extra table. In view of this, the appropriate setting for rolling schema upgrades is to configure all nodes to apply the skip
resolver in case of a target_table_missing conflict. Perform this configuration before adding tables to any node. This setting is intended to be permanent.

Execute the following query separately on each node. Replace node1 with the actual node name.

When one node runs DDL that adds a column to a table, nodes that haven't yet received the latest DDL need to handle the extra columns. In view of this, the appropriate setting for rolling schema upgrades is to configure all nodes to apply the
ignore resolver in case of a target_column_missing conflict. Perform this before adding columns to one node. This setting is intended to be permanent.

Execute the following query separately on each node. Replace node1 with the actual node name.

When one node runs DDL that removes a column from a table, nodes that haven't yet received the latest DDL need to handle the missing column. This situation causes a source_column_missing conflict, which uses the
use_default_value resolver. Thus, columns that don't accept NULLs and don't have a DEFAULT value require a two-step process:

1. Remove the NOT NULL constraint, or add a DEFAULT value for a column on all nodes.
2. Remove the column.

You can remove constraints in a rolling manner. There's currently no supported way for handling adding table constraints in a rolling manner, one node at a time.

When one node runs a DDL that changes the type of an existing column, depending on the existence of binary coercibility between the current type and the target type, the operation might not rewrite the underlying table data. In that case, it's
only a metadata update of the underlying column type. Rewriting a table is normally restricted. However, in controlled DBA environments, you can change the type of a column to an automatically castable one by adopting a rolling upgrade for
the type of this column in a non-replicated environment on all the nodes, one by one. See ALTER TABLE for more details.

SELECT
bdr.alter_node_set_conflict_resolver('node1',
 'target_table_missing', 'skip');

SELECT
bdr.alter_node_set_conflict_resolver('node1',
 'target_column_missing', 'ignore');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 244

https://www.enterprisedb.com/docs/pgd/latest/reference/ddl/
https://www.enterprisedb.com/docs/pgd/latest/reference/appusage/
https://www.enterprisedb.com/docs/pgd/latest/reference/ddl/ddl-command-handling/#alter-table

17.5 In-place Postgres or Postgres and PGD major version upgrades

You can upgrade a PGD node to a newer major version of Postgres or a major version of Postgres and PGD using the command-line utility pgd node upgrade.

Note

In previous versions before 5.7.0, the command used for in-place major version upgrades was bdr_pg_upgrade . However, this command didn't have an option to upgrade both Postgres major versions and PGD versions
simultaneously, as pgd node upgrade does.

pgd node upgrade is a wrapper around the standard pg_upgrade that adds PGD-specific logic to the process to ensure a smooth upgrade.

Terminology

This terminology is used when describing the upgrade process and components involved:

Postgres cluster — The database files, both executables and data, that make up a Postgres database instance on a system when run.

Old Postgres cluster — The existing Postgres cluster to upgrade, the one from which to migrate data.

New Postgres cluster — The new Postgres cluster that data is migrated to. This Postgres cluster must be one major version ahead of the old cluster.

Precautions

Standard Postgres major version upgrade precautions apply, including the fact both Postgres clusters must meet all the requirements for pg_upgrade.

Additionally, don't use pgd node upgrade if other tools are using replication slots and replication origins. Only PGD slots and origins are restored after the upgrade.

You must meet several prerequisites for pgd node upgrade :

Disconnect applications using the old Postgres cluster. You can, for example, redirect them to another node in the PGD cluster.
Configure peer authentication for both Postgres clusters. bdr_pg_upgrade requires peer authentication.
The same or newer version of PGD must be installed on the new cluster.
The PGD version must be 4.1.0 or later.
The new cluster must be in a shutdown state.
You must install PGD packages in the new cluster.
The new cluster must already be initialized and configured as needed to match the old cluster configuration.
Databases, tables, and other objects must not exist in the new cluster.

Note

When upgrading to PGD 5.7.0+, you don't need to have both clusters run the same PGD version. The new cluster must be running 5.7.0+. In that case pgd node upgrade will upgrade the PGD version to 5.7.x and upgrade the
Postgres major version.

We also recommend having the old Postgres cluster up prior to running pgd node upgrade . The CLI starts the old Postgres cluster if it's shut down.

Usage

To upgrade to a newer major version of Postgres or Postgres and PGD, you must first install the new version packages.

pgd node upgrade command-line

pgd node upgrade passes all parameters to pg_upgrade. Therefore, you can specify any parameters supported by pg_upgrade.

Synopsis

pgd node <NODE_NAME> upgrade [OPTION] ...

Options

In addition to the options for pg_upgrade, you can pass the following parameters to pgd node upgrade .

Required parameters

Specify these parameters either in the command line or, for all but the --database parameter, in their equivalent environment variable. They're used by pgd node upgrade .

-b, --old-bindir — Old Postgres cluster bin directory.
-B, --new-bindir — New Postgres cluster bin directory.
-d, --old-datadir — Old Postgres cluster data directory.
-D, --new-datadir — New Postgres cluster data directory.
--database — PGD database name.

Optional parameters

These parameters are optional and are used by pgd node upgrade :

-p, --old-port — Old cluster port number.

-s, --socketdir — Directory to use for postmaster sockets during upgrade.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 245

https://www.postgresql.org/docs/current/pgupgrade.html
https://www.postgresql.org/docs/current/pgupgrade.html#id-1.9.5.12.7.
https://www.postgresql.org/docs/current/pgupgrade.html#id-1.9.5.12.6

-s, --socketdir — Directory to use for postmaster sockets during upgrade.
--check — Specify to only perform checks and not modify clusters.

Other parameters

Any other parameter that's not one of the above is passed to pg_upgrade. pg_upgrade accepts the following parameters:

-j, --jobs — Number of simultaneous processes or threads to use.
-k, --link — Use hard links instead of copying files to the new cluster.
-o, --old-options — Option to pass to old postgres command. Multiple invocations are appended.
-O, --new-options — Option to pass to new postgres command. Multiple invocations are appended.
-N, --no-sync — Don't wait for all files in the upgraded cluster to be written to disk.
-P, --new-port — New cluster port number.
-r, --retain — Retain SQL and log files even after successful completion.
-U, --username — Cluster's install user name.
--clone — Use efficient file cloning.

Environment variables

You can use these environment variables in place of command-line parameters:

PGBINOLD — Old Postgres cluster bin directory.
PGBINNEW — New Postgres cluster bin directory.
PGDATAOLD — Old Postgres cluster data directory.
PGDATANEW — New Postgres cluster data directory.
PGPORTOLD — Old Postgres cluster port number.
PGSOCKETDIR — Directory to use for postmaster sockets during upgrade.

Example

Given a scenario where:

Node name of the cluster you want to upgrade is kaolin.
Old Postgres cluster bin directory is /usr/lib/postgresql/16/bin .
New Postgres cluster bin directory is /usr/lib/postgresql/17/bin .
Old Postgres cluster data directory is /var/lib/postgresql/16/main .
New Postgres cluster data directory is /var/lib/postgresql/17/main .
Database name is bdrdb .

You can use the following command to upgrade the cluster:

pgd node kaolin upgrade \
--old-bindir /usr/lib/postgresql/16/bin \
--new-bindir /usr/lib/postgresql/17/bin \
--old-datadir /var/lib/postgresql/16/main \
--new-datadir /var/lib/postgresql/17/main \
--database bdrdb

Steps performed

These steps are performed when running pgd node upgrade .

Note

When --check is supplied as an argument to pgd node upgrade , the CLI skips steps that modify the database.

PGD Postgres checks

Steps --check supplied

Collecting pre-upgrade new cluster control data run

Checking new cluster state is shutdown run

Checking PGD versions run

Starting old cluster (if shutdown) skip

Connecting to old cluster skip

Checking if bdr schema exists skip

Turning DDL replication off skip

Terminating connections to database skip

Waiting for all slots to be flushed skip

Disconnecting from old cluster skip

Stopping old cluster skip

Starting old cluster with PGD disabled skip

Connecting to old cluster skip

Collecting replication origins skip

Collecting replication slots skip

Disconnecting from old cluster skip

Stopping old cluster skip

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 246

pg_upgrade steps

Standard pg_upgrade steps are performed.

Note

If supplied, --check is passed to pg_upgrade.

PGD post-upgrade steps

Steps --check supplied

Collecting old cluster control data skip

Collecting new cluster control data skip

Advancing LSN of new cluster skip

Starting new cluster with PGD disabled skip

Connecting to new cluster skip

Creating replication origin, repeated for each origin skip

Advancing replication origin, repeated for each
origin

skip

Creating replication slot, repeated for each slot skip

Stopping new cluster skip

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 247

17.6 Performing a Postgres major version rolling upgrade on a PGD cluster

Upgrading Postgres major versions

Upgrading a Postgres database's major version to access improved features, performance enhancements, and security updates is a common administration task. Doing the same for an EDB Postgres Distributed (PGD) cluster is essentially the
same process but performed as a rolling upgrade.

The rolling upgrade process allows updating individual cluster nodes to a new major Postgres version while maintaining cluster availability and operational continuity. This approach minimizes downtime and ensures data integrity by allowing
the rest of the cluster to remain operational as each node is upgraded sequentially.

The following overview of the general instructions and worked examples help to provide a smooth and controlled upgrade process.

Prepare the upgrade

To prepare for the upgrade, identify the subgroups and nodes you're trying to upgrade and note an initial upgrade order.

To do this, connect to one of the nodes using SSH and run the pgd nodes list command:

The pgd nodes list command shows you all the nodes in your PGD cluster and the subgroup to which each node belongs. Then you want to find out which node is the write leader in each subgroup:

This command shows you information about the pgd group tokened by your <group_name> running in your cluster, including which node is the write leader. To maintain operational continuity, you need to switch write leaders over to
another node in their subgroup before you can upgrade them. To keep the number of planned switchovers to a minimum, when upgrading a subgroup of nodes, upgrade the writer leaders last.

To make sure the node being upgraded does not become a write leader until the upgrade is complete, you should fence the node before initiating the upgrade and then unfence the node after the node upgrade is completed.

Even though you verified which node is the current write leader for planning purposes, the write leader of a subgroup could change to another node at any moment for operational reasons before you upgrade that node. Therefore, you still need
to verify that a node isn't the write leader just before upgrading that node.

You now have enough information to determine your upgrade order, one subgroup at a time, aiming to upgrade the identified write leader node last in each subgroup.

Perform the upgrade on each node

Important

To help prevent data loss, before starting the upgrade process, ensure that your databases and configuration files are backed up.

Using the preliminary order, perform the following steps on each node while connected via SSH:

Confirm the current Postgres version

View versions from PGD:

sudo -u postgres pgd nodes list --versions .

Ensure that the expected major version is running.

Verify that the target node isn't the write leader

Check whether the target node is the write leader for the group you're upgrading:

sudo -u postgres pgd group <group_name> show --summary

If the target node is the current write leader for the group/subgroup you're upgrading, perform a planned switchover to another node:

sudo -u postgres pgd group <group_name> set-leader <new_leader_node_name>

Fence the node

To make sure the node being upgraded does not become a write leader until the upgrade is complete, you should fence the node before initiating the upgrade.

Stop Postgres on the target node

Stop the Postgres service on the current node:

sudo systemctl stop postgres

The target node is no longer actively participating as a node in the cluster.

Install PGD and utilities

Install PGD and its utilities compatible with the Postgres version you're upgrading to:

sudo apt install edb-bdr6-pg<new_postgres_version_number>

sudo -u postgres pgd nodes
list

sudo -u postgres pgd group <group_name> show --
summary

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 248

Initialize the new Postgres instance

Create a directory to house the database files for the new version of PostgreSQL:

sudo mkdir -p /opt/postgres/datanew

Ensure that the user postgres has ownership permissions to the directory using chown .

Initialize a new PostgreSQL database cluster in the directory you just created. This step involves using the initdb command provided by the newly installed version of PostgreSQL. Include the --data-checksums flag to
ensure the cluster uses data checksums.

sudo -u postgres <path_to_postgres_bin>/initdb -D /opt/postgres/datanew --data-checksums

Replace <path_to_postgres_bin> with the path to the bin directory of the newly installed PostgreSQL version.

You may need to run this command as the postgres user or another user with appropriate permissions.

Migrate configuration to the new Postgres version

Locate the following configuration files in your current PostgreSQL data directory:
postgresql.conf — The main configuration file containing settings related to the database system.
postgresql.auto.conf — Contains settings set by PostgreSQL, such as those modified by the ALTER SYSTEM command.
pg_hba.conf — Manages client authentication, specifying which users can connect to which databases from which hosts.

The entire conf.d directory (if present) — Allows for organizing configuration settings into separate files for better manageability.

Copy these files and the conf.d directory to the new data directory you created for the upgraded version of PostgreSQL.

Verify the Postgres service is inactive

Before proceeding, it's important to ensure that no PostgreSQL processes are active for both the old and the new data directories. This verification step prevents any data corruption or conflicts during the upgrade process.

Use the sudo systemctl status postgres command to verify that Postgres was stopped. If it isn't stopped, run systemctl stop postgres and verify again that it was stopped.

Swap PGDATA directories for version upgrade

Rename /opt/postgres/data to /opt/postgres/dataold and /opt/postgres/datanew to /opt/postgres/data .

This step readies your system for the next crucial phase: running pgd node upgrade to finalize the PostgreSQL version transition.

Verify upgrade feasibility

The pgd node upgrade tool offers a --check option designed to perform a preliminary scan of your current setup, identifying any potential issues that could hinder the upgrade process.

You need to run this check from an upgrade directory with ownership given to user postgres, such as /home/upgrade/ , so that the upgrade log files created by pgd node upgrade can be stored. To initiate the safety
check, append the --check option to your pgd node upgrade command.

This operation simulates the upgrade process without making any changes, providing insights into any compatibility issues, deprecated features, or configuration adjustments required for a successful upgrade.

Address any warnings or errors indicated by this check to ensure an uneventful transition to the new version.

Execute the Postgres major version upgrade

Execute the upgrade process by running the pgd node <node_name> upgrade command without the --check option.
It's essential to monitor the command output for any errors or warnings that require attention.
The time the upgrade process take depends on the size of your database and the complexity of your setup.

Update the Postgres service configuration

Update the service configuration to reflect the new PostgreSQL version by updating the version number in the postgres.service file:

sudo sed -i -e 's/<old_version_number>/<new_version_number>/g' /etc/systemd/system/postgres.service

Refresh the system's service manager to apply these changes:

sudo systemctl daemon-reload

Restart Postgres

Proceed to restart the PostgreSQL service:

systemctl start postgres

Validate the new Postgres version

Verify that your PostgreSQL instance is now upgraded:

sudo -u postgres pgd nodes list --versions

Unfence the node

You can unfence the node after validating the upgrade.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 249

Clean up post-upgrade

Run vacuumdb with the ANALYZE option immediately after the upgrade but before introducing a heavy production load. Running this command minimizes the immediate performance impact, preparing the database for more
accurate testing.
Remove the old version's data directory, /opt/postgres/dataold .

Worked example: Upgrade PGD 4 to PGD 6.1

This worked example describes an in-place major version rolling upgrade from PGD 4 to PGD 6.1.

Overview

A PGD 4 cluster using HARP Proxy based routing continues this routing method to all nodes until the entire cluster is upgraded to 6.1.0 or higher. HARP-proxy based routing functions the same within a mixed version cluster. HARP uses its own
mechanism to elect a leader since a 4.x cluster does not have a write leader. Once the entire cluster is upgraded to version 6.1.0 or higher, Connection Manager is already enabled and ready. Applications then can be pointed to the Connection
Manager port/node and it will start routing. Once confirmed to be working, proxy can be stopped.

Note

The worked example assumes Harp proxy is not co-located with a PGD node, as recommended in the PGD architecture. If you have a Harp proxy co-located with a PGD node, contact EDB Support for upgrade instructions.

Confirm the harp-proxy leader

Start the upgrade on a node that isn't the harp-proxy leader. Confirm which node is the harp-proxy leader:

Cluster Name Location Ready Fenced Allow Routing Routing Status Role Type Lock Duration
------- ---- -------- ----- ------ ------------- -------------- ---- ---- -------------
bdrgroup test-pgd6major-d2 a true false true primary bdr 6

Fence the node

Fence off the node to be upgraded from HARP and then verify it was fenced, so it does not become the leader during the middle of upgrade:

INFO cmd/fence.go:42 fence node test-pgd6major-d1

Stop the Postgres service

On the fenced node, stop the Postgres service.

Stop HARP manager

On the fenced node, stop HARP manager.

Remove and install packages

On the fenced node, remove PGD 4.4 and the cli packages and install the PGD 6.1 packages.

Start the Postgres service

On the fenced node, start Postgres service. This performs an in-place upgrade of the PGD local node to PGD 6.1 with Connection Manager enabled.

Start HARP manager

On the fenced node, start HARP manager.

Unfence the node

Unfence the upgraded node from HARP:

test-pgd6major-d1:~ $ harpctl get leader
a

test-pgd6major-d1:~ $ harpctl fence test-pgd6major-
d1

test-pgd6major-d1:~ $ harpctl get
nodes
Cluster Name Location Ready Fenced Allow Routing Routing Status Role Type Lock Duration
------- ---- -------- ----- ------ ------------- -------------- ---- ---- -------------
bdrgroup test-pgd6major-d1 a false true true N/A primary bdr 6
bdrgroup test-pgd6major-d2 a true false true ok primary bdr
6

test-pgd6major-d1:~ $ harpctl unfence test-pgd6major-
d1

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 250

Repeat steps for all nodes

Repeat same steps on all other nodes.

Confirm cluster version

Confirm the updated cluster version is version 6001 by running bdr.group_raft_details .

Confirm SCRAM hashes

From any of the upgrades nodes, run the following query to ensure that SCRAM hashes are the same across all nodes for each user. This is required before applications switch to Connection Manager.

Enable routing

Enable node group routing as per your global or local routing requirement. For local routing enable it on subgroups, for global routing enable it on the top group.

Output:

 alter_node_group_option

 (1 row)

Switch to Connection Manager

It should now be safe to switch your application to Connection Manager.

Stop harp manager and proxy services.

It should now be safe to stop any running harp manager and proxy services.

Note

This completes the worked example for an in-place major version rolling upgrade from PGD 4 to PGD 6.1.

Worked example: Upgrade PGD 5 to PGD 6.1

This worked example describes an in-place major version rolling upgrade (PGD & Postgres) of a 3-node PGD 5, EPAS 13 cluster to PGD 6, EPAS 17 cluster using the pgd node upgrade command.

Prerequisites

Ensure you have a 3-node PGD 5, EPAS 13 cluster up and running. This is a TPA-deployed cluster.

Output:

Node Name Group Name Node Kind Join State Node Status
---------- ---------- --------- ---------- -----------
pgd-a1 group-a data ACTIVE Up
pgd-a2 group-a data ACTIVE Up
witness-a1 group-a witness ACTIVE Up

DO $$
DECLARE
 rec
RECORD;
 command TEXT;
BEGIN
 FOR rec IN SELECT rolname,rolpassword FROM pg_authid WHERE rolcanlogin = true AND rolpassword like 'SCRAM-
SHA%'
 LOOP
 command := 'ALTER ROLE ' || quote_ident(rec.rolname) || ' WITH ENCRYPTED PASSWORD ' || ''' || rec.rolpassword ||
''';
 EXECUTE
command;
 END LOOP;
END;
$$;
SELECT wait_slot_confirm_lsn(NULL,NULL);

bdrdb=# SELECT bdr.alter_node_group_option(node_group_name := 'bdrgroup',config_key := 'enable_routing', config_value := true::TEXT);

pgd-a1:/home/rocky $ pgd nodes
list

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 251

Install packages for the new server and PGD

Ensure that the packages for EPAS 17 and the corresponding PGD 6 packages are installed on all nodes in the cluster. To prevent binary conflicts, you must remove the PGD 5 packages, viz., edb-pgd5-cli and edb-bdr5-epas13, before installing
the PGD 6 packages. The commands below were used for the RHEL 8 platform. Use the appropriate commands for your specific platform.

Pre-upgrade steps

Version Check

Check the current version of the cluster (optional).

Output:

Node Name BDR Version Postgres Version
---------- ------------ ----------------
pgd-a1 5.9.0 13.22.28
pgd-a2 5.9.0 13.22.28
witness-a1 5.9.0 13.22.28

Move to Connection Manager

PGD 5 uses PGD Proxy for routing. In PGD 6, PGD Proxy has been replaced with Connection Manager. When you upgrade from PGD 5 to PGD 6, use the following steps to move to Connection Manager. See PGD 5 - Moving from PGD Proxy to
Connection Manager.

Write leader node verification

Ensure that the node you want to upgrade is not the write leader node.

Output:

Group Property Value
----------------- -------
Group Name group-a
Parent Group Name dc-1
Group Type data
Write Leader pgd-a2
Commit Scope

The current write leader is node pgd-a2, so we are good to upgrade node pgd-a1.

Switch the write leader to a different node if it is the node to be upgraded.

Use the pgd group set-leader command to switch the write leader if required:

Output:

 Group Property | Value
-------------------+---------
 Group Name | group-a
 Parent Group Name | dc-1
 Group Type | data
 Write Leader | pgd-a1
 Commit Scope |

Fence the node

Fence a node in this cluster with pgd node <node-name> set-option route_fence true so that it does not become the write leader.

Initialize the new Postgres instance

Execute the initdb utility to initialize the new server. Ensure the --data-checksums option is set.

dnf remove edb-pgd5-cli
dnf install edb-as17-server edb-pgd6-essential-epas17 -y

pgd-a1:/home/rocky $ pgd nodes list --
versions

pgd-a1:/home/rocky $ pgd group group-a show --
summary

witness-a1:/home/rocky $ /usr/edb/as17/bin/pgd group group-a set-leader pgd-
a1

witness-a1:/home/rocky $ /usr/edb/as17/bin/pgd group group-a show --
summary

/usr/edb/as17/bin/initdb -D /var/lib/edb/as17/data -E UTF8 --data-checksums

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 252

Create the new data dir if you don't want to use the default one. This example uses the default for simplicity.

Migrate configuration to the new Postgres version

Copy the following files and directory (if present), to the new data directory you created for the upgraded version of PostgreSQL:

postgresql.conf
postgresql.auto.conf
pg_hba.conf

the conf.d directory

If you have a TPA-deployed cluster, copy the conf.d directory as well:

Unsupported configurations in PGD 6

Some configurations may not be supported in PGD 6. In such cases, you will need to find an equivalent setting or determine if the configuration can be safely ignored.

For instance, you may encounter the operator_precedence_warning GUC, which can be ignored in the new configuration.

Ensure both the old and new servers are shut down:

Note

systemctl commands were used in this example because the PostgreSQL instance is configured as a service. You might need to use the pg_ctl utility if your setup is different.

Dry run check

Before running the actual upgrade, perform a dry run to check the compatibility and upgrade feasibility. The pgd node upgrade tool has a --check option, which performs a dry run of some of the upgrade process. You can use this
option to ensure the upgrade goes smoothly. Run the upgrade command with the --check option.

A successful check should return output as shown:

Performing BDR Postgres Checks

Getting old PG instance shared directory ok
Getting new PG instance shared directory ok
Collecting pre-upgrade new PG instance control data ok
Checking new cluster state is shutdown ok
Checking BDR extension versions ok
Checking Postgres versions ok

Finished BDR pre-upgrade steps, calling pg_upgrade
--

Performing Consistency Checks

Checking cluster versions ok
Checking database user is the install user ok
Checking database connection settings ok
Checking for prepared transactions ok
Checking for contrib/isn with bigint-passing mismatch ok
Checking data type usage ok
Checking for user-defined encoding conversions ok
Checking for user-defined postfix operators ok
Checking for incompatible polymorphic functions ok
Checking for not-null constraint inconsistencies ok
Checking for presence of required libraries ok
Checking database user is the install user ok
Checking for prepared transactions ok
Checking for new cluster tablespace directories ok

Clusters are compatible

cp /opt/postgres/data/postgresql.conf
/var/lib/edb/as17/data/
cp /opt/postgres/data/postgresql.auto.conf
/var/lib/edb/as17/data/
cp /opt/postgres/data/pg_hba.conf /var/lib/edb/as17/data/

cp -r /opt/postgres/data/conf.d /var/lib/edb/as17/data/

sudo systemctl stop
postgres
sudo systemctl status
postgres

/usr/edb/as17/bin/pgd node pgd-a1 upgrade \
--database bdrdb -B /usr/edb/as17/bin \
--socketdir /tmp \
--old-bindir /usr/edb/as13/bin \
--old-datadir /opt/postgres/data \
--new-datadir /var/lib/edb/as17/data \
--username enterprisedb \
--old-port 5444 \
--new-port 5444 \
--check

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 253

Execute the upgrade.

If the dry run check passed, you can execute the upgrade by running the command without the --check option

A successful upgrade should return output as shown:

Performing BDR Postgres Checks

Getting old PG instance shared directory ok
Getting new PG instance shared directory ok
Collecting pre-upgrade new PG instance control data ok
Checking new cluster state is shutdown ok
Checking BDR extension versions ok
Checking Postgres versions ok

Collecting Pre-Upgrade BDR Information

Collecting pre-upgrade old PG instance control data ok
Connecting to the old PG instance ok
Checking for BDR extension ok
Checking BDR node name ok
Terminating connections to database ok
Waiting for all slots to be flushed ok
Disconnecting from old cluster PG instance ok
Stopping old PG instance ok
Starting old PG instance with BDR disabled ok
Connecting to the old PG instance ok
Collecting replication origins ok
Collecting replication slots ok
Disconnecting from old cluster PG instance ok
Stopping old PG instance ok

Finished BDR pre-upgrade steps, calling pg_upgrade
--

Performing Consistency Checks

Checking cluster versions ok
Checking database user is the install user ok
Checking database connection settings ok
Checking for prepared transactions ok
Checking for contrib/isn with bigint-passing mismatch ok
Checking data type usage ok
Checking for user-defined encoding conversions ok
Checking for user-defined postfix operators ok
Checking for incompatible polymorphic functions ok
Checking for not-null constraint inconsistencies ok
Creating dump of global objects ok
Creating dump of database schemas
 ok
Checking for presence of required libraries ok
Checking database user is the install user ok
Checking for prepared transactions ok
Checking for new cluster tablespace directories ok

If `pg_upgrade` fails after this point, you must re-initdb
the new cluster before continuing.

Performing Upgrade

Setting locale and encoding for new cluster ok
Analyzing all rows in the new cluster ok
Freezing all rows in the new cluster ok
Deleting files from new pg_xact ok
Copying old pg_xact to new server ok
Setting oldest XID for new cluster ok
Setting next transaction ID and epoch for new cluster ok
Deleting files from new pg_multixact/offsets ok
Copying old pg_multixact/offsets to new server ok
Deleting files from new pg_multixact/members ok
Copying old pg_multixact/members to new server ok
Setting next multixact ID and offset for new cluster ok
Resetting WAL archives ok
Setting frozenxid and minmxid counters in new cluster ok
Restoring global objects in the new cluster ok
Restoring database schemas in the new cluster
 ok
Copying user relation files
 ok
Setting next OID for new cluster ok
Sync data directory to disk ok
Creating script to delete old cluster ok
Checking for extension updates notice

/usr/edb/as17/bin/pgd node pgd-a1 upgrade \
--database bdrdb -B /usr/edb/as17/bin \
--socketdir /tmp \
--old-bindir /usr/edb/as13/bin \
--old-datadir /opt/postgres/data \
--new-datadir /var/lib/edb/as17/data \
--username enterprisedb \
--old-port 5444 \
--new-port 5444

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 254

Your installation contains extensions that should be updated
with the ALTER EXTENSION command. The file
 update_extensions.sql
when executed by psql by the database superuser will update
these extensions.

Upgrade Complete

Optimizer statistics are not transferred by pg_upgrade.
Once you start the new server, consider running:
 /usr/edb/as17/bin/vacuumdb -U enterprisedb --all --analyze-in-stages
Running this script will delete the old cluster's data files:
 ./delete_old_cluster.sh

pg_upgrade complete, performing BDR post-upgrade steps
--
Collecting post-upgrade old PG instance control data ok
Collecting post-upgrade new PG instance control data ok
Checking LSN of the new PG instance ok
Starting new PG instance with BDR disabled ok
Connecting to the new PG instance ok
Creating replication origin bdr_bdrdb_dc_1_pgd_a2 ok
Advancing replication origin bdr_bdrdb_dc_1_pgd_a2 to 0/3... ok
Creating replication origin bdr_bdrdb_dc_1_witness_a1 ok
Advancing replication origin bdr_bdrdb_dc_1_witness_a1 to... ok
Creating replication slot bdr_bdrdb_dc_1 ok
Creating replication slot bdr_bdrdb_dc_1_witness_a1 ok
Creating replication slot bdr_bdrdb_dc_1_pgd_a2 ok
Stopping new PG instance ok

Note

You can use the --link option for a hard link. This option works if both the data dirs are on the same filesystem. For more information, see pg_upgrade in the PostgreSQL documentation.

Post-upgrade steps

Update the Postgres service file

Update the server version, data directory, and binary directories of the new server in the PostgreSQL service file, located at /etc/systemd/system/postgres.service .

An example of what the updated service file looks like:

[Unit]
Description=Postgres 17 (TPA)
After=syslog.target
After=network.target

[Service]
Type=simple
User=enterprisedb
Group=enterprisedb
OOMScoreAdjust=-1000
Environment=PG_OOM_ADJUST_VALUE=0
Environment=PGDATA=/var/lib/edb/as17/data
StandardOutput=syslog
ExecStart=/usr/edb/as17/bin/edb-postgres -D ${PGDATA} -c config_file=/var/lib/edb/as17/data/postgresql.conf
ExecStartPost=+/bin/bash -c 'echo 0xff > /proc/$MAINPID/coredump_filter'
ExecReload=/bin/kill -HUP $MAINPID
KillMode=mixed
KillSignal=SIGINT
Restart=no
LimitCORE=infinity

[Install]
WantedBy=multi-user.target

Start the postgres service

Execute a daemon-reload and start the Postgres service:

Note

If your server was not running as a service, you can skip the service file update and start the server using the pg_ctl utility.

Verify the upgraded cluster versions

Use the following command to verify the upgraded cluster versions:

systemctl daemon-reload
systemctl start
postgres

pgd-a1:/home/rocky $ /usr/edb/as17/bin/pgd nodes list --
versions

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 255

https://www.postgresql.org/docs/current/pgupgrade.html

Output:

 Node Name | BDR Version | Postgres Version
------------+---------------------+------------------
 pgd-a1 | PGD 6.1.0 Essential | 17.6.0
 pgd-a2 | 5.9.0 | 13.22.28
 witness-a1 | 5.9.0 | 13.22.28

The BDR version for node pgd-a1 was upgraded to 6.1.0 and the Postgres version to 17.6.0.

Unfence the node

Unfence a node in this cluster with pgd node <node-name> set-option route_fence false so that it does not become the write leader.

Verify the Connection Manager is working

Execute a query through the connection manager port (6444 by default) on the upgraded node:

Output:

 node_name

 pgd-a2
(1 row)

Clean up and vacuum analyze

As a best practice, run a vacuum over the database at this point. When the upgrade ran, you may have noticed the post-upgrade report included:

Upgrade Complete

Optimizer statistics are not transferred by pg_upgrade.
Once you start the new server, consider running:
 /usr/edb/as17/bin/vacuumdb -U enterprisedb --all --analyze-in-stages
Running this script will delete the old cluster's data files:
 ./delete_old_cluster.sh

You can run the vacuum now. On the target node, run:

If you're sure you don't need to revert this node, you can also clean up the old cluster's data files:

Upgrade the remaining nodes

You must perform these steps for every node in the cluster. The only difference will be the node name in the upgrade command. For quick reference, the commands for nodes pgd-a2 and witness-a1 are provided:

Node pgd-a2

Node witness-a1

pgd-a1:/home/rocky $ psql "host=pgd-a1 port=6444 dbname=bdrdb user=enterprisedb " -c "select node_name from
bdr.local_node_summary;"

/usr/edb/as17/bin/vacuumdb -U enterprisedb --all --analyze-in-stages

./delete_old_cluster.sh

/usr/edb/as17/bin/pgd node pgd-a2 upgrade \
--database bdrdb -B /usr/edb/as17/bin \
--socketdir /tmp \
--old-bindir /usr/edb/as13/bin \
--old-datadir /opt/postgres/data \
--new-datadir /var/lib/edb/as17/data \
--username enterprisedb \
--old-port 5444 \
--new-port 5444

/usr/edb/as17/bin/pgd node witness-a1 upgrade \
--database bdrdb -B /usr/edb/as17/bin \
--socketdir /tmp \
--old-bindir /usr/edb/as13/bin \
--old-datadir /opt/postgres/data \
--new-datadir /var/lib/edb/as17/data \
--username enterprisedb \
--old-port 5444 \
--new-port 5444

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 256

Verify the final state of the cluster

Use the following command to verify the node versions:

Output:

 Node Name | BDR Version | Postgres Version
------------+----------------------+------------------
 pgd-a1 | PGD 6.1.0 Essential | 17.6.0
 pgd-a2 | PGD 6.1.0 Essential | 17.6.0
 witness-a1 | PGD 6.1.0 Essential | 17.6.0

All nodes of the cluster have been upgraded to PGD 6.1.0 and EPAS 17.6.0.

Verify the Connection Manager

For every data node, use the following command to verify the Connection Manager:

Output:

 node_name

 pgd-a1
(1 row)

Output:

 node_name

 pgd-a2
(1 row)

Note

This completes the worked example of an in-place major version rolling upgrade (PGD & Postgres) of a 3-node PGD 5, EPAS 13 cluster to PGD 6, EPAS 17 cluster.

pgd-a2:/home/rocky $ /usr/edb/as17/bin/pgd nodes list --
versions

pgd-a2:/home/rocky $ psql "host=pgd-a2 port=6444 dbname=bdrdb user=enterprisedb " -c "select node_name from
bdr.local_node_summary;"

pgd-a2:/home/rocky $ psql "host=pgd-a2 port=6445 dbname=bdrdb user=enterprisedb " -c "select node_name from
bdr.local_node_summary;"

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 257

18 DDL replication

DDL stands for data definition language, the subset of the SQL language that creates, alters, and drops database objects.

PGD provides automatic DDL replication, which makes certain DDL changes easier. With automatic replication, you don't have to manually distribute the DDL change to all nodes and ensure that they're consistent.

This section looks at how DDL replication is handled in PGD.

Overview provides a general outline of what PGD's DDL replication is capable of.

Locking examines how DDL replication uses locks to safely replicate DDL.

Managing DDL with PGD replication gives best practice advice on why and how to limit the impact of DDL changes so they don't overly affect the smooth running of the cluster.

DDL role manipulation notes issues around manipulating roles over multiple databases in a cluster.

Workarounds gives a range of options for handling situations where DDL replication may present restrictions, such as altering columns, constraints, and types.

DDL-like PGD functions details the PGD functions that behave like DDL and therefore behave in a similar way and are subject to similar restrictions.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 258

18.1 DDL overview

DDL stands for data definition language, the subset of the SQL language that creates, alters, and drops database objects.

Replicated DDL

For operational convenience and correctness, PGD replicates most DDL actions, with these exceptions:

Temporary relations
Certain DDL statements (mostly long running)
Locking commands (LOCK)
Table maintenance commands (VACUUM , ANALYZE , CLUSTER)
Actions of autovacuum
Operational commands (CHECKPOINT , ALTER SYSTEM)
Actions related to databases

Automatic DDL replication makes certain DDL changes easier without having to manually distribute the DDL change to all nodes and ensure that they're consistent.

In the default replication set, DDL is replicated to all nodes by default.

Differences from PostgreSQL

PGD is significantly different from standalone PostgreSQL when it comes to DDL replication. Treating it the same is the most common issue with PGD.

The main difference from table replication is that DDL replication doesn't replicate the result of the DDL. Instead, it replicates the statement. This works very well in most cases, although it introduces the requirement that the DDL must execute
similarly on all nodes. A more subtle point is that the DDL must be immutable with respect to all datatype-specific parameter settings, including any datatypes introduced by extensions (not built in). For example, the DDL statement must
execute correctly in the default encoding used on each node.

Executing DDL on PGD systems

A PGD group isn't the same as a standalone PostgreSQL server. It's based on asynchronous multi-master replication without central locking and without a transaction coordinator. This has important implications when executing DDL.

DDL that executes in parallel continues to do so with PGD. DDL execution respects the parameters that affect parallel operation on each node as it executes, so you might notice differences in the settings between nodes.

Prevent the execution of conflicting DDL, otherwise DDL replication causes errors and the replication stops.

PGD offers three levels of protection against those problems:

ddl_locking = 'all' is the strictest option and is best when DDL might execute from any node concurrently and you want to ensure correctness. This is the default.

ddl_locking = 'dml' is an option that is safe only when you execute DDL from one node at any time. Use this setting only if you can completely control where DDL is executed. Executing DDL from a single node ensures that there are
no inter-node conflicts. Intra-node conflicts are already handled by PostgreSQL.

ddl_locking = 'off' is the least strict option and is dangerous in general use. This option skips locks altogether, avoiding any performance overhead, which makes it a useful option when creating a new and empty database schema.

These options can be set only by the bdr_superuser, by the superuser, or in the postgres.conf configuration file.

When using the bdr.replicate_ddl_command , you can set this parameter directly with the third argument, using the specified bdr.ddl_locking setting only for the DDL commands passed to that function.

DDL and mixed PostgreSQL versions

PGD does not support DDL replication between different major Postgres versions in a cluster. Most of the time, this is not an issue because clusters will be running the same major version of Postgres. This is not the case though when
performing a rolling upgrade of a cluster from one major version to another. In this case, DDL replication is not supported until all nodes have been upgraded to the same major version and should not be used.

Special care should be taken in the upgrade process when updating extensions as the scripts may trigger DDL replication. In this case, if the scripts must be run before upgrading is complete, bdr.ddl_replication setting should be set
to off while running the script.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 259

18.2 DDL replication options

The bdr.ddl_replication parameter specifies replication behavior.

bdr.ddl_replication = on is the default. This setting replicates DDL to the default replication set, which by default means all nodes. Non-default replication sets don't replicate DDL unless they have a DDL filter defined for them.

You can also replicate DDL to specific replication sets using the function bdr.replicate_ddl_command() . This function can be helpful if you want to run DDL commands when a node is down. It's also helpful if you want to have indexes
or partitions that exist on a subset of nodes or rep sets, for example, all nodes at site1.

SELECT bdr.replicate_ddl_command(
 'CREATE INDEX CONCURRENTLY ON foo (col7);',
 ARRAY['site1'], -- the replication sets
 'all'); -- ddl_locking to apply

While we don't recommend it, you can skip automatic DDL replication and execute it manually on each node using the bdr.ddl_replication configuration parameter.

SET bdr.ddl_replication = off;

When set, it makes PGD skip both the global locking and the replication of executed DDL commands. You must then run the DDL manually on all nodes.

Warning

Executing DDL manually on each node without global locking can cause the whole PGD group to stop replicating if conflicting DDL or DML executes concurrently.

Only the bdr_superuser or superuser can set the bdr.ddl_replication parameter. It can also be set in the postgres.conf configuration file.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 260

18.3 DDL locking details

Two kinds of locks enforce correctness of replicated DDL with PGD: the global DDL lock and the global DML lock.

The global DDL lock

A global DDL lock is used only when ddl_locking = 'all' . This kind of lock prevents any other DDL from executing on the cluster while each DDL statement runs. This behavior ensures full correctness in the general case but is too
strict for many simple cases. PGD acquires a global lock on DDL operations the first time in a transaction where schema changes are made. This effectively serializes the DDL-executing transactions in the cluster. In other words, while DDL is
running, no other connection on any node can run another DDL command, even if it affects different tables.

To acquire a lock on DDL operations, the PGD node executing DDL contacts the other nodes in a PGD group and asks them to grant it the exclusive right to execute DDL.

The lock request is sent by the regular replication stream, and the nodes respond by the replication stream as well. So it's important that nodes (or at least a majority of the nodes) run without much replication delay. Otherwise it might take a
long time for the node to acquire the DDL lock. Once the majority of nodes agree, the DDL execution is carried out.

The ordering of DDL locking is decided using the Raft protocol. DDL statements executed on one node are executed in the same sequence on all other nodes.

To ensure that the node running a DDL has seen effects of all prior DDLs run in the cluster, it waits until it catches up with the node that ran the previous DDL. If the node running the current DDL is lagging behind in replication with respect to
the node that ran the previous DDL, then it might take a long time to acquire the lock. Hence it's preferable to run DDLs from a single node or the nodes that have nearly caught up with replication changes originating at other nodes.

A global DDL lock must be granted by a majority of data and witness nodes, where a majority is N/2+1 of the eligible nodes. Subscriber-only nodes aren't eligible to participate.

The global DML lock

Known as a global DML lock or relation DML lock, this kind of lock is used when either ddl_locking = all or ddl_locking = dml , and the DDL statement might cause in-flight DML statements to fail. These failures can occur when
you add or modify a constraint, such as a unique constraint, check constraint, or NOT NULL constraint. Relation DML locks affect only one relation at a time. These locks ensure that no DDL executes while changes are in the queue that might
cause replication to halt with an error.

To acquire the global DML lock on a table, the PGD node executing the DDL contacts all other nodes in a PGD group, asking them to lock the table against writes and waiting while all pending changes to that table are drained. Once all nodes
are fully caught up, the originator of the DML lock is free to perform schema changes to the table and replicate them to the other nodes.

The global DML lock holds an EXCLUSIVE LOCK on the table on each node, so it blocks DML, other DDL, VACUUM, and index commands against that table while it runs. This is true even if the global DML lock is held for a command that
normally doesn't take an EXCLUSIVE LOCK or higher.

Waiting for pending DML operations to drain can take a long time and even longer if replication is currently lagging. This means that, unlike with data changes, schema changes affecting row representation and constraints can be performed
only while all configured nodes can be reached and are keeping up reasonably well with the current write rate. If such DDL commands must be performed while a node is down, first remove the down node from the configuration.

All eligible data nodes must agree to grant a global DML lock before the lock is granted. Witness and subscriber-only nodes aren't eligible to participate.

If a DDL statement isn't replicated, no global locks are acquired.

Specify locking behavior with the bdr.ddl_locking parameter, as explained in Executing DDL on PGD systems:

ddl_locking = all takes global DDL lock and, if needed, takes relation DML lock.
ddl_locking = dml skips global DDL lock and, if needed, takes relation DML lock.
ddl_locking = leader enables leader-based global DML locking.
ddl_locking = auto current behaves like ddl_locking = leader .
ddl_locking = off skips both global DDL lock and relation DML lock.

Some PGD functions make DDL changes. For those functions, DDL locking behavior applies, which is noted in the documentation for each function.

Thus, ddl_locking = dml is safe only when you can guarantee that no conflicting DDL is executed from other nodes. With this setting, the statements that require only the global DDL lock don't use the global locking at all.

ddl_locking = off is safe only when you can guarantee that there are no conflicting DDL and no conflicting DML operations on the database objects DDL executes on. If you turn locking off and then experience difficulties, you might
lose in-flight changes to data. The user application team needs to resolve any issues caused.

In some cases, concurrently executing DDL can properly be serialized. If these serialization failures occur, the DDL might reexecute.

DDL replication isn't active on logical standby nodes until they're promoted.

Some PGD management functions act like DDL, meaning that they attempt to take global locks, and their actions are replicated if DDL replication is active. The full list of replicated functions is listed in PGD functions that behave like DDL.

DDL executed on temporary tables never need global locks.

ALTER or DROP of an object created in the current transaction doesn't required global DML lock.

Monitoring of global DDL locks and global DML locks is shown in Monitoring.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 261

18.4 Managing DDL with PGD replication

Minimizing the impact of DDL

Minimizing the impact of DDL is good operational advice for any database. These points become even more important with PGD:

To minimize the impact of DDL, make transactions performing DDL short. Don't combine them with lots of row changes, and avoid long-running foreign key or other constraint rechecks.

For ALTER TABLE , use ADD CONSTRAINT NOT VALID followed by another transaction with VALIDATE CONSTRAINT rather than using ADD CONSTRAINT alone. VALIDATE CONSTRAINT waits until replayed on all
nodes, which gives a noticeable delay to receive confirmations.

When indexing, use the CONCURRENTLY option whenever possible.

An alternative way of executing long-running DDL is to disable DDL replication and then to execute the DDL statement separately on each node. You can still do this using a single SQL statement, as shown in the following example. Global
locking rules still apply, so be careful not to lock yourself out with this type of usage, which is more of a workaround.

We recommend using the bdr.run_on_all_nodes() technique with CREATE INDEX CONCURRENTLY , noting that DDL replication must be disabled for the whole session because CREATE INDEX CONCURRENTLY is a multi-
transaction command. Avoid CREATE INDEX on production systems since it prevents writes while it executes. Avoid using REINDEX because of the AccessExclusiveLocks it holds.

Instead, use REINDEX CONCURRENTLY (or reindexdb --concurrently).

You can disable DDL replication when using command-line utilities like this:

Multiple DDL statements might benefit from bunching into a single transaction rather than fired as individual statements, so take the DDL lock only once. This might not be desirable if the table-level locks interfere with normal operations.

If DDL is holding up the system for too long, you can safely cancel the DDL on the originating node with Control-C in psql or with pg_cancel_backend() . You can't cancel a DDL lock from any other node.

You can control how long the global lock takes with optional global locking timeout settings. bdr.global_lock_timeout limits how long the wait for acquiring the global lock can take before it's canceled.
bdr.global_lock_statement_timeout limits the runtime length of any statement in transaction that holds global locks, and bdr.global_lock_idle_timeout sets the maximum allowed idle time (time between statements)

for a transaction holding any global locks. You can disable all of these timeouts by setting their values to zero.

Once the DDL operation has committed on the originating node, you can't cancel or abort it. The PGD group must wait for it to apply successfully on other nodes that confirmed the global lock and for them to acknowledge replay. For this
reason, keep DDL transactions short and fast.

Handling DDL with down nodes

If the node initiating the global DDL lock goes down after it acquired the global lock (either DDL or DML), the lock stays active. The global locks don't time out, even if timeouts were set. In case the node comes back up, it releases all the global
locks that it holds.

If it stays down for a long time or indefinitely, remove the node from the PGD group to release the global locks. This is one reason for executing emergency DDL using the SET command as the bdr_superuser to update the
bdr.ddl_locking value.

If one of the other nodes goes down after it confirmed the global lock but before the command acquiring it executed, the execution of that command requesting the lock continues as if the node were up.

As mentioned earlier, the global DDL lock requires only a majority of the nodes to respond, and so it works if part of the cluster is down, as long as a majority is running and reachable. But the DML lock can't be acquired unless the whole
cluster is available.

With global DDL or global DML lock, if another node goes down, the command continues normally, and the lock is released.

Statement-specific DDL replication concerns

Not all commands can be replicated automatically. Such commands are generally disallowed, unless DDL replication is turned off by turning bdr.ddl_replication off.

PGD prevents some DDL statements from running when it's active on a database. This protects the consistency of the system by disallowing statements that can't be replicated correctly or for which replication isn't yet supported.

If a statement isn't permitted under PGD, you can often find another way to do the same thing. For example, you can't do an ALTER TABLE , which adds a column with a volatile default value. But generally you can rephrase that as a series of
independent ALTER TABLE and UPDATE statements that work.

Generally, unsupported statements are prevented from executing, raising a feature_not_supported (SQLSTATE 0A000) error.

Any DDL that references or relies on a temporary object can't be replicated by PGD and throws an error if executed with DDL replication enabled.

SELECT
bdr.run_on_all_nodes(ddl
 CREATE INDEX CONCURRENTLY index_a ON
table_a(i);
ddl);

$ export PGOPTIONS="-c
bdr.ddl_replication=off"
$ pg_restore --section=post-data

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 262

18.5 DDL command handling matrix

The following table describes the utility or DDL commands that are allowed, the ones that are replicated, and the type of global lock they take when they're replicated.

For some more complex statements like ALTER TABLE , these can differ depending on the subcommands executed. Every such command has detailed explanation under the following table.

Command matrix

Command Allowed Replicated Lock

ALTER AGGREGATE Y Y DDL

ALTER CAST Y Y DDL

ALTER COLLATION Y Y DDL

ALTER CONVERSION Y Y DDL

ALTER DATABASE Y N N

ALTER DATABASE LINK Y Y DDL

ALTER DEFAULT PRIVILEGES Y Y DDL

ALTER DIRECTORY Y Y DDL

ALTER DOMAIN Y Y DDL

ALTER EVENT TRIGGER Y Y DDL

ALTER EXTENSION Y Y DDL

ALTER FOREIGN DATA WRAPPER Y Y DDL

ALTER FOREIGN TABLE Y Y DDL

ALTER FUNCTION Y Y DDL

ALTER INDEX Y Y DDL

ALTER LANGUAGE Y Y DDL

ALTER LARGE OBJECT N N N

ALTER MATERIALIZED VIEW Y Y DML

ALTER OPERATOR Y Y DDL

ALTER OPERATOR CLASS Y Y DDL

ALTER OPERATOR FAMILY Y Y DDL

ALTER PACKAGE Y Y DDL

ALTER POLICY Y Y DDL

ALTER PROCEDURE Y Y DDL

ALTER PROFILE Y Y Details

ALTER PUBLICATION Y Y DDL

ALTER QUEUE Y Y DDL

ALTER QUEUE TABLE Y Y DDL

ALTER REDACTION POLICY Y Y DDL

ALTER RESOURCE GROUP Y N N

ALTER ROLE Y Y DDL

ALTER ROUTINE Y Y DDL

ALTER RULE Y Y DDL

ALTER SCHEMA Y Y DDL

ALTER SEQUENCE Details Y DML

ALTER SERVER Y Y DDL

ALTER SESSION Y N N

ALTER STATISTICS Y Y DDL

ALTER SUBSCRIPTION Y Y DDL

ALTER SYNONYM Y Y DDL

ALTER SYSTEM Y N N

ALTER TABLE Details Y Details

ALTER TABLESPACE Y Y DDL

ALTER TEXT SEARCH CONFIGURATION Y Y DDL

ALTER TEXT SEARCH DICTIONARY Y Y DDL

ALTER TEXT SEARCH PARSER Y Y DDL

ALTER TEXT SEARCH TEMPLATE Y Y DDL

ALTER TRIGGER Y Y DDL

ALTER TYPE Y Y DDL

ALTER USER MAPPING Y Y DDL

ALTER VIEW Y Y DDL

ANALYZE Y N N

BEGIN Y N N

CHECKPOINT Y N N

CLOSE Y N N

CLOSE CURSOR Y N N

CLOSE CURSOR ALL Y N N

CLUSTER Y N DML

COMMENT Y Details DDL

COMMIT Y N N

COMMIT PREPARED Y N N

COPY Y N N

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 263

COPY FROM Y N N

CREATE ACCESS METHOD Y Y DDL

CREATE AGGREGATE Y Y DDL

CREATE CAST Y Y DDL

CREATE COLLATION Y Y DDL

CREATE CONSTRAINT Y Y DDL

CREATE CONVERSION Y Y DDL

CREATE DATABASE Y N N

CREATE DATABASE LINK Y Y DDL

CREATE DIRECTORY Y Y DDL

CREATE DOMAIN Y Y DDL

CREATE EVENT TRIGGER Y Y DDL

CREATE EXTENSION Y Y DDL

CREATE FOREIGN DATA WRAPPER Y Y DDL

CREATE FOREIGN TABLE Y Y DDL

CREATE FUNCTION Y Y DDL

CREATE INDEX Y Y DML

CREATE LANGUAGE Y Y DDL

CREATE MATERIALIZED VIEW Y Y DDL

CREATE OPERATOR Y Y DDL

CREATE OPERATOR CLASS Y Y DDL

CREATE OPERATOR FAMILY Y Y DDL

CREATE PACKAGE Y Y DDL

CREATE PACKAGE BODY Y Y DDL

CREATE POLICY Y Y DML

CREATE PROCEDURE Y Y DDL

CREATE PROFILE Y Y Details

CREATE PUBLICATION Y Y DDL

CREATE QUEUE Y Y DDL

CREATE QUEUE TABLE Y Y DDL

CREATE REDACTION POLICY Y Y DDL

CREATE RESOURCE GROUP Y N N

CREATE ROLE Y Y DDL

CREATE ROUTINE Y Y DDL

CREATE RULE Y Y DDL

CREATE SCHEMA Y Y DDL

CREATE SEQUENCE Details Y DDL

CREATE SERVER Y Y DDL

CREATE STATISTICS Y Y DDL

CREATE SUBSCRIPTION Y Y DDL

CREATE SYNONYM Y Y DDL

CREATE TABLE Y Y DDL

CREATE TABLE AS Details Y DDL

CREATE TABLESPACE Y Y DDL

CREATE TEXT SEARCH CONFIGURATION Y Y DDL

CREATE TEXT SEARCH DICTIONARY Y Y DDL

CREATE TEXT SEARCH PARSER Y Y DDL

CREATE TEXT SEARCH TEMPLATE Y Y DDL

CREATE TRANSFORM Y Y DDL

CREATE TRIGGER Y Y DDL

CREATE TYPE Y Y DDL

CREATE TYPE BODY Y Y DDL

CREATE USER MAPPING Y Y DDL

CREATE VIEW Y Y DDL

DEALLOCATE Y N N

DEALLOCATE ALL Y N N

DECLARE CURSOR Y N N

DISCARD Y N N

DISCARD ALL Y N N

DISCARD PLANS Y N N

DISCARD SEQUENCES Y N N

DISCARD TEMP Y N N

DO Y N N

DROP ACCESS METHOD Y Y DDL

DROP AGGREGATE Y Y DDL

DROP CAST Y Y DDL

DROP COLLATION Y Y DDL

DROP CONSTRAINT Y Y DDL

DROP CONVERSION Y Y DDL

DROP DATABASE Y N N

DROP DATABASE LINK Y Y DDL

Command Allowed Replicated Lock

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 264

DROP DIRECTORY Y Y DDL

DROP DOMAIN Y Y DDL

DROP EVENT TRIGGER Y Y DDL

DROP EXTENSION Y Y DDL

DROP FOREIGN DATA WRAPPER Y Y DDL

DROP FOREIGN TABLE Y Y DDL

DROP FUNCTION Y Y DDL

DROP INDEX Y Y DDL

DROP LANGUAGE Y Y DDL

DROP MATERIALIZED VIEW Y Y DDL

DROP OPERATOR Y Y DDL

DROP OPERATOR CLASS Y Y DDL

DROP OPERATOR FAMILY Y Y DDL

DROP OWNED Y Y DDL

DROP PACKAGE Y Y DDL

DROP PACKAGE BODY Y Y DDL

DROP POLICY Y Y DDL

DROP PROCEDURE Y Y DDL

DROP PROFILE Y Y DDL

DROP PUBLICATION Y Y DDL

DROP QUEUE Y Y DDL

DROP QUEUE TABLE Y Y DDL

DROP REDACTION POLICY Y Y DDL

DROP RESOURCE GROUP Y N N

DROP ROLE Y Y DDL

DROP ROUTINE Y Y DDL

DROP RULE Y Y DDL

DROP SCHEMA Y Y DDL

DROP SEQUENCE Y Y DDL

DROP SERVER Y Y DDL

DROP STATISTICS Y Y DDL

DROP SUBSCRIPTION Y Y DDL

DROP SYNONYM Y Y DDL

DROP TABLE Y Y DML

DROP TABLESPACE Y Y DDL

DROP TEXT SEARCH CONFIGURATION Y Y DDL

DROP TEXT SEARCH DICTIONARY Y Y DDL

DROP TEXT SEARCH PARSER Y Y DDL

DROP TEXT SEARCH TEMPLATE Y Y DDL

DROP TRANSFORM Y Y DDL

DROP TRIGGER Y Y DDL

DROP TYPE Y Y DDL

DROP TYPE BODY Y Y DDL

DROP USER MAPPING Y Y DDL

DROP VIEW Y Y DDL

EXECUTE Y N N

EXPLAIN Y Details Details

FETCH Y N N

GRANT Y Details DDL

GRANT ROLE Y Y DDL

IMPORT FOREIGN SCHEMA Y Y DDL

LISTEN Y N N

LOAD Y N N

LOAD ROW DATA Y Y DDL

LOCK TABLE Y N Details

MOVE Y N N

NOTIFY Y N N

PREPARE Y N N

PREPARE TRANSACTION Y N N

REASSIGN OWNED Y Y DDL

REFRESH MATERIALIZED VIEW Y Y DML

REINDEX Y Y DDL

RELEASE Y N N

RESET Y N N

REVOKE Y Details DDL

REVOKE ROLE Y Y DDL

ROLLBACK Y N N

ROLLBACK PREPARED Y N N

SAVEPOINT Y N N

SECURITY LABEL Y Details DDL

SELECT INTO Details Y DDL

Command Allowed Replicated Lock

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 265

SET Y N N

SET CONSTRAINTS Y N N

SHOW Y N N

START TRANSACTION Y N N

TRUNCATE TABLE Y Details Details

UNLISTEN Y N N

VACUUM Y N N

Command Allowed Replicated Lock

Command notes

ALTER SEQUENCE

Generally ALTER SEQUENCE is supported, but when using global sequences, some options have no effect.

ALTER SEQUENCE ... RENAME isn't supported on galloc sequences (only). ALTER SEQUENCE ... SET SCHEMA isn't supported on galloc sequences (only).

ALTER TABLE

Generally, ALTER TABLE commands are allowed. However, several subcommands aren't supported.

ALTER TABLE disallowed commands

Some variants of ALTER TABLE currently aren't allowed on a PGD node:

ALTER COLUMN ... SET STORAGE external — Is rejected if the column is one of the columns of the replica identity for the table. You can override this behavior using bdr.permit_unsafe_commands if you're sure the
command is safe.
RENAME — Can't rename an Autopartitioned table.
SET SCHEMA — Can't set the schema of an Autopartitioned table.
ALTER TABLE ... ADD FOREIGN KEY — Isn't supported if current user doesn't have permission to read the referenced table or if the referenced table has RLS restrictions enabled that the current user can't bypass.

The following example fails because it tries to add a constant value of type timestamp onto a column of type timestamptz . The cast between timestamp and timestamptz relies on the time zone of the session and so isn't
immutable.

You can add certain types of constraints, such as CHECK and FOREIGN KEY constraints, without taking a DML lock. But this requires a two-step process of first creating a NOT VALID constraint and then validating the constraint in a
separate transaction with the ALTER TABLE ... VALIDATE CONSTRAINT command. See Adding a CONSTRAINT for more details.

ALTER TABLE locking

The following variants of ALTER TABLE take only DDL lock and not a DML lock:

ALTER TABLE ... ADD COLUMN ... (immutable) DEFAULT
ALTER TABLE ... ALTER COLUMN ... SET DEFAULT expression
ALTER TABLE ... ALTER COLUMN ... DROP DEFAULT
ALTER TABLE ... ALTER COLUMN ... TYPE if it doesn't require rewrite
ALTER TABLE ... ALTER COLUMN ... SET STATISTICS
ALTER TABLE ... VALIDATE CONSTRAINT
ALTER TABLE ... ATTACH PARTITION
ALTER TABLE ... DETACH PARTITION
ALTER TABLE ... ENABLE TRIGGER (ENABLE REPLICA TRIGGER still takes a DML lock)
ALTER TABLE ... CLUSTER ON
ALTER TABLE ... SET WITHOUT CLUSTER
ALTER TABLE ... SET (storage_parameter = value [, ...])
ALTER TABLE ... RESET (storage_parameter = [, ...])
ALTER TABLE ... OWNER TO

All other variants of ALTER TABLE take a DML lock on the table being modified. Some variants of ALTER TABLE have restrictions, noted below.

ALTER TABLE examples

Different types of ALTER TABLE ... ALTER COLUMN TYPE (ATCT) operations are possible. Some ATCT operations update only the metadata of the underlying column type and don't require a rewrite of the underlying table data. This is
typically the case when the existing column type and the target type are binary coercible.

However, making this change to reverse the command that is changed from VARCHAR(128) to VARCHAR(20) isn't binary coercible and will result in table rewrite.

You can also change the column type to VARCHAR or TEXT data types because of binary coercibility. Again, this is just a metadata update of the underlying column type.

ALTER TABLE
foo
 ADD expiry_date timestamptz DEFAULT timestamp '2100-01-01 00:00:00' NOT
NULL;

CREATE TABLE foo (id BIGINT PRIMARY KEY, description
VARCHAR(20));
ALTER TABLE foo ALTER COLUMN description TYPE
VARCHAR(128);

CREATE TABLE sample (col1 BIGINT PRIMARY KEY, col2 VARCHAR(128), col3
INT);
ALTER TABLE sample ALTER COLUMN col2 TYPE VARCHAR(256);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 266

TABLE REWRITE examples:

Users may want to change data types of columns, add columns with a non-null default, or run maintenance jobs. These operations are supported by DDL commands in PostgreSQL which could trigger a table rewrite. The table rewrite operation
involves creating a new version of the table on disk. DDL operations such as CLUSTER or VACUUM directly cause table rewriting without any change in table definition. DDL operations like ALTER TABLE…ALTER COLUMN TYPE might
change columns and trigger a table rewrite. It copies all the existing data from the old version to the new one, and once the new version is ready and consistent, it replaces the old table with the new one.

Examples of typical table rewrite ATCT operations:

Consider the following table:

Given that table, the following ALTER TABLE commands will result in triggering a table rewrite.

Change column data type:

Change column type to incompatible type with USING clause:

Volatile column types:

Add column with mutable default:

Generated columns:

Run multiple ALTER TABLE DDL operations in single transaction block:

In a PGD cluster this involves a rewrite, therefore, the rewrite activity takes the global leader lock of type DML and thus requires that all group leaders in cluster are available.

Note

The ALTER TABLE examples provided aren't an exhaustive list of possibly allowable ATCT operations.

ALTER TYPE

ALTER TYPE is replicated, but a global DML lock isn't applied to all tables that use that data type, since PostgreSQL doesn't record those dependencies. See Restricted DDL workarounds.

COMMENT ON

All variants of COMMENT ON are allowed, but COMMENT ON TABLESPACE/DATABASE/LARGE OBJECT isn't replicated.

CREATE PROFILE or ALTER PROFILE

The PASSWORD_VERIFY_FUNCTION associated with the profile should be IMMUTABLE if the function is SECURITY DEFINER . Such a CREATE PROFILE or ALTER PROFILE command will be replicated but subsequent CREATE
USER or ALTER USER commands using this profile will break the replication due to the writer worker throwing the error: cannot change current role within security-restricted operation .

ALTER TABLE sample ALTER COLUMN col2 TYPE VARCHAR;
ALTER TABLE sample ALTER COLUMN col2 TYPE TEXT;

CREATE TABLE foo(
 c1 int,
 c2 int,
 c3 int,
 name text,
 time_now
timestamptz,
 dollar
numeric,
 indian_currency int GENERATED ALWAYS AS (dollar * 90.50)
STORED
);

ALTER TABLE foo ALTER c1 TYPE
bigint;

ALTER TABLE foo ALTER COLUMN name TYPE int USING
name::integer;

ALTER TABLE foo ALTER COLUMN time_now TYPE
timestamp;

ALTER TABLE foo ADD COLUMN time_clock timestamptz NOT NULL DEFAULT
clock_timestamp();

ALTER TABLE foo ALTER COLUMN indian_currency TYPE
numeric;

BEGIN;
ALTER TABLE foo ALTER c2 TYPE
bigint;
ALTER TABLE foo ALTER c3 TYPE
bigint;
COMMIT;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 267

CREATE SEQUENCE

Generally CREATE SEQUENCE is supported, but when using global sequences, some options have no effect.

CREATE TABLE AS and SELECT INTO

CREATE TABLE AS and SELECT INTO are allowed only if all subcommands are also allowed.

EXPLAIN

Generally EXPLAIN is allowed, but because EXPLAIN ANALYZE can have side effects on the database, there are some restrictions on it.

EXPLAIN ANALYZE Replication

EXPLAIN ANALYZE follows replication rules of the analyzed statement.

EXPLAIN ANALYZE Locking

EXPLAIN ANALYZE follows locking rules of the analyzed statement.

GRANT and REVOKE

Generally GRANT and REVOKE statements are supported, however GRANT/REVOKE ON TABLESPACE/LARGE OBJECT aren't replicated.

LOCK TABLE

LOCK TABLE isn't replicated, but it might acquire the global DML lock when bdr.lock_table_locking is set on .

You can also use The bdr.global_lock_table() function to explicitly request a global DML lock.

SECURITY LABEL

All variants of SECURITY LABEL are allowed, but SECURITY LABEL ON TABLESPACE/DATABASE/LARGE OBJECT isn't replicated.

TRUNCATE Replication

TRUNCATE command is replicated as DML, not as a DDL statement. Whether the TRUNCATE on table is replicated depends on replication settings for each affected table.

TRUNCATE Locking

Even though TRUNCATE isn't replicated the same way as other DDL, it can acquire the global DML lock when bdr.truncate_locking is set to on .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 268

18.6 DDL and role manipulation statements

Users are global objects in a PostgreSQL instance, which means they span multiple databases while PGD operates on an individual database level. Because of this behavior, role manipulation statement handling needs extra thought.

PGD requires that any roles that are referenced by any replicated DDL must exist on all nodes. The roles don't have to have the same grants, password, and so on, but they must exist.

PGD replicates role manipulation statements if bdr.role_replication is enabled (default) and role manipulation statements are run in a PGD-enabled database.

The role manipulation statements include the following:

CREATE ROLE
ALTER ROLE
DROP ROLE
GRANT ROLE
CREATE USER
ALTER USER
DROP USER
CREATE GROUP
ALTER GROUP
DROP GROUP

In general, either:

Configure the system with bdr.role_replication = off , and deploy all role changes (user and group) by external orchestration tools like Ansible, Puppet, and Chef or explicitly replicated by
bdr.replicate_ddl_command() .

Configure the system so that exactly one PGD-enabled database on the PostgreSQL instance has bdr.role_replication = on , and run all role management DDL on that database.

We recommended that you run all role management commands in one database.

If role replication is turned off, then the administrator must ensure that any roles used by DDL on one node also exist on the other nodes. Otherwise PGD apply stalls with an error until the role is created on the other nodes.

PGD with non-PGD-enabled databases

PGD doesn't capture and replicate role management statements when they run on a non-PGD-enabled database in a PGD-enabled PostgreSQL instance. For example, suppose you have databases pgddb (bdr group member) and
postgres (bare db), and bdr.role_replication = on . A CREATE USER run in pgddb is replicated, but a CREATE USER run in postgres isn't.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 269

18.7 Workarounds for DDL restrictions

You can work around some of the limitations of PGD DDL operation handling. Often splitting the operation into smaller changes can produce the desired result that either isn't allowed as a single statement or requires excessive locking.

Adding a CONSTRAINT

You can add CHECK and FOREIGN KEY constraints without requiring a DML lock. This involves a two-step process:

ALTER TABLE ... ADD CONSTRAINT ... NOT VALID
ALTER TABLE ... VALIDATE CONSTRAINT

Execute these steps in two different transactions. Both of these steps take DDL lock only on the table and hence can be run even when one or more nodes are down. But to validate a constraint, PGD must ensure that:

All nodes in the cluster see the ADD CONSTRAINT command.
The node validating the constraint applied replication changes from all other nodes prior to creating the NOT VALID constraint on those nodes.

So even though the new mechanism doesn't need all nodes to be up while validating the constraint, it still requires that all nodes applied the ALTER TABLE .. ADD CONSTRAINT ... NOT VALID command and made enough
progress. PGD waits for a consistent state to be reached before validating the constraint.

The new facility requires the cluster to run with Raft protocol version 24 and later. If the Raft protocol isn't yet upgraded, the old mechanism is used, resulting in a DML lock request.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 270

18.8 PGD functions that behave like DDL

The following PGD management functions act like DDL. This means that, if DDL replication is active and DDL filter settings allow it, they attempt to take global locks, and their actions are replicated. For detailed information, see the
documentation for the individual functions.

Replication set management:

bdr.create_replication_set
bdr.alter_replication_set
bdr.drop_replication_set
bdr.replication_set_add_table
bdr.replication_set_remove_table
bdr.replication_set_add_ddl_filter
bdr.replication_set_remove_ddl_filter

Conflict management:

bdr.alter_table_conflict_detection
bdr.column_timestamps_enable (deprecated; use bdr.alter_table_conflict_detection())
bdr.column_timestamps_disable (deprecated; use bdr.alter_table_conflict_detection())

Sequence management:

bdr.alter_sequence_set_kind

Stream triggers:

bdr.create_conflict_trigger
bdr.create_transform_trigger
bdr.drop_trigger

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 271

19 Decoding worker

PGD provides an option to enable a decoding worker process that performs decoding once, no matter how many nodes are sent data. This option introduces a new process, the WAL decoder, on each PGD node. One WAL sender process still
exists for each connection, but these processes now just perform the task of sending and receiving data. Taken together, these changes reduce the CPU overhead of larger PGD groups and also allow higher replication throughput since the
WAL sender process now spends more time on communication.

Enabling

enable_wal_decoder is an option for each PGD group, which is currently disabled by default. You can use bdr.alter_node_group_option() to enable or disable the decoding worker for a PGD group.

When the decoding worker is enabled, PGD stores logical change record (LCR) files to allow buffering of changes between decoding and when all subscribing nodes received data. LCR files are stored under the pg_logical directory in each
local node's data directory. The number and size of the LCR files varies as replication lag increases, so this process also needs monitoring. The LCRs that aren't required by any of the PGD nodes are cleaned periodically. The interval between
two consecutive cleanups is controlled by bdr.lcr_cleanup_interval , which defaults to 3 minutes. The cleanup is disabled when bdr.lcr_cleanup_interval is 0.

Disabling

When disabled, logical decoding is performed by the WAL sender process for each node subscribing to each node. In this case, no LCR files are written.

Even though the decoding worker is enabled for a PGD group, following GUCs control the production and use of LCR per node. By default these are false . For production and use of LCRs, enable the decoding worker for the PGD group and
set these GUCs to true on each of the nodes in the PGD group.

bdr.enable_wal_decoder — When false , all WAL senders using LCRs restart to use WAL directly. When true along with the PGD group config, a decoding worker process is started to produce LCR and WAL senders that use
LCR.
bdr.receive_lcr — When true on the subscribing node, it requests WAL sender on the publisher node to use LCRs if available.

Notes

As of now, a decoding worker decodes changes corresponding to the node where it's running. A logical standby is sent changes from all the nodes in the PGD group through a single source. Hence a WAL sender serving a logical
standby currently can't use LCRs.

A subscriber-only node receives changes from respective nodes directly. Hence a WAL sender serving a subscriber-only node can use LCRs.

Even though LCRs are produced, the corresponding WALs are still retained similar to the case when a decoding worker isn't enabled. In the future, it might be possible to remove WAL corresponding the LCRs, if they aren't otherwise
required.

LCR file names

For reference, the first 24 characters of an LCR file name are similar to those in a WAL file name. The first 8 characters of the name are currently all '0'. In the future, they're expected to represent the TimeLineId similar to the first 8 characters
of a WAL segment file name. The following sequence of 16 characters of the name is similar to the WAL segment number, which is used to track LCR changes against the WAL stream.

However, logical changes are reordered according to the commit order of the transactions they belong to. Hence their placement in the LCR segments doesn't match the placement of corresponding WAL in the WAL segments.

The set of the last 16 characters represents the subsegment number in an LCR segment. Each LCR file corresponds to a subsegment. LCR files are binary and variable sized. You can control the maximum size of an LCR file by adjusting
bdr.max_lcr_segment_file_size , which defaults to 1 GB.

Using with transaction streaming

It's possible to enable transaction streaming and the decoding worker at the same time. Transaction streaming means that the WAL sender can send a partial transaction before it commits, reducing replication lag. The WAL decoder now
supports the decoding of partial transactions, so the decoding worker can decode the partial transaction and store it in an LCR file. The LCR file is then used to apply the transaction on the subscriber node. This in turn reduces CPU usage, by
reducing the lag, and reduces disk space usages, since ".spill" files are not generated.

The WAL decoder always streams the transactions to LCRs but based on downstream request the WAL sender either stream transaction or just mimics a normal BEGIN..COMMIT scenario.

To support this feature, the system creates additional streaming files. These files have names in that begin with STR_TXN_<file-name-format> and CAS_TXN_<file-name-format> and each streamed transaction creates their
own pair.

To enable transaction streaming with the WAL decoder, set the PGD group's bdr.streaming_mode set to ‘default’ using bdr.alter_node_group_option .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 272

20 CDC Failover support

Background

Earlier versions of PGD have allowed the creation of logical replication slots on nodes that can provide a feed of the logical changes happening to the data in the database. These logical replication slots have been local to the node and not
replicated. Apart from only replicating changes on the particular node, this behavior has presented challenges when faced with node failover in the cluster. In that scenario, a consumer of the logical replication off a node that fails has no
replica of the slot on another node to continue consuming from.

While solutions to this can be engineered using a subscriber-only node as an intermediary, it significantly raises the cost of logical replication.

CDC Failover support

To address this need, PGD introduced CDC Failover support. This is an optionally enabled feature that activates automatic logical slot replication across the cluster. This, in turn, allows a consumer of a logical slot’s replication to receive
change data from any node when a failure occurs.

How CDC Failover works

When a logical slot is created on a node with CDC Failover support enabled, the slot is replicated across the cluster. This means that the slot is available for consumption on any node in the cluster. When a node fails, the slot can be consumed
from another node in the cluster. This allows for continuing the logical replication stream without interruption.

If, though, the consumer of the slot connects to a different node in the cluster, the previous connection the consumer had will be closed by PGD. This behavior is to ensure that the slot isn't being consumed from multiple nodes at the same
time. In the background, PGD is using its Raft consensus protocol to ensure that the slot is being consumed from only one node at a time. This means that the guarantee of only one slot being consumed at a time doesn't hold in split-brain
scenarios.

Currently CDC Failover support is a global option that's controlled by a top-group option. The failover_slot_scope top-group option can currently be set to (and defaults to) local , which disables replication of logical slots, or
global . The global setting enables the replication of all non-temporary logical slots created in the PGD database.

Temporary logical slots aren't replicated, as they have a lifetime scoped to the session that created them and will go away when that session ends.

At-least-once delivery guarantees

CDC Failover support takes steps to ensure that the consumer receives all changes at least once. This is done by holding back slots until delivery has been confirmed, at which point the slot is then advanced on all nodes in an asynchronous
manner. In the case of a failure on the node where the slot was being consumed, the slot is held until the consumer connects to a node in the cluster. This then allows the slot to progress.

Important

If a consuming application disconnects and doesn’t reconnect, the slot will remain held back on every node in the cluster. As this consumes disk and memory, it's essential to avoid this situation. Applications that consume slots must
return to consuming as soon as possible.

Exactly-once delivery

Currently, there's no way to ensure exactly-once delivery, and we expect consuming applications to manage the discarding of previously completed transactions.

Enabling CDC Failover support

To enable CDC Failover support run the SQL command and call the bdr.alter_node_group_option function with the following parameters:

Replace <top-level group name> with the name of your cluster’s top-level group. If you don't know the name, it's the group with a node_group_parent_id equal to 0 in bdr.node_group .

If you do not know the name, it is the group with a node_group_parent_id equal to 0 in bdr.node_group . You can also use:

This command ensures you're setting the correct top-level group’s option.

Once CDC Failover is enabled, to create a new globally replicated slot, you can use:

Logical replication slots created before the option was set to global aren't replicated. Only new slots are replicated.

Failover slots can also be created with the CREATE_REPLICATION_SLOT command on a replication connection.

The status of failover slots is tracked in the bdr.failover_replication_slots table.

select bdr.alter_node_group_option(<top-level group name>,
 'failover_slot_scope',
 'global');

SELECT bdr.alter_node_group_option(

node_group_name,
 'failover_slot_scope',
 'global')
 from bdr.node_group
 where node_group_parent_id=0;

SELECT pg_create_logical_replication_slot('myslot',
 'test_decoding');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 273

CDC Failover support with Postgres 17+

For Postgres 17 and later, support for failover was added to allow standbys to be resumed. Use an option in pg_create_logical_replication_slot named failover for this purpose. This new setting requires that, no matter what
the setting of failover_slot_scope , you must also set failover to true .

Obtaining Initial Consistent Snapshot

When a logical replication slot is created, a consistent snapshot is exported by Postgres. This snapshot can be used to obtain a consistent initial copy of the data. PGD’s failover slot mechanism also follows the same procedure. But the
consumer must obtain the snapshot from the same node where the slot was originally created. In addition, it must also start the initial replication from the same node. Once the consumer has received enough changes over the replication
stream, the failover slot is marked as failover_safe . Once the slot is marked as failover_safe , then the consumer can safely failover to some other node in the PGD cluster (other considerations apply though, see below).

To check if the slot is failover_safe or not, the user can query the bdr.failover_replication_slots catalog and check for the value of failover_safe column of the given slot.

If the consumer connects to some other PGD node and attempts to start replication before the slot is marked failover_safe , an appropriate error will be raised by PGD.

Failing Over to Newly Joined Nodes

When a new node joins the PGD cluster, it may not be immediately ready to serve as a decoding target for a CDC failover slot. The newly joined node may not have all the WAL files to decode the changes that the consumer has not yet
consumed. Consuming from such a node may result in data loss. PGD detects and prevents such situations by internally tracking the replication progress and preventing a new node from being a failover target, until it's safe to do so. If the
consumer tries to connect to a node that is not yet ready to serve as a decoding target, an appropriate error will be raised.

Tracking Per-Origin Progress

Transactions can originate from any node in the PGD cluster. When a consumer connects to a PGD node and starts decoding transactions, it may receive changes for the transactions originated on that node as well as transactions replicated
from other nodes in the cluster. The consumer is expected to track replication progress across all such PGD nodes or origins and ensure that duplicate transactions are handled correctly. To facilitate this, the test_decoding plugin in
Postgres-Extended and EnterpriseDB Advance Server has been enhanced to include the origin information of the transactions. Consumers can opt to receive origin information by setting include-origin option to on while starting the
logical replication.

A sample output of test_decoding plugin with the origin information is produced below.

BEGIN 1723654 (origin 2) (origin_name bdr_bdrdemo_bdrgroup_node2) (origin_lsn 0/1D948910)
table public.pgbench_accounts: UPDATE: old-key: aid[integer]:39958 bid[integer]:1 abalance[integer]:0 filler[character]:'
' new-tuple: aid[integer]:39958 bid[integer]:1 abalance[integer]:-1783 filler[character]:'
'
table public.pgbench_tellers: UPDATE: old-key: tid[integer]:6 bid[integer]:1 tbalance[integer]:0 new-tuple: tid[integer]:6 bid[integer]:1 tbalance[integer]:-1783
filler[character]:null
table public.pgbench_branches: UPDATE: old-key: bid[integer]:1 bbalance[integer]:0 new-tuple: bid[integer]:1 bbalance[integer]:-1783 filler[character]:null
table public.pgbench_history: INSERT: tid[integer]:6 bid[integer]:1 aid[integer]:39958 delta[integer]:-1783 mtime[timestamp without time zone]:'2025-01-31
16:51:21.511571' filler[character]:null
COMMIT 1723654 (origin 2) (origin_name bdr_bdrdemo_bdrgroup_node2) (origin_lsn 0/1D948910)

Consumers can make use of this information to track per-origin progress.

PGD also records replication progress across all nodes in the bdr.logical_checkpoints catalog and the consumer can receive decoded changes for the catalog and use that information to know the replication progress.

​​BEGIN 65720
id[name]:'370098259-0-6056978' origin_node[oid]:370098259 origin_lsn[pg_lsn]:'0/6056978' local_node[oid]:370098259 local_lsn[pg_lsn]:'0/6056978' peer_count[integer]:2
peer_nodes[oid[]]:'{2228531844,4052927809}' peer_lsns[pg_lsn[]]:'{0/4836758,0/67F0AF8}'
COMMIT 65720

In this example, the node 370098259 is reporting the replication progress. When the consumer receives this change record, it can be sure of having received everything up to 0/4836758 and 0/67F0AF8 respectively from nodes 2228531844
and 4052927809.

Important

Currently PGD reports node information as OIDs stored in bdr.node catalog. But this will change in the near future and the information will be replaced by UUID.

Limitations

The CDC Failover Slot support comes with certain limitations:

CDC Failover slot support requires the latest versions of EDB Postgres Distributed (PGD) 5.7+ and the latest minor releases of Postgres Extended or EDB Postgres Advanced Server (available Feb 2025).
CDC Failover support is a global option and can't be set on a per-slot basis. Because changing the enabled status of CDC Failover doesn't affect previously provisioned slots, it's possible to enable it (set to global), create a replicated
slot, then disable it (set to local) to create a singular replicated slot.
CDC Failover support isn't supported on temporary slots.
CDC Failover support isn't supported on slots created with the failover option set to false .
CDC Failover support works with EDB Postgres Advanced Server and EDB Postgres Extended Server only. It isn't supported on community Postgres installations.
Existing slots aren't converted into failover slots when the option is enabled.
While Postgres’s built-in functions such as pg_logical_slot_get_changes() can be used, they won’t ensure that the slot isn't being decoded anywhere else and can’t update replication progress accurately across the cluster.
Therefore, we recommend that you don't rely on the function to receive decoded changes.

SELECT pg_create_logical_replication_slot('myslot',
 'test_decoding',

failover=>true);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 274

21 Parallel Apply

What is Parallel Apply?

Parallel Apply is a feature of PGD that allows a PGD node to use multiple writers per subscription. This behavior generally increases the throughput of a subscription and improves replication performance.

Configuring Parallel Apply

Two variables control Parallel Apply in PGD: bdr.max_writers_per_subscription (defaults to 8) and bdr.writers_per_subscription (defaults to 2).

bdr.max_writers_per_subscription = 8
bdr.writers_per_subscription = 2

This configuration gives each subscription two writers. However, in some circumstances, the system might allocate up to eight writers for a subscription.

Changing bdr.max_writers_per_subscription requires a server restart to take effect.

You can change bdr.writers_per_subscription for a specific subscription without a restart by:

1. Halting the subscription using bdr.alter_subscription_disable .
2. Setting the new value.
3. Resuming the subscription using bdr.alter_subscription_enable .

First though, establish the name of the subscription using select * from bdr.subscription . For this example, the subscription name is bdr_pgddb_bdrgroup_node2_node1 .

When to use Parallel Apply

Parallel Apply is always on by default and, for most operations, we recommend leaving it on.

Monitoring Parallel Apply

To support Parallel Apply's deadlock mitigation, PGD adds columns to bdr.stat_subscription . The new columns are nprovisional_waits , ntuple_waits , and ncommmit_waits . These are metrics that indicate how well
Parallel Apply is managing what previously would have been deadlocks. They don't reflect overall system performance.

The nprovisional_waits value reflects the number of operations on the same tuples being performed by concurrent apply transactions. These are provisional waits that aren't actually waiting yet but could start waiting.

If a tuple's write needs to wait until it can be safely applied, it's counted in ntuple_waits . Fully applied transactions that waited before being committed are counted in ncommit_waits .

Disabling Parallel Apply

To disable Parallel Apply, set bdr.writers_per_subscription to 1 .

Deadlock mitigation

When Parallel Apply is operating, the transactional changes from the subscription are written by multiple writers. However, each writer ensures that the final commit of its transaction doesn't violate the commit order as executed on the origin
node. If there's a violation, an error is generated and the transaction can be rolled back.

This mechanism previously meant that when the following are all true, the resulting error could manifest as a deadlock:

A transaction is pending commit and modifies a row that another transaction needs to change.
That other transaction executed on the origin node before the pending transaction did.
The pending transaction took out a lock request.

Additionally, handling the error could increase replication lag due to a combination of the time taken:

To detect the deadlock
For the client to roll back its transaction
For indirect garbage collection of the changes that were already applied
To redo the work

This is where Parallel Apply’s deadlock mitigation can help. For any transaction, Parallel Apply looks at transactions already scheduled for any row (tuple) that the current transaction wants to write. If it finds one, the row is marked as needing
to wait until the other transaction is committed before applying its change to the row. This approach ensures that rows are written in the correct order.

SELECT bdr.alter_subscription_disable
('bdr_pgddb_bdrgroup_node2_node1');

UPDATE
bdr.subscription
SET num_writers =
4
WHERE sub_name =
'bdr_pgddb_bdrgroup_node2_node1';

SELECT bdr.alter_subscription_enable
('bdr_pgddb_bdrgroup_node2_node1');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 275

Parallel Apply support

In PGD 6, Parallel Apply works with CAMO. It isn't compatible with Group Commit or Eager Replication, so disable it if Group Commit or Eager Replication are in use.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 276

22 Replication sets

A replication set is a group of tables that a PGD node can subscribe to. You can use replication sets to create more complex replication topologies than regular symmetric multi-master topologies where each node is an exact copy of the other
nodes.

Every PGD group creates a replication set with the same name as the group. This replication set is the default replication set, which is used for all user tables and DDL replication. All nodes are subscribed to it. In other words, by default, all
user tables are replicated between all nodes.

Using replication sets

You can create replication sets using bdr.create_replication_set , specifying whether to include insert, update, delete, or truncate actions. One option lets you add existing tables to the set, and a second option defines whether to
add tables when they're created.

You can also manually define the tables to add or remove from a replication set.

Tables included in the replication set are maintained when the node joins the cluster and afterwards.

Once the node is joined, you can still remove tables from the replication set, but you must add new tables using a resync operation.

By default, a newly defined replication set doesn't replicate DDL or PGD administration function calls. Use bdr.replication_set_add_ddl_filter to define the commands to replicate.

PGD creates replication set definitions on all nodes. Each node can then be defined to publish or subscribe to each replication set using bdr.alter_node_replication_sets .

You can use functions to alter these definitions later or to drop the replication set.

Note

Don't use the default replication set for selective replication. Don't drop or modify the default replication set on any of the PGD nodes in the cluster, as it's also used by default for DDL replication and administration function calls.

Behavior of partitioned tables

PGD supports partitioned tables transparently, meaning that you can add a partitioned table to a replication set.

Changes that involve any of the partitions are replicated downstream.

Note

When partitions are replicated through a partitioned table, the statements executed directly on a partition are replicated as they were executed on the parent table. The exception is the TRUNCATE command, which always
replicates with the list of affected tables or partitions.

You can add individual partitions to the replication set, in which case they're replicated like regular tables, that is, to the table of the same name as the partition on the downstream. This behavior has some performance advantages if the
partitioning definition is the same on both provider and subscriber, as the partitioning logic doesn't have to be executed.

Note

If a root partitioned table is part of any replication set, memberships of individual partitions are ignored. Only the membership of that root table is taken into account.

Behavior with foreign keys

A foreign-key constraint ensures that each row in the referencing table matches a row in the referenced table. Therefore, if the referencing table is a member of a replication set, the referenced table must also be a member of the same
replication set.

The current version of PGD doesn't check for or enforce this condition. When adding a table to a replication set, the database administrator must make sure that all the tables referenced by foreign keys are also added.

You can use the following query to list all the foreign keys and replication sets that don't satisfy this requirement. The referencing table is a member of the replication set, while the referenced table isn't.

The output of this query looks like this:

SELECT
t1.relname,

t1.nspname,

fk.conname,

t1.set_name
 FROM bdr.tables AS t1
 JOIN pg_catalog.pg_constraint AS
fk
 ON fk.conrelid =
t1.relid
 AND fk.contype = 'f'
 WHERE NOT EXISTS
(
 SELECT *
 FROM bdr.tables AS t2
 WHERE t2.relid =
fk.confrelid
 AND t2.set_name =
t1.set_name
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 277

This output means that table t2 is a member of replication set s2 , but the table referenced by the foreign key t2_x_fkey isn't.

The TRUNCATE CASCADE command takes into account the replication set membership before replicating the command. For example:

This becomes a TRUNCATE without cascade on all the tables that are part of the replication set only:

Replication set membership

You can add tables to or remove them from one or more replication sets. Doing so affects replication only of changes (DML) in those tables. Schema changes (DDL) are handled by DDL replication set filters (see DDL replication filtering).

The replication uses the table membership in replication sets with the node replication sets configuration to determine the actions to replicate and the node to replicate them to. The decision is done using the union of all the memberships and
replication set options. Suppose that a table is a member of replication set A that replicates only INSERT actions and replication set B that replicates only UPDATE actions. Both INSERT and UPDATE actions are replicated if the target node is
also subscribed to both replication set A and B.

You can control membership using bdr.replication_set_add_table and bdr.replication_set_remove_table .

Listing replication sets

You can list existing replication sets with the following query:

You can use this query to list all the tables in a given replication set:

Behavior with foreign keys shows a query that lists all the foreign keys whose referenced table isn't included in the same replication set as the referencing table.

Use the following SQL to show those replication sets that the current node publishes and subscribes from:

This code produces output like this:

To execute the same query against all nodes in the cluster, you can use the following query. This approach gets the replication sets associated with all nodes at the same time.

 relname | nspname | conname |
set_name
---------+---------+-----------+----------
 t2 | public | t2_x_fkey |
s2
(1 row)

TRUNCATE table1
CASCADE;

TRUNCATE table1, referencing_table1, referencing_table2
...

SELECT
set_name
FROM
bdr.replication_sets;

SELECT nspname,
relname
FROM bdr.tables
WHERE set_name =
'myrepset';

 SELECT
node_id,
 node_name,
 pub_repsets,

sub_repsets
 FROM bdr.local_node_summary;

 node_id | node_name | pub_repsets |
sub_repsets
------------+-----------+--
 1834550102 | s01db01 | {bdrglobal,bdrs01} |
{bdrglobal,bdrs01}
(1 row)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 278

This shows, for example:

DDL replication filtering

By default, the replication of all supported DDL happens by way of the default PGD group replication set. This replication is achieved using a DDL filter with the same name as the PGD group. This filter is added to the default PGD group
replication set when the PGD group is created.

You can adjust this behavior by changing the DDL replication filters for all existing replication sets. These filters are independent of table membership in the replication sets. Just like data changes, each DDL statement is replicated only once,
even if it's matched by multiple filters on multiple replication sets.

You can list existing DDL filters with the following query, which shows, for each filter, the regular expression applied to the command tag and to the role name:

You can use bdr.replication_set_add_ddl_filter and bdr.replication_set_remove_ddl_filter to manipulate DDL filters. They're considered to be DDL and are therefore subject to DDL replication and global
locking.

Selective replication example

This example configures EDB Postgres Distributed to selectively replicate tables to particular groups of nodes.

Cluster configuration

This example assumes you have a cluster of six data nodes, data-a1 to data-a3 and data-b1 to data-b3 in two locations. The two locations they're members of are represented as region_a and region_b groups.

There's also, as we recommend, a witness node named witness in region-c that isn't mentioned in this example. The cluster is called sere .

Application requirements

This example works with an application that records the opinions of people who attended performances of musical works. There's a table for attendees, a table for the works, and an opinion table. The opinion table records each work each
attendee saw, where and when they saw it, and how they scored the work. Because of data regulation, the example assumes that opinion data must stay only in the region where the opinion was recorded.

Creating tables

The first step is to create appropriate tables:

WITH node_repsets AS
(
 SELECT
jsonb_array_elements(
 bdr.run_on_all_nodes($$
 SELECT

node_id,
 node_name,
 pub_repsets,

sub_repsets
 FROM bdr.local_node_summary;
 $$)::jsonb
) AS
j
)
SELECT j->'response'->'command_tuples'->0->>'node_id' AS
node_id,
 j->'response'->'command_tuples'->0->>'node_name' AS
node_name,
 j->'response'->'command_tuples'->0->>'pub_repsets' AS
pub_repsets,
 j->'response'->'command_tuples'->0->>'sub_repsets' AS
sub_repsets
FROM node_repsets;

 node_id | node_name | pub_repsets |
sub_repsets
------------+-----------+--
 933864801 | s02db01 | {bdrglobal,bdrs02} |
{bdrglobal,bdrs02}
 1834550102 | s01db01 | {bdrglobal,bdrs01} |
{bdrglobal,bdrs01}
 3898940082 | s01db02 | {bdrglobal,bdrs01} |
{bdrglobal,bdrs01}
 1102086297 | s02db02 | {bdrglobal,bdrs02} |
{bdrglobal,bdrs02}
(4 rows)

SELECT * FROM bdr.ddl_replication;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 279

Viewing groups and replication sets

By default, EDB Postgres Distributed is configured to replicate each table in its entirety to each and every node. This is managed through replication sets.

To view the initial configuration's default replication sets, run:

 node_group_name | default_repset | parent_group_name
-----------------+----------------+-------------------
 sere | sere |
 region_a | region_a | sere
 region_b | region_b | sere
 region_c | region_c | sere

In the output, you can see there's the top-level group, sere , with a default replication set named sere . Each of the three subgroups has a replication set with the same name as the subgroup. The region_a group has a region_a
default replication set.

By default, all existing tables and new tables become members of the replication set of the top-level group.

Adding tables to replication sets

The next step is to add tables to the replication sets belonging to the groups that represent the regions. As previously mentioned, all new tables are automatically added to the sere replication set. You can confirm that by running:

 relname | set_name
----------+----------
 attendee | sere
 opinion | sere
 work | sere
(3 rows)

You want the opinion table to be replicated only in region_a and, separately, only in region_b . To do that, you add the table to the replica sets of each region:

But you're not done, because opinion is still a member of the sere replication set. When a table is a member of multiple replication sets, it's replicated in each. This doesn't affect performance, though, as each row is replicated only once
on each target node. You don't want opinion replicated across all nodes, so you need to remove it from the top-level group's replication set:

You can now review these changes:

 relname | set_name
----------+-------------------
 attendee | sere
 opinion | region_a
 opinion | region_b
 work | sere
(4 rows)

This process should provide the selective replication you wanted. To verify whether it did, use the next step to test it.

CREATE TABLE attendee
(
 id bigserial PRIMARY KEY,
 email text NOT NULL
);

CREATE TABLE work
(
 id int PRIMARY KEY,
 title text NOT NULL,
 author text NOT
NULL
);

CREATE TABLE opinion
(
 id bigserial PRIMARY KEY,
 work_id int NOT NULL REFERENCES work(id),
 attendee_id bigint NOT NULL REFERENCES
attendee(id),
 country text NOT NULL,
 day date NOT NULL,
 score int NOT NULL
);

SELECT node_group_name, default_repset,
parent_group_name
FROM bdr.node_group_summary;

SELECT relname, set_name FROM bdr.tables ORDER BY relname,
set_name;

SELECT bdr.replication_set_add_table('opinion', 'region_a');
SELECT bdr.replication_set_add_table('opinion', 'region_b');

SELECT bdr.replication_set_remove_table('opinion', 'sere');

SELECT relname, set_name FROM bdr.tables ORDER BY relname,
set_name;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 280

Testing selective replication

First create some test data: two works and an attendee. Connect directly to data-a1 to run this next code:

Now that there's some data in these tables, you can insert into the opinion table without violating foreign key constraints:

Once you've done the insert, you can validate the contents of the database on the same node:

 email | country | day | title | author | score
----------------+---------+------------+-----------+--------+-------
 gv@example.com | Italy | 1871-11-19 | Lohengrin | Wagner | 3
(1 row)

If you now connect to nodes data-a2 and data-a3 and run the same query, you get the same result. The data is being replicated in region_a . If you connect to data-b1 , data-b2 , or data-b3 , the query returns no rows. That's
because, although the attendee and work tables are populated, there's no opinion row to select. That, in turn, is because the replication of opinion on region_a happens only in that region.

Now connect to data-b1 and insert an opinion there:

This opinion is replicated only on region_b . On data-b1 , data-b2 , and data-b3 , you can run:

 email | country | day | title | author | score
----------------+---------+------------+-----------+--------+-------
 fb@example.com | Germany | 1850-08-27 | Lohengrin | Wagner | 9
(1 row)

You see the same result on each of the region_b data nodes. Run the query on region_a nodes, and you don't see this particular entry.

Finally, notice that the attendee table is shared identically across all nodes. On any node, run the query:

INSERT INTO work VALUES (1, 'Aida',
'Verdi');
INSERT INTO work VALUES (2, 'Lohengrin',
'Wagner');
INSERT INTO attendee (email) VALUES
('gv@example.com');

INSERT INTO opinion (work_id, attendee_id, country, day,
score)
SELECT work.id, attendee.id, 'Italy', '1871-11-19', 3
 FROM work,
attendee
 WHERE work.title = 'Lohengrin'
 AND attendee.email =
'gv@example.com';

SELECT a.email
, o.country
, o.day
, w.title
,
w.author
, o.score
FROM opinion
o
JOIN work w ON w.id =
o.work_id
JOIN attendee a ON a.id =
o.attendee_id;

INSERT INTO attendee (email) VALUES
('fb@example.com');

INSERT INTO opinion (work_id, attendee_id, country, day,
score)
SELECT work.id, attendee.id, 'Germany', '1850-08-27', 9
 FROM work,
attendee
 WHERE work.title = 'Lohengrin'
 AND attendee.email =
'fb@example.com';

SELECT a.email
, o.country
, o.day
, w.title
,
w.author
, o.score
FROM opinion
o
JOIN work w ON w.id =
o.work_id
JOIN attendee a ON a.id =
o.attendee_id;

SELECT * FROM attendee;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 281

 id | email
--------------------+----------------
 904252679641903104 | gv@example.com
 904261037006536704 | fb@example.com
(2 rows)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 282

23 Security and roles

EDB Postgres Distributed allows a PGD cluster to be administered without giving access to the stored data by design. It achieves this through the use of roles and controlled access to system objects.

Roles introduces the roles that PGD predefines for controlling access to PGD functionality.

Role management discusses how roles are managed on multi-database nodes and new nodes.

PGD predefined roles details the specific privileges of the PGD roles.

Roles and replication explains how PGD replication interacts with roles and privileges.

Access control explains how tables, functions, catalog objects and triggers interact with PGD roles and Postgres attributes.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 283

23.1 Roles

Configuring and managing PGD doesn't require superuser access and we recommend that you don't use superuser access. Instead, the privileges required to administer PGD are split across the following predefined roles.

Role Description

bdr_superuser The highest-privileged role, having access to all PGD tables and functions.

bdr_read_all_stats The role having read-only access to the tables, views, and functions, sufficient to understand the state of PGD.

bdr_monitor Includes the privileges of bdr_read_all_stats, with some extra privileges for monitoring.

bdr_application The minimal privileges required by applications running PGD.

bdr_read_all_conflicts Can view all conflicts in bdr.conflict_history .

These roles are named to be analogous to PostgreSQL's pg_ predefined roles.

The PGD bdr_ roles are created when the BDR extension is installed. See PGD predefined roles for more details of the privileges each role has.

Managing PGD doesn't require that administrators have access to user data.

Arrangements for securing information about conflicts are discussed in Logging conflicts to a table.

You can monitor conflicts using the bdr.conflict_history_summary view.

The BDR extension and superuser access

The one exception to the rule of not needing superuser access is in the management of PGD's underlying BDR extension. Only superusers can create the BDR extension. However, if you want, you can set up the pgextwlist
extension and configure it to allow a non-superuser to create a BDR extension.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 284

https://www.postgresql.org/docs/current/predefined-roles.html

23.2 Role management

Users are global objects in a PostgreSQL instance. A CREATE ROLE command or its alias CREATE USER is replicated automatically if it's executed in a PGD replicated database. If a role or user is created in a non-PGD, unreplicated
database, the role exists only for that PostgreSQL instance. GRANT ROLE and DROP ROLE work the same way, replicating only if applied to a PGD-replicated database.

Note

Remember that a user in Postgres terms is simply a role with login privileges.

Role rule - No un-replicated roles

If you do create a role or user in a non-PGD, unreplicated database, it's especially important that you do not make an object in the PGD-replicated database rely on that role. It will break the replication process, as PGD cannot replicate a role
that is not in the PGD-replicated database.

You can disable this automatic replication behavior by turning off the bdr.role_replication setting, but we don't recommend that.

Roles for new nodes

New PGD nodes that are added using bdr_init_physical will automatically replicate the roles from other nodes of the PGD cluster.

Starting with PGD 6.0.1, when a PGD node is manually joined to a PGD group without using bdr_init_physical , existing roles are automatically copied to the newly joined node. This means that you no longer need to create roles
manually on the new node before joining it to the group.

When roles are copied to a new node, if there are existing roles (or tablespaces) with the same name, the new node's existing roles (or tablespaces) will be updated to share the same settings (including passwords) as the roles (or tablespaces)
on the source node in the join operation.

Connections and roles

When allocating a new PGD node, the user supplied in the DSN for the local_dsn argument of bdr.create_node and the join_target_dsn of bdr.join_node_group are used frequently to refer to, create, and manage
database objects.

PGD is carefully written to prevent privilege escalation attacks even when using a role with SUPERUSER rights in these DSNs.

To further reduce the attack surface, you can specify a more restricted user in these DSNs. At a minimum, such a user must be granted permissions on all nodes, such that following stipulations are satisfied:

The user has the REPLICATION attribute.
It's granted the CREATE permission on the database.
It inherits the bdr_superuser role.
It owns all database objects to replicate, either directly or from permissions from the owner roles.

Also, if any non-default extensions (excluding the BDR extension) are present on the source node, and any of these can be installed only by a superuser, a superuser must create these extensions manually on the join target node. Otherwise the
join process will fail.

In PostgreSQL 13 and later, you can identify the extensions requiring superuser permission and that must be manually installed. On the source node, execute:

Once all nodes are joined, to continue to allow DML and DDL replication, you can further reduce the permissions to the following:

The user has the REPLICATION attribute.
It inherits the bdr_superuser role.

 SELECT name, (trusted IS FALSE AND superuser) AS
superuser_only
 FROM
pg_available_extension_versions
 WHERE installed AND name != 'bdr';

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 285

23.3 PGD predefined roles

PGD predefined roles are created when the BDR extension is installed. After BDR extension is dropped from a database, the roles continue to exist. You need to drop them manually if dropping is required.

bdr_superuser

This role is for an admin user that can manage anything PGD related. It allows you to separate management of the database and table access. Using it allows you to have a user that can manage the PGD cluster without giving them PostgreSQL
superuser privileges.

Privileges

ALL PRIVILEGES ON ALL TABLES IN SCHEMA BDR
ALL PRIVILEGES ON ALL ROUTINES IN SCHEMA BDR

bdr_read_all_stats

This role provides read access to most of the tables, views, and functions that users or applications may need to observe the statistics and state of the PGD cluster.

Privileges

SELECT privilege on:

bdr.autopartition_partitions
bdr.autopartition_rules
bdr.ddl_epoch
bdr.ddl_replication
bdr.global_consensus_journal_details
bdr.global_lock
bdr.global_locks
bdr.group_camo_details
bdr.local_consensus_state
bdr.local_node_summary
bdr.node
bdr.node_catchup_info
bdr.node_catchup_info_details
bdr.node_conflict_resolvers
bdr.node_group
bdr.node_local_info
bdr.node_peer_progress
bdr.node_replication_rates
bdr.node_slots
bdr.node_summary
bdr.replication_sets
bdr.replication_status
bdr.sequences
bdr.stat_activity
bdr.stat_relation
bdr.stat_subscription deprecated
bdr.state_journal_details
bdr.subscription
bdr.subscription_summary
bdr.tables
bdr.taskmgr_local_work_queue
bdr.taskmgr_work_queue
bdr.worker_errors deprecated
bdr.workers
bdr.writers
bdr.xid_peer_progress

EXECUTE privilege on:

bdr.bdr_edition deprecated
bdr.bdr_version
bdr.bdr_version_num
bdr.decode_message_payload
bdr.get_consensus_status
bdr.get_decoding_worker_stat
bdr.get_global_locks
bdr.get_min_required_replication_slots
bdr.get_min_required_worker_processes
bdr.get_raft_status
bdr.get_relation_stats
bdr.get_slot_flush_timestamp
bdr.get_sub_progress_timestamp
bdr.get_subscription_stats
bdr.lag_control
bdr.lag_history
bdr.node_catchup_state_name
bdr.node_kind_name
bdr.peer_state_name
bdr.show_subscription_status
bdr.show_workers
bdr.show_writers
bdr.stat_get_activity
bdr.wal_sender_stats
bdr.worker_role_id_name

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 286

bdr_monitor

This role provides read access to any tables, views, and functions that users or applications may need to monitor the PGD cluster. It includes all the privileges of the bdr_read_all_stats role.

Privileges

All privileges from bdr_read_all_stats plus the following additional privileges:

SELECT privilege on:

bdr.group_raft_details
bdr.group_replslots_details
bdr.group_subscription_summary
bdr.group_versions_details
bdr.raft_instances

EXECUTE privilege on:

bdr.get_raft_instance_by_nodegroup
bdr.monitor_camo_on_all_nodes
bdr.monitor_group_raft
bdr.monitor_group_versions
bdr.monitor_local_replslots
bdr.monitor_raft_details_on_all_nodes
bdr.monitor_replslots_details_on_all_nodes
bdr.monitor_subscription_details_on_all_nodes
bdr.monitor_version_details_on_all_nodes
bdr.node_group_member_info

bdr_application

This role is designed for applications that require access to PGD features, objects, and functions such as sequences, CRDT datatypes, CAMO status functions, or trigger management functions.

Privileges

EXECUTE privilege on:

All functions for column_timestamps datatypes
All functions for CRDT datatypes
bdr.alter_sequence_set_kind
bdr.create_conflict_trigger
bdr.create_transform_trigger
bdr.drop_trigger
bdr.get_configured_camo_partner
bdr.global_lock_table
bdr.is_camo_partner_connected
bdr.is_camo_partner_ready
bdr.logical_transaction_status
bdr.ri_fkey_trigger
bdr.seq_nextval
bdr.seq_currval
bdr.seq_lastval
bdr.trigger_get_committs
bdr.trigger_get_conflict_type
bdr.trigger_get_origin_node_id
bdr.trigger_get_row
bdr.trigger_get_type
bdr.trigger_get_xid
bdr.wait_for_camo_partner_queue
bdr.wait_slot_confirm_lsn
bdr.wait_node_confirm_lsn

Many of these functions require additional privileges before you can use them. For example, you must be the table owner to successfully execute bdr.alter_sequence_set_kind . These additional rules are described with each specific
function.

bdr_read_all_conflicts

PGD logs conflicts into the bdr.conflict_history table. Conflicts are visible only to table owners, so no extra privileges are required for the owners to read the conflict history.

However, if it's useful to have a user that can see conflicts for all tables, you can optionally grant the role bdr_read_all_conflicts to that user.

Privileges

An explicit policy is set on bdr.conflict_history that allows this role to read the bdr.conflict_history table.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 287

23.4 Roles and replication

DDL and DML replication and users

DDL changes executed by a user are applied as that same user on each node.

DML changes to tables are replicated as the table-owning user on the target node.

By default, PGD replicates new tables with the same owner across nodes.

Differing table ownership

We recommend for the same user to own the table on each node. That's the default behavior, but you can override it. If you do, there are some things to take into account.

Consider a situation where table A is owned by user X on node1 and owned by user Y on node2. If user Y has higher privileges than user X, this might be viewed as a privilege escalation.

Since nodes can have different use cases, we do allow this scenario. But we also warn against it. If tables have different owners on different nodes, we recommend that a security administrator help to plan and audit this configuration.

Replication and row-level security

On tables with row-level security policies enabled, changes are replicated without reenforcing policies on apply. This behavior is equivalent to the changes being applied as NO FORCE ROW LEVEL SECURITY , even if FORCE ROW
LEVEL SECURITY is specified. If this isn't what you want, specify a row_filter that avoids replicating all rows. We recommend that the row security policies on all nodes be identical or at least compatible, but we don't enforce this.

bdr_superuser role and replication

The user bdr_superuser controls replication for PGD and can add or remove any table from any replication set. bdr_superuser doesn't need any privileges over individual tables, nor do we recommend it. If you need to restrict access to
replication set functions, you can implement restricted versions of these functions as SECURITY DEFINER functions and grant them to the appropriate users.

Privilege restrictions

PGD enforces additional restrictions, effectively preventing the use of DDL that relies solely on TRIGGER or REFERENCES privileges.

GRANT ALL still grants both TRIGGER and REFERENCES privileges, so we recommend that you state privileges explicitly. For example, use GRANT SELECT, INSERT, UPDATE, DELETE, TRUNCATE instead of ALL .

Foreign key privileges

ALTER TABLE ... ADD FOREIGN KEY is supported only if the user has SELECT privilege on the referenced table or if the referenced table has RLS restrictions enabled that the current user can't bypass.

This means that the REFERENCES privilege alone isn't sufficient to allow creating a foreign key with PGD. Relying solely on the REFERENCES privilege isn't typically useful since it makes the validation check execute using triggers rather than
a table scan. It's typically too expensive to use successfully.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 288

23.5 Access control

Catalog tables

System catalog and information schema tables are always excluded from replication by PGD.

In addition, tables owned by extensions are excluded from replication.

PGD functions and operators

All PGD functions are exposed in the bdr schema. Any calls to these functions must be schema qualified, rather than putting bdr in the search_path.

All PGD operators are available by way of the pg_catalog schema to allow users to exclude the public schema from the search_path without problems.

Granting privileges on catalog objects

Administrators must not grant explicit privileges on catalog objects such as tables, views, and functions. Manage access to those objects by granting one of the roles described in PGD default roles.

This requirement is a consequence of the flexibility that allows joining a node group even if the nodes on either side of the join don't have the exact same version of PGD and therefore of the PGD catalog.

More precisely, if privileges on individual catalog objects were explicitly granted, then the bdr.join_node_group() procedure might fail because the corresponding GRANT statements extracted from the node being joined might not
apply to the node that's joining.

Triggers

In PostgreSQL, both the owner of a table and anyone who was granted the TRIGGER privilege can create triggers. Triggers granted by the non-table owner execute as the table owner in PGD, which might cause a security issue. The TRIGGER
privilege is seldom used, and PostgreSQL Core Team has said, "The separate TRIGGER permission is something we consider obsolescent."

PGD mitigates this problem by using stricter rules on who can create a trigger on a table:

superuser: Can create trigggers.

bdr_superuser: Can create triggers.

Owner of the table: Can create triggers according to same rules as in PostgreSQL (must have EXECUTE privilege on the function used by the trigger).

Users who have TRIGGER privilege on the table: Can create a trigger only if they use a function that's owned by the same owner as the table and they satisfy standard PostgreSQL rules. Specifically, they must have EXECUTE privilege on
the function.

If both table and function have the same owner, and the owner decides to give a user both TRIGGER privilege on the table and EXECUTE privilege on thae function. It's assumed that it's okay for that user to create a trigger on that table
using this function.

Users who have TRIGGER privilege on the table: Can also create triggers using functions that are defined with the SECURITY DEFINER clause if they have EXECUTE privilege on them.

The SECURITY DEFINER clause makes the function always execute as the owner of the function both in standard PostgreSQL and PGD.

This logic is built on the fact that, in PostgreSQL, the owner of the trigger isn't the user who created it but the owner of the function used by that trigger.

The same rules apply to existing tables, and if the existing table has triggers that aren't owned by the owner of the table and don't use SECURITY DEFINER functions, you can't add it to a replication set.

When PGD replication applies changes it uses the system-level default search_path only. Replica triggers, stream triggers, and index expression functions that assume other search_path settings will then fail when they execute on apply. To
ensure this doesn't occur, resolve object references clearly using either the default search_path only, or set the search path for a function using ALTER FUNCTION ... SET search_path = ... for the functions affected. When
using the default search_path, always use fully qualified references to objects, for example, schema.objectname.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 289

https://www.postgresql.org/docs/current/sql-createfunction.html#SQL-CREATEFUNCTION-SECURITY

24 Sequences

Many applications require that unique surrogate ids be assigned to database entries. Often the database SEQUENCE object is used to produce these. In PostgreSQL, these can be either:

A manually created sequence using the CREATE SEQUENCE command and retrieved by calling the nextval() function
serial and bigserial columns or, alternatively, GENERATED BY DEFAULT AS IDENTITY columns

However, standard sequences in PostgreSQL aren't multi-node aware and produce values that are unique only on the local node. This is important because unique ids generated by such sequences cause conflict and data loss by means of
discarded INSERT actions in multi-master replication.

Permissions required

This means that any user who wants to use sequences must have at least the bdr_application role assigned to them.

PGD global sequences

For this reason, PGD provides an application-transparent way to generate unique ids using sequences on bigint or bigserial datatypes across the whole PGD group, called global sequences.

PGD global sequences provide an easy way for applications to use the database to generate unique synthetic keys in an asynchronous distributed system that works for most—but not necessarily all—cases.

Using PGD global sequences allows you to avoid the problems with insert conflicts. If you define a PRIMARY KEY or UNIQUE constraint on a column that's using a global sequence, no node can ever get the same value as any other node.
When PGD synchronizes inserts between the nodes, they can never conflict.

PGD global sequences extend PostgreSQL sequences, so they are crash-safe. To use them, you must be granted the bdr_application role.

There are various possible algorithms for global sequences:

SnowflakeId sequences
Globally allocated range sequences

SnowflakeId sequences generate values using an algorithm that doesn't require inter-node communication at any point. It's faster and more robust and has the useful property of recording the timestamp when the values were created.

SnowflakeId sequences have the restriction that they work only for 64-bit BIGINT datatypes and produce values up to 19 digits long. This might be too long for use in some host language datatypes, such as JavaScript Number types. Globally
allocated sequences allocate a local range of values that can be replenished as needed by inter-node consensus, making them suitable for either BIGINT or INTEGER sequences.

You can create a global sequence using the bdr.alter_sequence_set_kind() function. This function takes a standard PostgreSQL sequence and marks it as a PGD global sequence. It can also convert the sequence back to the
standard PostgreSQL sequence.

PGD also provides the configuration variable bdr.default_sequence_kind . This variable determines the kind of sequence to create when the CREATE SEQUENCE command is executed or when a serial , bigserial , or
GENERATED BY DEFAULT AS IDENTITY column is created. Valid settings are:

local — Newly created sequences are the standard PostgreSQL (local) sequences.
galloc — Always creates globally allocated range sequences.
snowflakeid — Creates global sequences for BIGINT sequences that consist of time, nodeid, and counter components. You can't use it with INTEGER sequences (so you can use it for bigserial but not for serial).
timeshard — The older version of SnowflakeId sequence. Provided for backward compatibility only. The SnowflakeId is preferred.
distributed (default) — A special value that you can use only for bdr.default_sequence_kind . It selects snowflakeid for int8 sequences (that is, bigserial) and galloc sequence for int4 (that is,
serial) and int2 sequences.

The bdr.sequences view shows information about individual sequence kinds.

The currval() and lastval() functions work correctly for all types of global sequences.

Automatic sequence conversion

In PGD 6.0 and later, the act of joining a node to a PGD group or creating a new grou also triggers a conversion of any local sequences into global sequences. Set bdr.default_sequence_kind to distributed . This setting then
selects the best kind of sequence to convert the local sequences into. If bdr.default_sequence_kind is set to local , the sequences are left as local sequences. Conversions to galloc are performed in a way that ensures that the
sequence doesn't conflict with any other sequences in the group.

If you decide to start with local sequences and later switch to galloc sequences, you can do so by setting bdr.default_sequence_kind to galloc and then running the bdr.alter_sequence_set_kind() function on each
sequence you want to convert. Be aware, though, that you need to manually set the starting values of the sequences to ensure that they don't conflict with any existing values in the table. See Converting a local sequence to a galloc sequence
for more information about this in general and specifically How to set a new start value for a sequence.

SnowflakeId sequences

The ids generated by SnowflakeId sequences are loosely time ordered so you can use them to get the approximate order of data insertion, like standard PostgreSQL sequences. Values generated within the same millisecond might be out of
order, even on one node. The property of loose time ordering means they're suitable for use as range-partition keys.

SnowflakeId sequences work on one or more nodes and don't require any inter-node communication after the node-join process completes. So you can continue to use them even if there's the risk of extended network partitions. They aren't
affected by replication lag or inter-node latency.

SnowflakeId sequences generate unique ids in a different way from standard sequences. The algorithm uses three components for a sequence number. The first component of the sequence is a timestamp at the time of sequence number
generation. The second component of the sequence number is the unique id assigned to each PGD node, which ensures that the ids from different nodes are always different. The third component is the number generated by the local
sequence.

While adding a unique node id to the sequence number is enough to ensure there are no conflicts, you also want to keep another useful property of sequences. The ordering of the sequence numbers roughly corresponds to the order in which
data was inserted into the table. Putting the timestamp first ensures this.

A few limitations and caveats apply to SnowflakeId sequences.

SnowflakeId sequences are 64 bits wide and need a bigint or bigserial . Values generated are up to 19 digits long. There's no practical 32-bit integer version, so you can't use it with serial sequences. Use globally allocated
range sequences instead.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 290

https://www.enterprisedb.com/docs/pgd/latest/reference/security/pgd-predefined-roles#bdr_application
https://www.enterprisedb.com/docs/pgd/latest/reference/sequences#converting-a-local-sequence-to-a-galloc-sequence
https://www.enterprisedb.com/docs/pgd/latest/reference/sequences#2-set-a-new-start-value-for-the-sequence

For SnowflakeId, there's a limit of 4096 sequence values generated per millisecond on any given node (about 4 million sequence values per second). In case the sequence value generation wraps around within a given millisecond, the
SnowflakeId sequence waits until the next millisecond and gets a fresh value for that millisecond.

Since SnowflakeId sequences encode timestamps into the sequence value, you can generate new sequence values only within the given time frame (depending on the system clock). The oldest timestamp that you can use is 2016-10-07, which
is the epoch time for the SnowflakeId. The values wrap to negative values in the year 2086 and completely run out of numbers by 2156.

Since timestamp is an important part of a SnowflakeId sequence, there's additional protection from generating sequences with a timestamp older than the latest one used in the lifetime of a Postgres process (but not between Postgres
restarts).

The INCREMENT option on a sequence used as input for SnowflakeId sequences is effectively ignored. This might be relevant for applications that do sequence ID caching, like many object-relational mapper (ORM) tools, notably Hibernate.
Because the sequence is time based, this has little practical effect since the sequence advances to a new noncolliding value by the time the application can do anything with the cached values.

Similarly, you might change the START , MINVALUE , MAXVALUE , and CACHE settings on the underlying sequence, but there's no benefit to doing so. The sequence's low 14 bits are used and the rest is discarded, so the value-range limits
don't affect the function's result. For the same reason, setval() isn't useful for SnowflakeId sequences.

Timeshard sequences

Timeshard sequences are provided for backward compatibility with existing installations but aren't recommended for new application use. We recommend using the SnowflakeId sequence instead.

Timeshard is very similar to SnowflakeId but has different limits, fewer protections, and slower performance.

The differences between timeshard and SnowflakeId are as follows:

Timeshard can generate up to 16384 per millisecond (about 16 million per second), which is more than SnowflakeId. However, there's no protection against wraparound within a given millisecond. Schemas using the timeshard sequence
must protect the use of the UNIQUE constraint when using timeshard values for a given column.
The timestamp component of timeshard sequence runs out of values in the year 2050 and, if used in combination with bigint, the values wrap to negative numbers in the year 2033. This means that sequences generated after 2033 have
negative values. This is a considerably shorter time span than SnowflakeId and is the main reason why SnowflakeId is preferred.
Timeshard sequences require occasional disk writes (similar to standard local sequences). SnowflakeIds are calculated in memory so the SnowflakeId sequences are in general a little faster than timeshard sequences.

Unlogged sequences and PGD

Since Postgres 15, it has been possible to create unlogged sequences. These are related and similar to unlogged tables, which aren't written to the WAL and aren't replicated. In the context of PGD and unlogged sequences, it isn't a sensible
configuration to have an unlogged PGD sequence and it could cause unexpected problems in the event of a node failure. Therefore, we prevent the creation of unlogged PGD sequences or the conversion of a PGD sequence to an unlogged
sequence.

Globally allocated range sequences

The globally allocated range (or galloc) sequences allocate ranges (chunks) of values to each node. When the local range is used up, a new range is allocated globally by consensus among the other nodes. This behavior uses the key space
efficiently but requires that the local node be connected to a majority of the nodes in the cluster for the sequence generator to progress when the currently assigned local range is used up.

Unlike SnowflakeId sequences, galloc sequences support all sequence data types provided by PostgreSQL: smallint , integer , and bigint . This means that you can use galloc sequences in environments where 64-bit
sequences are problematic. Examples include using integers in JavaScript, since that supports only 53-bit values, or when the sequence is displayed on output with limited space.

The range assigned by each voting node is currently predetermined based on the datatype the sequence is using:

smallint — 1 000 numbers
integer — 1 000 000 numbers
bigint — 1 000 000 000 numbers

Each node allocates two chunks of seq_chunk_size—one for the current use plus a reserved chunk for future use—so the values generated from any one node increase monotonically. However, viewed globally, the values generated aren't
ordered at all. This might cause a loss of performance due to the effects on b-tree indexes and typically means that generated values aren't useful as range-partition keys.

The main downside of the galloc sequences is that, once the assigned range is used up, the sequence generator has to ask for consensus about the next range for the local node that requires inter-node communication. This might lead to
delays or operational issues if the majority of the PGD group isn't accessible. (This might be avoided in later releases.)

The CACHE , START , MINVALUE , and MAXVALUE options work correctly with galloc sequences. However, you need to set them before transforming the sequence to the galloc kind. The INCREMENT BY option also works
correctly. However, you can't assign an increment value that's equal to or more than the above ranges assigned for each sequence datatype. setval() doesn't reset the global state for galloc sequences. Don't use it.

A few limitations apply to galloc sequences. PGD tracks galloc sequences in a special PGD catalog bdr.sequence_alloc. This catalog is required to track the currently allocated chunks for the galloc sequences. The sequence name
and namespace is stored in this catalog. The sequence chunk allocation is managed by Raft, whereas any changes to the sequence name/namespace is managed by the replication stream. So PGD currently doesn't support renaming galloc
sequences or moving them to another namespace or renaming the namespace that contains a galloc sequence. Be mindful of this limitation while designing application schema.

Converting a local sequence to a galloc sequence

Before transforming a local sequence to galloc, you need to take care of several prerequisites.

1. Verify that sequence and column data type match

Check that the sequence's data type matches the datatype of the column with which it will be used. For example, you can create a bigint sequence and assign an integer column's default to the nextval() returned by that sequence.
With galloc sequences, which for bigint are allocated in blocks of 1 000 000 000, this quickly results in the values returned by nextval() exceeding the int4 range if more than two nodes are in use.

This example shows what can happen:

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 291

After executing INSERT INTO seqtest VALUES(DEFAULT) on two nodes, the table contains the following values:

However, attempting the same operation on a third node fails with an integer out of range error, as the sequence generated the value 4000000002 .

Tip

You can retrieve the current data type of a sequence from the PostgreSQL pg_sequences view. You can modify the data type of a sequence with ALTER SEQUENCE ... AS ... , for example, ALTER SEQUENCE
public.sequence AS integer , as long as its current value doesn't exceed the maximum value of the new data type.

2. Set a new start value for the sequence

When the sequence kind is altered to galloc , it's rewritten and restarts from the defined start value of the local sequence. If this happens on an existing sequence in a production database, you need to query the current value and then set
the start value appropriately. To help with this use case, PGD lets you pass a starting value with the function bdr.alter_sequence_set_kind() . If you're already using offset and you have writes from multiple nodes, you need to check
what's the greatest used value and restart the sequence to at least the next value:

Since users can't lock a sequence, you must leave a $MARGIN value to allow operations to continue while the max() value is queried.

The bdr.sequence_alloc table gives information on the chunk size and the ranges allocated around the whole cluster.

In this example, the sequence starts at 333 , and the cluster has two nodes. The number of allocation is 4, which is 2 per node, and the chunk size is 1000000, which is related to an integer sequence.

To see the ranges currently assigned to a given sequence on each node, execute the function bdr.galloc_chunk_info .

Node Node1 is using range from 333 to 2000333 .

Node Node2 is using range from 2000334 to 4000333 .

CREATE SEQUENCE int8_seq;

SELECT sequencename, data_type FROM pg_sequences;
 sequencename |
data_type
--------------+-----------
 int8_seq |
bigint
(1 row)

CREATE TABLE seqtest (id INT NOT NULL PRIMARY
KEY);

ALTER SEQUENCE int8_seq OWNED BY
seqtest.id;

SELECT bdr.alter_sequence_set_kind('public.int8_seq'::regclass, 'galloc', 1);
 alter_sequence_set_kind

(1 row)

ALTER TABLE seqtest ALTER COLUMN id SET DEFAULT
nextval('int8_seq'::regclass);

SELECT * FROM
seqtest;
 id

 2
 2000000002
(2 rows)

-- determine highest sequence value across all
nodes
SELECT max((x->'response'->'command_tuples'->0->>'nextval')::bigint)
 FROM
jsonb_array_elements(

bdr.run_on_all_nodes(
 E'SELECT
nextval(\'public.sequence\');'
)::jsonb) AS x;

-- turn into a galloc
sequence
SELECT bdr.alter_sequence_set_kind('public.sequence'::regclass, 'galloc', $MAX + $MARGIN);

SELECT * FROM bdr.sequence_alloc
 WHERE seqid = 'public.categories_category_seq'::regclass;
 seqid | seq_chunk_size | seq_allocated_up_to | seq_nallocs |
seq_last_alloc
-------------------------+----------------+---------------------+-------------+-----------------------------
 categories_category_seq | 1000000 | 4000333 | 4 | 2020-05-21
20:02:15.957835+00
(1 row)

SELECT * FROM bdr.galloc_chunk_info('categories_category_seq');
 chunk_start |
chunk_end
-------------+-----------
 334 |
1000333
 1000334 |
2000333
(2 rows)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 292

https://www.postgresql.org/docs/current/view-pg-sequences.html

Node Node2 is using range from 2000334 to 4000333 .

When a node finishes a chunk, it asks a consensus for a new one and gets the first available. In the example, it's from 4000334 to 5000333. This is the new reserved chunk and starts to consume the old reserved chunk.

UUIDs, KSUUIDs, and other approaches

You can generate globally unique ids in other ways without using the global sequences that can be used with PGD. For example:

UUIDs and their PGD variant, KSUUIDs
Local sequences with a different offset per node (i.e., manual)
An externally coordinated natural key

PGD applications can't use other methods safely. Counter-table-based approaches relying on SELECT ... FOR UPDATE , UPDATE ... RETURNING ... or similar for sequence generation don't work correctly in PGD because PGD
doesn't take row locks between nodes. The same values are generated on more than one node. For the same reason, the usual strategies for "gapless" sequence generation don't work with PGD. In most cases, the application coordinates
generating sequences that must be gapless from some external source using two-phase commit. Or it generates them only on one node in the PGD group.

KSUUID v2 functions

PGD applications can't use other methods safely. Counter-table-based approaches relying on SELECT ... FOR UPDATE , UPDATE ... RETURNING ... or similar for sequence generation don't work correctly in PGD because PGD
doesn't take row locks between nodes. The same values are generated on more than one node. For the same reason, the usual strategies for "gapless" sequence generation don't work with PGD. In most cases, the application coordinates
generating sequences that must be gapless from some external source using two-phase commit. Or it generates them only on one node in the PGD group.

UUIDs

UUID keys instead avoid sequences entirely and use 128-bit universal unique identifiers. These are random or pseudorandom values that are so large that it's nearly impossible for the same value to be generated twice. There's no need for
nodes to have continuous communication when using UUID keys.

In the unlikely event of a collision, conflict detection chooses the newer of the two inserted records to retain. Conflict logging, if enabled, records such an event. However, it's exceptionally unlikely to ever occur, since collisions become
practically likely only after about 2^64 keys are generated.

The main downside of UUID keys is that they're somewhat inefficient in terms of space and the network. They consume more space not only as a primary key but also where referenced in foreign keys and when transmitted on the wire. Also,
not all applications cope well with UUID keys.

KSUUIDs

PGD provides functions for working with a K-sortable variant of UUID data. Known as KSUUID, it generates values that can be stored using the PostgreSQL standard UUID data type. A KSUUID value is similar to UUIDv1 in that it stores
both timestamp and random data, following the UUID standard. The difference is that KSUUID is K-sortable, meaning that it's weakly sortable by timestamp. This makes it more useful as a database key, as it produces more compact
btree indexes. This behavior improves the effectiveness of search and allows natural time-sorting of result data. Unlike UUIDv1 , KSUUID values don't include the MAC of the computer on which they were generated, so there are no

security concerns from using them.

We now recommend KSUUID v2 in all cases. You can directly sort values generated with regular comparison operators.

There are two versions of KSUUID in PGD: v1 and v2. The legacy KSUUID v1 is deprecated but is kept to support existing installations. Don't use it for new installations. The internal contents of v1 and v2 aren't compatible. As such, the
functions to manipulate them also aren't compatible. The v2 of KSUUID also no longer stores the UUID version number.

See KSUUID v2 functions and KSUUID v1 functions in the PGD reference.

Step and offset sequences

In offset-step sequences, a normal PostgreSQL sequence is used on each node. Each sequence increments by the same amount and starts at differing offsets. For example, with step 1000, node1's sequence generates 1001, 2001, 3001, and so
on. node2's sequence generates 1002, 2002, 3002, and so on. This scheme works well even if the nodes can't communicate for extended periods. However, the designer must specify a maximum number of nodes when establishing the schema,
and it requires per-node configuration. Mistakes can easily lead to overlapping sequences.

It's relatively simple to configure this approach with PGD by creating the desired sequence on one node, like this:

CREATE TABLE some_table (
 generated_value bigint primary key
);

CREATE SEQUENCE some_seq INCREMENT 1000 OWNED BY some_table.generated_value;

ALTER TABLE some_table ALTER COLUMN generated_value SET DEFAULT nextval('some_seq');

Then, on each node calling setval() , give each node a different offset starting value, for example:

-- On node 1
SELECT setval('some_seq', 1);

-- On node 2
SELECT setval('some_seq', 2);

 -- ... etc

SELECT * FROM bdr.galloc_chunk_info('categories_category_seq');
 chunk_start |
chunk_end
-------------+-----------
 2000334 |
3000333
 3000334 |
4000333

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 293

Be sure to allow a large enough INCREMENT to leave room for all the nodes you might ever want to add, since changing it in the future is difficult and disruptive.

If you use bigint values, there's no practical concern about key exhaustion, even if you use offsets of 10000 or more. It would take hundreds of years, with hundreds of machines, doing millions of inserts per second, to have any chance of
approaching exhaustion.

PGD doesn't currently offer any automation for configuring the per-node offsets on such step/offset sequences.

Composite keys

A variant on step/offset sequences is to use a composite key composed of PRIMARY KEY (node_number, generated_value) . The node number is usually obtained from a function that returns a different number on each node. You
can create such a function by temporarily disabling DDL replication and creating a constant SQL function. Alternatively, you can use a one-row table that isn't part of a replication set to store a different value in each node.

See also

Global Sequence management interfaces
KSUUID v2 functions
KSUUID v1 functions

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 294

25 Stream triggers

PGD introduces new types of triggers that you can use for additional data processing on the downstream/target node:

Conflict triggers
Transform triggers

Together, these types of triggers are known as stream triggers.

Permissions required

Stream triggers are a PGD feature that requires permission. Any user wanting to create or drop triggers must have at least the bdr_application role assigned to them.

Stream triggers are designed to be trigger-like in syntax. They leverage the PostgreSQL BEFORE trigger architecture and are likely to have similar performance characteristics as PostgreSQL BEFORE triggers.

Multiple trigger definitions can use one trigger function, just as with normal PostgreSQL triggers. A trigger function is a program defined in this form: CREATE FUNCTION ... RETURNS TRIGGER . Creating the trigger doesn't require use
of the CREATE TRIGGER command. Instead, create stream triggers using the special PGD functions bdr.create_conflict_trigger() and bdr.create_transform_trigger() .

Once created, the trigger is visible in the catalog table pg_trigger . The stream triggers are marked as tgisinternal = true and tgenabled = 'D' and have the name suffix '_bdrc' or '_bdrt'. The view bdr.triggers
provides information on the triggers in relation to the table, the name of the procedure that's being executed, the event that triggers it, and the trigger type.

Stream triggers aren't enabled for normal SQL processing. Because of this, the ALTER TABLE ... ENABLE TRIGGER is blocked for stream triggers in both its specific name variant and the ALL variant. This mechanism prevents the
trigger from executing as a normal SQL trigger.

These triggers execute on the downstream or target node. There's no option for them to execute on the origin node. However, you might want to consider the use of row_filter expressions on the origin.

Also, any DML that's applied while executing a stream trigger isn't replicated to other PGD nodes and doesn't trigger the execution of standard local triggers. This is intentional. You can use it, for example, to log changes or conflicts captured
by a stream trigger into a table that's crash-safe and specific to that node. See Stream triggers examples for a working example.

Trigger execution during apply

Transform triggers execute first—once for each incoming change in the triggering table. These triggers fire before we attempt to locate a matching target row, allowing a very wide range of transforms to be applied efficiently and consistently.

Next, for UPDATE and DELETE changes, we locate the target row. If there's no target row, then no further processing occurs for those change types.

We then execute any normal triggers that previously were explicitly enabled as replica triggers at table level:

We then decide whether a potential conflict exists. If so, we then call any conflict trigger that exists for that table.

Missing-column conflict resolution

Before transform triggers are executed, PostgreSQL tries to match the incoming tuple against the row-type of the target table.

Any column that exists on the input row but not on the target table triggers a conflict of type target_column_missing . Conversely, a column existing on the target table but not in the incoming row triggers a
source_column_missing conflict. The default resolutions for those two conflict types are respectively ignore_if_null and use_default_value .

This is relevant in the context of rolling schema upgrades, for example, if the new version of the schema introduces a new column. When replicating from an old version of the schema to a new one, the source column is missing, and the
use_default_value strategy is appropriate, as it populates the newly introduced column with the default value.

However, when replicating from a node having the new schema version to a node having the old one, the column is missing from the target table. The ignore_if_null resolver isn't appropriate for a rolling upgrade because it breaks
replication as soon as a user inserts a tuple with a non-NULL value in the new column in any of the upgraded nodes.

In view of this example, the appropriate setting for rolling schema upgrades is to configure each node to apply the ignore resolver in case of a target_column_missing conflict.

You can do this with the following query, which you must execute separately on each node. Replace node1 with the actual node name.

Data loss and divergence risk

Setting the conflict resolver to ignore can lead to data loss and cluster divergence.

Consider the following example: table t exists on nodes 1 and 2, but its column col exists only on node 1.

If the conflict resolver is set to ignore , then there can be rows on node 1 where c isn't null, for example, (pk=1, col=100) . That row is replicated to node 2, and the value in column c is discarded, for example, (pk=1) .

If column c is then added to the table on node 2, it's at first set to NULL on all existing rows, and the row considered above becomes (pk=1, col=NULL) . The row having pk=1 is no longer identical on all nodes, and the cluster is
therefore divergent.

The default ignore_if_null resolver isn't affected by this risk because any row replicated to node 2 has col=NULL .

Based on this example, we recommend running LiveCompare against the whole cluster at the end of a rolling schema upgrade where the ignore resolver was used. This practice helps to ensure that you detect and fix any divergence.

ALTER TABLE tablename
ENABLE REPLICA TRIGGER trigger_name;

SELECT
bdr.alter_node_set_conflict_resolver('node1',
 'target_column_missing', 'ignore');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 295

https://www.enterprisedb.com/docs/livecompare/latest

Terminology of row-types

PGD uses these row-types:

SOURCE_OLD is the row before update, that is, the key.
SOURCE_NEW is the new row coming from another node.
TARGET is the row that exists on the node already, that is, the conflicting row.

Conflict triggers

Conflict triggers execute when a conflict is detected by PGD. They decide what happens when the conflict occurs.

If the trigger function returns a row, the action is applied to the target.
If the trigger function returns a NULL row, the action is skipped.

For example, if the trigger is called for a DELETE , the trigger returns NULL if it wants to skip the DELETE . If you want the DELETE to proceed, then return a row value: either SOURCE_OLD or TARGET works. When the conflicting
operation is either INSERT or UPDATE , and the chosen resolution is to delete the conflicting row, the trigger must explicitly perform the deletion and return NULL. The trigger function can perform other SQL actions as it chooses, but those
actions are only applied locally, not replicated.

When a real data conflict occurs between two or more nodes, two or more concurrent changes are occurring. When the changes are applied, the conflict resolution occurs independently on each node. This means the conflict resolution occurs
once on each node and can occur with a significant time difference between them. As a result, communication between the multiple executions of the conflict trigger isn't possible. It's the responsibility of the author of the conflict trigger to
ensure that the trigger gives exactly the same result for all related events. Otherwise, data divergence occurs.

Warning

You can specify multiple conflict triggers on a single table, but they must match a distinct event. That is, each conflict must match only a single conflict trigger.
We don't recommend multiple triggers matching the same event on the same table. They might result in inconsistent behavior and will not be allowed in a future release.

If the same conflict trigger matches more than one event, you can use the TG_OP variable in the trigger to identify the operation that produced the conflict.

By default, PGD detects conflicts by observing a change of replication origin for a row. Hence, you can call a conflict trigger even when only one change is occurring. Since, in this case, there's no real conflict, this conflict detection mechanism
can generate false-positive conflicts. The conflict trigger must handle all of those identically.

In some cases, timestamp conflict detection doesn't detect a conflict at all. For example, in a concurrent UPDATE / DELETE where the DELETE occurs just after the UPDATE , any nodes that see first the UPDATE and then the DELETE
don't see any conflict. If no conflict is seen, the conflict trigger is never called. In the same situation but using row-version conflict detection, a conflict is seen, which a conflict trigger can then handle.

The trigger function has access to additional state information as well as the data row involved in the conflict, depending on the operation type:

On INSERT , conflict triggers can access the SOURCE_NEW row from the source and TARGET row.
On UPDATE , conflict triggers can access the SOURCE_OLD and SOURCE_NEW row from the source and TARGET row.
On DELETE , conflict triggers can access the SOURCE_OLD row from the source and TARGET row.

You can use the function bdr.trigger_get_row() to retrieve SOURCE_OLD , SOURCE_NEW , or TARGET rows, if a value exists for that operation.

Changes to conflict triggers happen transactionally and are protected by global DML locks during replication of the configuration change. This behavior is similar to how some variants of ALTER TABLE are handled.

If primary keys are updated inside a conflict trigger, it can sometimes lead to unique constraint violations errors due to a difference in timing of execution. Hence, avoid updating primary keys in conflict triggers.

Transform triggers

These triggers are similar to conflict triggers, except they're executed for every row on the data stream against the specific table. The behavior of return values and the exposed variables is similar, but transform triggers execute before a target
row is identified, so there's no TARGET row.

You can specify multiple transform triggers on each table in PGD. Transform triggers execute in alphabetical order.

A transform trigger can filter away rows, and it can do additional operations as needed. It can alter the values of any column or set them to NULL . The return value decides the next action taken:

If the trigger function returns a row, it's applied to the target.
If the trigger function returns a NULL row, there's no further action to perform. Unexecuted triggers never execute.
The trigger function can perform other actions as it chooses.

The trigger function has access to additional state information as well as rows involved in the conflict:

On INSERT , transform triggers can access the SOURCE_NEW row from the source.
On UPDATE , transform triggers can access the SOURCE_OLD and SOURCE_NEW row from the source.
On DELETE , transform triggers can access the SOURCE_OLD row from the source.

You can use the function bdr.trigger_get_row() to retrieve SOURCE_OLD or SOURCE_NEW rows. TARGET row isn't available, since this type of trigger executes before such a target row is identified, if any.

Transform triggers look very similar to normal BEFORE row triggers but have these important differences:

A transform trigger gets called for every incoming change. BEFORE triggers aren't called at all for UPDATE and DELETE changes if a matching row in a table isn't found.

Transform triggers are called before partition-table routing occurs.

Transform triggers have access to the lookup key via SOURCE_OLD , which isn't available to normal SQL triggers.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 296

Row contents

The SOURCE_NEW , SOURCE_OLD , and TARGET contents depend on the operation, REPLICA IDENTITY setting of a table, and the contents of the target table.

The TARGET row is available only in conflict triggers. The TARGET row contains data only if a row was found when applying UPDATE or DELETE in the target table. If the row isn't found, the TARGET is NULL .

Execution order

Execution order for triggers:

Transform triggers — Execute once for each incoming row on the target.
Normal triggers — Execute once per row.
Conflict triggers — Execute once per row where a conflict exists.

Stream triggers examples

A conflict trigger that provides similar behavior as the update_if_newer conflict resolver:

A conflict trigger that applies a delta change on a counter column and uses SOURCE_NEW for all other columns:

A transform trigger that logs all changes to a log table instead of applying them:

CREATE OR REPLACE FUNCTION update_if_newer_trig_func
RETURNS TRIGGER
LANGUAGE plpgsql
AS $$
BEGIN
 IF (bdr.trigger_get_committs('TARGET')
>
 bdr.trigger_get_committs('SOURCE_NEW')) THEN
 RETURN TARGET;
 ELSIF
 RETURN SOURCE;
 END IF;
END;
$$;

CREATE OR REPLACE FUNCTION delta_count_trg_func
RETURNS TRIGGER
LANGUAGE plpgsql
AS $$
DECLARE
 DELTA bigint;
 SOURCE_OLD record;
 SOURCE_NEW record;
 TARGET
record;
BEGIN
 SOURCE_OLD := bdr.trigger_get_row('SOURCE_OLD');
 SOURCE_NEW := bdr.trigger_get_row('SOURCE_NEW');
 TARGET :=
bdr.trigger_get_row('TARGET');

 DELTA := SOURCE_NEW.counter -
SOURCE_OLD.counter;
 SOURCE_NEW.counter = TARGET.counter +
DELTA;

 RETURN
SOURCE_NEW;
END;
$$;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 297

This example shows a conflict trigger that implements trusted-source conflict detection, also known as trusted site, preferred node, or Always Wins resolution. It uses the bdr.trigger_get_origin_node_id() function to provide a
solution that works with three or more nodes.

CREATE OR REPLACE FUNCTION log_change
RETURNS TRIGGER
LANGUAGE plpgsql
AS $$
DECLARE
 SOURCE_NEW record;
 SOURCE_OLD record;
 COMMITTS
timestamptz;
BEGIN
 SOURCE_NEW := bdr.trigger_get_row('SOURCE_NEW');
 SOURCE_OLD := bdr.trigger_get_row('SOURCE_OLD');
 COMMITTS :=
bdr.trigger_get_committs('SOURCE_NEW');

 IF (TG_OP = 'INSERT')
THEN
 INSERT INTO log SELECT 'I', COMMITTS,
row_to_json(SOURCE_NEW);
 ELSIF (TG_OP = 'UPDATE')
THEN
 INSERT INTO log SELECT 'U', COMMITTS,
row_to_json(SOURCE_NEW);
 ELSIF (TG_OP = 'DELETE')
THEN
 INSERT INTO log SELECT 'D', COMMITTS,
row_to_json(SOURCE_OLD);
 END IF;

 RETURN NULL; -- do not apply the
change
END;
$$;

CREATE OR REPLACE FUNCTION test_conflict_trigger()
RETURNS TRIGGER
LANGUAGE plpgsql
AS $$
DECLARE
 SOURCE record;
 TARGET
record;

 TRUSTED_NODE bigint;
 SOURCE_NODE
bigint;
 TARGET_NODE
bigint;
BEGIN
 TARGET :=
bdr.trigger_get_row('TARGET');
 IF (TG_OP =
'DELETE')
 SOURCE := bdr.trigger_get_row('SOURCE_OLD');
 ELSE
 SOURCE := bdr.trigger_get_row('SOURCE_NEW');
 END IF;

 TRUSTED_NODE :=
current_setting('customer.trusted_node_id');

 SOURCE_NODE :=
bdr.trigger_get_origin_node_id('SOURCE_NEW');
 TARGET_NODE :=
bdr.trigger_get_origin_node_id('TARGET');

 IF (TRUSTED_NODE = SOURCE_NODE) THEN
 RETURN SOURCE;
 ELSIF (TRUSTED_NODE = TARGET_NODE) THEN
 RETURN TARGET;
 ELSE
 RETURN NULL; -- do not apply the
change
 END IF;
END;
$$;

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 298

26 Transaction streaming

With logical replication, transactions are decoded concurrently on the publisher but aren't sent to subscribers until the transaction is committed. If the changes exceed logical_decoding_work_mem (PostgreSQL 13 and later), they're
spilled to disk. This means that, particularly with large transactions, there's some delay before they reach subscribers and might entail additional I/O on the publisher.

Beginning with PostgreSQL 14, transactions can optionally be decoded and sent to subscribers before they're committed on the publisher. The subscribers save the incoming changes to a staging file (or set of files) and apply them when the
transaction commits (or discard them if the transaction aborts). This makes it possible to apply transactions on subscribers as soon as the transaction commits.

PGD enhancements

PostgreSQL's built-in transaction streaming has the following limitations:

While you no longer need to spill changes to disk on the publisher, you must write changes to disk on each subscriber.
If the transaction aborts, the work (changes received by each subscriber and the associated storage I/O) is wasted.

However, PGD supports Parallel Apply, enabling multiple writer processes on each subscriber. This capability is leveraged to provide the following enhancements:

Decoded transactions can be streamed directly to a writer on the subscriber.
Decoded transactions don't need to be stored on disk on subscribers.
You don't need to wait for the transaction to commit before starting to apply the transaction on the subscriber.

Caveats

You must enable Parallel Apply.
Workloads consisting of many small and conflicting transactions can lead to frequent deadlocks between writers.

Note

Direct streaming to writer is still an experimental feature. Use it with caution. Specifically, it might not work well with conflict resolutions since the commit timestamp of the streaming might not be available. (The transaction might
not yet have committed on the origin.)

Configuration

Configure transaction streaming in two locations:

At node level, using the GUC bdr.default_streaming_mode
At group level, using the function bdr.alter_node_group_option()

Node configuration using bdr.default_streaming_mode

Permitted values are:

off
writer
file
auto

Default value is auto .

To make a change to this setting take effect, restart the pglogical receiver process for each subscription.

You can achieve this with a server restart.

If bdr.default_streaming_mode is set to any value other than off , the subscriber requests transaction streaming from the publisher. How this is provided can also depend on the group configuration setting. See Node configuration
using bdr.default_streaming_mode for details.

Group configuration using bdr.alter_node_group_option()

You can use the parameter streaming_mode in the function bdr.alter_node_group_option() to set the group transaction streaming configuration.

Permitted values are:

off
writer
file
auto
default

The default value is default .

The value of the current setting is contained in the column node_group_streaming_mode from the view bdr.node_group . The value returned is a single char type, and the possible values are D (default), W (writer), F
(file), A (auto), and O (off).

Configuration setting effects

Transaction streaming is controlled at the subscriber level by the GUC bdr.default_streaming_mode . Unless set to off , which disables transaction streaming, the subscriber requests transaction streaming.

If the publisher can provide transaction streaming, it streams transactions whenever the transaction size exceeds the threshold set in logical_decoding_work_mem . The publisher usually has no control over whether the transactions are
streamed to a file or to a writer. Except for some situations (such as COPY), it might hint for the subscriber to stream the transaction to a writer (if possible).

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 299

The subscriber can stream transactions received from the publisher to either a writer or a file. The decision is based on several factors:

If Parallel Apply is off (num_writers = 1), then it's streamed to a file. (writer 0 is always reserved for non-streamed transactions.)
If Parallel Apply is on but all writers are already busy handling streamed transactions, then the new transaction is streamed to a file. See Monitoring PGD writers to check PGD writer status.

If streaming to a writer is possible (that is, a free writer is available), then the decision whether to stream the transaction to a writer or a file is based on the combination of group and node settings as per the following table.

Group Node Streamed to

off (any) (none)

(any) off (none)

writer file file

file writer file

default writer writer

default file file

default auto writer

auto (any) writer

If the group configuration is set to auto , or the group configuration is default and the node configuration is auto , then the transaction is streamed to a writer only if the publisher hinted to do this.

Currently the publisher hints for the subscriber to stream to the writer for the following transaction types. These are known to be conflict free and can be safely handled by the writer.

COPY
CREATE INDEX CONCURRENTLY

Monitoring

You can monitor the use of transaction streaming using the bdr.stat_subscription function on the subscriber node.

nstream_writer — Number of transactions streamed to a writer.
nstream_file — Number of transactions streamed to file.
nstream_commit — Number of committed streamed transactions.
nstream_abort — Number of aborted streamed transactions.
nstream_start — Number of streamed transactions that were started.
nstream_stop — Number of streamed transactions that were fully received.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 300

27 Explicit two-phase commit (2PC)

Note

Two-phase commit isn't available with Group Commit or CAMO. See Commit scope limitations.

An application can explicitly opt to use two-phase commit with PGD. See Distributed Transaction Processing: The XA Specification.

The X/Open Distributed Transaction Processing (DTP) model envisions three software components:

An application program (AP) that defines transaction boundaries and specifies actions that constitute a transaction
Resource managers (RMs), such as databases or file-access systems, that provide access to shared resources
A separate component called a transaction manager (TM) that assigns identifiers to transactions, monitors their progress, and takes responsibility for transaction completion and for failure recovery

PGD supports explicit external 2PC using the PREPARE TRANSACTION and COMMIT PREPARED / ROLLBACK PREPARED commands. Externally, an EDB Postgres Distributed cluster appears to be a single resource manager to the
transaction manager for a single session.

When bdr.commit_scope is local , the transaction is prepared only on the local node. Once committed, changes are replicated, and PGD then applies post-commit conflict resolution.

Using bdr.commit_scope set to local might not seem to make sense with explicit two-phase commit. However, the option is offered to allow you to control the tradeoff between transaction latency and robustness.

Explicit two-phase commit doesn't work with either CAMO or the global commit scope. Future releases might enable this combination.

Use

Two-phase commits with a local commit scope work exactly like standard PostgreSQL. Use the local commit scope:

To start the first phase of the commit, the client must assign a global transaction id, which can be any unique string identifying the transaction:

After a successful first phase, all nodes have applied the changes and are prepared for committing the transaction. The client must then invoke the second phase from the same node:

BEGIN;
SET LOCAL bdr.commit_scope =
'local';

... other commands
possible...

PREPARE TRANSACTION 'some-global-id';

COMMIT PREPARED 'some-global-
id';

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 301

http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf

28 Application use

Developing an application with PGD is mostly the same as working with any PostgreSQL database. What's different, though, is that you need to be aware of how your application interacts with replication. You need to know how PGD behaves
with applications, the SQL that is and isn't replicated, how different nodes are handled, and other important information.

Application behavior looks at how PGD replication appears to an application, such as:

The commands that are replicated
The commands that run locally
When row-level locks are acquired
How and where triggers fire
Large objects
Toast

DML and DDL replication shows the differences between the two classes of SQL statements and how PGD handles replicating them. It also looks at the commands PGD doesn't replicate at all.

Nodes with differences examines how PGD works with configurations where there are differing table structures and schemas on replicated nodes. Also covered is how to compare between such nodes with LiveCompare and how
differences in PostgreSQL versions running on nodes can be handled.

Application rules offers some general rules for applications to avoid data anomalies.

Timing considerations shows how the asynchronous/synchronous replication might affect an application's view of data and notes functions to mitigate stale reads.

Extension usage explains how to select, install, and configure extensions on PGD.

Table access methods (TAMs) notes the TAMs available with PGD and how to enable them.

Feature compatibility shows which server features work with which commit scopes and which commit scopes can be daisy chained together.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 302

28.1 Application behavior

Much of PGD's replication behavior is transparent to applications. Understanding how it achieves that and the elements that aren't transparent is important to successfully developing an application that works well with PGD.

Replication behavior

PGD supports replicating changes made on one node to other nodes.

PGD, by default, replicates all changes from INSERT, UPDATE, DELETE, and TRUNCATE operations from the source node to other nodes. Only the final changes are sent, after all triggers and rules are processed. For example, INSERT ...
ON CONFLICT UPDATE sends either an insert or an update, depending on what occurred on the origin. If an update or delete affects zero rows, then no changes are sent.

You can replicate INSERT without any preconditions.

For updates and deletes to replicate on other nodes, PGD must be able to identify the unique rows affected. PGD requires that a table have either a PRIMARY KEY defined, a UNIQUE constraint, or an explicit REPLICA IDENTITY defined on
specific columns. If one of those isn't defined, a warning is generated, and later updates or deletes are explicitly blocked. If REPLICA IDENTITY FULL is defined for a table, then a unique index isn't required. In that case, updates and deletes are
allowed and use the first non-unique index that's live, valid, not deferred, and doesn't have expressions or WHERE clauses. Otherwise, a sequential scan is used.

Truncate

You can use TRUNCATE even without a defined replication identity. Replication of TRUNCATE commands is supported, but take care when truncating groups of tables connected by foreign keys. When replicating a truncate action, the
subscriber truncates the same group of tables that was truncated on the origin, either explicitly specified or implicitly collected by CASCADE, except in cases where replication sets are defined. See Replication sets for details and examples.
This works correctly if all affected tables are part of the same subscription. But if some tables to truncate on the subscriber have foreign-key links to tables that aren't part of the same (or any) replication set, then applying the truncate action
on the subscriber fails.

Row-level locks

Row-level locks taken implicitly by INSERT, UPDATE, and DELETE commands are replicated as the changes are made. Table-level locks taken implicitly by INSERT, UPDATE, DELETE, and TRUNCATE commands are also replicated. Explicit row-
level locking (SELECT ... FOR UPDATE/FOR SHARE) by user sessions isn't replicated, nor are advisory locks. Information stored by transactions running in SERIALIZABLE mode isn't replicated to other nodes. The transaction isolation
level of SERIALIAZABLE is supported, but transactions aren't serialized across nodes in the presence of concurrent transactions on multiple nodes.

If DML is executed on multiple nodes concurrently, then potential conflicts might occur if executing with asynchronous replication. You must either handle these or avoid them. Various avoidance mechanisms are possible, discussed in
Conflicts.

Sequences

Sequences need special handling, described in Sequences. This is because in a cluster, sequences must be global to avoid nodes creating conflicting values. Global sequences are available with global locking to ensure integrity.

Binary objects

Binary data in BYTEA columns is replicated normally, allowing "blobs" of data up to 1 GB. Use of the PostgreSQL "large object" facility isn't supported in PGD.

Rules

Rules execute only on the origin node so aren't executed during apply, even if they're enabled for replicas.

Base tables only

Replication is possible only from base tables to base tables. That is, the tables on the source and target on the subscription side must be tables, not views, materialized views, or foreign tables. Attempts to replicate tables other than base
tables result in an error. DML changes that are made through updatable views are resolved to base tables on the origin and then applied to the same base table name on the target.

Partitioned tables

PGD supports partitioned tables transparently, meaning that you can add a partitioned table to a replication set and changes that involve any of the partitions are replicated downstream.

Triggers

By default, triggers execute only on the origin node. For example, an INSERT trigger executes on the origin node and is ignored when you apply the change on the target node. You can specify for triggers to execute on both the origin node at
execution time and on the target when it's replicated (apply time) by using ALTER TABLE ... ENABLE ALWAYS TRIGGER . Or, use the REPLICA option to execute only at apply time: ALTER TABLE ... ENABLE REPLICA
TRIGGER .

Some types of trigger aren't executed on apply, even if they exist on a table and are currently enabled. Trigger types not executed are:

Statement-level triggers (FOR EACH STATEMENT)
Per-column UPDATE triggers (UPDATE OF column_name [, ...])

PGD replication apply uses the system-level default search_path. Replica triggers, stream triggers, and index expression functions can assume other search_path settings that then fail when they execute on apply. To prevent this from
occurring, use any of these techniques:

Resolve object references clearly using only the default search_path.
Always use fully qualified references to objects, for example, schema.objectname .
Set the search path for a function using ALTER FUNCTION ... SET search_path = ... for the functions affected.

PGD assumes that there are no issues related to text or other collatable datatypes, that is, all collations in use are available on all nodes, and the default collation is the same on all nodes. Replicating changes uses equality searches to locate
Replica Identity values, so this does't have any effect except where unique indexes are explicitly defined with nonmatching collation qualifiers. Row filters might be affected by differences in collations if collatable expressions were used.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 303

https://www.enterprisedb.com/docs/pgd/latest/reference/repsets
https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts
https://www.enterprisedb.com/docs/pgd/latest/reference/sequences

Toast

PGD handling of very long "toasted" data in PostgreSQL is transparent to the user. The TOAST "chunkid" values likely differ between the same row on different nodes, but that doesn't cause any problems.

Other restrictions

PGD can't work correctly if Replica Identity columns are marked as external.

PostgreSQL allows CHECK() constraints that contain volatile functions. Since PGD reexecutes CHECK() constraints on apply, any subsequent reexecution that doesn't return the same result as before causes data divergence.

PGD doesn't restrict the use of foreign keys. Cascading FKs are allowed.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 304

28.2 DML and DDL replication and nonreplication

The two major classes of SQL statement are DML and DDL.

DML is the data modification language and is concerned with the SQL statements that modify the data stored in tables. It includes UPDATE, DELETE, and INSERT.

DDL is the data definition language and is concerned with the SQL statements that modify how the data is stored. It includes CREATE, ALTER, and DROP.

PGD handles each class differently.

DML replication

PGD doesn't replicate the DML statement. It replicates the changes caused by the DML statement. For example, an UPDATE that changed two rows replicates two changes, whereas a DELETE that didn't remove any rows doesn't replicate
anything. This means that the results of executing volatile statements are replicated, ensuring there's no divergence between nodes as might occur with statement-based replication.

DDL replication

DDL replication works differently from DML. For DDL, PGD replicates the statement, which then executes on all nodes. So a DROP TABLE IF EXISTS might not replicate anything on the local node, but the statement is still sent to other
nodes for execution if DDL replication is enabled. For details, see DDL replication.

PGD works to ensure that intermixed DML and DDL statements work correctly, even in the same transaction.

Nonreplicated statements

Outside of those two classes are SQL commands that PGD, by design, doesn't replicate. None of the following user commands are replicated by PGD, so their effects occur on the local/origin node only:

Cursor operations (DECLARE, CLOSE, FETCH)
Execution commands (DO, CALL, PREPARE, EXECUTE, EXPLAIN)
Session management (DEALLOCATE, DISCARD, LOAD)
Parameter commands (SET, SHOW)
Constraint manipulation (SET CONSTRAINTS)
Locking commands (LOCK)
Table maintenance commands (VACUUM, ANALYZE, CLUSTER)
Async operations (NOTIFY, LISTEN, UNLISTEN)

Since the NOTIFY SQL command and the pg_notify() functions aren't replicated, notifications aren't reliable in case of failover. This means that notifications can easily be lost at failover if a transaction is committed just when the server
crashes. Applications running LISTEN might miss notifications in case of failover.

This is true in standard PostgreSQL replication, and PGD doesn't yet improve on this.

CAMO and Eager Replication options don't allow the NOTIFY SQL command or the pg_notify() function.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 305

28.3 Nodes with differences

Replicating between nodes with differences

By default, DDL is sent to all nodes. You can control this behavior, as described in DDL replication, and you can use it to create differences between database schemas across nodes. PGD is designed to allow replication to continue even with
minor differences between nodes. These features are designed to allow application schema migration without downtime or to allow logical standby nodes for reporting or testing.

Currently, replication requires the same table name on all nodes. A future feature might allow a mapping between different table names.

It's possible to replicate between tables with dissimilar partitioning definitions, such as a source that's a normal table replicating to a partitioned table, including support for updates that change partitions on the target. It can be faster if the
partitioning definition is the same on the source and target since dynamic partition routing doesn't need to execute at apply time. For details, see Replication sets.

By default, all columns are replicated.

PGD replicates data columns based on the column name. If a column has the same name but a different data type, PGD attempts to cast from the source type to the target type, if casts were defined that allow that.

PGD supports replicating between tables that have a different number of columns.

If the target has missing columns from the source, then PGD raises a target_column_missing conflict, for which the default conflict resolver is ignore_if_null . This throws an error if a non-NULL value arrives. Alternatively, you
can also configure a node with a conflict resolver of ignore . This setting doesn't throw an error but silently ignores any additional columns.

If the target has additional columns not seen in the source record, then PGD raises a source_column_missing conflict, for which the default conflict resolver is use_default_value . Replication proceeds if the additional columns
have a default, either NULL (if nullable) or a default expression. If not, it throws an error and halts replication.

Transform triggers can also be used on tables to provide default values or alter the incoming data in various ways before apply.

If the source and the target have different constraints, then replication is attempted, but it might fail if the rows from source can't be applied to the target. Row filters can help here.

Replicating data from one schema to a more relaxed schema doesn't cause failures. Replicating data from a schema to a more restrictive schema can be a source of potential failures. The right way to solve this is to place a constraint on the
more relaxed side, so bad data can't be entered. That way, no bad data ever arrives by replication, so it never fails the transform into the more restrictive schema. For example, if one schema has a column of type TEXT and another schema
defines the same column as XML, add a CHECK constraint onto the TEXT column to enforce that the text is XML.

You can define a table with different indexes on each node. By default, the index definitions are replicated. To specify how to create an index on only a subset of nodes or just locally, see DDL replication .

Storage parameters, such as fillfactor and toast_tuple_target , can differ between nodes for a table without problems. An exception to that behavior is that the value of a table's storage parameter user_catalog_table
must be identical on all nodes.

A table being replicated must be owned by the same user/role on each node. See Security and roles for details.

Roles can have different passwords for connection on each node, although by default changes to roles are replicated to each node. See DDL replication to specify how to alter a role password on only a subset of nodes or locally.

Comparison between nodes with differences

LiveCompare is a tool for data comparison on a database against PGD and non-PGD nodes. It needs a minimum of two connections to compare against and reach a final result.

Starting with LiveCompare 1.3, you can configure with all_bdr_nodes set. This setting saves you from clarifying all the relevant DSNs for each separate node in the cluster. An EDB Postgres Distributed cluster has N amount of nodes with
connection information, but it's only the initial and output connection that LiveCompare 1.3 and later needs to complete its job. Setting logical_replication_mode states how all the nodes are communicating.

All the configuration is done in a .ini file named bdrLC.ini , for example. Find templates for this configuration file in /etc/2ndq-livecompare/ .

While LiveCompare executes, you see N+1 progress bars, N being the number of processes. Once all the tables are sourced, a time displays as the transactions per second (tps) was measured. This mechanism continues to count the time, giving
you an estimate and then a total execution time at the end.

This tool offers a lot of customization and filters, such as tables, schemas, and replication_sets. LiveCompare can use stop-start without losing context information, so it can run at convenient times. After the comparison, a summary and a DML
script are generated so you can review it. Apply the DML to fix any differences found.

Replicating between different release levels

The other difference between nodes that you might encounter is where there are different major versions of PostgreSQL on the nodes. PGD is designed to replicate between different major release versions. This feature is designed to allow
major version upgrades without downtime.

PGD is also designed to replicate between nodes that have different versions of PGD software. This feature is designed to allow version upgrades and maintenance without downtime.

However, while it's possible to join a node with a major version in a cluster, you can't add a node with a minor version if the cluster uses a newer protocol version. Doing so returns an error.

Both of these features might be affected by specific restrictions. See Release notes for any known incompatibilities.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 306

https://www.enterprisedb.com/docs/pgd/latest/reference/repsets
https://www.enterprisedb.com/docs/pgd/latest/reference/security
https://www.enterprisedb.com/docs/pgd/latest/reference/ddl

28.4 General rules for applications

Background

PGD uses replica identity values to identify the rows to change. Applications can cause difficulties if they insert, delete, and then later reuse the same unique identifiers. This is known as the ABA problem. PGD can't know whether the rows are
the current row, the last row, or much older rows.

Similarly, since PGD uses table names to identify the table against which changes are replayed, a similar ABA problem exists with applications that create, drop, and then later reuse the same object names.

Rules for applications

These issues give rise to some simple rules for applications to follow:

Use unique identifiers for rows (INSERT).
Avoid modifying unique identifiers (UPDATE).
Avoid reusing deleted unique identifiers.
Avoid reusing dropped object names.

In the general case, breaking those rules can lead to data anomalies and divergence. Applications can break those rules as long as certain conditions are met. However, use caution: while anomalies are unlikely, they aren't impossible. For
example, you can reuse a row value as long as the DELETE was replayed on all nodes, including down nodes. This might normally occur in less than a second but can take days if a severe issue occurred on one node that prevented it from
restarting correctly.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 307

https://en.wikipedia.org/wiki/ABA_problem

28.5 Timing considerations and synchronous replication

Being asynchronous by default, peer nodes might lag behind. This behavior makes it possible for a client connected to multiple PGD nodes or switching between them to read stale data.

A queue wait function is provided for clients or proxies to prevent such stale reads.

The synchronous replication features of Postgres are available to PGD as well. In addition, PGD provides multiple variants for more synchronous replication. See Commit scopes for an overview and comparison of all variants available and their
different modes.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 308

28.6 Using extensions with PGD

PGD and other PostgreSQL extensions

PGD is implemented as a PostgreSQL extension (see Supported Postgres database servers). It takes advantage of PostgreSQL's expandability and flexibility to modify low-level system behavior to provide multi-master replication.

In principle, extensions provided by community PostgreSQL, EDB Postgres Advanced Server, and third-party extensions can be used with PGD. However, the distributed nature of PGD means that you need to carefully consider and plan the
extensions you select and install.

Extensions providing logical decoding

Extensions providing logical decoding, such as wal2json, may in theory work with PGD. However, there's no support for failover, meaning any WAL stream being read from such an extension can be interrupted.

Extensions providing replication or HA functionality

Any extension extending PostgreSQL with functionality related to replication or HA/failover is unlikely to work well with PGD and may even be detrimental to the health of the PGD cluster. We recommend avoiding these.

Supported extensions

These extensions are explicitly supported by PGD.

EDB Advanced Storage table access methods

The EDB Advanced Storage Pack provides a selection of table access methods (TAMs) implemented as extensions. The following TAMs are certified for use with PGD:

Autocluster
Refdata

For more details, see Table access methods.

pgaudit

PGD was modified to ensure compatibility with the pgaudit extension. See Postgres settings for configuration information.

Installing extensions

PostgreSQL extensions provide SQL objects, such as functions, datatypes, and, optionally, one or more shared libraries. These must be loaded into the PostgreSQL backend before you can install and use the extension.

Warning

The relevant extension packages must be available on all nodes in the cluster. Otherwise extension installation can fail and impact cluster stability.

If PGD is deployed using Trusted Postgres Architect, configure extensions using that tool. For details, see Adding Postgres extensions.

The following is relevant for manually configured PGD installations.

Configuring shared_preload_libraries

If an extension provides a shared library, include this library in the shared_preload_libraries configuration parameter before installing the extension.

shared_preload_libraries consists of a comma-separated list of extension names. It must include bdr . The order in which you specify other extensions generally doesn't matter. However if you're using the pgaudit extension,
pgaudit must appear in the list before bdr .

Configure shared_preload_libraries on all nodes in the cluster before installing the extension with CREATE EXTENSION . You must restart PostgreSQL to activate the new configuration.

See also Postgres settings.

Installing the extension

Install the extension using the CREATE EXTENSION command. You need to do this on only one node in the cluster. PGD's DDL replication will ensure that it propagates to all other nodes.

Warning

Do not attempt to install extensions manually on each node by, for example, disabling DDL replication before executing CREATE EXTENSION .

Do not use a command such as bdr.replicate_ddl_command() to execute CREATE EXTENSION .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 309

https://github.com/eulerto/wal2json
https://www.enterprisedb.com/docs/pg_extensions/advanced_storage_pack/
https://www.enterprisedb.com/docs/pg_extensions/advanced_storage_pack/#autocluster
https://www.enterprisedb.com/docs/pg_extensions/advanced_storage_pack/#refdata
https://www.pgaudit.org/
https://www.enterprisedb.com/docs/tpa/latest/
https://www.enterprisedb.com/docs/tpa/latest/reference/postgres_extension_configuration
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-SHARED-PRELOAD-LIBRARIES
https://www.enterprisedb.com/docs/pgd/latest/reference/postgres-configuration/#postgres-settings

28.7 Use of table access methods (TAMs) in PGD

The EDB Advanced Storage Pack provides a selection of table access methods (TAMs), available from EDB Postgres 15.0.

The following TAMs were certified for use with PGD 6.0:

Autocluster
Refdata

Usage of any other TAM is restricted until certified by EDB.

To use one of these TAMs on a PGD cluster, the appropriate extension library (autocluster and/or refdata) must be added to the shared_preload_libraries parameter on each node, and the PostgreSQL server restarted.

Once the extension library is present in shared_preload_libraries on all nodes in the cluster, the extension itself can be created with CREATE EXTENSION autocluster; or CREATE EXTENSION refdata; . The CREATE
EXTENSION command only needs to be executed on one node; it will be replicated to the other nodes in the cluster.

After you create the extension, use CREATE TABLE test USING autocluster; or CREATE TABLE test USING refdata; to create a table with the specified TAM. These commands replicate to all PGD nodes in the cluster.

For more information on these table access methods, see:

Autocluster example
Refdata example

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 310

https://www.enterprisedb.com/docs/pg_extensions/advanced_storage_pack/
https://www.enterprisedb.com/docs/pg_extensions/advanced_storage_pack/#autocluster
https://www.enterprisedb.com/docs/pg_extensions/advanced_storage_pack/#refdata
https://www.enterprisedb.com/docs/pg_extensions/advanced_storage_pack/using/#autocluster-example
https://www.enterprisedb.com/docs/pg_extensions/advanced_storage_pack/using/#refdata-example

28.8 Feature compatibility

Server feature/commit scope interoperability

Not all server features work with all commit scopes. This table shows the ones that interoperate.

Async
(default)

Parallel
Apply

Transaction
Streaming

Single
Decoding

Worker

Group Commit ⛔ ︎ ❌

❌

❗ ️
✅

CAMO ⛔ ︎ ✅ ❌ ❌

Lag Control ✅ ✅ ✅ ✅

Synchronous Commit ⛔ ︎ ✅ ✅ ✅

Legend: ⛔ ︎ Not applicable ❌ Does not interoperate ✅ Interoperates

Notes

⛔ ︎ : The Async column in the table represents PGD without a synchronous commit scope in use. Lag Control isn't a synchronous commit scope. It's a controlling commit scope and is therefore available with asynchronous
operations.

❗ ️ : Attempting to use Group Commit and Transaction Streaming presents a warning. The warning suggests that you disable transaction streaming, and the transaction appears to take place. In the background, Group
Commit was disabled to allow the transaction to occur.

Commit scope/commit scope interoperability

Although you can't mix commit scopes, you can combine rules with an AND operator. This table shows where commit scopes can be combined.

Group
Commit

CAMO Lag
Control

Synchronous
Commit

Group Commit ⛔ ︎ ❌ ✅ ✅

CAMO ❌ ⛔ ︎ ✅ ❌

Lag Control ✅ ✅ ⛔ ︎ ✅

Synchronous Commit ✅ ❌ ✅ ⛔ ︎

Legend: ⛔ ︎ Not applicable ❌ Does not combine ✅ Combines

Notes

Each commit scope implicitly works with itself.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 311

https://www.enterprisedb.com/docs/pgd/latest/reference/parallelapply
https://www.enterprisedb.com/docs/pgd/latest/reference/transaction-streaming
https://www.enterprisedb.com/docs/pgd/latest/reference/decoding_worker
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/group-commit
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/camo
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/lag-control
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/synchronous_commit
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/commit-scope-rules/#combining-rules
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/group-commit
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/camo
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/lag-control
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/synchronous_commit
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/group-commit
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/camo
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/lag-control
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/synchronous_commit

29 PGD Reference

The reference section is a definitive listing of all functions, views, and commands available in EDB Postgres Distributed.

Tables, Views, and Functions
Command Line Interface (CLI)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 312

29.1 Tables, views and functions reference

The reference section is a definitive listing of all functions, views, and commands available in EDB Postgres Distributed.

User visible catalogs and views

bdr.camo_decision_journal
bdr.commit_scopes
bdr.conflict_history
bdr.conflict_history_summary
bdr.consensus_kv_data
bdr.crdt_handlers
bdr.ddl_replication
bdr.depend
bdr.failover_replication_slots
bdr.global_consensus_journal
bdr.global_consensus_journal_details
bdr.global_consensus_response_journal
bdr.global_lock
bdr.global_locks
bdr.group_camo_details
bdr.group_raft_details
bdr.group_replslots_details
bdr.group_subscription_summary
bdr.group_versions_details
bdr.leader
bdr.local_consensus_snapshot
bdr.local_consensus_state
bdr.local_node
bdr.local_node_summary
bdr.local_sync_status
bdr.node
bdr.node_catchup_info
bdr.node_catchup_info_details
bdr.node_conflict_resolvers
bdr.node_group
bdr.node_group_replication_sets
bdr.node_group_summary
bdr.node_local_info
bdr.node_log_config
bdr.node_peer_progress
bdr.node_replication_rates
bdr.node_slots
bdr.node_summary
bdr.parted_origin_catchup_info
bdr.parted_origin_catchup_info_details
bdr.queue
bdr.replication_set
bdr.replication_set_table
bdr.replication_set_ddl
bdr.replication_sets
bdr.schema_changes
bdr.sequence_alloc
bdr.sequences
bdr.stat_activity
bdr.stat_activity additional columns
bdr.stat_commit_scope
bdr.stat_commit_scope_state
bdr.stat_connection_manager
bdr.stat_connection_manager_connections
bdr.stat_connection_manager_node_stats
bdr.stat_connection_manager_hba_file_rules
bdr.stat_raft_followers_state
bdr.stat_raft_state
bdr.stat_receiver
bdr.stat_relation
bdr.stat_routing_candidate_state
bdr.stat_routing_state
bdr.stat_subscription
bdr.stat_worker
bdr.stat_writer
bdr.subscription
bdr.subscription_summary
bdr.tables
bdr.taskmgr_work_queue
bdr.taskmgr_workitem_status
bdr.taskmgr_local_work_queue
bdr.taskmgr_local_workitem_status
bdr.trigger
bdr.triggers
bdr.workers
bdr.writers
bdr.worker_tasks

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 313

System functions

Version information functions

bdr.bdr_version
bdr.bdr_version_num

System information functions

bdr.get_relation_stats
bdr.get_subscription_stats

System and progress information parameters

bdr.local_node_id
bdr.last_committed_lsn
transaction_id

Node status functions

bdr.is_node_connected
bdr.is_node_ready

Consensus function

bdr.consensus_disable
bdr.consensus_enable
bdr.consensus_proto_version
bdr.consensus_snapshot_export
bdr.consensus_snapshot_import
bdr.consensus_snapshot_verify
bdr.get_consensus_status
bdr.get_raft_status
bdr.raft_leadership_transfer

Utility functions

bdr.wait_slot_confirm_lsn
bdr.wait_node_confirm_lsn
bdr.wait_for_apply_queue
bdr.get_node_sub_receive_lsn
bdr.get_node_sub_apply_lsn
bdr.replicate_ddl_command
bdr.run_on_all_nodes
bdr.run_on_nodes
bdr.run_on_group
bdr.global_lock_table
bdr.wait_for_xid_progress
bdr.local_group_slot_name
bdr.node_group_type
bdr.alter_node_kind
bdr.alter_subscription_skip_changes_upto

Global advisory locks

bdr.global_advisory_lock
bdr.global_advisory_unlock

Monitoring functions

bdr.monitor_group_versions
bdr.monitor_group_raft
bdr.monitor_local_replslots
bdr.wal_sender_stats
bdr.get_decoding_worker_stat
bdr.lag_control

Routing functions

bdr.routing_leadership_transfer

CAMO functions

bdr.is_camo_partner_connected
bdr.is_camo_partner_ready
bdr.get_configured_camo_partner
bdr.wait_for_camo_partner_queue
bdr.camo_transactions_resolved
bdr.logical_transaction_status

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 314

Commit Scope functions

bdr.add_commit_scope
bdr.create_commit_scope
bdr.alter_commit_scope
bdr.drop_commit_scope
bdr.remove_commit_scope

PGD settings

Conflict handling

bdr.default_conflict_detection

Global sequence parameters

bdr.default_sequence_kind

DDL handling

bdr.default_replica_identity
bdr.ddl_replication
bdr.role_replication
bdr.ddl_locking
bdr.truncate_locking

Global locking

bdr.global_lock_max_locks
bdr.global_lock_timeout
bdr.global_lock_statement_timeout
bdr.global_lock_idle_timeout
bdr.lock_table_locking
bdr.predictive_checks

Node management

bdr.replay_progress_frequency

Generic replication

bdr.writers_per_subscription
bdr.max_writers_per_subscription
bdr.xact_replication
bdr.permit_unsafe_commands
bdr.batch_inserts
bdr.maximum_clock_skew
bdr.maximum_clock_skew_action
bdr.accept_connections
bdr.writer_input_queue_size
bdr.writer_output_queue_size
bdr.min_worker_backoff_delay

CRDTs

bdr.crdt_raw_value

Commit scope

bdr.commit_scope

Commit At Most Once

bdr.camo_local_mode_delay
bdr.camo_enable_client_warnings

Transaction streaming

bdr.default_streaming_mode

Lag Control

bdr.lag_control_max_commit_delay
bdr.lag_control_max_lag_size
bdr.lag_control_max_lag_time
bdr.lag_control_min_conforming_nodes
bdr.lag_control_commit_delay_adjust
bdr.lag_control_sample_interval

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 315

bdr.lag_control_sample_interval
bdr.lag_control_commit_delay_start

Monitoring and logging

bdr.debug_level
bdr.trace_level
bdr.track_subscription_apply
bdr.track_relation_apply
bdr.track_apply_lock_timing

Decoding worker

bdr.enable_wal_decoder
bdr.receive_lcr
bdr.lcr_cleanup_interval

Connectivity settings

bdr.global_connection_timeout
bdr.global_keepalives
bdr.global_keepalives_idle
bdr.global_keepalives_interval
bdr.global_keepalives_count
bdr.global_tcp_user_timeout

Topology settings

bdr.force_full_mesh

Internal settings - Raft timeouts

bdr.raft_global_election_timeout
bdr.raft_group_election_timeout
bdr.raft_response_timeout

Internal settings - Other Raft values

bdr.raft_keep_min_entries
bdr.raft_log_min_apply_duration
bdr.raft_log_min_message_duration
bdr.raft_group_max_connections

Internal settings - Other values

bdr.backwards_compatibility
bdr.track_replication_estimates
bdr.lag_tracker_apply_rate_weight
bdr.enable_auto_sync_reconcile

Node management

List of node states
Node-management commands

bdr_init_physical
bdr_config

Node management interfaces

bdr.alter_node_group_option
bdr.alter_node_interface
bdr.alter_node_option
bdr.alter_subscription_enable
bdr.alter_subscription_disable
bdr.create_node
bdr.create_node_group
bdr.drop_node_group
bdr.join_node_group
bdr.part_node
bdr.promote_node
bdr.switch_node_group
bdr.sync_node_cancel
bdr.wait_for_join_completion

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 316

Routing functions

Commit scopes

Commit scope syntax
commit_scope_degrade_operation

Commit scope targets
ORIGIN_GROUP

Commit scope groups
ANY
ANY NOT
MAJORITY
MAJORITY NOT
ALL
ALL NOT

Confirmation level
ON received
ON replicated
ON durable
ON visible

Commit Scope kinds
SYNCHRONOUS COMMIT

DEGRADE ON parameters
commit_scope_degrade_operation

GROUP COMMIT
GROUP COMMIT parameters
ABORT ON parameters
DEGRADE ON parameters
transaction_tracking settings
conflict_resolution settings
commit_decision settings
commit_scope_degrade_operation settings

CAMO
DEGRADE ON parameters

LAG CONTROL
LAG CONTROL parameters

Conflicts

Conflict detection
List of conflict types

Conflict resolution
List of conflict resolvers
Default conflict resolvers
List of conflict resolutions

Conflict logging

Conflict functions

bdr.alter_table_conflict_detection
bdr.alter_node_set_conflict_resolver
bdr.alter_node_set_log_config

Replication set management

bdr.create_replication_set
bdr.alter_replication_set
bdr.drop_replication_set
bdr.alter_node_replication_sets

Replication set membership

bdr.replication_set_add_table
bdr.replication_set_remove_table

DDL replication filtering

bdr.replication_set_add_ddl_filter
bdr.replication_set_remove_ddl_filter

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 317

https://www.enterprisedb.com/docs/pgd/6.1/reference/tables-views-functions/routing

Testing and tuning commands

pgd_bench

Global sequence management interfaces

Sequence functions

bdr.alter_sequence_set_kind
bdr.extract_timestamp_from_snowflakeid
bdr.extract_nodeid_from_snowflakeid
bdr.extract_localseqid_from_snowflakeid
bdr.timestamp_to_snowflakeid
bdr.extract_timestamp_from_timeshard
bdr.extract_nodeid_from_timeshard
bdr.extract_localseqid_from_timeshard
bdr.timestamp_to_timeshard
bdr.galloc_chunk_info

KSUUID v2 functions

bdr.gen_ksuuid_v2
bdr.ksuuid_v2_cmp
bdr.extract_timestamp_from_ksuuid_v2

KSUUID v1 functions

bdr.gen_ksuuid
bdr.uuid_v1_cmp
bdr.extract_timestamp_from_ksuuid

Autopartition

bdr.autopartition
bdr.drop_autopartition
bdr.autopartition_wait_for_partitions
bdr.autopartition_wait_for_partitions_on_all_nodes
bdr.autopartition_find_partition
bdr.autopartition_enable
bdr.autopartition_disable

Internal functions
bdr.autopartition_create_partition
bdr.autopartition_drop_partition

Stream triggers reference

Stream triggers manipulation interfaces

bdr.create_conflict_trigger
bdr.create_transform_trigger
bdr.drop_trigger

Stream triggers row functions

bdr.trigger_get_row
bdr.trigger_get_committs
bdr.trigger_get_xid
bdr.trigger_get_type
bdr.trigger_get_conflict_type
bdr.trigger_get_origin_node_id
bdr.ri_fkey_on_del_trigger

Stream triggers row variables

TG_NAME
TG_WHEN
TG_LEVEL
TG_OP
TG_RELID
TG_TABLE_NAME
TG_TABLE_SCHEMA
TG_NARGS
TG_ARGV[]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 318

Internal catalogs and views

bdr.autopartition_partitions
bdr.autopartition_rules
bdr.ddl_epoch
bdr.event_history
bdr.event_summary
bdr.local_leader_change
bdr.node_config
bdr.node_config_summary
bdr.node_group_config
bdr.node_group_routing_config_summary
bdr.node_group_routing_info
bdr.node_group_routing_summary
bdr.node_routing_config_summary
bdr.sequence_kind
bdr.sync_node_requests
bdr.sync_node_requests_summary

Internal system functions

General internal functions

bdr.bdr_get_commit_decisions
bdr.bdr_track_commit_decision
bdr.consensus_kv_fetch
bdr.consensus_kv_store
bdr.decode_message_payload
bdr.decode_message_response_payload
bdr.difference_fix_origin_create
bdr.difference_fix_session_reset
bdr.difference_fix_session_setup
bdr.difference_fix_xact_set_avoid_conflict
bdr.drop_node
bdr.get_global_locks
bdr.get_node_conflict_resolvers
bdr.get_slot_flush_timestamp
bdr.internal_alter_sequence_set_kind
bdr.internal_replication_set_add_table
bdr.internal_replication_set_remove_table
bdr.internal_submit_join_request
bdr.isolation_test_session_is_blocked
bdr.local_node_info
bdr.msgb_connect
bdr.msgb_deliver_message
bdr.node_catchup_state_name
bdr.node_kind_name
bdr.peer_state_name
bdr.pg_xact_origin
bdr.request_replay_progress_update
bdr.reset_relation_stats
bdr.reset_subscription_stats
bdr.resynchronize_table_from_node
bdr.seq_currval
bdr.seq_lastval
bdr.seq_nextval
bdr.show_subscription_status
bdr.show_workers
bdr.show_writers
bdr.sync_status_name

Task manager functions

bdr.taskmgr_set_leader
bdr.taskmgr_get_last_completed_workitem
bdr.taskmgr_work_queue_check_status
bdr.get_min_required_replication_slots
bdr.get_min_required_worker_processes
bdr.stat_get_activity
bdr.worker_role_id_name
bdr.lag_history
bdr.get_raft_instance_by_nodegroup
bdr.monitor_camo_on_all_nodes
bdr.monitor_raft_details_on_all_nodes
bdr.monitor_replslots_details_on_all_nodes
bdr.monitor_subscription_details_on_all_nodes
bdr.monitor_version_details_on_all_nodes
bdr.node_group_member_info

Conflict functions

bdr.alter_table_conflict_detection
bdr.alter_node_set_conflict_resolver
bdr.alter_node_set_log_config

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 319

Column-level conflict functions

bdr.column_timestamps_create

Conflicts

Conflict detection
List of conflict types

Conflict resolution
List of conflict resolvers
Default conflict resolvers
List of conflict resolutions

Conflict logging

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 320

29.1.1 User visible catalogs and views

Catalogs and views are listed here in alphabetical order.

bdr.camo_decision_journal

A persistent journal of decisions resolved by a CAMO partner node after a failover, in case bdr.logical_transaction_status was invoked. Unlike bdr.node_pre_commit , this doesn't cover transactions processed under normal
operational conditions (that is, both nodes of a CAMO pair are running and connected). Entries in this journal aren't ever cleaned up automatically. This is a diagnostic tool that the system doesn't depend on.

bdr.camo_decision_journal columns

Name Type Description

origin_node_id oid OID of the node where the transaction
executed

origin_xid oid Transaction ID on the remote origin node

decision char 'c' for commit, 'a' for abort

decision_ts timestamptz Decision time

bdr.commit_scopes

Catalog storing all possible commit scopes that you can use for bdr.commit_scope to enable Group Commit.

bdr.commit_scopes columns

Name Type Description

commit_scope_id oid ID of the scope to be referenced

commit_scope_name name Name of the scope to be referenced

commit_scope_origin_node_group oid Node group for which the rule applies, referenced by ID

sync_scope_rule text Definition of the scope

bdr.conflict_history

This table is the default table where conflicts are logged. The table is RANGE partitioned on column local_time and is managed by Autopartition. The default data retention period is 30 days.

Access to this table is possible by any table owner, who can see all conflicts for the tables they own, restricted by row-level security.

For details, see Logging conflicts to a table.

bdr.conflict_history columns

Name Type Description

sub_id oid Subscription that produced this conflict; can be joined to bdr.subscription table

origin_node_id oid OID (as seen in the pg_replication_origin catalog) of the node that produced the conflicting change

local_xid xid Local transaction of the replication process at the time of conflict

local_lsn pg_lsn Local LSN at the time of conflict

local_time timestamp with time zone Local time of the conflict

remote_xid xid Transaction that produced the conflicting change on the remote node (an origin)

remote_change_nr oid Index of the change within its transaction

remote_commit_lsn pg_lsn Commit LSN of the transaction which produced the conflicting change on the remote node (an origin)

remote_commit_time timestamp with time zone Commit timestamp of the transaction that produced the conflicting change on the remote node (an origin)

conflict_type text Detected type of the conflict

conflict_resolution text Conflict resolution chosen

conflict_index regclass Conflicting index (valid only if the index wasn't dropped since)

reloid oid Conflicting relation (valid only if the index wasn't dropped since)

nspname text Name of the schema for the relation on which the conflict has occurred at the time of conflict (doesn't follow renames)

relname text Name of the relation on which the conflict has occurred at the time of conflict (does not follow renames)

key_tuple json Json representation of the key used for matching the row

remote_tuple json Json representation of an incoming conflicting row

local_tuple json Json representation of the local conflicting row

apply_tuple json Json representation of the resulting (the one that has been applied) row

local_tuple_xmin xid Transaction that produced the local conflicting row (if local_tuple is set and the row isn't frozen)

local_tuple_node_id oid Node that produced the local conflicting row (if local_tuple is set and the row isn't frozen)

local_tuple_commit_time timestamp with time zone Last-known-change timestamp of the local conflicting row (if local_tuple is set and the row isn't frozen). This commit timestamp belongs to the node that produced this
tuple.

bdr.conflict_history_summary

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 321

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts
https://www.postgresql.org/docs/current/catalog-pg-replication-origin.html

bdr.conflict_history_summary

A view containing user-readable details on row conflict.

bdr.conflict_history_summary columns

Name Type Description

nspname text Name of the schema

relname text Name of the table

origin_node_id oid OID (as seen in the pg_replication_origin catalog) of the node that produced the conflicting change

remote_commit_lsn pg_lsn Commit LSN of the transaction which produced the conflicting change on the remote node (an
origin)

remote_change_nr oid Index of the change within its transaction

local_time timestamp with time zone Local time of the conflict

local_tuple_commit_time timestamp with time zone Time of local commit

remote_commit_time timestamp with time zone Time of remote commit

conflict_type text Type of conflict

conflict_resolution text Resolution adopted

bdr.consensus_kv_data

A persistent storage for the internal Raft-based KV store used by bdr.consensus_kv_store() and bdr.consensus_kv_fetch() interfaces.

bdr.consensus_kv_data Columns

Name Type Description

kv_key text Unique key

kv_val json Arbitrary value in json format

kv_create_ts timestamptz Last write timestamp

kv_ttl int Time to live for the value in milliseconds

kv_expire_ts timestamptz Expiration timestamp (kv_create_ts + kv_ttl)

bdr.crdt_handlers

This table lists merge ("handlers") functions for all CRDT data types.

bdr.crdt_handlers Columns

Name Type Description

crdt_type_id regtype CRDT data type ID

crdt_merge_id regproc Merge function for this data
type

bdr.ddl_replication

This view lists DDL replication configuration as set up by current DDL filters.

bdr.ddl_replication columns

Name Type Description

set_ddl_name name Name of DDL filter

set_ddl_tag text Command tags it applies on (regular expression)

set_ddl_role text Roles it applies to (regular expression)

set_name name Name of the replication set for which this filter is
defined

bdr.depend

This table tracks internal object dependencies inside PGD catalogs.

bdr.failover_replication_slots

This table tracks the status of logical replication slots that are being used with failover support. For more information on failover replication slots, see CDC Failover support.

bdr.failover_replication_slots columns

Name Type Description

slot_name name Name of the replication slot

slot_id oid ID of the replication slot

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 322

https://www.postgresql.org/docs/current/catalog-pg-replication-origin.html
https://www.enterprisedb.com/docs/pgd/latest/reference/cdc-failover

node_group_id oid ID of the node group

plugin name Name of the plugin

twophase boolean Is the slot used for two-phase commit

active_node oid ID of the active node

active_pid int PID of the process currently decoding the slot

prev_node oid ID of the previous node

Name Type Description

bdr.global_consensus_journal

This catalog table logs all the Raft messages that were sent while managing global consensus.

As for the bdr.global_consensus_response_journal catalog, the payload is stored in a binary encoded format, which can be decoded with the bdr.decode_message_payload() function. See the
bdr.global_consensus_journal_details view for more details.

bdr.global_consensus_journal columns

Name Type Description

log_index int8 ID of the journal entry

term int8 Raft term

origin oid ID of node where the request
originated

req_id int8 ID for the request

req_payload bytea Payload for the request

trace_context bytea Trace context for the request

bdr.global_consensus_journal_details

This view presents Raft messages that were sent and the corresponding responses, using the bdr.decode_message_payload() function to decode their payloads.

bdr.global_consensus_journal_details columns

Name Type Description

node_group_name name Name of the node group

log_index int8 ID of the journal entry

term int8 Raft term

request_id int8 ID of the request

origin_id oid ID of the node where the request originated

req_payload bytea Payload of the request

origin_node_name name Name of the node where the request originated

message_type_no oid ID of the PGD message type for the request

message_type text Name of the PGD message type for the request

message_payload text PGD message payload for the request

response_message_type_no oid ID of the PGD message type for the response

response_message_type text Name of the PGD message type for the response

response_payload text PGD message payload for the response

response_errcode_no text SQLSTATE for the response

response_errcode text Error code for the response

response_message text Error message for the response

bdr.global_consensus_response_journal

This catalog table collects all the responses to the Raft messages that were received while managing global consensus.

As for the bdr.global_consensus_journal catalog, the payload is stored in a binary-encoded format, which can be decoded with the bdr.decode_message_payload() function. See the
bdr.global_consensus_journal_details view for more details.

bdr.global_consensus_response_journal columns

Name Type Description

log_index int8 ID of the journal entry

res_status oid Status code for the response

res_payload bytea Payload for the response

trace_context bytea Trace context for the response

bdr.global_lock

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 323

bdr.global_lock

This catalog table stores the information needed for recovering the global lock state on server restart.

For monitoring usage, the bdr.global_locks view is preferable because the visible rows in bdr.global_lock don't necessarily reflect all global locking activity.

Don't modify the contents of this table. It is an important PGD catalog.

bdr.global_lock columns

Name Type Description

ddl_epoch int8 DDL epoch for the lock

origin_node_id oid OID of the node where the global lock has originated

lock_type oid Type of the lock (DDL or DML)

nspname name Schema name for the locked relation

relname name Relation name for the locked relation

groupid oid OID of the top level group (for Advisory locks)

key1 integer First 32-bit key or lower order 32-bits of 64-bit key (for advisory locks)

key2 integer Second 32-bit key or higher order 32-bits of 64-bit key (for advisory
locks)

key_is_bigint boolean True if 64-bit integer key is used (for advisory locks)

bdr.global_locks

A view containing active global locks on this node. The bdr.global_locks view exposes PGD's shared-memory lock state tracking, giving administrators greater insight into PGD's global locking activity and progress.

See Monitoring global locks for more information about global locking.

bdr.global_locks columns

Name Type Description

origin_node_id oid OID of the node where the global lock has originated

origin_node_name name Name of the node where the global lock has originated

lock_type text Type of the lock (DDL or DML)

relation text Locked relation name (for DML locks) or keys (for advisory locks)

pid int4 PID of the process holding the lock

acquire_stage text Internal state of the lock acquisition process

waiters int4 List of backends waiting for the same global lock

global_lock_request_time timestamptz Time this global lock acquire was initiated by origin node

local_lock_request_time timestamptz Time the local node started trying to acquire the local lock

last_state_change_time timestamptz Time acquire_stage last changed

Column details:

relation : For DML locks, relation shows the relation on which the DML lock is acquired. For global advisory locks, relation column actually shows the two 32-bit integers or one 64-bit integer on which the lock is acquired.

origin_node_id and origin_node_name : If these are the same as the local node's ID and name, then the local node is the initiator of the global DDL lock, that is, it is the node running the acquiring transaction. If these fields
specify a different node, then the local node is instead trying to acquire its local DDL lock to satisfy a global DDL lock request from a remote node.

pid : The process ID of the process that requested the global DDL lock, if the local node is the requesting node. Null on other nodes. Query the origin node to determine the locker pid.

global_lock_request_time : The timestamp at which the global-lock request initiator started the process of acquiring a global lock. Can be null if unknown on the current node. This time is stamped at the beginning of the DDL
lock request and includes the time taken for DDL epoch management and any required flushes of pending-replication queues. Currently only known on origin node.

local_lock_request_time : The timestamp at which the local node started trying to acquire the local lock for this global lock. This includes the time taken for the heavyweight session lock acquire but doesn't include any time
taken on DDL epochs or queue flushing. If the lock is reacquired after local node restart, it becomes the node restart time.

last_state_change_time : The timestamp at which the bdr.global_locks.acquire_stage field last changed for this global lock entry.

bdr.group_camo_details

Uses bdr.run_on_all_nodes to gather CAMO-related information from all nodes.

bdr.group_camo_details columns

Name Type Description

node_id text Internal node ID

node_name text Name of the node

camo_partner text Node name of the camo partner

is_camo_partner_connected text Connection status

is_camo_partner_ready text Readiness status

camo_transactions_resolved text Are there any pending and unresolved CAMO transactions

apply_lsn text Latest position reported as replayed (visible)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 324

receive_lsn text Latest LSN of any change or message received (can go backwards in case of restarts)

apply_queue_size text Bytes difference between apply_lsn and receive_lsn

Name Type Description

bdr.group_raft_details

Uses bdr.run_on_all_nodes to gather Raft Consensus status from all nodes.

bdr.group_raft_details columns

Name Type Description

node_id oid Internal node ID

node_name name Name of the node

node_group_name name Name of the group is part of

state text Raft worker state on the node

leader_id oid Node id of the RAFT_LEADER

current_term int Raft election internal ID

commit_index int Raft snapshot internal ID

nodes int Number of nodes accessible

voting_nodes int Number of nodes voting

protocol_version int Protocol version for this node

bdr.group_replslots_details

Uses bdr.run_on_all_nodes to gather PGD slot information from all nodes.

bdr.group_replslots_details columns

Name Type Description

node_group_name text Name of the PGD group

origin_name text Name of the origin node

target_name text Name of the target node

slot_name text Slot name on the origin node used by this subscription

active text Is the slot active (does it have a connection attached to it)

state text State of the replication (catchup, streaming, ...) or 'disconnected' if offline

write_lag interval Approximate lag time for reported write

flush_lag interval Approximate lag time for reported flush

replay_lag interval Approximate lag time for reported replay

sent_lag_bytes int8 Bytes difference between sent_lsn and current WAL write position

write_lag_bytes int8 Bytes difference between write_lsn and current WAL write position

flush_lag_bytes int8 Bytes difference between flush_lsn and current WAL write position

replay_lag_byte int8 Bytes difference between replay_lsn and current WAL write position

bdr.group_subscription_summary

Uses bdr.run_on_all_nodes to gather subscription status from all nodes.

bdr.group_subscription_summary columns

Name Type Description

origin_node_name text Name of the origin of the subscription

target_node_name text Name of the target of the subscription

last_xact_replay_timestamp text Timestamp of the last replayed transaction

sub_lag_seconds text Lag between now and last_xact_replay_timestamp

bdr.group_versions_details

Uses bdr.run_on_all_nodes to gather PGD information from all nodes.

bdr.group_versions_details columns

Name Type Description

node_id oid Internal node ID

node_name name Name of the node

postgres_version text PostgreSQL version on the node

bdr_version text PGD version on the node

bdr.leader

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 325

bdr.leader

Tracks leader nodes across subgroups in the cluster. Shows the status of all write leaders and subscriber-only group leaders (when optimized topology is enabled) in the cluster.

bdr.leader columns

Name Type Description

node_group_id oid ID of the node group.

leader_node_id oid ID of the leader node.

generation int Generation of the leader node. Leader_kind sets semantics.

leader_kind "char" Kind of the leader node.

Leader_kind values can be:

Value Description

W
Write leader, as per proxy routing. In this case leader is maintained by subgroup Raft instance.
generation corresponds to write_leader_version of respective bdr.node_group_routing_info record.

S
Subscriber-only group leader. This designated member of a SO group subscribes to upstream data nodes and is tasked with publishing upstream changes to remaining SO group members. Leader is maintained by top-level Raft
instance.
generation is updated sequentially upon leader change.

bdr.local_consensus_snapshot

This catalog table contains consensus snapshots created or received by the local node.

bdr.local_consensus_snapshot columns

Name Type Description

log_index int8 ID of the journal entry

log_term int8 Raft term

snapshot bytea Raft snapshot data

bdr.local_consensus_state

This catalog table stores the current state of Raft on the local node.

bdr.local_consensus_state columns

Name Type Description

node_id oid ID of the node

current_term int8 Raft term

apply_index int8 Raft apply index

voted_for oid Vote cast by this node in this term

last_known_leader oid node_id of last known Raft leader

bdr.local_node

This table identifies the local node in the current database of the current Postgres instance.

bdr.local_node columns

Name Type Description

node_id oid ID of the node

pub_repsets text[] Published replication sets

sub_repsets text[] Subscribed replication sets

node_uuid uuid UUID of the node

bdr.local_node_summary

A view containing the same information as bdr.node_summary (plus pub_repsets and sub_repsets), but only for the local node.

bdr.local_sync_status

Information about status of either subscription or table synchronization process.

bdr.local_sync_status columns

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 326

bdr.local_sync_status columns

Name Type Description

sync_kind char Kind of synchronization done

sync_subid oid ID of subscription doing the synchronization

sync_nspname name Schema name of the synchronized table (if any)

sync_relname name Name of the synchronized table (if any)

sync_status char Current state of the synchronization

sync_remote_relid oid ID of the synchronized table (if any) on the upstream

sync_end_lsn pg_lsn Position at which the synchronization state last changed

bdr.node

This table lists all the PGD nodes in the cluster.

The view bdr.node_summary provides a human-readable version of most of the columns from bdr.node .

bdr.node columns

Name Type Description

node_id oid ID of the node

node_name name Name of the node

node_group_id oid ID of the node group

source_node_id oid ID of the source node

synchronize_structure "char" Schema synchronization done during the join

node_state oid Consistent state of the node

target_state oid State that the node is trying to reach (during join or promotion)

seq_id int4 Sequence identifier of the node used for generating unique sequence numbers

dbname name Database name of the node

node_dsn char Connection string for the node

proto_version_ranges int[] Supported protocol version ranges by the node

generation smallint Counter incremented when a node joins with the same name as a previous node

node_kind oid ID of the node kind

node_join_finished boolean Check if the join is finished

node_uuid uuid UUID of the node (UNIQUE)

bdr.node_catchup_info

This catalog table records relevant catchup information on each node, either if it is related to the join or part procedure.

bdr.node_catchup_info columns

Name Type Description

node_id oid ID of the node

node_source_id oid ID of the node used as source for the data

slot_name name Slot used for this source

min_node_lsn pg_lsn Minimum LSN at which the node can switch to direct replay from a peer node

catchup_state oid Status code of the catchup state

origin_node_id oid ID of the node from which we want transactions

If a node(node_id) needs missing data from a parting node(origin_node_id), it can get it from a node that already has it(node_source_id) by forwarding. The records in this table persists until the node(node_id) is a member of the EDB Postgres
Distributed cluster.

bdr.node_catchup_info_details

A view of bdr.node_catchup_info catalog which shows info in more friendly way

bdr.node_conflict_resolvers

Currently configured conflict resolution for all known conflict types.

bdr.node_conflict_resolvers columns

Name Type Description

conflict_type text Type of the conflict

conflict_resolver text Resolver used for this conflict type

bdr.node_group

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 327

bdr.node_group

This catalog table lists all the PGD node groups. See also bdr.node_group_summary for a view containing user-readable details.

bdr.node_group columns

Name Type Description

node_group_id oid ID of the node group.

node_group_name name Name of the node group.

node_group_default_repset oid Default replication set for this node group.

node_group_default_repset_ext oid Default replication set for this node group.

node_group_parent_id oid ID of parent group (0 if this is a root group).

node_group_flags int Group flags.

node_group_uuid uuid The uuid of the group.

node_group_apply_delay interval How long a subscriber waits before applying changes from the provider.

node_group_check_constraints bool Whether the apply process checks constraints when applying data.

node_group_num_writers int Number of writers to use for subscriptions backing this node group.

node_group_enable_wal_decoder bool Whether the group has enable_wal_decoder set.

node_group_streaming_mode char Transaction streaming setting: 'O' - off, 'F' - file, 'W' - writer, 'A' - auto, 'D' - default.

node_group_default_commit_scope oid ID of the node group's default commit scope.

node_group_location char Name of the location associated with the node group.

node_group_enable_routing char Whether the node group allows routing through Connection Manager.

node_group_enable_raft bool Whether the node group allows Raft Consensus.

bdr.node_group_replication_sets

A view showing default replication sets create for PGD groups. See also bdr.replication_sets .

bdr.node_group_replication_sets columns

Name Type Description

node_group_name name Name of the PGD group

def_repset name Name of the default repset

def_repset_ops text[] Actions replicated by the default repset

def_repset_ext name Name of the default "external" repset (usually same as def_repset)

def_repset_ext_ops text[] Actions replicated by the default "external" repset (usually same as def_repset_ops)

bdr.node_group_summary

A view containing user-readable details about node groups. See also bdr.node_group .

bdr.node_group_summary columns

Name Type Description

node_group_name name Name of the node group

default_repset name Default replication set for this node group

parent_group_name name Name of parent group (NULL if this is a root group)

node_group_type text Type of the node group (one of "global", "data", "shard" or "subscriber-only")

apply_delay interval How long a subscriber waits before applying changes from the provider

check_constraints boolean Whether the apply process checks constraints when applying data

num_writers integer Number of writers to use for subscriptions backing this node group

enable_wal_decoder boolean Whether the group has enable_wal_decoder set

streaming_mode text Transaction streaming setting: "off", "file", "writer", "auto" or "default"

default_commit_scope name Name of the node group's default commit scope

location name Name of the location associated with the node group

enable_routing boolean Whether the node group allows routing through connection manager

enable_raft boolean Whether the node group allows Raft Consensus

route_writer_max_lag bigint Maximum write lag accepted

route_reader_max_lag bigint Maximum read lag accepted

route_writer_wait_flush boolean Switch if we need to wait for the flush

bdr.node_local_info

A catalog table used to store per-node configuration that's specific to the local node (as opposed to global view of per-node configuration).

bdr.node_local_info columns

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 328

bdr.node_local_info columns

Name Type Description

node_id oid The OID of the node (including the local node)

applied_state oid Internal ID of the node state

ddl_epoch int8 Last epoch number processed by the node

slot_name name Name of the slot used to connect to that node (NULL for the local node)

origin_name name Name of the replication origin for that node. It will be NULL for the local node or for nodes that are not data nodes such as subscriber-only nodes or standbys.

bdr.node_log_config

A catalog view that stores information on the conflict logging configurations.

bdr.node_log_config columns

Name Description

log_name Name of the logging configuration

log_to_file Whether it logs to the server log file

log_to_table Whether it logs to a table, and which table is the target

log_conflict_type Which conflict types it logs, if NULL means all

log_conflict_res Which conflict resolutions it logs, if NULL means all

bdr.node_peer_progress

Catalog used to keep track of every node's progress in the replication stream. Every node in the cluster regularly broadcasts its progress every bdr.replay_progress_frequency milliseconds to all other nodes (default is 60000 ms,
that is, 1 minute). Expect N * (N-1) rows in this relation.

You might be more interested in the bdr.node_slots view for monitoring purposes. See also Monitoring.

bdr.node_peer_progress columns

Name Type Description

node_id oid OID of the originating node that reported this position info

peer_node_id oid OID of the node's peer (remote node) for which this position info was reported

last_update_sent_time timestamptz Time at which the report was sent by the originating node

last_update_recv_time timestamptz Time at which the report was received by the local server

last_update_node_lsn pg_lsn LSN on the originating node at the time of the report

peer_position pg_lsn Latest LSN of the node's peer seen by the originating node

peer_replay_time timestamptz Latest replay time of peer seen by the reporting node

last_update_horizon_xid oid Internal resolution horizon: all lower xids are known resolved on the reporting node

last_update_horizon_lsn pg_lsn Internal resolution horizon: same in terms of an LSN of the reporting node

bdr.node_replication_rates

This view contains information about outgoing replication activity from a given node.

bdr.node_replication_rates columns

Column Type Description

peer_node_id oid OID of node's peer (remote node) for which this info was reported

target_name name Name of the target peer node

sent_lsn pg_lsn Latest sent position

replay_lsn pg_lsn Latest position reported as replayed (visible)

replay_lag interval Approximate lag time for reported replay

replay_lag_bytes int8 Bytes difference between replay_lsn and current WAL write position on origin

replay_lag_size text Human-readable bytes difference between replay_lsn and current WAL write position

apply_rate bigint LSNs being applied per second at the peer node

catchup_interval interval Approximate time required for the peer node to catch up to all the changes that are yet to be
applied

Note

The replay_lag is set immediately to zero after reconnect. As a workaround, use replay_lag_bytes , replay_lag_size , or catchup_interval .

bdr.node_slots

This view contains information about replication slots used in the current database by PGD.

See Monitoring outgoing replication for guidance on the use and interpretation of this view's fields.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 329

https://www.postgresql.org/docs/current/catalog-pg-replication-origin.html

bdr.node_slots columns

Name Type Description

target_dbname name Database name on the target node

node_group_name name Name of the PGD group

node_group_id oid OID of the PGD group

origin_name name Name of the origin node

target_name name Name of the target node

origin_id oid OID of the origin node

target_id oid OID of the target node

local_slot_name name Name of the replication slot according to PGD

slot_name name Name of the slot according to Postgres (same as above)

is_group_slot boolean True if the slot is the node-group crash recovery slot for this node (see ["Group Replication Slot"](nodes#Group Replication
Slot))

is_decoder_slot boolean Is this slot used by the decoding worker feature

plugin name Logical decoding plugin using this slot (should be pglogical_output or bdr)

slot_type text Type of the slot (should be logical)

datoid oid OID of the current database

database name Name of the current database

temporary bool Is the slot temporary

active bool Is the slot active (does it have a connection attached to it)

active_pid int4 PID of the process attached to the slot

xmin xid XID needed by the slot

catalog_xmin xid Catalog XID needed by the slot

restart_lsn pg_lsn LSN at which the slot can restart decoding

confirmed_flush_lsn pg_lsn Latest confirmed replicated position

usesysid oid sysid of the user the replication session is running as

usename name username of the user the replication session is running as

application_name text Application name of the client connection (used by synchronous_standby_names)

client_addr inet IP address of the client connection

client_hostname text Hostname of the client connection

client_port int4 Port of the client connection

backend_start timestamptz When the connection started

state text State of the replication (catchup, streaming, ...) or 'disconnected' if offline

sent_lsn pg_lsn Latest sent position

write_lsn pg_lsn Latest position reported as written

flush_lsn pg_lsn Latest position reported as flushed to disk

replay_lsn pg_lsn Latest position reported as replayed (visible)

write_lag interval Approximate lag time for reported write

flush_lag interval Approximate lag time for reported flush

replay_lag interval Approximate lag time for reported replay

sent_lag_bytes int8 Bytes difference between sent_lsn and current WAL write position

write_lag_bytes int8 Bytes difference between write_lsn and current WAL write position

flush_lag_bytes int8 Bytes difference between flush_lsn and current WAL write position

replay_lag_bytes int8 Bytes difference between replay_lsn and current WAL write position

sent_lag_size text Human-readable bytes difference between sent_lsn and current WAL write position

write_lag_size text Human-readable bytes difference between write_lsn and current WAL write position

flush_lag_size text Human-readable bytes difference between flush_lsn and current WAL write position

replay_lag_size text Human-readable bytes difference between replay_lsn and current WAL write position

Note

The replay_lag is set immediately to zero after reconnect. As a workaround, use replay_lag_bytes or replay_lag_size .

bdr.node_summary

This view contains summary information about all PGD nodes known to the local node.

bdr.node_summary columns

Name Type Description

node_name name Name of the node

node_group_name name Name of the PGD group the node is part of

interface_connstr text Connection string to the node

peer_state_name text Consistent state of the node in human readable form

peer_target_state_name text State that the node is trying to reach (during join or promotion)

node_seq_id int4 Sequence identifier of the node used for generating unique sequence numbers

node_local_dbname name Database name of the node

node_id oid OID of the node

node_group_id oid OID of the PGD node group

node_kind_name oid Node kind name

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 330

node_uuid uuid UUID of the node

Name Type Description

bdr.parted_origin_catchup_info

This table records relevant catchup information on each node related to parted orgins.

bdr.parted_origin_catchup_info columns

Name Type Description

parting_peer_node_id oid ID of the parted node

node_id oid ID of the node

node_group_id oid ID of the node group

origin_catchup_lsn pg_lsn The LSN which the node will wait for its group slot to catch up to and then move its state to
DONE

origin_catchup_state oid Status code of the parted origin catchup

A node(node_id) waits for its group slot to catch up with the recorded LSN, (origin_catchup_lsn). This is to ensure it’s group slot is caught up with all the transactions originating from PARTED node (parting_peer_node_id).

The records in this table persists until the parting node (parting_peer_node_id) is automatically removed.

bdr.parted_origin_catchup_info_details

This table is a friendly view of bdr.parted_origin_catchup_info with relevant catchup information on each node related to parted orgins, in this case in text form.

bdr.parted_origin_catchup_info_details columns

Name Type Description

target_node_id oid ID of the target node

target_node_name text Name of the target node

parting_node_id oid ID of the parted node

parting_node_name text Name of the parted node

node_group_id oid ID of the node group

node_group_name text Name of the node group

parting_catchup_lsn pg_lsn The LSN which the node will wait for its group slot to catch up to and then move its state to
DONE

parting_catchup_state oid Parted origin's catchup status code

parting_catchup_state_name text Parted origin's catchup status text

A node(target_node_id) waits for its group slot to catch up with the recorded LSN, (parting_catchup_lsn). This is to ensure it’s group slot is caught up with all the transactions originating from PARTED node
(parting_node_id).

The records in this table persists until the parting node (parting_node_id) is automatically removed.

bdr.queue

This table stores the historical record of replicated DDL statements.

bdr.queue columns

Name Type Description

queued_at timestamptz When was the statement queued

role name Which role has executed the statement

replication_sets text[] Which replication sets was the statement published to

message_type char

Type of a message. Possible values:
A - Table sync
D - DDL
S - Sequence
T - Truncate
Q - SQL statement

message json Payload of the message needed for replication of the statement

bdr.replication_set

A table that stores replication set configuration. For user queries, we recommend instead checking the bdr.replication_sets view.

bdr.replication_set columns

Name Type Description

set_id oid OID of the replication set

set_nodeid oid OID of the node (always local node oid currently)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 331

set_name name Name of the replication set

replicate_insert boolean Indicates if the replication set replicates INSERTs

replicate_update boolean Indicates if the replication set replicates UPDATEs

replicate_delete boolean Indicates if the replication set replicates DELETEs

replicate_truncate boolean Indicates if the replication set replicates TRUNCATEs

set_isinternal boolean Reserved

set_autoadd_tables boolean Indicates if new tables are automatically added to this replication set

set_autoadd_seqs boolean Indicates if new sequences are automatically added to this replication set

Name Type Description

bdr.replication_set_table

A table that stores replication set table membership. For user queries, we recommend instead checking the bdr.tables view.

bdr.replication_set_table columns

Name Type Description

set_id oid OID of the replication set

set_reloid regclass Local ID of the table

set_att_list text[] Reserved

set_row_filter pg_node_tree Compiled row filtering expression

bdr.replication_set_ddl

A table that stores replication set ddl replication filters. For user queries, we recommend instead checking the bdr.ddl_replication view.

bdr.replication_set_ddl Columns

Name Type Description

set_id oid OID of the replication set

set_ddl_name name Name of the DDL filter

set_ddl_tag text Command tag for the DDL filter

set_ddl_role text Role executing the DDL

bdr.replication_sets

A view showing replication sets defined in the PGD group, even if they aren't currently used by any node.

bdr.replication_sets columns

Name Type Description

set_id oid OID of the replication set

set_name name Name of the replication set

replicate_insert boolean Indicates if the replication set replicates INSERTs

replicate_update boolean Indicates if the replication set replicates UPDATEs

replicate_delete boolean Indicates if the replication set replicates DELETEs

replicate_truncate boolean Indicates if the replication set replicates TRUNCATEs

set_autoadd_tables boolean Indicates if new tables are automatically added to this replication set

set_autoadd_seqs boolean Indicates if new sequences are automatically added to this replication set

bdr.schema_changes

A simple view to show all the changes to schemas win PGD.

bdr.schema_changes columns

Name Type Description

schema_changes_ts timestampstz ID of the trigger

schema_changes_change char Flag of change type

schema_changes_classid oid Class ID

schema_changes_objectid oid Object ID

schema_changes_subid smallint Subscription

schema_changes_descr text Object changed

schema_changes_addrnames text[] Location of schema change

bdr.sequence_alloc

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 332

bdr.sequence_alloc

A view to see the allocation details for galloc sequences.

bdr.sequence_alloc columns

Name Type Description

seqid regclass ID of the sequence

seq_chunk_size bigint A sequence number for the chunk within its value

seq_allocated_up_to bigint

seq_nallocs bigint

seq_last_alloc timestamptz Last sequence allocated

bdr.sequences

This view lists all sequences with their kind, excluding sequences for internal PGD bookkeeping.

bdr.sequences columns

Name Type Description

nspname name Namespace containing the sequence

relname name Name of the sequence

seqkind text Type of the sequence ('local', 'timeshard', 'galloc')

bdr.stat_activity

Dynamic activity for each backend or worker process.

This contains the same information as pg_stat_activity , except wait_event is set correctly when the wait relates to PGD and the following Connection Manager related fields are added:

bdr.stat_activity additional columns

Name Type Description

connection_manager_client_addr inet IP address of the client connection

connection_manager_client_port int The source port of client connected to connection manager (if the connection is done through connection
manager)

connection_manager_client_hostname text Hostname of the client connection (if the connection is done through connection manager)

session_read_only boolean Whether the session is a read-only; connected to read-only port of the connection manager

bdr.stat_commit_scope

A view containing statistics for each commit scope.

bdr.stat_commit_scope columns

Column Type Description

commit_scope_name name Name of the commit scope

group_name name Name of group for which the commit scope is defined

ncalls bigint The number of times the commit scope was used

ncommits bigint The number of successful commits were made with the commit scope

naborts bigint The number of times the commit scope used was eventually aborted

total_commit_time double precision Total time spent committing using the commit scope, in milliseconds

min_commit_time double precision Minimum time spent committing using the commit scope, in milliseconds

max_commit_time double precision Maximum time spend committing using the commit scope, in
milliseconds

mean_commit_time double precision Mean time spent committing using the commit scope, in milliseconds

stats_reset timestamp with time zone Time at which all statistics in the view were last reset

bdr.stat_commit_scope_state

A view of information about the current use of commit scopes by backends.

bdr.stat_commit_scope_state columns

Column Type Description

pid integer Process ID of the backend

commit_scope_name name Name of the commit scope being used

group_name name Name of group for which the commit scope is defined

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 333

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW

waiting_op_num integer Index of the first operation in the commit scope that is not satisfied yet

waiting_prepare_confirmations integer The number of PREPARE confirmations that are still needed by the operation

waiting_commit_confirmations integer The number of COMMIT confirmations that are still needed by the operation

waiting_lsn_confirmations integer The number of LSN confirmations that are still needed by the operation

Column Type Description

bdr.stat_connection_manager

A view contianing statistics for the connection manager on this node.

bdr.stat_connection_manager columns

Column Type Description

ntotal_rw_conns bigint Total number of read-write connections

ntotal_ro_conns bigint Total number of read-only connections

nactive_rw_conns int Number of active read-write connections

nactive_ro_conns int Number of active read-only connections

bdr.stat_connection_manager_connections

A view containing information about the connections to the connection manager.

bdr.stat_connection_manager_connections columns

Column Type Description

connection_manager_client_addr text IP address of the client connected to the connection manager.

connection_manager_client_port int TCP port number that the client is using for communication with the connection manager.

connection_manager_addr text IP address of the connection manager node.

connection_manager_port int TCP port number that the connection manager is using to communicate with the Postgres node.

session_read_only boolean Whether the session is read-only or not.

client_uses_tls boolean Whether the client is using TLS to connect to the connection manager node, or not.

bdr.stat_connection_manager_node_stats

A view containing information about server connection statistics for the connection manager on this node.

bdr.stat_connection_manager_node_stats columns

Column Type Description

node_id oid OID of the node

node_name name Name of the node

route_rw_connections boolean Whether read-write connections are routed to this node

route_ro_connections boolean Whether read-only connections are routed to this node

ntotal_rw_conns bigint Total number of read-write connections

ntotal_ro_conns bigint Total number of read-only connections

nactive_rw_conns int Number of active read-write connections

nactive_ro_conns int Number of active read-only connections

bdr.stat_connection_manager_hba_file_rules

A view that shows only the only valid and supported rules the connection manager is using from the HBA file (pg_hba.conf) and information about those rules.

bdr.stat_connection_manager_hba_file_rules columns

Column Type Description

rule_number integer Rule number. This indicates the order in which each rule is considered until a match is found during
authentication.

file_name text Name of the file containing this rule.

line_number integer Line number of this rule in the file referenced in file_name.

type text Type of connection.

database text[] List of database names this rule applies to.

user_name text[] List of user names this rule applies to

address text Host name or IP address, or one of all, samehost, or samenet, or null for local connections.

netmask text IP address mask, or null if not applicable.

auth_method text Authentication method.

auth_options text Options specified for authentication method, if any.

bdr.stat_raft_followers_state

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 334

bdr.stat_raft_followers_state

A view of the state of the raft leader's followers on the Raft leader node (empty on other nodes).

bdr.stat_raft_followers_state columns

Column Type Description

group_name name The group this information is for (each group can have a separate consensus configured).

node_name name Name of the follower node.

sent_commit_index bigint Latest Raft index sent to the follower node.

match_index bigint Raft index we expect to match the next response from the follower node.

last_message_time timestamp with time zone Last message (any, including requests) seen from the follower node.

last_heartbeat_send_time timestamp with time zone Last time the leader sent heartbeat to the follower node.

last_heartbeat_response_time timestamp with time zone Last time the leader has seen a heartbeat response from the follower node.

approx_clock_drift_ms bigint Approximate clock drift seen by the leader against the follower node in milliseconds.

bdr.stat_raft_state

A view describing the state of the Raft consensus on the local node.

bdr.stat_raft_state columns

Column Type Description

group_name name The group this information is for (each group can have a separate consensus configured)

raft_stat text State of the local node in the Raft ('LEADER', 'CANDIDATE', 'FOLLOWER', 'STOPPED')

leader_name name Name of the Raft leader, if any

voted_for_name name The node the local node voted for as leader last vote

is_voting boolean The local node part of Raft is voting

heartbeat_timeout_ms bigint The heartbeat timeout on the local node

heartbeat_elapsed_ms bigint The number of milliseconds that have elapsed since the local node has seen a heartbeat from the leader

current_term bigint The current Raft term the local node is at

commit_index bigint The current Raft commit index the local node is at

apply_index bigint The Raft commit index the local node applied to catalogs

last_log_term bigint Last Raft term in the request log

last_log_index bigint Last Raft index in the request log

oldest_log_index bigint Oldest Raft index still in the request log

newest_prunable_log_index bigint Newest Raft index that can be safely removed from the request log

snapshot_term bigint Raft term of the last snapshot

snapshot_index bigint Raft index of the last snapshot

nnodes integer Number of nodes in the Raft consensus (should normally be the same as the number of nodes in the group)

nvoting_nodes integer Number of voting nodes in the Raft consensus

bdr.stat_receiver

A view containing all the necessary info about the replication subscription receiver processes.

bdr.stat_receiver columns

Column Type Description

worker_role text Role of the BDR worker (always 'receiver')

worker_state text State of receiver worker (can be 'running', 'down', or 'disabled')

worker_pid integer Process id of the receiver worker

sub_name name Name of the subscription the receiver belongs to

sub_slot_name name Replication slot name used by the receiver

source_name name Source node for this receiver (the one it connects to), this is normally the same as the origin node, but is different for forward mode subscriptions

origin_name name The origin node for this receiver (the one it receives forwarded changes from), this is normally the same as the source node, but is different for forward mode subscriptions

subscription_mode char Mode of the subscription, see bdr.subscription_summary for more details

sub_replication_sets text[] Replication sets this receiver is subscribed to

sub_apply_delay interval Apply delay interval

receive_lsn pg_lsn LSN of the last change received so far

receive_commit_lsn pg_lsn LSN of the last commit received so far

xact_apply_lsn pg_lsn Last applied transaction LSN

xact_flush_lsn pg_lsn Last flushed transaction LSN

xact_apply_timestamp timestamp with time
zone

Last applied transaction (commit) timestamp

worker_start timestamp with time
zone

Time at which the receiver started

worker_xact_start timestamp with time
zome

Time at which the receiver started local db transaction (if it is currently processing a local transaction), usually NULL, see xact_start in pg_stat_activity for more
details

worker_backend_state_change timestamp with time
zone

Backend state change timestamp, see state_change in pg_stat_activity for more details

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 335

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW

worker_backend_state text Current backend state, see state in pg_stat_activity for more details

wait_event_type text Type of wait event the receiver is currently waiting on (if any), see wait_event_type in pg_stat_activity for more details

wait_event text Exact event the receiver is currently waiting on (if any, see wait_event in pg_stat_activity for more details)

Column Type Description

bdr.stat_relation

Shows apply statistics for each relation. Contains data only if tracking is enabled with bdr.track_relation_apply and if data was replicated for a given relation.

lock_acquire_time is updated only if bdr.track_apply_lock_timing is set to on (default: off).

You can reset the stored relation statistics by calling bdr.reset_relation_stats() .

bdr.stat_relation columns

Column Type Description

nspname name Name of the relation's schema

relname name Name of the relation

relid oid OID of the relation

total_time double precision Total time spent processing replication for the relation, in milliseconds

ninsert bigint Number of inserts replicated for the relation

nupdate bigint Number of updates replicated for the relation

ndelete bigint Number of deletes replicated for the relation

ntruncate bigint Number of truncates replicated for the relation

shared_blks_hit bigint Total number of shared block cache hits for the relation

shared_blks_read bigint Total number of shared blocks read for the relation

shared_blks_dirtied bigint Total number of shared blocks dirtied for the relation

shared_blks_written bigint Total number of shared blocks written for the relation

blk_read_time double precision Total time spent reading blocks for the relation, in milliseconds (if track_io_timing is enabled, otherwise zero)

blk_write_time double precision Total time spent writing blocks for the relation, in milliseconds (if track_io_timing is enabled, otherwise zero)

lock_acquire_time double precision Total time spent acquiring locks on the relation, in milliseconds (if bdr.track_apply_lock_timing is enabled, otherwise zero)

stats_reset timestamp with time zone Time of the last statistics reset (performed by bdr.reset_relation_stats())

bdr.stat_routing_candidate_state

A view of information about the routing candidate nodes on the Raft leader (empty on other nodes).

bdr.stat_routing_candidate_state columns

Column Type Description

node_group_name name The group this information is for (each group can have a separate routing proxy)

node_name name Candidate node name

node_route_fence boolean The node is fenced (when true it cannot become leader or read-only connection target)

node_route_reads boolean The node is being considered as a read-only connection target

node_route_writes boolean The node is being considered as a write lead candidate.

last_message_time timestamp with time zone The time of the last Raft message (any, including requests) seen by this node (used to check liveness of node)

bdr.stat_routing_state

A view of the state of the connection routing which the Connection Manager uses to route the connections.

bdr.stat_routing_state columns

Column Type Description

node_group_name name The group this is information for (each group can have a separate routing proxy)

write_lead_name name Name of the write lead node

previous_write_lead_name name Name of the previous write lead node

read_names name[] Array of nodes to which read-only connections are routed

write_candidate_names name[] Nodes that match all criteria needed to become write lead in case of failover

read_candidate_names name[] Nodes that match all criteria needed to become read-only connection targets in case of
failover

bdr.stat_subscription

Shows apply statistics for each subscription. Contains data only if tracking is enabled with bdr.track_subscription_apply .

You can reset the stored subscription statistics by calling bdr.reset_subscription_stats() .

bdr.stat_subscription columns

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 336

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW

bdr.stat_subscription columns

Column Type Description

sub_name name Name of the subscription

subid oid OID of the subscription

mean_apply_time double precision Average time per apply transaction, in milliseconds

nconnect bigint Number of times this subscription has connected upstream

ncommit bigint Number of commits this subscription did

nabort bigint Number of aborts writer did for this subscription

nerror bigint Number of errors writer has hit for this subscription

nskippedtx bigint Number of transactions skipped by writer for this subscription (due to skip_transaction conflict resolver)

ninsert bigint Number of inserts this subscription did

nupdate bigint Number of updates this subscription did

ndelete bigint Number of deletes this subscription did

ntruncate bigint Number of truncates this subscription did

nddl bigint Number of DDL operations this subscription has executed

ndeadlocks bigint Number of errors that were caused by deadlocks

nretries bigint Number of retries the writer did (without going for full restart/reconnect)

nstream_writer bigint Number of transactions streamed to writer

nstream_file bigint Number of transactions streamed to file

nstream_commit bigint Number of streaming transactions committed

nstream_abort bigint Number of streaming transactions aborted

nstream_start bigint Number of STREAM START messages processed

nstream_stop bigint Number of STREAM STOP messages processed

nstream_commit bigint Number of streaming transactions committed

nstream_abort bigint Number of streaming transactions aborted

nstream_prepare bigint Number of streaming transactions prepared

nstream_insert bigint Number of streaming inserts processed

nstream_update bigint Number of streaming updates processed

nstream_delete bigint Number of streaming deletes processed

nstream_truncate bigint Number of streaming truncates processed

shared_blks_hit bigint Total number of shared block cache hits by the subscription

shared_blks_read bigint Total number of shared blocks read by the subscription

shared_blks_dirtied bigint Total number of shared blocks dirtied by the subscription

shared_blks_written bigint Total number of shared blocks written by the subscription

blk_read_time double precision Total time the subscription spent reading blocks, in milliseconds (if track_io_timing is enabled, otherwise zero)

blk_write_time double precision Total time the subscription spent writing blocks, in milliseconds (if track_io_timing is enabled, otherwise zero)

connect_time timestamp with time zone Time when the current upstream connection was established, NULL if not connected

last_disconnect_time timestamp with time zone Time when the last upstream connection was dropped

start_lsn pg_lsn LSN from which this subscription requested to start replication from the upstream

retries_at_same_lsn bigint Number of attempts the subscription was restarted from the same LSN value

curr_ncommit bigint Number of commits this subscription did after the current connection was established

npre_commit_confirmations bigint Number of precommit confirmations by CAMO partners

npre_commit bigint Number of precommits

ncommit_prepared bigint Number of prepared transaction commits

nabort_prepared bigint Number of prepared transaction aborts

nprovisional_waits bigint Number of update/delete operations on same tuples by concurrent apply transactions. These are provisional waits. See Parallel Apply

ntuple_waits bigint Number of update/delete operations that waited to be safely applied. See Parallel Apply

ncommit_waits bigint Number of fully applied transactions that had to wait before being committed. See Parallel Apply

stats_reset timestamp with time zone Time of the last statistics reset (performed by bdr.reset_subscription_stats())

bdr.stat_worker

A view containing summary information and per worker statistics for PGD manager workers.

bdr.stat_worker columns

Column Type Description

worker_role text Role of the BDR worker

worker_pid integer Process id of the worker

sub_name name Name of the subscription the worker is related to, if any

worker_start timestamp with time zone Time at which the worker started

worker_xact_start timestamp with time zone Time at which the worker started the local db transaction, see xact_start in pg_stat_activity for more details

worker_xid xid Transaction id of the worker, see backend_xid in pg_stat_activity for more details

worker_xmin xid Oldest transaction id needed by the worker, see backend_xmin in pg_stat_activity for more details

worker_backend_state_change timestamp with time zone Backend state change timestamp see state_change in pg_stat_activity for more details

worker_backend_state text Current backend state see state in pg_stat_activity for more details

wait_event_type text The type of wait event the worker is currently waitiing on, if any (see wait_event_type in pg_stat_activity for more
details)

wait_event text The exact event the worker is waiting on, if any (see wait_event in pg_stat_activity for more details)

blocked_by_pids integer[] List of PIDs blocking the worker, if any

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 337

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW

query text Query currently being run by the worker

worker_query_start timestamp with time zone Timestamp at which the current query run by the worker started

Column Type Description

bdr.stat_writer

A view containing summary information and statistics for each subscription replication writer. There can be multiple writers for each subscription.

bdr.stat_writer columns

Column Type Description

worker_role text Role of the BDR worker (always 'writer')

worker_state text State of the worker (can be 'running', 'down', or 'disabled')

worker_pid integer Process id of the writer

sub_name name Name of the subscription the writer belongs to

writer_nr integer Writer index in the writer group for the same subscription

nxacts bigint The number of transactions the writer has processed since start

ncommits bigint The number of commits the writer processed since start

naborts bigint The number of aborts the writer processed since start

commit_queue_position integer Position in the commit queue, when serializing transactions against other writers in the same writer group

xact_source_xid xid Transaction id of the currently processed transaction on the source node

xact_source_commit_lsn pg_lsn LSN of the currently processed transaction on the source node

xact_nchanges bigint The number of changes in the currently processed transaction that have been written (updated every 1000 changes)

xact_origin_node_name name Origin node of the currently processed transaction

xact_origin_lsn pg_lsn Origin LSN of the currently processed transaction

xact_origin_timestamp timestamp with
time zone

Origin commit timestamp of the currently processed transaction

streaming_allowed boolean The writer can receive direct stream for large transactions

is_streaming boolean The writer is currently receiving a direct stream of a large transaction

nstream_file bigint The number of stream files the writer has processed

nstream_writer bigint The number of directly streamed transactions the writer has processed

worker_start timestamp with
time zone

The time at which the writer started

worker_xact_start timestamp with
time zone

The time at which the writer start the local db transaction (see xact_start in pg_stat_activity for more details)

worker_xid xid Transaction id of the worker (see backend_xid in pg_stat_activity for more details)

worker_xmin xid Oldest transaction id needed by the worker (see backend_xmin in pg_stat_activity for more details)

worker_backend_state_change timestamp with
time zone

Backend state change timestamp (see state_change in pg_stat_activity for more details)

worker_backend_state text Current backend state (see state in pg_stat_activity for more details)

wait_event_type text The type of wait event the writer is currently waiting on, if any (see event_type in pg_stat_activity for more details)

wait_event text The exact event the writer is waiting on, if any (see wait_event in pg_stat_activity for more details)

blocked_by_pids integer[] List of PIDs blocking the writer, if any

query text Query currently being run by the writer (normally only set for DDL)

worker_query_start timestamp with
time zone

Timestamp at which the current query run by the worker started

command_progress_cmdtag text For commands with progress tracking, identifies the command current processed by the writer (can be one of 'CREATE INDEX', 'CREATE INDEX CONCURRENTLY', 'REINDEX',
'REINDEX CONCURRENTLY', 'CLUSTER', and 'VACUUM FULL')

command_progress_relation text For commands with progress tracking, identifies therelation which the command is working on

command_progress_phase text For commands with progress tracking, name of the current phase the command is in, refer to Progress Reporting in the Postgres documentation for details

command_progress_count integer For commands with progress tracking, the number of phases this command has gone through

command_progress_phase_nr integer For commands with progress tracking, the number of the phase of command_progress_count

command_progress_phase_tuples_total real For commands with progress tracking, the number of rows the current phase of the command has to process (if the phase is process rows)

command_progress_tuples_done bigint For commands with progress tracking, the number of rows the current phase of the command has already processed (if the phase is process rows)

bdr.subscription

This catalog table lists all the subscriptions owned by the local PGD node and their modes.

bdr.subscription columns

Name Type Description

sub_id oid ID of the subscription

sub_name name Name of the subscription

nodegroup_id oid ID of nodegroup

origin_node_id oid ID of origin node

source_node_id oid ID of source node

target_node_id oid ID of target node

subscription_mode char Mode of subscription

sub_enabled bool Whether the subscription is enabled (should be replication)

apply_delay interval How much behind should the apply of changes on this subscription be (normally
0)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 338

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/progress-reporting.html

slot_name name Slot on upstream used by this subscription

origin_name name Local origin used by this subscription

num_writers int Number of writer processes this subscription uses

streaming_mode char Streaming configuration for the subscription

replication_sets text[] Replication sets replicated by this subscription (NULL = all)

forward_origin text[] Origins forwarded by this subscription (NULL = all)

Name Type Description

bdr.subscription_summary

This view contains summary information about all PGD subscriptions that the local node has to other nodes.

bdr.subscription_summary columns

Name Type Description

node_group_name name Name of the PGD group the node is part of

sub_name name Name of the subscription

origin_name name Name of the origin node

target_name name Name of the target node (normally local node)

sub_enabled bool Is the subscription enabled

sub_slot_name name Slot name on the origin node used by this subscription

sub_replication_sets text[] Replication sets subscribed

sub_forward_origins text[] Does the subscription accept changes forwarded from other nodes besides the origin

sub_apply_delay interval Delay transactions by this much compared to the origin

sub_origin_name name Replication origin name used by this subscription

bdr_subscription_mode char Subscription mode

subscription_status text Status of the subscription worker

node_group_id oid OID of the PGD group the node is part of

sub_id oid OID of the subscription

origin_id oid OID of the origin node

target_id oid OID of the target node

receive_lsn pg_lsn Latest LSN of any change or message received (this can go backwards in case of restarts)

receive_commit_lsn pg_lsn Latest LSN of last COMMIT received (this can go backwards in case of restarts)

last_xact_replay_lsn pg_lsn LSN of last transaction replayed on this subscription

last_xact_flush_lsn timestamptz LSN of last transaction replayed on this subscription that's flushed durably to disk

last_xact_replay_timestamp timestamptz Timestamp of last transaction replayed on this subscription

bdr.tables

This view lists information about table membership in replication sets. If a table exists in multiple replication sets, it appears multiple times in this table.

bdr.tables columns

Name Type Description

relid oid OID of the relation

nspname name Name of the schema relation is in

relname name Name of the relation

set_name name Name of the replication set

set_ops text[] List of replicated operations

rel_columns text[] List of replicated columns (NULL = all columns) (*)

row_filter text Row filtering expression

conflict_detection text Conflict detection method used: row_origin (default), row_version or
column_level

(*) These columns are reserved for future use and should currently be NULL

bdr.taskmgr_work_queue

Contains work items created and processed by task manager. The work items are created on only one node and processed on different nodes.

bdr.taskmgr_work_queue columns

Column Type Description

ap_wq_workid bigint Unique ID of the work item

ap_wq_ruleid int ID of the rule listed in autopartition_rules. Rules are specified using bdr.autopartition command

ap_wq_relname name Name of the relation the task belongs to

ap_wq_relnamespace name Name of the tablespace specified in rule for this work item

ap_wq_partname name Name of the partition created by the workitem

ap_wq_work_category char Work category; can be c (create partition), m (migrate partition), d (drop partition), or a (alter partition)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 339

ap_wq_work_sql text SQL query for the work item

ap_wq_work_depends Oid[] OIDs of the nodes on which the work item depends

Column Type Description

bdr.taskmgr_workitem_status

The status of the work items that is updated locally on each node.

bdr.taskmgr_workitem_status columns

Column Type Description

ap_wi_workid bigint ID of the work item

ap_wi_nodeid Oid OID of the node on which the work item is being processed

ap_wi_status char Status; can be q (queued), c (complete), f (failed), or u (unknown)

ap_wi_started_at timestamptz Start timestamptz of work item

ap_wi_finished_at timestamptz End timestamptz of work item

bdr.taskmgr_local_work_queue

Contains work items created and processed by the task manager. This is similar to bdr.taskmgr_work_queue , except that these work items are for locally managed tables. Each node creates and processes its own local work items,
independent of other nodes in the cluster.

bdr.taskmgr_local_work_queue columns

Column Type Description

ap_wq_workid bigint Unique ID of the work item

ap_wq_ruleid int ID of the rule listed in autopartition_rules. Rules are specified using bdr.autopartition command

ap_wq_relname name Name of the relation the task belongs to

ap_wq_relnamespace name Name of the tablespace specified in rule for this work item.

ap_wq_partname name Name of the partition created by the workitem

ap_wq_work_category char Category; can be c (create partition), m (migrate partition), d (drop partition), or a (alter partition)

ap_wq_work_sql text SQL query for the work item

ap_wq_work_depends Oid[] Always NULL

bdr.taskmgr_local_workitem_status

The status of the work items for locally managed tables.

bdr.taskmgr_local_workitem_status columns

Column Type Description

ap_wi_workid bigint ID of the work item

ap_wi_nodeid Oid OID of the node on which the work item is being processed

ap_wi_status char Status; can be q (queued), c (complete), f (failed), or u (unknown)

ap_wi_started_at timestamptz Start timestamptz of work item

ap_wi_finished_at timestamptz End timestamptz of work item

bdr.trigger

In this view, you can see all the stream triggers created. Often triggers here are created from bdr.create_conflict_trigger .

bdr.trigger columns

Name Type Description

trigger_id oid ID of the trigger

trigger_reloid regclass Name of the relating
function

trigger_pgtgid oid Postgres trigger ID

trigger_type char Type of trigger call

trigger_name name Name of the trigger

bdr.triggers

An expanded view of bdr.trigger with columns that are easier to read.

Name Type Description

trigger_name name Name of the trigger

event_manipulation text Operations

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 340

trigger_type bdr.trigger_type Type of trigger

trigger_table bdr.trigger_reloid Table that calls the trigger

trigger_function name Function used

Name Type Description

bdr.workers

Information about running PGD worker processes.

This can be joined with bdr.stat_activity using pid to get even more insight into the state of PGD workers.

bdr.workers Columns

Name Type Description

worker_pid int Process ID of the worker process

worker_role int Numeric representation of worker role

worker_role_name text Name of the worker role

worker_subid oid Subscription ID if the worker is associated with one

bdr.writers

Specific information about PGD writer processes.

bdr.writers columns

Name Type Description

sub_name name Name of the subscription

pid int Process ID of the worker process

syncing_rel int OID of the relation being synchronized (if any)

streaming_allowed text Can this writer be target of direct to writer streaming

is_streaming bool Is there transaction being streamed to this writer

remote_xid xid Remote transaction id of the transaction being processed (if any)

remote_commit_lsn pg_lsn LSN of last commit processed

commit_queue_position int Position in the internal commit queue

nxacts bigint Number of transactions processed by this writer

ncommits bigint Number of transactions committed by this writer

naborts bigint Number of transactions aborted by this writer

nstream_file bigint Number of streamed-to-file transactions processed by this writer

nstream_writer bigint Number of streamed-to-writer transactions processed by this writer

xact_nchanges bigint Number of changes processed by this writer (updated every 1000
rows)

bdr.worker_tasks

The bdr.worker_tasks view shows PGD's current worker launch rate limiting state as well as some basic statistics on background worker launch and registration activity.

Unlike the other views listed here, it isn't specific to the current database and PGD node. State for all PGD nodes on the current PostgreSQL instance is shown. Join on the current database to filter it.

bdr.worker_tasks doesn't track walsenders and output plugins.

bdr.worker_tasks columns

Column Type Description

task_key_worker_role integer Worker role identifier

task_key_worker_role_name text Worker role name

task_key_dboid oid Database identifier, if available

datname name Name of the database, if available

task_key_subid oid Subscription identifier, if available

sub_name name Name of the subscription, if available

task_key_ext_libname name Name of the library (most likely bdr)

task_key_ext_funcname name Name of the function entry point

task_key_ext_workername name Name assigned to the worker

task_key_remoterelid oid Identifier of the remote syncing relation, if available

task_pid integer Process ID of the worker

task_registered timestamp with time zone Worker registration timestamp

since_registered interval Interval since the worker registered

task_attached timestamp with time zone Worker attach timestamp

since_attached interval Interval since the worker attached

task_exited timestamp with time zone Worker exit timestamp

since_exited interval Interval since the worker exited

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 341

task_success boolean Is worker still running?

task_next_launch_not_before timestamp with time zone Timestamp when the worker will be restarted again

until_launch_allowed interval Time remaining for next launch

task_last_launch_requestor_pid integer Process ID that requested launch

task_last_launch_request_time timestamp with time zone Timestamp when the request was made

since_last_request interval Interval since the last request

task_last_launch_request_approved boolean Did the last request succeed?

task_nrequests integer Number of requests

task_nregistrations integer Number of registrations

task_prev_pid integer Process ID of the previous generation

task_prev_registered timestamp with time zone Timestamp of the previous registered task

since_prev_registered interval Interval since the previous registration

task_prev_launched timestamp with time zone Timestamp of the previous launch

since_prev_launched interval Interval since the previous launch

task_prev_exited timestamp with time zone Timestamp when the previous task exited

since_prev_exited interval Interval since the previous task exited

task_first_registered timestamp with time zone Timestamp when the first registration happened

since_first_registered interval Interval since the first registration

Column Type Description

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 342

29.1.2 System functions

Perform PGD management primarily by using functions you call from SQL. All functions in PGD are exposed in the bdr schema. Schema qualify any calls to these functions instead of putting bdr in the search_path .

Version information functions

bdr.bdr_version

This function retrieves the textual representation of the version of the BDR extension currently in use.

bdr.bdr_version_num

This function retrieves the version number of the BDR extension that is currently in use. Version numbers are monotonically increasing, allowing this value to be used for less-than and greater-than comparisons.

The following formula returns the version number consisting of major version, minor version, and patch release into a single numerical value:

MAJOR_VERSION * 10000 + MINOR_VERSION * 100 + PATCH_RELEASE

System information functions

bdr.get_relation_stats

Returns the relation information.

bdr.get_subscription_stats

Returns the current subscription statistics.

System and progress information parameters

PGD exposes some parameters that you can query directly in SQL using, for example, SHOW or the current_setting() function. You can also use PQparameterStatus (or equivalent) from a client application.

bdr.local_node_id

When you initialize a session, this is set to the node id the client is connected to. This allows an application to figure out the node it's connected to, even behind a transparent proxy.

It's also used with Connection pools and proxies.

bdr.last_committed_lsn

After every COMMIT of an asynchronous transaction, this parameter is updated to point to the end of the commit record on the origin node. Combining it with bdr.wait_for_apply_queue , allows applications to perform causal reads
across multiple nodes, that is, to wait until a transaction becomes remotely visible.

transaction_id

If a CAMO transaction is in progress, transaction_id is updated to show the assigned transaction id. You can query this parameter only by using using PQparameterStatus or equivalent, and it isn't accessible in SQL. See Application
use for a usage example.

Node status functions

bdr.is_node_connected

Synopsis

Returns boolean by checking if the walsender for a given peer is active on this node.

bdr.is_node_ready

Synopsis

Returns boolean by checking if the lag is lower than the given span or lower than the timeout for TO ASYNC otherwise.

bdr.is_node_connected(node_name name)

bdr.is_node_ready(node_name name, span interval DEFAULT NULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 343

Consensus function

bdr.consensus_disable

Disables the consensus worker on the local node until server restart or until it's reenabled using bdr.consensus_enable (whichever happens first).

Warning

Disabling consensus disables some features of PGD and affects availability of the EDB Postgres Distributed cluster if left disabled for a long time. Use this function only when working with Technical Support.

bdr.consensus_enable

Reenabled disabled consensus worker on local node.

bdr.consensus_proto_version

Returns currently used consensus protocol version by the local node.

Needed by the PGD group reconfiguration internal mechanisms.

bdr.consensus_snapshot_export

Synopsis

Generate a new PGD consensus snapshot from the currently committed-and-applied state of the local node and return it as bytea.

By default, a snapshot for the highest supported Raft version is exported. But you can override that by passing an explicit version number.

The exporting node doesn't have to be the current Raft leader, and it doesn't need to be completely up to date with the latest state on the leader. However, bdr.consensus_snapshot_import() might not accept such a snapshot.

The new snapshot isn't automatically stored to the local node's bdr.local_consensus_snapshot table. It's only returned to the caller.

The generated snapshot might be passed to bdr.consensus_snapshot_import() on any other nodes in the same PGD node group that's behind the exporting node's Raft log position.

The local PGD consensus worker must be disabled for this function to work. Typical usage is:

 SELECT bdr.bdr_consensus_disable();
 \copy (SELECT * FROM bdr.consensus_snapshot_export()) TO 'my_node_consensus_snapshot.data'
 SELECT bdr.bdr_consensus_enable();

While the PGD consensus worker is disabled:

DDL locking attempts on the node fail or time out.
galloc sequences don't get new values.
Eager and CAMO transactions pause or error.
Other functionality that needs the distributed consensus system is disrupted. The required downtime is generally very brief.

Depending on the use case, it might be practical to extract a snapshot that already exists from the snapshot field of the bdr.local_consensus_snapshot table and use that instead. Doing so doesn't require you to stop the
consensus worker.

bdr.consensus_snapshot_import

Synopsis

Import a consensus snapshot that was exported by bdr.consensus_snapshot_export() , usually from another node in the same PGD node group.

It's also possible to use a snapshot extracted directly from the snapshot field of the bdr.local_consensus_snapshot table on another node.

This function is useful for resetting a PGD node's catalog state to a known good state in case of corruption or user error.

You can import the snapshot if the importing node's apply_index is less than or equal to the snapshot-exporting node's commit_index when the snapshot was generated. (See bdr.get_raft_status() .) A node that can't accept
the snapshot because its log is already too far ahead raises an error and makes no changes. The imported snapshot doesn't have to be completely up to date, as once the snapshot is imported the node fetches the remaining changes from the
current leader.

The PGD consensus worker must be disabled on the importing node for this function to work. See notes on bdr.consensus_snapshot_export() for details.

It's possible to use this function to force the local node to generate a new Raft snapshot by running:

SELECT bdr.consensus_snapshot_import(bdr.consensus_snapshot_export());

This approach might also truncate the Raft logs up to the current applied log position.

bdr.consensus_snapshot_verify

bdr.consensus_snapshot_export(version integer DEFAULT NULL)

bdr.consensus_snapshot_import(snapshot
bytea)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 344

bdr.consensus_snapshot_verify

Synopsis

Verify the given consensus snapshot that was exported by bdr.consensus_snapshot_export() . The snapshot header contains the version with which it was generated and the node tries to verify it against the same version.

The snapshot might have been exported on the same node or any other node in the cluster. If the node verifying the snapshot doesn't support the version of the exported snapshot, then an error is raised.

bdr.get_consensus_status

Returns status information about the current consensus (Raft) worker.

bdr.get_raft_status

Returns status information about the current consensus (Raft) worker. Alias for bdr.get_consensus_status .

bdr.raft_leadership_transfer

Synopsis

Request the node identified by node_name to be the Raft leader. The request can be initiated from any of the PGD nodes and is internally forwarded to the current leader to transfer the leadership to the designated node. The designated node
must be an ACTIVE PGD node with full voting rights.

If wait_for_completion is false, the request is served on a best-effort basis. If the node can't become a leader in the bdr.raft_global_lection_timeout period, then some other capable node becomes the leader again. Also,
the leadership can change over the period of time per Raft protocol. A true return result indicates only that the request was submitted successfully.

If wait_for_completion is true , then the function waits until the given node becomes the new leader and possibly waits infinitely if the requested node fails to become Raft leader (for example, due to network issues). We therefore
recommend that you always set a statement_timeout with wait_for_completion to prevent an infinite loop.

The node_group_name is optional and can be used to specify the name of the node group where the leadership transfer happens. If not specified, it defaults to NULL, which is interpreted as the top-level group in the cluster. If the
node_group_name is specified, the function transfers leadership only within the specified node group.

Utility functions

bdr.wait_slot_confirm_lsn

Allows you to wait until the last write on this session was replayed to one or all nodes.

Waits until a slot passes a certain LSN. If no position is supplied, the current write position is used on the local node.

If no slot name is passed, it waits until all PGD slots pass the LSN.

The function polls every 1000 ms for changes from other nodes.

If a slot is dropped concurrently, the wait ends for that slot. If a node is currently down and isn't updating its slot, then the wait continues. You might want to set statement_timeout to complete earlier in that case.

If you are using Optimized Topology, we recommend using bdr.wait_node_confirm_lsn instead.)

Synopsis

Notes

Requires bdr_application privileges to use.

Parameters

Parameter Description

slot_name Name of the replication slot to wait for. If NULL, waits for all PGD
slots.

target_lsn LSN to wait for. If NULL, uses the current write LSN on the local node.

bdr.wait_node_confirm_lsn

bdr.consensus_snapshot_verify(snapshot
bytea)

bdr.raft_leadership_transfer(node_name text,
 wait_for_completion boolean,
 node_group_name text DEFAULT NULL)

bdr.wait_slot_confirm_lsn(slot_name text DEFAULT NULL, target_lsn pg_lsn DEFAULT
NULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 345

https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/subscriber_only/optimizing-so

bdr.wait_node_confirm_lsn

Wait until a node passes a certain LSN.

This function allows you to wait until the last write on this session was replayed to one or all nodes.

Upon being called, the function waits for a node to pass a certain LSN. If no LSN is supplied, the current wal_flush_lsn (using the pg_current_wal_flush_lsn() function) position is used on the local node. Supplying a node name
parameter tells the function to wait for that node to pass the LSN. If no node name is supplied (by passing NULL), the function waits until all the nodes pass the LSN.

We recommend using this function if you are using Optimized Topology instead of bdr.wait_slot_confirm_lsn .

This is because in an Optimized Topology, not all nodes have replication slots, so the function bdr.wait_slot_confirm_lsn might not work as expected. bdr.wait_node_confirm_lsn is designed to work with nodes that don't
have replication slots, using alternative strategies to determine the progress of a node.

If a node is currently down, isn't updating, or simply can't be connected to, the wait will continue indefinitely. To avoid this condition, set the statement_timeout to the maximum amount of time you are prepared to wait.

Synopsis

Parameters

Parameter Description

node_name Name of the node to wait for. If NULL, waits for all nodes.

target_lsn LSN to wait for. If NULL, uses the current wal_flush_lsn on the local
node.

Notes

Requires bdr_application privileges to use.

bdr.wait_for_apply_queue

The function bdr.wait_for_apply_queue allows a PGD node to wait for the local application of certain transactions originating from a given PGD node. It returns only after all transactions from that peer node are applied locally. An
application or a proxy can use this function to prevent stale reads.

For convenience, PGD provides a variant of this function for CAMO and the CAMO partner node. See bdr.wait_for_camo_partner_queue.

In case a specific LSN is given, that's the point in the recovery stream from which the peer waits. You can use this with bdr.last_committed_lsn retrieved from that peer node on a previous or concurrent connection.

If the given target_lsn is NULL, this function checks the local receive buffer and uses the LSN of the last transaction received from the given peer node, effectively waiting for all transactions already received to be applied. This is
especially useful in case the peer node has failed and it's not known which transactions were sent. In this case, transactions that are still in transit or buffered on the sender side aren't waited for.

Synopsis

Parameters

Parameter Description

peer_node_name The name of the peer node from which incoming transactions are expected to be queued and to wait for. If NULL, waits for all peer node's apply queue to be
consumed.

target_lsn The LSN in the replication stream from the peer node to wait for, usually learned by way of bdr.last_committed_lsn from the peer node.

bdr.get_node_sub_receive_lsn

You can use this function on a subscriber to get the last LSN that was received from the given origin. It can be either unfiltered or filtered to take into account only relevant LSN increments for transactions to be applied.

The difference between the output of this function and the output of bdr.get_node_sub_apply_lsn() measures the size of the corresponding apply queue.

Synopsis

Parameters

Parameter Description

node_name The name of the node that's the source of the replication stream whose LSN is being retrieved.

committed The default (true) makes this function take into account only commits of transactions received rather than the last LSN overall. This includes actions that have no effect on the subscriber
node.

bdr.get_node_sub_apply_lsn

bdr.wait_node_confirm_lsn(node_name text DEFAULT NULL, target_lsn pg_lsn DEFAULT
NULL)

bdr.wait_for_apply_queue(peer_node_name TEXT, target_lsn pg_lsn)

bdr.get_node_sub_receive_lsn(node_name name, committed bool default true)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 346

bdr.get_node_sub_apply_lsn

You can use this function on a subscriber to get the last LSN that was received and applied from the given origin.

Synopsis

Parameters

Parameter Description

node_name The name of the node that's the source of the replication stream whose LSN is being retrieved.

bdr.replicate_ddl_command

Function to replicate a DDL command to a group of nodes.

Synopsis

Parameters

Parameter Description

ddl_cmd DDL command to execute.

replication_sets An array of replication set names to apply the ddlcommand to. If NULL (or the function is passed only the ddlcommand), this parameter is set to the active PGD groups's default replication
set.

ddl_locking A string that sets the bdr.ddl_locking value while replicating. Defaults to the GUC value for bdr.ddl_locking on the local system that's running replicate_ddl_command .

execute_locally A Boolean that determines whether the DDL command executes locally. Defaults to true.

Notes

The only required parameter of this function is ddl_cmd .

bdr.replicate_ddl_command() always replicates the command and is unaffected by the setting of bdr.ddl_replication .

bdr.run_on_all_nodes

Function to run a query on all nodes.

Warning

This function runs an arbitrary query on a remote node with the privileges of the user used for the internode connections as specified in the node's DSN. Use caution when granting privileges to this function.

Synopsis

Parameters

Parameter Description

query Arbitrary query to execute.

Notes

This function connects to other nodes and executes the query, returning a result from each of them in JSON format. Multiple rows might be returned from each node, encoded as a JSON array. Any errors, such as being unable to connect
because a node is down, are shown in the response field. No explicit statement_timeout or other runtime parameters are set, so defaults are used.

This function doesn't go through normal replication. It uses direct client connection to all known nodes. By default, the connection is created with bdr.ddl_replication = off , since the commands are already being sent to all of the
nodes in the cluster.

In PGD 6 and later, this function also sets bdr.xact_replication=off on the connection to ensure that transaction run locally only when the command is executed on another node.

Be careful when using this function since you risk breaking replication and causing inconsistencies between nodes. Use either transparent DDL replication or bdr.replicate_ddl_command() to replicate DDL. DDL might be blocked in a
future release.

bdr.get_node_sub_apply_lsn(node_name name)

bdr.replicate_ddl_command(ddl_cmd text,
 replication_sets
text[],
 ddl_locking
text,
 execute_locally bool)

bdr.run_on_all_nodes(query text)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 347

Example

It's useful to use this function in monitoring, for example, as in the following query:

This query returns something like this on a two-node cluster:

[
 {
 "dsn": "host=node1 port=5432 dbname=pgddb user=postgres ",
 "node_id": "2232128708",
 "response": {
 "command_status": "SELECT 1",
 "command_tuples": [
 {
 "origin_name": "node1",
 "target_name": "node2",
 "local_slot_name": "bdr_pgddb_bdrgroup_node2",
 "replay_lag_size": "0 bytes"
 }
]
 },
 "node_name": "node1"
 },
 {
 "dsn": "host=node2 port=5432 dbname=pgddb user=postgres ",
 "node_id": "2058684375",
 "response": {
 "command_status": "SELECT 1",
 "command_tuples": [
 {
 "origin_name": "node2",
 "target_name": "node1",
 "local_slot_name": "bdr_pgddb_bdrgroup_node1",
 "replay_lag_size": "0 bytes"
 }
]
 },
 "node_name": "node2"
 }
]

bdr.run_on_nodes

Function to run a query on a specified list of nodes.

Warning

This function runs an arbitrary query on remote nodes with the privileges of the user used for the internode connections as specified in the node's DSN. Use caution when granting privileges to this function.

Synopsis

bdr.run_on_nodes(node_names text[], query text)

Parameters

Parameter Description

node_names Text ARRAY of node names where the query is
executed.

query Arbitrary query to execute.

Notes

This function connects to other nodes and executes the query, returning a result from each of them in JSON format. Multiple rows can be returned from each node, encoded as a JSON array. Any errors, such as being unable to connect because
a node is down, are shown in the response field. No explicit statement_timeout or other runtime parameters are set, so defaults are used.

This function doesn't go through normal replication. It uses direct client connection to all known nodes. By default, the connection is created with bdr.ddl_replication = off to avoid replication issues when the same replicated DDL
command is sent to multiple nodes.

In PGD 6 and later, this function also sets bdr.xact_replication=off on the connection to ensure that transactions run locally only when the command is executed on another node.

Be careful when using this function since you risk breaking replication and causing inconsistencies between nodes. For global schema changes, to replicate DDL, use either transparent DDL replication or
bdr.replicate_ddl_command() .

bdr.run_on_group

SELECT bdr.run_on_all_nodes($$
 SELECT local_slot_name, origin_name, target_name,
replay_lag_size
 FROM
bdr.node_slots
 WHERE origin_name IS NOT
NULL
$$);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 348

bdr.run_on_group

Function to run a query on a group of nodes.

Warning

This function runs an arbitrary query on remote nodes with the privileges of the user used for the internode connections as specified in the node's DSN. Use caution when granting privileges to this function.

Synopsis

bdr.run_on_group(node_group_name text, query text)

Parameters

Parameter Description

node_group_name Name of the node group where the query is
executed.

query Arbitrary query to execute.

Notes

This function connects to other nodes and executes the query, returning a result from each of them in JSON format. Multiple rows can be returned from each node, encoded as a JSON array. Any errors, such as being unable to connect because
a node is down, are shown in the response field. No explicit statement_timeout or other runtime parameters are set, so defaults are used.

This function doesn't go through normal replication. It uses direct client connection to all known nodes. By default, the connection is created with bdr.ddl_replication = off to avoid replication issues when the same replicated DDL
command is sent to multiple nodes.

In PGD 6 and later, this function also sets bdr.xact_replication=off on the connection to ensure that transactions run locally only when the command is executed on another node.

Be careful when using this function since you risk breaking replication and causing inconsistencies between nodes in the group. For global schema changes, to replicate DDL, use either transparent DDL replication or
bdr.replicate_ddl_command() .

bdr.global_lock_table

This function acquires a global DML locks on a given table. See DDL locking details for information about global DML lock.

Synopsis

Parameters

Parameter Description

relation Name or oid of the relation to lock.

Notes

This function acquires the global DML lock independently of the ddl_locking setting.

The bdr.global_lock_table function requires UPDATE , DELETE , or TRUNCATE privilege on the locked relation unless bdr.backwards_compatibility is set to 30618 or lower.

bdr.wait_for_xid_progress

You can use this function to wait for the given transaction (identified by its XID) originated at the given node (identified by its node id) to make enough progress on the cluster. The progress is defined as the transaction being applied on a node
and this node having seen all other replication changes done before the transaction is applied.

Synopsis

Parameters

Parameter Description

origin_node_id Node id of the node where the transaction originated.

origin_topxid XID of the transaction.

allnodes If true , wait for the transaction to progress on all nodes. Otherwise, wait only for the current node.

bdr.global_lock_table(relation regclass)

bdr.wait_for_xid_progress(origin_node_id oid, origin_topxid int4, allnodes boolean DEFAULT
true)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 349

https://www.enterprisedb.com/docs/pgd/latest/reference/ddl/ddl-locking.mdx

Notes

You can use the function only for those transactions that replicated a DDL command because only those transactions are tracked currently. If a wrong origin_node_id or origin_topxid is supplied, the function might wait forever or
until statement_timeout occurs.

bdr.local_group_slot_name

Returns the name of the group slot on the local node.

Example

bdr.node_group_type

Returns the type of the given node group. Returned value is the same as what was passed to bdr.create_node_group() when the node group was created, except global is returned if the node_group_type was passed as NULL
when the group was created.

Example

bdr.alter_node_kind

PGD5 introduced a concept of Task Manager Leader node. The node is selected by PGD, but for upgraded clusters, it's important to set the node_kind properly for all nodes in the cluster. Do this manually after upgrading to the latest PGD
version by calling the bdr.alter_node_kind() SQL function for each node.

Synopsis

Parameters

Parameter Description

node_name Name of the node to change kind.

node_kind Kind of the node.

bdr.alter_subscription_skip_changes_upto

Because logical replication can replicate across versions, doesn't replicate global changes like roles, and can replicate selectively, sometimes the logical replication apply process can encounter an error and stop applying changes.

Wherever possible, fix such problems by making changes to the target side. CREATE any missing table that's blocking replication, CREATE a needed role, GRANT a necessary permission, and so on. But occasionally a problem can't be fixed
that way and it might be necessary to skip entirely over a transaction. Changes are skipped as entire transactions—all or nothing. To decide where to skip to, use log output to find the commit LSN, per the example that follows, or peek the
change stream with the logical decoding functions.

Unless a transaction made only one change, you often need to manually apply the transaction's effects on the target side, so it's important to save the problem transaction whenever possible, as shown in the examples that follow.

It's possible to skip over changes without bdr.alter_subscription_skip_changes_upto by using pg_catalog.pg_logical_slot_get_binary_changes to skip to the LSN of interest, so this is a convenience function. It
does do a faster skip, although it might bypass some kinds of errors in logical decoding.

This function works only on disabled subscriptions.

The usual sequence of steps is:

1. Identify the problem subscription and LSN of the problem commit.
2. Disable the subscription.
3. Save a copy of the transaction using pg_catalog.pg_logical_slot_peek_changes on the source node, if possible.
4. bdr.alter_subscription_skip_changes_upto on the target node.
5. Apply repaired or equivalent changes on the target manually, if necessary.
6. Reenable the subscription.

Warning

It's easy to make problems worse when using this function. Don't do anything unless you're certain it's the only option.

pgddb=# SELECT bdr.local_group_slot_name();

local_group_slot_name

 bdr_pgddb_bdrgroup

pgddb=# SELECT bdr.node_group_type('bdrgroup');
 node_group_type

 global

bdr.alter_node_kind(node_name text,
 node_kind
text);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 350

Synopsis

Example

Apply of a transaction is failing with an error, and you've determined that lower-impact fixes such as changes on the target side can't resolve this issue. You determine that you must skip the transaction.

In the error logs, find the commit record LSN to skip to, as in this example:

ERROR: XX000: CONFLICT: target_table_missing; resolver skip_if_recently_dropped returned an error: table does not exist
CONTEXT: during apply of INSERT from remote relation public.break_me in xact with commit-end lsn 0/300AC18 xid 131315
committs 2021-02-02 15:11:03.913792+01 (action #2) (effective sess origin id=2 lsn=0/300AC18)
while consuming 'I' message from receiver for subscription bdr_regression_bdrgroup_node1_node2 (id=2667578509)
on node node2 (id=3367056606) from upstream node node1 (id=1148549230, reporiginid=2)

In this portion of log, you have the information you need: the_target_lsn: 0/300AC18 the_subscription: bdr_regression_bdrgroup_node1_node2

Next, disable the subscription so the apply worker doesn't try to connect to the replication slot:

You can't skip only parts of the transaction: it's all or nothing. So we strongly recommend that you save a record of it by copying it out on the provider side first, using the subscription's slot name.

This example is broken into multiple lines for readability, but issue it in a single line. \copy doesn't support multi-line commands.

You can skip the change by changing peek to get , but bdr....skip_changes_upto does a faster skip that avoids decoding and outputting all the data:

You can apply the same changes (or repaired versions of them) manually to the target node, using the dumped transaction contents as a guide.

Finally, reenable the subscription:

Global advisory locks

PGD supports global advisory locks. These locks are similar to the advisory locks available in PostgreSQL except that the advisory locks supported by PGD are global. They follow semantics similar to DDL locks. So an advisory lock is obtained
by majority consensus and can be used even if one or more nodes are down or lagging behind, as long as a majority of all nodes can work together.

Currently only EXCLUSIVE locks are supported. So if another node or another backend on the same node has already acquired the advisory lock on the object, then other nodes or backends must wait for the lock to be released.

Advisory lock is transactional in nature. So the lock is released when the transaction ends unless you explicitly release it before the end of the transaction. In this case, it becomes available as soon as it's released. Session-level advisory locks
aren't currently supported.

Global advisory locks are reentrant. So if the same resource is locked three times, you must then unlock it three times to release it for use in other sessions.

bdr.global_advisory_lock

This function acquires an EXCLUSIVE lock on the provided object. If the lock isn't available, then it waits until the lock becomes available or the bdr.global_lock_timeout is reached.

Synopsis

parameters

key — The object on which an advisory lock is acquired.

Synopsis

 bdr.alter_subscription_skip_changes_upto(
 subname text,
 skip_upto_and_including
pg_lsn
);

 SELECT
bdr.alter_subscription_disable('the_subscription');

 \\copy (SELECT * FROM
pg_catalog.pg_logical_slot_peek_changes('the_slot_name',
 'the_target_lsn', NULL, 'min_proto_version', '1', 'max_proto_version', '1',
 'startup_params_format', '1', 'proto_format', 'json'))
 TO 'transaction_to_drop.csv' WITH (FORMAT csv);

 SELECT bdr.alter_subscription_skip_changes_upto('subscription_name',
 'the_target_lsn');

 SELECT bdr.alter_subscription_enable('the_subscription');

bdr.global_advisory_lock(key bigint)

bdr.global_advisory_lock(key1 integer, key2 integer)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 351

Parameters

Parameter Description

key1 First part of the composite key.

key2 Second part of the composite key.

bdr.global_advisory_unlock

This function releases a previously acquired lock on the application-defined source. The lock must have been obtained in the same transaction by the application. Otherwise, an error is raised.

Synopsis

Parameters

Parameter Description

key The object on which an advisory lock is acquired.

Synopsis

Parameters

Parameter Description

key1 First part of the composite key.

key2 Second part of the composite key.

Monitoring functions

bdr.monitor_group_versions

To provide a cluster-wide version check, this function uses PGD version information returned from the view bdr.group_version_details .

Synopsis

Notes

This function returns a record with fields status and message , as explained in Monitoring.

This function calls bdr.run_on_all_nodes() .

bdr.monitor_group_raft

To provide a cluster-wide Raft check, this function uses PGD Raft information returned from the view bdr.group_raft_details .

Synopsis

Parameters

Parameter Description

node_group_name The node group name to check.

Notes

This function returns a record with fields status and message , as explained in Monitoring.

This function calls bdr.run_on_all_nodes() .

bdr.monitor_local_replslots

bdr.global_advisory_unlock(key bigint)

bdr.global_advisory_unlock(key1 integer, key2 integer)

bdr.monitor_group_versions()

bdr.monitor_group_raft()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 352

bdr.monitor_local_replslots

This function uses replication slot status information returned from the view pg_replication_slots (slot active or inactive) to provide a local check considering all replication slots except the PGD group slots.

This function also provides status information on subscriber-only nodes that are operating as subscriber-only group leaders in a PGD cluster when optimized topology is enabled.

Synopsis

Notes

This function returns a record with fields status and message .

Status Message

UNKNOWN This node is not part of any BDR group

OK All BDR replication slots are working correctly

OK This node is part of a subscriber-only group

CRITICAL There is at least 1 BDR replication slot which is inactive

CRITICAL There is at least 1 BDR replication slot which is missing

Further explaination is available in Monitoring replication slots.

bdr.wal_sender_stats

If the decoding worker is enabled, this function shows information about the decoder slot and current logical change record (LCR) segment file being read by each WAL sender.

Synopsis

Output columns

Column name Description

pid PID of the WAL sender. (Corresponds to the pid column of pg_stat_replication).

is_using_lcr Whether the WAL sender is sending LCR files.

decoder_slot_name Name of the decoder replication slot.

lcr_file_name Name of the current LCR file.

bdr.get_decoding_worker_stat

If the decoding worker is enabled, this function shows information about the state of the decoding worker associated with the current database. This also provides more granular information about decoding worker progress than is available via
pg_replication_slots .

Synopsis

Output columns

Column name Description

pid The PID of the decoding worker. (Corresponds to the column active_pid in pg_replication_slots .)

decoded_upto_lsn LSN up to which the decoding worker read transactional logs.

waiting Whether the decoding worker is waiting for new WAL.

waiting_for_lsn The LSN of the next expected WAL.

Notes

For details, see Monitoring WAL senders using LCR.

bdr.lag_control

If Lag Control is enabled, this function shows information about the commit delay and number of nodes conforming to their configured lag measure for the local node and current database.

bdr.monitor_local_replslots()

bdr.wal_sender_stats()

bdr.get_decoding_worker_stat()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 353

https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/subscriber_only/optimizing-so

Synopsis

Output columns

Column name Description

commit_scope_id OID of the commit scope (see bdr.commit_scopes).

sessions Number of sessions referencing the lag control entry.

current_commit_delay Current runtime commit delay, in fractional milliseconds.

maximum_commit_delay Configured maximum commit delay, in fractional milliseconds.

commit_delay_adjust Change to runtime commit delay possible during a sample interval, in fractional milliseconds.

current_conforming_nodes Current runtime number of nodes conforming to lag measures.

minimum_conforming_nodes Configured minimum number of nodes required to conform to lag measures, below which a commit delay adjustment is
applied.

lag_bytes_threshold Lag size at which a commit delay is applied, in kilobytes.

maximum_lag_bytes Configured maximum lag size, in kilobytes.

lag_time_threshold Lag time at which a commit delay is applied, in milliseconds.

maximum_lag_time Configured maximum lag time, in milliseconds.

sample_interval Configured minimum time between lag samples and possible commit delay adjustments, in milliseconds.

Routing functions

bdr.routing_leadership_transfer

Changing the routing leader transfers the leadership of the node group to another node.

Synopsis

Parameters

Name Type Default Description

node_group_name text Name of group where the leadership transfer is requested.

leader_name text Name of node that will become write leader.

transfer_method text 'strict' Type of the transfer. It can be 'fast' or the default, 'strict' , which checks the maximum lag.

transfer_timeout interval '10s' Timeout of the leadership transfer. Default is 10 seconds.

CAMO functions

CAMO requires that a client actively participates in the committing of a transaction by following the transactions progress. The functions listed here are used for that purpose and explained in CAMO.

bdr.is_camo_partner_connected

Allows checking of the connection status of a CAMO partner node configured in pair mode. There currently is no equivalent for CAMO used with eager replication.

Synopsis

Return value

A Boolean value indicating whether the CAMO partner is currently connected to a WAL sender process on the local node and therefore can receive transactional data and send back confirmations.

bdr.is_camo_partner_ready

Allows checking of the readiness status of a CAMO partner node configured in pair mode. Underneath, this triggers the switch to and from local mode.

Synopsis

bdr.lag_control()

bdr.routing_leadership_transfer(node_group_name text,
 leader_name
text,
 transfer_method text DEFAULT 'strict',
 transfer_timeout interval DEFAULT
'10s');

bdr.is_camo_partner_connected()

bdr.is_camo_partner_ready()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 354

Return value

A Boolean value indicating whether the CAMO partner can reasonably be expected to confirm transactions originating from the local node in a timely manner, that is, before timeout for TO ASYNC expires.

Note

This function queries the past or current state. A positive return value doesn't indicate whether the CAMO partner can confirm future transactions.

bdr.get_configured_camo_partner

This function shows the local node's CAMO partner (configured by pair mode).

Synopsis

bdr.wait_for_camo_partner_queue

The function is a wrapper around bdr.wait_for_apply_queue defaulting to query the CAMO partner node. It returns an error if the local node isn't part of a CAMO pair.

Synopsis

bdr.camo_transactions_resolved

This function begins a wait for CAMO transactions to be fully resolved.

Synopsis

bdr.logical_transaction_status

To check the status of a transaction that was being committed when the node failed, the application must use this function, passing as parameters the node id of the node the transaction originated from and the transaction id on the origin
node.

Synopsis

Parameters

Parameter Description

node_id The node id of the PGD node the transaction originates from, usually retrieved by the client before COMMIT from the PQ parameter
bdr.local_node_id .

xid The transaction id on the origin node, usually retrieved by the client before COMMIT from the PQ parameter transaction_id .

require_camo_partner Defaults to true and enables configuration checks. Set to false to disable these checks and query the status of a transaction that wasn't a CAMO transaction.

Return value

The function returns one of these results:

'committed'::TEXT — The transaction was committed, is visible on both nodes of the CAMO pair, and is eventually replicated to all other PGD nodes. No need for the client to retry it.

'aborted'::TEXT — The transaction was aborted and isn't replicated to any other PGD node. The client needs to either retry it or escalate the failure to commit the transaction.

'in progress'::TEXT — The transaction is still in progress on this local node and wasn't committed or aborted yet. The transaction might be in the COMMIT phase, waiting for the CAMO partner to confirm or deny the commit. The
recommended client reaction is to disconnect from the origin node and reconnect to the CAMO partner to query that instead. With a load balancer or proxy in between, where the client lacks control over which node gets queried, the
client can only poll repeatedly until the status switches to either 'committed' or 'aborted' .

For eager all-node replication, peer nodes yield this result for transactions that aren't yet committed or aborted. Even transactions not yet replicated (or not even started on the origin node) might yield an in progress result on a
peer PGD node in this case. However, the client must not query the transaction status prior to attempting to commit on the origin.

'unknown'::TEXT — The transaction specified is unknown because it's either in the future, not replicated to that specific node yet, or too far in the past. The status of such a transaction isn't yet or is no longer known. This return
value is a sign of improper use by the client.

The client must be prepared to retry the function call on error.

bdr.get_configured_camo_partner()

bdr.wait_for_camo_partner_queue()

bdr.camo_transactions_resolved()

bdr.logical_transaction_status(node_id OID, xid
OID,
 require_camo_partner boolean DEFAULT true)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 355

https://www.postgresql.org/docs/current/libpq-status.html#LIBPQ-PQPARAMETERSTATUS
https://www.postgresql.org/docs/current/libpq-status.html#LIBPQ-PQPARAMETERSTATUS

Commit Scope functions

bdr.add_commit_scope

Deprecated. Use bdr.create_commit_scope instead. Previously, this function was used to add a commit scope to a node group. It's now deprecated and will emit a warning until it is removed in a future release, at which point it will raise
an error.

bdr.create_commit_scope

bdr.create_commit_scope creates a rule for the given commit scope name and origin node group. If the rule is the same for all nodes in the EDB Postgres Distributed cluster, invoking this function once for the top-level node group is
enough to fully define the commit scope.

Alternatively, you can invoke it multiple times with the same commit_scope_name but different origin node groups and rules for commit scopes that vary depending on the origin of the transaction.

Synopsis

Note

bdr.create_commit_scope replaces the deprecated bdr.add_commit_scope function. Unlike add_commit_scope , it doesn't silently overwrite existing commit scopes when the same name is used. Instead, an error is reported.

bdr.alter_commit_scope

bdr.alter_commit_scope allows you to change a specific rule for a single origin node group in a commit scope.

Synopsis

bdr.drop_commit_scope

Drops a single rule in a commit scope. If you define multiple rules for the commit scope, you must invoke this function once per rule to fully remove the entire commit scope.

Synopsis

Note

Dropping a commit scope that's still used as default by a node group isn't allowed.

bdr.remove_commit_scope

Deprecated. Use bdr.drop_commit_scope instead. Previously, this function was used to remove a commit scope from a node group. It's now deprecated and will emit a warning until it is removed in a future release, at which point it will
raise an error.

bdr.create_commit_scope(
 commit_scope_name NAME,
 origin_node_group NAME,
 rule TEXT,
 wait_for_ready boolean DEFAULT
true)

bdr.alter_commit_scope(
 commit_scope_name NAME,
 origin_node_group NAME,
 rule TEXT)

bdr.drop_commit_scope(
 commit_scope_name NAME,
 origin_node_group NAME)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 356

29.1.3 PGD settings

You can set PGD-specific configuration settings. Unless noted otherwise, you can set the values at any time.

Conflict handling

bdr.default_conflict_detection

Sets the default conflict detection method for newly created tables. Accepts same values as bdr.alter_table_conflict_detection().

Global sequence parameters

bdr.default_sequence_kind

Sets the default sequence kind.

The default is distributed , which means snowflakeid is used for int8 sequences (that is, bigserial) and galloc sequence for int4 (that is, serial) and int2 sequences.

DDL handling

bdr.default_replica_identity

Sets the default value for REPLICA IDENTITY on newly created tables. The REPLICA IDENTITY defines the information written to the write-ahead log to identify rows that are updated or deleted.

The accepted values are:

Value Description

default Records the old values of the columns of the primary key, if any (this is the default PostgreSQL behavior).

full Records the old values of all columns in the row.

nothing Records no information about the old row.

auto Tables are created with REPLICA IDENTITY FULL. This is the default PGD behavior.

See the PostgreSQL documentation for more details.

PGD can't replicate UPDATE and DELETE operations on tables without a PRIMARY KEY or UNIQUE constraint. The exception is when the replica identity for the table is FULL , either by table-specific configuration or by
bdr.default_replica_identity .

If bdr.default_replica_identity is default and there is a UNIQUE constraint included in the table definition, it won't be automatically picked up as REPLICA IDENTITY . You need to set the REPLICA IDENTITY explicitly
using ALTER TABLE ... REPLICA IDENTITY

Setting the replica identity of tables to full increases the volume of WAL written and the amount of data replicated on the wire for the table.

On setting bdr.default_replica_identity to default

When setting bdr.default_replica_identity to default using ALTER SYSTEM , always quote the value, like this:

You need to include the quotes because default, unquoted, is a special value to the ALTER SYSTEM command that triggers the removal of the setting from the configuration file. When the setting is removed, the system uses the PGD
default setting, which is auto .

bdr.ddl_replication

Automatically replicates DDL across nodes (default is on).

This parameter can be set only by bdr_superuser or superuser roles.

Running DDL or calling PGD administration functions with bdr.ddl_replication = off can create situations where replication stops until an administrator can intervene. See DDL replication for details.

A LOG -level log message is emitted to the PostgreSQL server logs whenever bdr.ddl_replication is set to off . Additionally, a WARNING-level message is written whenever replication of captured DDL commands or PGD
replication functions is skipped due to this setting.

bdr.role_replication

Automatically replicates ROLE commands across nodes (default is on). Only a superuser can set this parameter. This setting works only if bdr.ddl_replication is turned on as well.

Turning this parameter off without using external methods to ensure roles are in sync across all nodes might cause replicated DDL to interrupt replication until the administrator intervenes.

See Role manipulation statements for details.

bdr.ddl_locking

ALTER SYSTEM SET bdr.default_replica_identity="default";

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 357

https://www.postgresql.org/docs/current/sql-altertable.html#SQL-CREATETABLE-REPLICA-IDENTITY
https://www.postgresql.org/docs/current/sql-altersystem.html
https://www.enterprisedb.com/docs/pgd/latest/reference/ddl/ddl-role-manipulation.mdx

bdr.ddl_locking

Configures the operation mode of global locking for DDL.

This parameter can be set only by bdr_superuser or superuser roles.

Possible options are:

Value Description

all Use global locking for all DDL operations. (Default)

leader Use leader-based global DML locking.

auto Currently synonomous with leader .

dml Use global locking only for DDL operations that need to prevent writes by taking the global DML lock for a relation.

off Don't use global locking for DDL operations.

Default is auto .

A LOG -level log message is emitted to the PostgreSQL server logs whenever bdr.ddl_replication is set to off . Additionally, a WARNING message is written whenever any global locking steps are skipped due to this setting. It's
normal for some statements to result in two WARNING messages: one for skipping the DML lock and one for skipping the DDL lock.

For backward compatibility, bdr.ddl_locking supports aliases. on and true are an alias for all . false is an alias for off .

See also Global locking.

bdr.truncate_locking

Sets the TRUNCATE command's locking behavior (default is on / true). When on / true , TRUNCATE obeys the bdr.ddl_locking setting.

Global locking

DDL locking is controlled by bdr.ddl_locking . Other global locking settings include the following.

bdr.global_lock_max_locks

Sets the maximum number of global locks that can be held on a node (default is 1000). Can be set only at Postgres server start.

bdr.global_lock_timeout

Sets the maximum allowed duration of any wait for a global lock (default is 1 minute). A value of zero disables this timeout.

bdr.global_lock_statement_timeout

Sets the maximum allowed duration of any statement holding a global lock (default is 60 minutes). A value of zero disables this timeout.

bdr.global_lock_idle_timeout

Sets the maximum allowed duration of idle time in a transaction holding a global lock (default is 10 minutes). A value of zero disables this timeout.

bdr.lock_table_locking

Sets locking behavior for LOCK TABLE statement (default is on). When enabled, LOCK TABLE statement also takes a global DML lock on the cluster, blocking other locking statements.

Value Description

on Use global locking for all table locks. (Default)

off Don't use global locking for table locks.

bdr.predictive_checks

Sets the log level for predictive checks (currently used only by global locks). Can be DEBUG , LOG , WARNING (default), or ERROR . Predictive checks are early validations for expected cluster state when doing certain operations. You can
use them for those operations for fail early rather than wait for timeouts. In global lock terms, PGD checks that there are enough nodes connected and withing reasonable lag limit for getting the quorum needed by the global lock.

Node management

bdr.replay_progress_frequency

Sets the interval for sending replication position info to the rest of the cluster (default is 1 minute).

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 358

Generic replication

bdr.writers_per_subscription

Sets the default number of writers per subscription. (In PGD, you can also change this with bdr.alter_node_group_option for a group.)

bdr.max_writers_per_subscription

Maximum number of writers per subscription (sets upper limit for the bdr.writers_per_subscription setting).

bdr.xact_replication

Replicates current transaction (default is on).

Turning this off makes the whole transaction local only, which means the transaction isn't visible to logical decoding by PGD and all other downstream targets of logical decoding. Data isn't transferred to any other node, including logical
standby nodes.

This parameter can be set only by the bdr_superuser or superuser roles.

This parameter can be set only inside the current transaction using the SET LOCAL command unless bdr.permit_unsafe_commands = on .

Note

Even with transaction replication disabled, WAL is generated, but those changes are filtered away on the origin.

Warning

Turning off bdr.xact_replication leads to data inconsistency between nodes. Use it only to recover from data divergence between nodes or in replication situations where changes on single nodes are required for replication
to continue. Use at your own risk.

bdr.permit_unsafe_commands

Overrides safety check on commands that are deemed unsafe for general use.

Requires bdr_superuser or PostgreSQL superuser.

Warning

The commands that are normally not considered safe can either produce inconsistent results or break replication altogether. Use at your own risk.

bdr.batch_inserts

Number of consecutive inserts to one table in a single transaction that turns on batch processing of inserts for that table.

This setting allows replication of large data loads as COPY internally, rather than as a set of inserts. It's also how the initial data during node join is copied.

bdr.maximum_clock_skew

Specifies the maximum difference between the incoming transaction commit timestamp and the current time on the subscriber before triggering bdr.maximum_clock_skew_action .

It checks if the timestamp of the currently replayed transaction is in the future compared to the current time on the subscriber. If it is, and the difference is larger than bdr.maximum_clock_skew , it performs the action specified by the
bdr.maximum_clock_skew_action setting.

The default is -1 , which means ignore clock skew (the check is turned off). It's valid to set 0 as when the clocks on all servers are synchronized. The fact that the transaction is being replayed means it was committed in the past.

bdr.maximum_clock_skew_action

Specifies the action to take if a clock skew higher than bdr.maximum_clock_skew is detected.

There are two possible values for this setting:

Value Description

WARN Log a warning about this fact. The warnings are logged once per minute at the maximum to prevent flooding the server log.

WAIT Wait until the current local timestamp is no longer older than remote commit timestamp minus the bdr.maximum_clock_skew .

bdr.accept_connections

Enables or disables connections to PGD (default is on).

Requires bdr_superuser or PostgreSQL superuser.

bdr.writer_input_queue_size

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 359

bdr.writer_input_queue_size

Specifies the size of the shared memory queue used by the receiver to send data to the writer process. If the writer process is stalled or making slow progress, then the queue might get filled up, stalling the receiver process too. So it's important
to provide enough shared memory for this queue. The default is 1 MB, and the maximum allowed size is 1 GB. While any storage size specifier can be used to set the GUC, the default is KB.

bdr.writer_output_queue_size

Specifies the size of the shared memory queue used by the receiver to receive data from the writer process. Since the writer isn't expected to send a large amount of data, a relatively smaller sized queue is enough. The default is 32 KB, and the
maximum allowed size is 1 MB. While any storage size specifier can be used to set the GUC, the default is KB.

bdr.min_worker_backoff_delay

Allows for rate limiting of PGD background worker launches by preventing a given worker from being relaunched more often than every bdr.min_worker_backoff_delay milliseconds. On repeated errors, the backoff increases
exponentially with added jitter up to a maximum of bdr.max_worker_backoff_delay .

Time-unit suffixes are supported.

Note

This setting currently affects only receiver worker, which means it primarily affects how fast a subscription tries to reconnect on error or connection failure.

The default for bdr.min_worker_backoff_delay is 1 second. For bdr.max_worker_backoff_delay , it's 1 minute.

If the backoff delay setting is changed and the PostgreSQL configuration is reloaded, then all current backoffs wait for reset. Additionally, the bdr.worker_task_reset_backoff_all() function is provided to allow the administrator
to force all backoff intervals to immediately expire.

A tracking table in shared memory is maintained to remember the last launch time of each type of worker. This tracking table isn't persistent. It's cleared by PostgreSQL restarts, including soft restarts during crash recovery after an unclean
backend exit.

You can use the view bdr.worker_tasks to inspect this state so the administrator can see any backoff rate limiting currently in effect.

For rate-limiting purposes, workers are classified by task. This key consists of the worker role, database OID, subscription ID, subscription writer ID, extension library name and function name, extension-supplied worker name, and the remote
relation ID for sync writers. NULL is used where a given classifier doesn't apply, for example, when manager workers don't have a subscription ID and receivers don't have a writer ID.

CRDTs

bdr.crdt_raw_value

Sets the output format of CRDT data types.

The default output (when this setting is off) is to return only the current value of the base CRDT type, for example, a bigint for crdt_pncounter . When set to on , the returned value represents the full representation of the CRDT value,
which can, for example, include the state from multiple nodes.

Commit scope

bdr.commit_scope

Sets the current (or default) commit scope (default is an empty string).

Commit At Most Once

bdr.camo_local_mode_delay

The commit delay that applies in CAMO's asynchronous mode to emulate the overhead that normally occurs with the CAMO partner having to confirm transactions (default is 5 ms). Set to 0 to disable this feature.

bdr.camo_enable_client_warnings

Emits warnings if an activity is carried out in the database for which CAMO properties can't be guaranteed (default is enabled). Well-informed users can choose to disable this setting to reduce the amount of warnings going into their logs.

Transaction streaming

bdr.default_streaming_mode

Controls transaction streaming by the subscriber node. Possible values are: off , writer , file , and auto . Defaults to auto . If set to off , the subscriber doesn't request transaction streaming. If set to one of the other values, the
subscriber requests transaction streaming and the publisher provides it if it supports them and if configured at group level. For more details, see Transaction streaming.

Lag Control

bdr.lag_control_max_commit_delay

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 360

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/crdt
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/commit-scopes

bdr.lag_control_max_commit_delay

Maximum acceptable post-commit delay that can be tolerated, in fractional milliseconds.

bdr.lag_control_max_lag_size

Maximum acceptable lag size that can be tolerated, in kilobytes.

bdr.lag_control_max_lag_time

Maximum acceptable lag time that can be tolerated, in milliseconds.

bdr.lag_control_min_conforming_nodes

Minimum number of nodes required to stay below acceptable lag measures.

bdr.lag_control_commit_delay_adjust

Commit delay micro adjustment measured as a fraction of the maximum commit delay time. At a default value of 0.01%, it takes 100 net increments to reach the maximum commit delay.

bdr.lag_control_sample_interval

Minimum time between lag samples and commit delay micro adjustments, in milliseconds.

bdr.lag_control_commit_delay_start

The lag threshold at which commit delay increments start to be applied, expressed as a fraction of acceptable lag measures. At a default value of 1.0%, commit delay increments don't begin until acceptable lag measures are breached.

By setting a smaller fraction, it might be possible to prevent a breach by "bending the lag curve" earlier so that it's asymptotic with the acceptable lag measure.

Monitoring and logging

bdr.debug_level

Defines the log level that PGD uses to write its debug messages. The default value is debug2 . If you want to see detailed PGD debug output, set bdr.debug_level = 'log' .

bdr.trace_level

Similar to bdr.debug_level , defines the log level to use for PGD trace messages. Enabling tracing on all nodes of an EDB Postgres Distributed cluster might help EDB Support to diagnose issues. You can set this parameter only at
Postgres server start.

Warning

Setting bdr.debug_level or bdr.trace_level to a value >= log_min_messages can produce a very large volume of log output. Don't enabled it long term in production unless plans are in place for log filtering,
archival, and rotation to prevent disk space exhaustion.

bdr.track_subscription_apply

Tracks apply statistics for each subscription with bdr.stat_subscription (default is on).

bdr.track_relation_apply

Tracks apply statistics for each relation with bdr.stat_relation (default is off).

bdr.track_apply_lock_timing

Tracks lock timing when tracking statistics for relations with bdr.stat_relation (default is off).

Decoding worker

bdr.enable_wal_decoder

Enables logical change record (LCR) sending on a single node with a decoding worker (default is false). When set to true, a decoding worker process starts, and WAL senders send the LCRs it produces. If set back to false, any WAL senders
using LCR are restarted and use the WAL directly.

Note

You also need to enable this setting on all nodes in the PGD group and set the enable_wal_decoder option to true on the group.

bdr.receive_lcr

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 361

bdr.receive_lcr

When subscribing to another node, this setting enables the node to request the use of logical change records (LCRs) for the subscription (default is false). When this setting is true on a downstream node, the node requests that upstream nodes
use LCRs when sending to it. If you set bdr.enable_wal_decoder to true on a node, also set this setting to true.

Note

You also need to enable this setting on all nodes in the PGD group and set the enable_wal_decoder option to true on the group.

bdr.lcr_cleanup_interval

Logical change record (LCR) file cleanup interval (default is 3 minutes). When the decoding worker is enabled, the decoding worker stores LCR files as a buffer. These files are periodically cleaned, and this setting controls the interval between
any two consecutive cleanups. Setting it to zero disables cleanup.

Connectivity settings

The following are a set of connectivity settings affecting all cross-node libpq connections. The defaults are set to fairly conservative values and cover most production needs. All variables have SIGHUP context, meaning changes are
applied upon reload.

bdr.global_connection_timeout

Maximum time to wait while connecting, in seconds (default is 15 seconds). Write as a decimal integer, for example, 10. Zero, negative, or not specified means wait indefinitely. The minimum allowed timeout is 2 seconds, therefore a value of
1 is interpreted as 2.

bdr.global_keepalives

Controls whether TCP keepalives are used (default is 1, meaning on). If you don't want keepalives, you can change this to 0, meaning off. This parameter is ignored for connections made by a Unix-domain socket.

bdr.global_keepalives_idle

Controls the number of seconds of inactivity after which TCP sends a keepalive message to the server (default is 1 second). A value of zero uses the system default. This parameter is ignored for connections made by a Unix-domain socket or if
keepalives are disabled. It's supported only on systems where TCP_KEEPIDLE or an equivalent socket option is available. On other systems, it has no effect.

bdr.global_keepalives_interval

Controls the number of seconds after which to retransmit a TCP keepalive message that isn't acknowledged by the server (default is 2 seconds). A value of zero uses the system default. This parameter is ignored for connections made by a
Unix-domain socket or if keepalives are disabled. It's supported only on systems where TCP_KEEPINTVL or an equivalent socket option is available. On other systems, it has no effect.

bdr.global_keepalives_count

Controls the number of TCP keepalives that can be lost before the client's connection to the server is considered dead (default is 3). A value of zero uses the system default. This parameter is ignored for connections made by a Unix-domain
socket or if keepalives are disabled. It's supported only on systems where TCP_KEEPCNT or an equivalent socket option is available. On other systems, it has no effect.

bdr.global_tcp_user_timeout

Controls the number of milliseconds that transmitted data can remain unacknowledged before a connection is forcibly closed (default is 5000, that is, 5 seconds). A value of zero uses the system default. This parameter is ignored for
connections made by a Unix-domain socket. It's supported only on systems where TCP_USER_TIMEOUT is available. On other systems, it has no effect.

Topology settings

bdr.force_full_mesh

Forces the full mesh topology (default is on). When set to off , PGD will attempt to use the optimized topology for subscriber-only groups. This setting is only effective when the requirements for the optimized topology are met. See
Optimizing subscriber-only groups for more information.

Internal settings - Raft timeouts

bdr.raft_global_election_timeout

To account for network failures, the Raft consensus protocol implements timeouts for elections and requests. This value is used when a request is being sent to the global (top-level) group. The default is 6 seconds (6s).

bdr.raft_group_election_timeout

To account for network failures, the Raft consensus protocol implements timeouts for elections and requests. This value is used when a request is being sent to the sub-group. The default is 3 seconds (3s).

bdr.raft_response_timeout

For responses, the settings of bdr.raft_global_election_timeout and bdr.raft_group_election_timeout are used as appropriate. You can override this behavior by setting this variable. The setting of
bdr.raft_response_timeout must be less than either of the election timeout values. Set this variable to -1 to disable the override. The default is -1.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 362

Internal settings - Other Raft values

bdr.raft_keep_min_entries

The minimum number of entries to keep in the Raft log when doing log compaction (default is 1000 ; PGD 5.3 and earlier: 100). The value of 0 disables log compaction. You can set this parameter only at Postgres server start.

Warning

If log compaction is disabled, the log grows in size forever.

bdr.raft_log_min_apply_duration

To move the state machine forward, Raft appends entries to its internal log. During normal operation, appending takes only a few milliseconds. This poses an upper threshold on the duration of that append action, above which an INFO
message is logged. This can indicate a problem. Default is 3000 ms.

bdr.raft_log_min_message_duration

When to log a consensus request. Measures roundtrip time of a PGD consensus request and logs an INFO message if the time exceeds this parameter (default is 5000 ms).

bdr.raft_group_max_connections

The maximum number of connections across all PGD groups for a Postgres server (default is 100 connections). These connections carry PGD consensus requests between the groups' nodes. You can set this parameter only at Postgres server
start.

Internal settings - Other values

bdr.backwards_compatibility

Specifies the version to be backward compatible to, in the same numerical format as used by bdr.bdr_version_num , for example, 30618 . (Default is the current PGD version.) Enables exact behavior of a former PGD version, even if this
has generally unwanted effects. Since this changes from release to release, we advise against explicit use in the configuration file unless the value is different from the current version.

bdr.track_replication_estimates

Tracks replication estimates in terms of apply rates and catchup intervals for peer nodes. Protocols like CAMO can use this information to estimate the readiness of a peer node. This parameter is enabled by default.

bdr.lag_tracker_apply_rate_weight

PGD monitors how far behind peer nodes are in terms of applying WAL from the local node and calculate a moving average of the apply rates for the lag tracking. This parameter specifies how much contribution newer calculated values have
in this moving average calculation. Default is 0.1.

bdr.enable_auto_sync_reconcile

When enabled, nodes perform automatic synchronization of data from a node that is furthest ahead with respect to the down node. Default (from 6.0.1) is on.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 363

29.1.4 Node management

List of node states

State Description

NONE Node state is unset when the worker starts, expected to be set quickly to the current known state.

CREATED bdr.create_node() was executed, but the node isn't a member of any EDB Postgres Distributed cluster yet.

JOIN_START bdr.join_node_group() begins to join the local node to an existing EDB Postgres Distributed cluster.

JOINING The node join has started and is currently at the initial sync phase, creating the schema and data on the node.

CATCHUP Initial sync phase is completed. Now the join is at the last step of retrieving and applying transactions that were performed on the upstream peer node since the join started.

STANDBY Node join finished but hasn't yet started to broadcast changes. All joins spend some time in this state, but if defined as a logical standby, the node continues in this state.

PROMOTE Node was a logical standby and bdr.promote_node was just called to move the node state to ACTIVE . These two PROMOTE states have to be coherent to the fact that only one node can be with a state higher than
STANDBY but lower than ACTIVE .

PROMOTING Promotion from logical standby to full PGD node is in progress.

ACTIVE The node is a full PGD node and is currently ACTIVE . This is the most common node status.

PART_START Node was ACTIVE or STANDBY and bdr.part_node was just called to remove the node from the EDB Postgres Distributed cluster.

PARTING Node disconnects from other nodes and plays no further part in consensus or replication.

PART_CATCH
UP

Nonparting nodes synchronize any missing data from the recently parted node.

PART_CLEAN
UP

Non-parting nodes wait until the group slots of all nodes are caught up with all the transactions that originated from the PARTED node.

PARTED Node parting operation is now complete on all nodes.

Only one node at a time can be in either of the states PROMOTE or PROMOTING.

Node-management commands

PGD also provides a command-line utility for adding nodes to the PGD group using a physical copy (pg_basebackup) of an existing node.

bdr_init_physical

Deprecated

This command is deprecated in favor of the using the pgd CLI command pgd node setup which offers a more flexible and powerful ways to create and manage nodes in a PGD group. bdr_init_physical will receive only
bug fixes in the future and is not recommended for new installations.

Version requirement

bdr_init_physical requires that both the source node and the joining node have exactly the same PGD version. You can't use this command to join a node with a different PGD version to an existing cluster. This means that you
can't use bdr_init_physical for rolling upgrades using the node join method. For rolling upgrades, use logical join instead. See Rolling upgrade using node join for more details.

This is a regular command that's added to PostgreSQL's bin directory.

You must specify a data directory. If this data directory is empty, use pg_basebackup -X stream to fill the directory using a fast block-level copy operation.

If the specified data directory isn't empty, it's used as the base for the new node. Initially, it waits for catchup and then promotes to a master node before joining the PGD group. The --standby option, if used, turns it into a logical standby
node.

This command drops all PostgreSQL-native logical replication subscriptions from the database (or disables them when the -S option is used) as well as any replication origins and slots.

Synopsis

bdr_init_physical [OPTION] ...

Options

General options

-D, --pgdata=DIRECTORY — The data directory to use for the new node. It can be either an empty or nonexistent directory or a directory populated using the pg_basebackup -X stream command (required).
-l, --log-file=FILE — Use FILE for logging. The default is bdr_init_physical_postgres.log .
-n, --node-name=NAME — The name of the newly created node (required).
--replication-sets=SETS — The name of a comma-separated list of replication set names to use. All replication sets are used if not specified.
--standby — Create a logical standby (receive-only node) rather than full send/receive node.
--node-group-name — Group to join. Defaults to the same group as source node.
-s, --stop — Stop the server once the initialization is done.
-v — Increase logging verbosity.
-L — Perform selective pg_basebackup when used with an empty/nonexistent data directory (-D option). This is a feature of EDB Postgres Extended Server only.
-S — Instead of dropping logical replication subscriptions, disable them.

Connection options

-d, --remote-dsn=CONNSTR — Connection string for remote node (required).
--local-dsn=CONNSTR — Connection string for local node (required).

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 364

Configuration files override

--hba-conf — Path to the new pg_hba.conf .
--postgresql-conf — Path to the new postgresql.conf .
--postgresql-auto-conf — Path to the new postgresql.auto.conf .

Notes

The replication set names specified in the command don't affect the data that exists in the data directory before the node joins the PGD group. This is true whether bdr_init_physical makes its own base backup or an existing base
backup is being promoted to a new PGD node. Thus the --replication-sets option affects only the data published and subscribed to after the node joins the PGD node group. This behavior is different from the way replication sets are
used in a logical join, as when using bdr.join_node_group() .

The operator can truncate unwanted tables after the join completes. Refer to the bdr.tables catalog to determine replication set membership and identify tables that aren't members of any subscribed-to replication set. We strongly
recommend that you truncate the tables rather than drop them, because:

DDL replication sets aren't necessarily the same as row (DML) replication sets, so you might inadvertently drop the table on other nodes.
If you later want to add the table to a replication set and you dropped it on some subset of nodes, you need to re-create it only on those nodes without creating DDL conflicts before you can add it to any replication sets.

It's simpler and safer to truncate your nonreplicated tables, leaving them present but empty.

bdr_config

This command-line utility allows you to examine the configuration of a PGD installation. It is analogous to the pg_config utility that comes with PostgreSQL. You can use it to assist in troubleshooting and support.

Synopsis

bdr_config [OPTION] ...

Options

Option Description

--all Show all the keys and values in the configuration.

--version Show only the BDR version related keys and values. This includes the full version of the BDR extension, the Postgres version and flavor it is running against, and the BDRPG and BDR plugin API
versions.

--debug Show only the BDR debug keys and values, including build information and feature enablement.

Example

$ /usr/lib/edb-as/16/bin/bdr_config --all

output
BDR_VERSION_COMPLETE=5.6.0
BDR_VERSION_NUM=50600
PG_VERSION=16.4.1 (Debian 16.4.1~~snapshot11329862135.2980.1.88fbec6-1.bookworm)
PG_VERSION_NUM=160004
PG_FLAVOR=EPAS
BDRPG_API_VERSION_NUM=202309131
BDR_PLUGIN_API_VERSION=7011
USE_ASSERT_CHECKING=false
USE_VALGRIND=false
EXT_ENABLE_DTRACE=false
HAVE_LAG_CONTROL=true
HAVE_ASSESS_UPDATE_RI_HOOK=false
HAVE_BDRPG_PROBES=false
HAVE_CAMO=true
HAVE_DEADLOCK_DETECTOR_HOOK=true
HAVE_HEAP_UPDATE_HOOK=true
HAVE_LAG_TRACKER=true
HAVE_LCR=true
HAVE_LOG_TOAST_COLUMNS=false
HAVE_MISC_HOOKS=true
HAVE_MISSING_PARTITION_CONFLICT=true
HAVE_MULTI_PITR=false
HAVE_SELECTIVE_BASEBACKUP=false
HAVE_STREAMING_XACTS=true
HAVE_SYNC_COMMIT_HOOK=true
HAVE_TWOPHASE_DATA_HOOKS=true
HAVE_XLOG_FIND_NEXT_RECORD=true
HAVE_DETACH_CONCURRENTLY=true
HAVE_ANALYTICS=true

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 365

29.1.5 Node management interfaces

You can add and remove nodes dynamically using the SQL interfaces.

bdr.alter_node_group_option

Modifies a PGD node group configuration.

Synopsis

Parameters

Name Description

node_group_name Name of the group to change.

config_key Key of the option in the node group to change.

config_value New value to set for the given key.

config_value is parsed into the data type appropriate for the option.

The table shows the group options that can be changed using this function.

Name Type Description

apply_de
lay

in
ter
val

How long nodes wait to apply incoming changes. This option is useful mainly to set up a special subgroup with delayed subscriber-only nodes. Don't set this on groups that contain data nodes or on the top-level
group. Default is 0s .

check_co
nstraint
s

bo
ole
an

Whether the apply process checks the constraints when writing replicated data. We recommend keeping the default value or you risk data loss. Valid values are on or off . Default is on .

default_
commit_s
cope

te
xt

The commit scope to use by default, initially the local commit scope. This option applies only to the top-level node group. You can use individual rules for different origin groups of the same commit scope. See
Origin groups for more details.

enable_r
outing

bo
ole
an

Where Connection Manager through the group write leader is enabled for a given group. Valid values are on or off . Default is on for subgroups and off for the cluster group.

enable_r
aft

bo
ole
an

Whether group has its own Raft consensus. This option is necessary for setting enable_routing to on . This option is always on for the top-level group. Valid values are on or off . Default is on for
subgroups.

enable_w
al_decod
er

bo
ole
an

Enables/disables the decoding worker process. You can't enable the decoding worker process if streaming_mode is already enabled. Valid values are on or off . Default is off .

location te
xt

Information about group location. This option is purely metadata for monitoring. Default is '' (empty string).

num_writ
ers

in
teg
er

Number of parallel writers for the subscription backing this node group. Valid values are -1 or a positive integer. -1 means the value specified by the GUC bdr.writers_per_subscription is used. -1 is
the default.

route_re
ader_max
_lag

in
teg
er

Maximum lag in bytes for a node to be considered a viable read-only node. Currently reserved for future use.

route_wr
iter_max
_lag

in
teg
er

Maximum lag in bytes of the new write candidate to be selected as write leader. If no candidate passes this, no writer is selected. Default is -1 .

route_wr
iter_wai
t_flush

bo
ole
an

Whether to switch if PGD needs to wait for the flush. Currently reserved for future use.

streamin
g_mode

te
xt

Enables/disables streaming of large transactions. When set to off , streaming is disabled. When set to any other value, large transactions are decoded while they're still in progress, and the changes are sent to the
downstream. If the value is set to file , then the incoming changes of streaming transactions are stored in a file and applied only after the transaction is committed on upstream. If the value is set to writer ,
then the incoming changes are directly sent to one of the writers, if available.
If parallel apply is disabled or no writer is free to handle streaming transactions, then the changes are written to a file and applied after the transaction is committed. If the value is set to auto , PGD tries to
intelligently pick between file and writer , depending on the transaction property and available resources. You can't enable streaming_mode if the WAL decoder is already enabled. Default is auto .

For more details, see Transaction streaming.

failover
_slot_sc
ope

te
xt PGD 5.7 and later only. Sets the scope for Logical Slot Failover support. Valid values are global or local . Default is local . For more information, see CDC Failover support.

Return value

bdr.alter_node_group_option() returns VOID on success.

An ERROR is raised if any of the provided parameters is invalid.

bdr.alter_node_group_option(node_group_name text,
 config_key text,
 config_value text)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 366

https://www.enterprisedb.com/docs/pgd/latest/reference/connection-manager/
https://www.enterprisedb.com/docs/pgd/latest/reference/cdc-failover

Notes

You can examine the current state of node group options by way of the view bdr.node_group_summary .

This function passes a request to the group consensus mechanism to change the defaults. The changes made are replicated globally using the consensus mechanism.

The function isn't transactional. The request is processed in the background, so you can't roll back the function call. Also, the changes might not be immediately visible to the current transaction.

This function doesn't hold any locks.

bdr.alter_node_interface

Changes the connection string (DSN) of a specified node.

Synopsis

Parameters

Name Description

node_name Name of an existing node to alter.

interface_dsn New connection string for a node.

Notes

Run this function and make the changes only on the local node. This means that you normally execute it on every node in the PGD group, including the node that's being changed.

This function is transactional. You can roll it back, and the changes are visible to the current transaction.

The function holds lock on the local node.

bdr.alter_node_option

Modifies the PGD node routing configuration.

Synopsis

Parameters

Name Description

node_name Name of the node to change.

config_key Key of the option in the node to change.

config_value New value to set for the given key.

The node options you can change using this function are:

Config Key Description

route_priority Relative routing priority of the node against other nodes in the same node group. Default is '-1' .

route_fence Whether the node is fenced from routing. When true, the node can't receive connections from the Connection Manager. Replication is not impacted. Default is 'f' (false).

route_writes Whether writes can be routed to this node, that is, whether the node can become write leader. Default is 't' (true) for data nodes and 'f' (false) for other node types.

route_reads Whether read-only connections can be routed to this node. Currently reserved for future use. Default is 't' (true) for data and subscriber-only nodes, 'f' (false) for witness and standby
nodes.

route_dsn The dsn for the proxy to use to connect to this node. This option is optional. If not set, it defaults to the node's node_dsn value.

bdr.alter_subscription_enable

Enables either the specified subscription or all the subscriptions of the local PGD node. This is also known as resume subscription. No error is thrown if the subscription is already enabled. Returns the number of subscriptions affected by this
operation.

bdr.alter_node_interface(node_name text, interface_dsn text)

bdr.alter_node_option(node_name text,
 config_key text,
 config_value
text);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 367

Synopsis

Parameters

Name Description

subscription_name Name of the subscription to enable. If NULL (the default), all subscriptions on the local node are enabled.

immediate Used to force the action immediately, starting all the workers associated with the enabled subscription. When this option is true , you can't run this function inside of the transaction
block.

Notes

This function isn't replicated and affects only local node subscriptions (either a specific node or all nodes).

This function is transactional. You can roll it back, and the current transaction can see any catalog changes. The subscription workers are started by a background process after the transaction has committed.

bdr.alter_subscription_disable

Disables either the specified subscription or all the subscriptions of the local PGD node. Optionally, it can also immediately stop all the workers associated with the disabled subscriptions. This is also known as pause subscription. No error is
thrown if the subscription is already disabled. Returns the number of subscriptions affected by this operation.

Synopsis

Parameters

Name Description

subscription_name Name of the subscription to disable. If NULL (the default), all subscriptions on the local node are disabled.

immediate Used to force the action immediately, stopping all the workers associated with the disabled subscription. When this option is true , you can't run this function inside of the transaction block.

fast This argument influences the behavior of immediate . If set to true (the default), it stops all the workers associated with the disabled subscription without waiting for them to finish current
work.

Notes

This function isn't replicated and affects only local node subscriptions (either a specific subscription or all subscriptions).

This function is transactional. You can roll it back, and the current transaction can see any catalog changes. However, the timing of the subscription worker stopping depends on the value of immediate . If set to true , the workers receive
the stop without waiting for the COMMIT . If the fast argument is set to true , the interruption of the workers doesn't wait for current work to finish.

bdr.create_node

Creates a node.

Synopsis

Parameters

Name Description

node_name Name of the new node. Only one node is allowed per database. Valid node names consist of lowercase letters, numbers, hyphens, and underscores.

local_dsn Connection string to the node.

node_kind One of data (the default), standby , subscriber-only , or witness . If you don't set this parameter, or if you provide NULL , the default data node kind is used.

bdr.alter_subscription_enable(
 subscription_name name DEFAULT NULL,
 immediate boolean DEFAULT false
)

bdr.alter_subscription_disable(
 subscription_name name DEFAULT NULL,
 immediate boolean DEFAULT false,
 fast boolean DEFAULT true
)

bdr.create_node(node_name text,
 local_dsn text,
 node_kind DEFAULT NULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 368

Notes

This function creates a record for the local node with the associated public connection string. There can be only one local record, so once it's created, the function reports an error if run again.

This function is a transactional function. You can roll it back and the changes made by it are visible to the current transaction.

The function holds lock on the newly created node until the end of the transaction.

bdr.create_node_group

Creates a PGD node group. By default, the local node joins the group as the only member. You can add more nodes to the group with bdr.join_node_group() .

Synopsis

Parameters

Name Description

node_group_
name

Name of the new PGD group. As with the node name, valid group names consist of only lowercase letters, numbers, and underscores.

parent_grou
p_name

If a node subgroup is being created, this must be the name of the parent group. Provide NULL (the default) when creating the main node group for the cluster.

join_node_g
roup

Determines whether the node joins the group being created. The default value is true . Providing false when creating a subgroup means the local node won't join the new group, for example, when creating an
independent remote group. In this case, you must specify parent_group_name .

node_group_
type

The valid values are NULL or subscriber-only . NULL (the default) is for creating a normal, general-purpose node group. subscriber-only is for creating subscriber-only groups whose members receive
changes only from the fully joined nodes in the cluster but that never send changes to other nodes.

Notes

This function passes a request to the local consensus worker that's running for the local node.

The function isn't transactional. The creation of the group is a background process, so once the function finishes, you can't roll back the changes. Also, the changes might not be immediately visible to the current transaction. You can call
bdr.wait_for_join_completion to wait until they are.

The group creation doesn't hold any locks.

bdr.drop_node_group

Drops an empty PGD node group. If there are any joined nodes in the group, the function will fail.

Synopsis

Parameters

Name Description

node_group_name Name of the PGD group to drop.

Notes

This function passes a request to the group consensus mechanism to drop the group. The function isn't transactional. The dropping process happens in the background, and you can't roll it back.

bdr.join_node_group

Joins the local node to an already existing PGD group.

Synopsis

bdr.create_node_group(node_group_name text,
 parent_group_name text DEFAULT NULL,
 join_node_group boolean DEFAULT true,
 node_group_type text DEFAULT NULL)

bdr.drop_node_group(node_group_name text)

bdr.join_node_group
(
 join_target_dsn text,
 node_group_name text DEFAULT NULL,
 wait_for_completion boolean DEFAULT
true,

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 369

https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/subscriber_only/

Parameters

Name Description

join_targe
t_dsn

Specifies the connection string to an existing (source) node in the PGD group you want to add the local node to.

node_group
_name

Optional name of the PGD group. Defaults to NULL, which tries to detect the group name from information present on the source node.

wait_for_c
ompletion

Wait for the join process to complete before returning. Defaults to true .

synchroniz
e_structur
e

Specifies whether to perform database structure (schema) synchronization during the join. all , the default setting, synchronizes the complete database structure. none does not synchronize any structure. However,
data will still be synchronized, meaning the database structure must already be present on the joining node. Note that by design, neither schema nor data will ever be synchronized to witness nodes.

If wait_for_completion is specified as false , the function call returns as soon as the joining procedure starts. You can see the progress of the join in the log files and the bdr.event_summary information view. You can call the
function bdr.wait_for_join_completion() after bdr.join_node_group() to wait for the join operation to complete. It can emit progress information if bdr.wait_for_join_completion() is called with
verbose_progress set to true .

Notes

This function passes a request to the group consensus mechanism by way of the node that the join_target_dsn connection string points to. The changes made are replicated globally by the consensus mechanism.

The function isn't transactional and will emit an error if executed in a transaction. The joining process happens in the background and you can't roll it back. The changes are visible only to the local session if wait_for_completion is set to
true or by calling bdr.wait_for_join_completion later.

A node can be part of only a single group, so you can call this function only once on each node.

Node join doesn't hold any locks in the PGD group.

bdr.part_node

Removes (parts) the node from the PGD group and eventually removes the parted node’s metadata from all nodes in the cluster.

For the local node, it removes all the node metadata, including information about remote nodes.
For remote nodes, it removes only the metadata for that specific node.

This operation doesn't remove data from the node.

You can call the function from any active node in the PGD group, including the node that you're removing.

Executing parting from the node being removed runs the risk of incorrectly reporting, or never reporting, the status of the removal. This is because in the process of being removed, communications are cut off from the rest of the cluster. While
the removal may succeed, there's no way to inform the node that issued the command that it failed or succeeded on the other nodes. The function can't be set to wait for completion either, for the same reason.

Once a node has parted itself, it can't part other nodes in the cluster as it's no longer part of the cluster.

We recommend avoiding using nodes to part themselves from the cluster. Instead, perform node parting operations from a node that can wait for completion and check the cluster status after the operation is complete.

Note

If you're parting the local node, you must set wait_for_completion to false . Otherwise, it reports an error.

Warning

This action is permanent. If you want to temporarily halt replication to a node, use bdr.alter_subscription_disable() .

Synopsis

Parameters

Name Description

node_name Name of an existing node to part.

wait_for_comple
tion

If true , the function doesn't return until the node is fully parted from the cluster. Otherwise, the function starts the parting procedure and returns immediately without waiting. Always set to false when
executing on the local node or when using force .

force Forces removal of the node on the local node. This sets the node state locally if consensus can't be reached or if the node-parting process is stuck.

 synchronize_structure text DEFAULT
'all'
)

bdr.part_node
(
 node_name text,
 wait_for_completion boolean DEFAULT
true,
 force boolean DEFAULT false
)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 370

Warning

Using force = true can leave the PGD group in an inconsistent state. Use it only to recover from failures in which you can't remove the node any other way.

Notes

This function passes a request to the group consensus mechanism to part the given node. The changes made are replicated globally by the consensus mechanism. The parting process happens in the background, and you can't roll it back. The
changes made by the parting process are visible only to the local transaction if wait_for_completion was set to true .

With force set to true , on consensus failure, this function sets the state of the given node only on the local node. In such a case, the function is transactional (because the function changes the node state) and you can roll it back. If the
function is called on a node that's already in process of parting with force set to true , it also marks the given node as parted locally and exits. This is useful only when the consensus can't be reached on the cluster (that is, the majority of
the nodes are down) or if the parting process is stuck.

But it's important to take into account that when the parting node that was receiving writes, the parting process can take a long time without actually being stuck. The other nodes need to resynchronize any missing data from the given node.
The other nodes need to wait till group slots of all nodes are caught up to all the transactions originating from the PARTED node.

A forced parting completely skips this resynchronization and can leave the other nodes in an inconsistent state.

The parting process doesn't hold any locks.

bdr.promote_node

Promotes a local logical standby node to a full member of the PGD group.

Synopsis

Notes

This function passes a request to the group consensus mechanism to change the defaults. The changes made are replicated globally by the consensus mechanism.

The function isn't transactional. The promotion process happens in the background, and you can't roll it back. The changes are visible only to the local transaction if wait_for_completion was set to true or by calling
bdr.wait_for_join_completion later.

The promotion process holds lock against other promotions. This lock doesn't block other bdr.promote_node calls but prevents the background process of promotion from moving forward on more than one node at a time.

bdr.switch_node_group

Switches the local node from its current subgroup to another subgroup in the same existing PGD node group.

Synopsis

Parameters

Name Description

node_group_name Name of the PGD group or subgroup.

wait_for_completion Wait for the switch process to complete before returning. Defaults to true .

If wait_for_completion is set to false , this is an asynchronous call that returns as soon as the switching procedure starts. You can see progress of the switch in logs and the bdr.event_summary information view or by calling the
bdr.wait_for_join_completion() function after bdr.switch_node_group() returns.

Notes

This function passes a request to the group consensus mechanism. The changes made are replicated globally by the consensus mechanism.

The function isn't transactional. The switching process happens in the background and you can't roll it back. The changes are visible only to the local transaction if wait_for_completion was set to true or by calling
bdr.wait_for_join_completion later.

The local node changes membership from its current subgroup to another subgroup in the same PGD node group without needing to part the cluster. The node's kind must match that of existing nodes in the target subgroup.

Node switching doesn't hold any locks in the PGD group.

Restrictions: currently, the function allows switching only between a subgroup and its PGD node group. To effect a move between subgroups you need to make two separate calls: 1) switch from subgroup to node group and, 2) switch from
node group to other subgroup.

bdr.sync_node_cancel

bdr.promote_node(wait_for_completion boolean DEFAULT true)

bdr.switch_node_group
(
 node_group_name text,
 wait_for_completion boolean DEFAULT
true
)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 371

bdr.sync_node_cancel

This function cancels a sync request for the specified origin and source nodes.

Synopsis

Parameters

Name Description

origin Name of the origin node.

source Name of the source node.

Notes

This function cancels all sync node requests for all targets that have the given origin and source. You can invoke it only from a write lead.

bdr.wait_for_join_completion

This function waits for the join procedure of a local node to finish.

Synopsis

Parameters

Name Description

verbose_progress Optionally prints information about individual steps taken during the join
procedure.

Notes

This function waits until the checks state of the local node reaches the target state, which was set by bdr.create_node_group , bdr.join_node_group , or bdr.promote_node .

bdr.sync_node_cancel(origin text, source text)

bdr.wait_for_join_completion(verbose_progress boolean DEFAULT false)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 372

29.1.6 Commit scopes

Commit scopes are rules that determine how transaction commits and conflicts are handled within a PGD system. You can read more about them in Commit Scopes.

You can manipulate commit scopes using the following functions:

bdr.create_commit_scope
bdr.alter_commit_scope
bdr.drop_commit_scope

Commit scope syntax

The overall grammar for commit scope rules is composed as follows:

commit_scope:
 commit_scope_operation [AND ...]

commit_scope_operation:
 commit_scope_group confirmation_level commit_scope_kind

commit_scope_target:
 { (node_group [, ...])
 | ORIGIN_GROUP }

commit_scope_group:
{ ANY num [NOT] commit_scope_target
 | MAJORITY [NOT] commit_scope_target
 | ALL [NOT] commit_scope_target }

confirmation_level:
 [ON { received|replicated|durable|visible }]

commit_scope_kind:
{ GROUP COMMIT [(group_commit_parameter = value [, ...])] [ABORT ON (abort_on_parameter = value)] [DEGRADE ON (degrade_on_parameter = value [, ...]) TO
commit_scope_degrade_operation]
 | CAMO [DEGRADE ON (degrade_on_parameter = value [, ...]) TO ASYNC]
 | LAG CONTROL [(lag_control_parameter = value [, ...])]
 | SYNCHRONOUS COMMIT [DEGRADE ON (degrade_on_parameter = value) TO commit_scope_degrade_operation] }

commit_scope_degrade_operation:
 commit_scope_group confirmation_level commit_scope_kind

Where node_group is the name of a PGD data node group.

commit_scope_degrade_operation

The commit_scope_degrade_operation is either the same commit scope kind with a less restrictive commit scope group as the overall rule being defined, or is asynchronous (ASYNC).

For instance, you can degrade from an ALL SYNCHRONOUS COMMIT to a MAJORITY SYNCHRONOUS COMMIT or a MAJORITY SYNCHRONOUS COMMIT to an ANY 3 SYNCHRONOUS COMMIT or even an ANY 3 SYNCHRONOUS
COMMIT to an ANY 2 SYNCHRONOUS COMMIT . You can also degrade from SYNCHRONOUS COMMIT to ASYNC . However, you cannot degrade from SYNCHRONOUS COMMIT to GROUP COMMIT or the other way around, regardless of
the commit scope groups involved.

It is also possible to combine rules using AND , each with their own degradation clause:

ALL ORIGIN_GROUP SYNCHRONOUS COMMIT DEGRADE ON (timeout = 10s) TO MAJORITY ORIGIN_GROUP SYNCHRONOUS COMMIT AND ANY 1 NOT ORIGIN_GROUP SYNCHRONOUS COMMIT DEGRADE ON
(timeout = 20s) TO ASYNC

Commit scope targets

ORIGIN_GROUP

Instead of targeting a specific group, you can also use ORIGIN_GROUP , which dynamically refers to the bottommost group from which a transaction originates. Therefore, if you have a top level group, top_group , and two subgroups as
children, left_dc and right_dc , then adding a commit scope like:

would mean that for transactions originating on a node in left_dc , a majority of the nodes of left_dc would need to confirm the transaction synchronously before the transaction is committed. Moreover, the same rule would also mean
that for transactions originating from a node in right_dc , a majority of nodes from right_dc are required to confirm the transaction synchronously before it is committed. This saves the need to add two seperate rules, one for
left_dc and one for right_dc , to the commit scope.

SELECT
bdr.create_commit_scope(
 commit_scope_name := 'example_scope',
 origin_node_group := 'top_level_group',
 rule := 'MAJORITY ORIGIN_GROUP SYNCHRONOUS
COMMIT',
 wait_for_ready :=
true
);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 373

https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/degrading/

Commit scope groups

ANY

Example: ANY 2 (left_dc)

A transaction under this commit scope group will be considered committed after any two nodes in the left_dc group confirm they processed the transaction.

ANY NOT

Example: ANY 2 NOT (left_dc)

A transaction under this commit scope group will be considered committed if any two nodes that aren't in the left_dc group confirm they processed the transaction.

MAJORITY

Example: MAJORITY (left_dc)

A transaction under this commit scope group will be considered committed if a majority of the nodes in the left_dc group confirm they processed the transaction.

MAJORITY NOT

Example: MAJORITY NOT (left_dc)

A transaction under this commit scope group will be considered committed if a majority of the nodes that aren't in the left_dc group confirm they processed the transaction.

ALL

Example: ALL (left_dc)

A transaction under this commit scope group will be considered committed if all of the nodes in the left_dc group confirm they processed the transaction.

When ALL is used with GROUP COMMIT , the commit_decision setting must be set to raft to avoid reconciliation issues.

ALL NOT

Example: ALL NOT (left_dc)

A transaction under this commit scope group will be considered committed if all of the nodes that aren't in the left_dc group confirm they processed the transaction.

Confirmation level

The confirmation level sets the point in time when a remote PGD node confirms that it reached a particular point in processing a transaction.

ON received

A transaction is confirmed immediately after receiving it, prior to starting the local application.

ON replicated

A transaction is confirmed after applying changes of the transaction but before flushing them to disk.

ON durable

A transaction is confirmed after all of its changes are flushed to disk.

ON visible

This is the default visibility. A transaction is confirmed after all of its changes are flushed to disk and it's visible to concurrent transactions.

Commit Scope kinds

More details of the commit scope kinds and details of their parameters:

Synchronous Commit
Group Commit
CAMO (Commit At Most Once)
Lag Control

Parameter values

Specify Boolean, enum, int, and interval values using the Postgres GUC parameter value conventions.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 374

https://www.postgresql.org/docs/current/config-setting.html#CONFIG-SETTING-NAMES-VALUES

SYNCHRONOUS COMMIT

SYNCHRONOUS COMMIT [DEGRADE ON (degrade_on_parameter = value) TO commit_scope_degrade_operation]

DEGRADE ON parameters

Parameter Type Default Description

timeout interval 0 Timeout in milliseconds (accepts other units) after which operation degrades. (0 means not set.)

require_write_lead Boolean False Specifies whether the node must be a write lead to be able to switch to degraded operation.

These set the conditions on which the commit scope rule will degrade to a less restrictive mode of operation.

commit_scope_degrade_operation

The commit_scope_degrade_operation must be SYNCHRONOUS COMMIT with a less restrictive commit scope group—or must be asynchronous (ASYNC).

GROUP COMMIT

Allows commits to be confirmed by a consensus of nodes, controls conflict resolution settings, and, like SYNCHRONOUS COMMIT , has optional rule-degredation parameters.

GROUP COMMIT [(group_commit_parameter = value [, ...])] [ABORT ON (abort_on_parameter = value)] [DEGRADE ON (degrade_on_parameter = value) TO
commit_scope_degrade_operation]

GROUP COMMIT parameters

Parameter Type Default Description

transaction_tracking Boolean Off/False Specifies whether to track status of transaction. See transaction_tracking settings.

conflict_resolution enum async Specifies how to handle conflicts. (async | eager). See conflict_resolution settings.

commit_decision enum group Specifies how the COMMIT decision is made. (group | partner | raft). See commit_decision
settings.

ABORT ON parameters

Parameter Type Default Description

timeout interval 0 Timeout in milliseconds (accepts other units). (0 means not set.)

require_write_lead Boolean False CAMO only. If set, then for a transaction to switch to local (async) mode, a consensus request is required.

DEGRADE ON parameters

Parameter Type Default Description

timeout interval 0 Timeout in milliseconds (accepts other units) after which operation degrades. (0 means not set.)

require_write_lead Boolean False Specifies whether the node must be a write lead to be able to switch to degraded operation.

transaction_tracking settings

When set to true, two-phase commit transactions:

Look up commit decisions when a writer is processing a PREPARE message.
When recovering from an interruption, look up the transactions prepared before the interruption. When found, it then looks up the commit scope of the transaction and any corresponding RAFT commit decision. Suppose the node is the
origin of the transaction and doesn't have a RAFT commit decision, and transaction_tracking is on in the commit scope. In that case, it periodically looks for a RAFT commit decision for this unresolved transaction until it's
committed or aborted.

conflict_resolution settings

The value async means resolve conflicts asynchronously during replication using the conflict resolution policy.

The value eager means that conflicts are resolved eagerly during COMMIT by aborting one of the conflicting transactions.

Eager is only available with MAJORITY or ALL commit scope groups.

When used with the ALL commit scope group, the commit_decision must be set to raft to avoid reconcilation issue.

See "Conflict resolution" in Group Commit.

commit_decision settings

The value group means the preceding commit_scope_group specification also affects the COMMIT decision, not just durability.

The value partner means the partner node decides whether transactions can be committed. This value is allowed only on groups with 2 data nodes.

The value raft means the decision makes use of PGD's built-in Raft consensus. Once all the nodes in the selected commit scope group have confirmed the transaction, to ensure that all the nodes in the PGD cluster have noted the

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 375

The value raft means the decision makes use of PGD's built-in Raft consensus. Once all the nodes in the selected commit scope group have confirmed the transaction, to ensure that all the nodes in the PGD cluster have noted the
transaction, it is noted with the all-node Raft.

This option must be used when the ALL commit scope group is being used to ensure no divergence between the nodes over the decision. This option may have low performance.

See "Commit decisions" in Group Commit.

commit_scope_degrade_operation settings

The commit_scope_degrade_operation must be GROUP_COMMIT with a less restrictive commit scope group—or must be asynchronous (ASYNC).

CAMO

With the client's cooperation, enables protection to prevent multiple insertions of the same transaction in failover scenarios.

See "CAMO" in Durability for more details.

CAMO [DEGRADE ON (degrade_on_parameter = value) TO ASYNC]

DEGRADE ON parameters

Allows degrading to asynchronous operation on timeout.

Parameter Type Default Description

timeout interval 0 Timeout in milliseconds (accepts other units) after which operation becomes asynchronous. (0 means not set.)

require_write_lead Boolean False Specifies whether the node must be a write lead to be able to switch to asynchronous mode.

LAG CONTROL

Allows the configuration of dynamic rate-limiting controlled by replication lag.

See "Lag Control" in Durability for more details.

LAG CONTROL [(lag_control_parameter = value [, ...])]

LAG CONTROL parameters

Parameter Type

D
e
f
a
u
lt

Description

max_lag
_size

int 0 The maximum lag in kB that a given node can have in the replication connection to another node. When the lag exceeds this maximum scaled by max_commit_delay , lag control adjusts the commit delay.

max_lag
_time

interval 0 The maximum replication lag in milliseconds that the given origin can have with regard to a replication connection to a given downstream node.

max_com
mit_del
ay

interval 0
Configures the maximum delay each commit can take, in fractional milliseconds. If set to 0, it disables Lag Control. After each commit delay adjustment (for example, if the replication is lagging more than
max_lag_size or max_lag_time), the commit delay is recalculated with the weight of the bdr.lag_control_commit_delay_adjust GUC. The max_commit_delay is a ceiling for the

commit delay.

If max_lag_size and max_lag_time are set to 0, the LAG CONTROL is disabled.
If max_commit_delay is not set or set to 0, the LAG CONTROL is disabled.

The lag size is derived from the delta of the send_ptr of the walsender to the apply_ptr of the receiver.

The lag time is calculated according to the following formula:

 lag_time = (lag_size / apply_rate) * 1000;

Where lag_size is the delta between the send_ptr and apply_ptr (as used for max_lag_size), and apply_rate is a weighted exponential moving average, following the simplified formula:

 apply_rate = prev_apply_rate * (1 - apply_rate_weight) +
 ((apply_ptr_diff * apply_rate_weight) / diff_secs);

Where:

prev_apply_rate was the previously configured apply_rate , before recalculating the new rate.
apply_rate_weight is the value of the GUC bdr.lag_tracker_apply_rate_weight .
apply_ptr_diff is the difference between the current apply_ptr and the apply_ptr at the point in time when the apply rate was last computed.
diff_secs is the delta in seconds from the last time the apply rate was calculated.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 376

29.1.7 Conflicts

Conflict detection

List of conflict types

PGD recognizes the following conflict types, which can be used as the conflict_type parameter:

Conflict type Description

insert_exists An incoming insert conflicts with an existing row by way of a primary key or a unique key/index.

update_differing An incoming update's key row differs from a local row. This can happen only when using row version conflict detection.

update_origin_change An incoming update is modifying a row that was last changed by a different node.

update_missing An incoming update is trying to modify a row that doesn't exist.

update_recently_deleted An incoming update is trying to modify a row that was recently deleted.

update_pkey_exists An incoming update has modified the PRIMARY KEY to a value that already exists on the node that's applying the change.

multiple_unique_conflicts An incoming row conflicts with multiple rows per UNIQUE/EXCLUDE indexes of the target table.

delete_recently_updated An incoming delete with an older commit timestamp than the most recent update of the row on the current node or when using row version conflict detection.

delete_missing An incoming delete is trying to remove a row that doesn't exist.

target_column_missing The target table is missing one or more columns present in the incoming row.

source_column_missing The incoming row is missing one or more columns that are present in the target table.

target_table_missing The target table is missing.

apply_error_ddl An error was thrown by Postgres when applying a replicated DDL command.

Conflict resolution

Most conflicts can be resolved automatically. PGD defaults to a last-update-wins mechanism or, more accurately, the update_if_newer conflict resolver. This mechanism retains the most recently inserted or changed row of the two
conflicting ones based on the same commit timestamps used for conflict detection. The behavior in certain corner-case scenarios depends on the settings used for bdr.create_node_group and alternatively for
bdr.alter_node_group .

PGD lets you override the default behavior of conflict resolution by using the following function.

List of conflict resolvers

Several conflict resolvers are available in PGD, with differing coverages of the conflict types they can handle:

Resolver Description

error Throws an error and stops replication.

skip
Skips processing the remote change and continues replication with the next change. Can be used for insert_exists , update_differing , update_origin_change , update_missing ,
update_recently_deleted , update_pkey_exists , delete_recently_updated , delete_missing , target_table_missing , target_column_missing , and
source_column_missing conflict types.

skip_if_re
cently_dro
pped

Skips the remote change if it's for a table that doesn't exist downstream because it was recently (within one day) dropped on the downstream. Throw an error otherwise. Can be used for the target_table_missing
conflict type.
This conflict resolver can pose challenges if a table with the same name is re-created shortly after it's dropped. In that case, one of the nodes might see the DMLs on the re-created table before it sees the DDL to re-create
the table. It then incorrectly skips the remote data, assuming that the table is recently dropped, and causes data loss. We recommend that when using this resolver, you don't reuse the object names immediately after
they're dropped.

skip_trans
action

Skips the whole transaction that generated the conflict.

update_if_
newer

Updates if the remote row was committed later (as determined by the wall clock of the originating node) than the conflicting local row. If the timestamps are same, the node id is used as a tie-breaker to ensure that same
row is picked on all nodes (higher nodeid wins). Can be used for insert_exists , update_differing , update_origin_change , and update_pkey_exists conflict types.

update Always performs the replicated action. Can be used for insert_exists (turns the INSERT into UPDATE), update_differing , update_origin_change , update_pkey_exists , and
delete_recently_updated (performs the delete).

insert_or_
skip

Tries to build a new row from available information sent by the origin and INSERT it. If there isn't enough information available to build a full row, skips the change. Can be used for update_missing and
update_recently_deleted conflict types.

insert_or_
error

Tries to build new row from available information sent by origin and insert it. If there isn't enough information available to build full row, throws an error and stops the replication. If there isn't enough information
available to build full row, throws an error and stops the replication. Can be used for update_missing and update_recently_deleted conflict types.

ignore Ignores any missing target column and continues processing.Can be used for the target_column_missing conflict type.

ignore_if_
null

Ignores a missing target column if the extra column in the remote row contains a NULL value. Otherwise, throws an error and stops replication. Can be used for the target_column_missing conflict type.

use_defaul
t_value

Fills the missing column value with the default (including NULL if that's the column default) and continues processing. Any error while processing the default or violation of constraints (that is, NULL default on NOT NULL
column) stops replication. Can be used for the source_column_missing conflict type.

The insert_exists , update_differing , update_origin_change , update_missing , multiple_unique_conflicts , update_recently_deleted , update_pkey_exists , delete_recently_updated ,
and delete_missing conflict types can also be resolved by user-defined logic using Conflict triggers.

This matrix shows the conflict types each conflict resolver can handle.

insert_exists update_di
ffering

update_origin
_change

update_m
issing

update_recently
_deleted

update_pkey
_exists

delete_recently
_updated

delete_m
issing

target_column
_missing

source_column
_missing

target_table_
missing

multiple_unique_
conflicts

error X X X X X X X X X X X X

skip X X X X X X X X X X X X

skip_if_recently_dropped X

update_if_newer X X X X X

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 377

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts/03_conflict_detection/#row-version-conflict-detection

update X X X X X X

insert_or_skip X X

insert_or_error X X

ignore X

ignore_if_null X

use_default_value X

conflict_trigger X X X X X X X X X

insert_exists update_di
ffering

update_origin
_change

update_m
issing

update_recently
_deleted

update_pkey
_exists

delete_recently
_updated

delete_m
issing

target_column
_missing

source_column
_missing

target_table_
missing

multiple_unique_
conflicts

Default conflict resolvers

Conflict type Resolver

insert_exists update_if_newer

update_differing update_if_newer

update_origin_change update_if_newer

update_missing insert_or_skip

update_recently_deleted skip

update_pkey_exists update_if_newer

multiple_unique_conflicts error

delete_recently_updated skip

delete_missing skip

target_column_missing ignore_if_null

source_column_missing use_default_value

target_table_missing (see
note)

skip_if_recently_dropped

apply_error_ddl error

target_table_missing

This conflict type isn't detected on community Postgresql. If the target table is missing, it causes an error and halts replication. EDB Postgres servers detect and handle missing target tables and can invoke the resolver.

List of conflict resolutions

The conflict resolution represents the kind of resolution chosen by the conflict resolver and corresponds to the specific action that was taken to resolve the conflict.

The following conflict resolutions are currently supported for the conflict_resolution parameter:

Resolution Description

apply_remote The remote (incoming) row was applied.

skip Processing of the row was skipped (no change was made locally).

merge A new row was created, merging information from remote and local row.

user User code (a conflict trigger) produced the row that was written to the target
table.

Conflict logging

Starting with version 6.0, PGD doesn't log conflicts to the bdr.conflict_history table by default. This is because the table can grow large and cause performance issues. You can enable conflict logging by using the
bdr.alter_node_set_log_config function. This function gives you granular control over which conflicts to log, or you can set it to log all conflicts like this:

Run this command on the named node to enable logging of all conflicts on that particular node. If you want to enable logging on all nodes, run this command on each node in the PGD group.

SELECT bdr.alter_node_set_log_config(`nodename`, false, true, NULL, NULL);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 378

29.1.8 Conflict functions

bdr.alter_table_conflict_detection

Allows the table owner to change how conflict detection works for a given table.

Synopsis

Parameters

relation — Name of the relation for which to set the new conflict detection method.
method — The conflict detection method to use.
column_name — The column to use for storing the column detection data. This can be skipped, in which case the column name is chosen based on the conflict detection method. The row_origin method doesn't require an extra

column for metadata storage.

The recognized methods for conflict detection are:

row_origin — Origin of the previous change made on the tuple (see Origin conflict detection). This is the only method supported that doesn't require an extra column in the table.
row_version — Row version column (see Row version conflict detection).
column_commit_timestamp — Per-column commit timestamps (described in CLCD).
column_modify_timestamp — Per-column modification timestamp (described in CLCD).

Notes

For more information about the difference between column_commit_timestamp and column_modify_timestamp conflict detection methods, see Current versus commit timestamp.

This function uses the same replication mechanism as DDL statements. This means the replication is affected by the ddl filters configuration.

The function takes a DML global lock on the relation for which column-level conflict resolution is being enabled.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction, and the changes are visible to the current transaction.

Only the owner of the relation can execute the bdr.alter_table_conflict_detection function unless bdr.backwards_compatibility is set to 30618 or less.

Warning

When changing the conflict detection method from one that uses an extra column to store metadata, that column is dropped.

Warning

This function disables CAMO and gives a warning, as long as warnings aren't disabled with bdr.camo_enable_client_warnings .

bdr.alter_node_set_conflict_resolver

This function sets the behavior of conflict resolution on a given node.

Synopsis

Parameters

node_name — Name of the node that's being changed.
conflict_type — Conflict type for which to apply the setting (see List of conflict types).
conflict_resolver — Resolver to use for the given conflict type (see List of conflict resolvers).

Notes

Currently you can change only the local node. The function call isn't replicated. If you want to change settings on multiple nodes, you must run the function on each of them.

The configuration change made by this function overrides any default behavior of conflict resolutions specified by bdr.create_node_group or bdr.alter_node_group .

This function is transactional. You can roll back the changes, and they are visible to the current transaction.

bdr.alter_node_set_log_config

bdr.alter_table_conflict_detection(relation regclass,
 method text,
 column_name name DEFAULT
NULL)

bdr.alter_node_set_conflict_resolver(node_name text,
 conflict_type text,
 conflict_resolver text)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 379

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts/03_conflict_detection/#origin-conflict-detection
https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts/03_conflict_detection/#row-version-conflict-detection
https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/column-level-conflicts
https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/column-level-conflicts

bdr.alter_node_set_log_config

Set the conflict logging configuration for a node.

Synopsis

Parameters

node_name — Name of the node that's being changed.
log_to_file — Whether to log to the node log file.
log_to_table — Whether to log to the bdr.conflict_history table.
conflict_type — Conflict types to log. NULL (the default) means all.
conflict_resolution — Conflict resolutions to log. NULL (the default) means all.

Notes

You can change only the local node. The function call isn't replicated. If you want to change settings on multiple nodes, you must run the function on each of them.

This function is transactional. You can roll back the changes, and they're visible to the current transaction.

Listing conflict logging configurations

The view bdr.node_log_config shows all the logging configurations. It lists the name of the logging configuration, where it logs, and the conflict type and resolution it logs.

Logging conflicts to a table

If log_to_table is set to true, conflicts are logged to a table. The target table for conflict logging is bdr.conflict_history .

This table is range partitioned on the column local_time . The table is managed by autopartition. By default, a new partition is created for every day, and conflicts of the last one month are maintained. After that, the old partitions are
dropped. Autopartition creates between 7 and 14 partitions in advance. bdr_superuser can change these defaults.

Since conflicts generated for all tables managed by PGD are logged to this table, it's important to ensure that only legitimate users can read the conflicted data. PGD does this by defining ROW LEVEL SECURITY policies on the
bdr.conflict_history table. Only owners of the tables are allowed to read conflicts on the respective tables. If the underlying tables have RLS policies defined, enabled, and enforced, then even owners can't read the conflicts. RLS

policies created with the FORCE option also apply to owners of the table. In that case, some or all rows in the underlying table might not be readable even to the owner. So PGD also enforces a stricter policy on the conflict log table.

The predefined role bdr_read_all_conflicts can be granted to users who need to see all conflict details logged to the bdr.conflict_history table without also granting them bdr_superuser role.

The default role bdr_read_all_stats has access to a catalog view called bdr.conflict_history_summary . This view doesn't contain user data, allowing monitoring of any conflicts logged.

bdr.alter_node_set_log_config(node_name text,
 log_to_file bool DEFAULT
true,
 log_to_table bool DEFAULT true,
 conflict_type text[] DEFAULT
NULL,
 conflict_resolution text[] DEFAULT
NULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 380

https://github.com/security/pgd-predefined-roles/#bdr_read_all_conflicts

29.1.9 Replication set management

Replication management and DDL

With the exception of bdr.alter_node_replication_sets , the following functions are considered to be DDL . DDL replication and global locking apply to them, if that's currently active. See DDL replication.

bdr.create_replication_set

This function creates a replication set.

Replication of this command is affected by DDL replication configuration, including DDL filtering settings.

Synopsis

Parameters

set_name — Name of the new replication set. Must be unique across the PGD group.
replicate_insert — Indicates whether to replicate inserts into tables in this replication set.
replicate_update — Indicates whether to replicate updates of tables in this replication set.
replicate_delete — Indicates whether to replicate deletes from tables in this replication set.
replicate_truncate — Indicates whether to replicate truncates of tables in this replication set.
autoadd_tables — Indicates whether to replicate newly created (future) tables to this replication set
autoadd_existing — Indicates whether to add all existing user tables to this replication set. This parameter has an effect only if autoadd_tables is set to true .

Notes

By default, new replication sets don't replicate DDL or PGD administration function calls. See DDL filters for how to set up DDL replication for replication sets. A preexisting DDL filter is set up for the default group replication set that
replicates all DDL and admin function calls. It's created when the group is created but can be dropped in case you don't want the PGD group default replication set to replicate DDL or the PGD administration function calls.

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the DDL filters configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

bdr.alter_replication_set

This function modifies the options of an existing replication set.

Replication of this command is affected by DDL replication configuration, including DDL filtering settings.

Synopsis

Parameters

set_name — Name of an existing replication set.
replicate_insert — Indicates whether to replicate inserts into tables in this replication set.
replicate_update — Indicates whether to replicate updates of tables in this replication set.
replicate_delete — Indicates whether to replicate deletes from tables in this replication set.
replicate_truncate — Indicates whether to replicate truncates of tables in this replication set.
autoadd_tables — Indicates whether to add newly created (future) tables to this replication set.

Any of the options that are set to NULL (the default) remain the same as before.

bdr.create_replication_set(set_name name,
 replicate_insert boolean DEFAULT
true,
 replicate_update boolean DEFAULT
true,
 replicate_delete boolean DEFAULT
true,
 replicate_truncate boolean DEFAULT true,
 autoadd_tables boolean DEFAULT
false,
 autoadd_existing boolean DEFAULT
true)

bdr.alter_replication_set(set_name name,
 replicate_insert boolean DEFAULT
NULL,
 replicate_update boolean DEFAULT
NULL,
 replicate_delete boolean DEFAULT
NULL,
 replicate_truncate boolean DEFAULT NULL,
 autoadd_tables boolean DEFAULT
NULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 381

Notes

This function uses the same replication mechanism as DDL statements. This means the replication is affected by the DDL filters configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

bdr.drop_replication_set

This function removes an existing replication set.

Replication of this command is affected by DDL replication configuration, including DDL filtering settings.

Synopsis

Parameters

set_name — Name of an existing replication set.

Notes

This function uses the same replication mechanism as DDL statements. This means the replication is affected by the ddl filters configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Warning

Don't drop a replication set that's being used by at least another node because doing so stops replication on that node. If that happens, unsubscribe the affected node from that replication set. For the same reason, don't drop a
replication set with a join operation in progress when the node being joined is a member of that replication set. Replication set membership is checked only at the beginning of the join. This happens because the information on
replication set usage is local to each node, so that you can configure it on a node before it joins the group.

You can manage replication set subscriptions for a node using alter_node_replication_sets .

bdr.alter_node_replication_sets

This function changes the replication sets a node publishes and is subscribed to.

Synopsis

Parameters

node_name — The node to modify. Currently must be a local node.
set_names — Array of replication sets to replicate to the specified node. An empty array results in the use of the group default replication set.

Notes

This function is executed only on the local node and isn't replicated in any manner.

The replication sets listed aren't checked for existence, since this function is designed to execute before the node joins. Be careful to specify replication set names correctly to avoid errors.

This behavior allows for calling the function not only on the node that's part of the PGD group but also on a node that hasn't joined any group yet. This approach limits the data synchronized during the join. However, the schema is always fully
synchronized without regard to the replication sets setting. All tables are copied across, not just the ones specified in the replication set. You can drop unwanted tables by referring to the bdr.tables catalog table. (These might be removed
automatically in later versions of PGD.) This is currently true even if the DDL filters configuration otherwise prevents replication of DDL.

The replication sets that the node subscribes to after this call are published by the other nodes for actually replicating the changes from those nodes to the node where this function is executed.

bdr.drop_replication_set(set_name name)

bdr.alter_node_replication_sets(node_name name,
 set_names text[])

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 382

29.1.10 Replication set membership

bdr.replication_set_add_table

This function adds a table to a replication set.

This function adds a table to a replication set and starts replicating changes from the committing of the transaction that contains the call to the function. Any existing data the table might have on a node isn't synchronized. Replication of this
command is affected by DDL replication configuration, including DDL filtering settings.

Synopsis

Parameters

relation — Name or Oid of a table.
set_name — Name of the replication set. If NULL (the default), then the PGD group default replication set is used.
columns — Reserved for future use (currently does nothing and must be NULL).
row_filter — SQL expression to use for filtering the replicated rows. If this expression isn't defined (that is, it's set to NULL, the default) then all rows are sent.

The row_filter specifies an expression producing a Boolean result, with NULLs. Expressions evaluating to True or Unknown replicate the row. A False value doesn't replicate the row. Expressions can't contain subqueries or refer to
variables other than columns of the current row being replicated. You can't reference system columns.

row_filter executes on the origin node, not on the target node. This puts an additional CPU overhead on replication for this specific table but completely avoids sending data for filtered rows. Hence network bandwidth is reduced and
overhead on the target node is applied.

row_filter never removes TRUNCATE commands for a specific table. You can filter away TRUNCATE commands at the replication set level.

You can replicate just some columns of a table. See Replicating between nodes with differences.

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the DDL filters configuration.

If the row_filter isn't NULL, the function takes a DML global lock on the relation that's being added to the replication set. Otherwise it takes just a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

bdr.replication_set_remove_table

This function removes a table from the replication set.

Replication of this command is affected by DDL replication configuration, including DDL filtering settings.

Synopsis

Parameters

relation — Name or Oid of a table.
set_name — Name of the replication set. If NULL (the default), then the PGD group default replication set is used.

Notes

This function uses the same replication mechanism as DDL statements. This means the replication is affected by the DDL filters configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

bdr.replication_set_add_table(relation regclass,
 set_name name DEFAULT
NULL,
 columns text[] DEFAULT
NULL,
 row_filter text DEFAULT NULL)

bdr.replication_set_remove_table(relation regclass,
 set_name name DEFAULT
NULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 383

29.1.11 DDL replication filtering

See also DDL replication filtering.

bdr.replication_set_add_ddl_filter

This function adds a DDL filter to a replication set.

Any DDL that matches the given filter is replicated to any node that's subscribed to that set. This function also affects replication of PGD admin functions.

This function doesn't prevent execution of DDL on any node. It only alters whether DDL is replicated to other nodes. Suppose two nodes have a replication filter between them that excludes all index commands. Index commands can still be
executed freely by directly connecting to each node and executing the desired DDL on that node.

The DDL filter can specify a command_tag and role_name to allow replication of only some DDL statements. The command_tag is the same as those used by event triggers for regular PostgreSQL commands. A typical example might
be to create a filter that prevents additional index commands on a logical standby from being replicated to all other nodes.

You can filter the PGD admin functions used by using a tagname matching the qualified function name. For example, bdr.replication_set_add_table is the command tag for the function of the same name. In this case, this tag
allows all PGD functions to be filtered using bdr.* .

The role_name is used for matching against the current role that's executing the command. Both command_tag and role_name are evaluated as regular expressions, which are case sensitive.

Synopsis

Parameters

set_name — Name of the replication set. If NULL then the PGD group default replication set is used.
ddl_filter_name — Name of the DDL filter. This name must be unique across the whole PGD group.
command_tag — Regular expression for matching command tags. NULL means match everything.
role_name — Regular expression for matching role name. NULL means match all roles.
base_relation_name — Reserved for future use. Must be NULL.
query_match — Regular expression for matching the query. NULL means match all queries.
exclusive — If true, other matched filters aren't taken into consideration (that is, only the exclusive filter is applied). When multiple exclusive filters match, an error is thrown. This parameter is useful for routing specific commands

to a specific replication set, while keeping the default replication through the main replication set.

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the DDL filters configuration. This also means that replication of changes to DDL filter configuration is affected by the
existing DDL filter configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

To view the defined replication filters, use the view bdr.ddl_replication .

Examples

To include only PGD admin functions, define a filter like this:

To exclude everything except for index DDL:

To include all operations on tables and indexes but exclude all others, add two filters: one for tables and one for indexes. This example shows that multiple filters provide the union of all allowed DDL commands:

bdr.replication_set_remove_ddl_filter

This function removes the DDL filter from a replication set.

Replication of this command is affected by DDL replication configuration, including the DDL filtering settings.

bdr.replication_set_add_ddl_filter(set_name name,
 ddl_filter_name text,
 command_tag
text,
 role_name text DEFAULT NULL,
 base_relation_name text DEFAULT NULL,
 query_match text DEFAULT
NULL,
 exclusive boolean DEFAULT FALSE)

SELECT bdr.replication_set_add_ddl_filter('mygroup', 'mygroup_admin',
$$bdr\..*$$);

SELECT bdr.replication_set_add_ddl_filter('mygroup', 'index_filter',
 '^(?!(CREATE INDEX|DROP INDEX|ALTER
INDEX)).*');

SELECT bdr.replication_set_add_ddl_filter('bdrgroup','index_filter', '^((?!INDEX).)*$');
SELECT bdr.replication_set_add_ddl_filter('bdrgroup','table_filter', '^((?!TABLE).)*$');

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 384

https://www.postgresql.org/docs/current/static/event-trigger-matrix.html

Synopsis

Parameters

set_name — Name of the replication set. If NULL then the PGD group default replication set is used.
ddl_filter_name — Name of the DDL filter to remove.

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the DDL filters configuration. This also means that replication of changes to the DDL filter configuration is affected by the
existing DDL filter configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

bdr.replication_set_remove_ddl_filter(set_name name,
 ddl_filter_name text)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 385

29.1.12 Testing and tuning commands

EDB Postgres Distributed has tools that help with testing and tuning your PGD clusters. For background, see Testing and tuning.

pgd_bench

Synopsis

A benchmarking tool for EDB Postgres Distributed deployments.

pgd_bench [OPTION]... [DBNAME] [DBNAME2]

DBNAME can be a conninfo string of the format: "host=10.1.1.2 user=postgres dbname=master"

See pgd_bench in Testing and tuning for examples of pgd_bench options and usage.

Options

The pgd_bench command is implemented as a wrapper around the pgbench command. This means that it shares many of the same options and created tables named pgbench as it performs its testing.

Options that are specific to pgd_bench include the following.

Setting mode

-m or --mode

The mode can be set to regular , camo , or failover . The default is regular .

regular — Only a single node is needed to run pgd_bench.
camo — A second node must be specified to act as the CAMO partner. (CAMO must be set up.)
failover — A second node must be specified to act as the failover.

When using -m failover , an additional option --retry is available. This option instructs pgd_bench to retry transactions when there's a failover. The --retry option is automatically enabled when -m camo is used.

When using -m camo and providing a custom script, the SQL commands in the script must be wrapped in SQL transaction commands. That is, the first SQL command must be BEGIN , and the final SQL command must be COMMIT .

Setting GUC variables

-o or --set-option

This option is followed by NAME=VALUE entries, which are applied using the Postgres SET command on each server that pgd_bench connects to, and only those servers.

The other options are identical to the Postgres pgbench command. For details, see the PostgreSQL pgbench documentation.

The complete list of options (pgd_bench and pgbench) follow.

Initialization options

-i, --initialize — Invoke initialization mode.
-I, --init-steps=[dtgGvpf]+ (default "dtgvp") — Run selected initialization steps.

d — Drop any existing pgbench tables.
t — Create the tables used by the standard pgbench scenario.
g — Generate data client-side and load it into the standard tables, replacing any data already present.
G — Generate data server-side and load it into the standard tables, replacing any data already present.
v — Invoke VACUUM on the standard tables.
p — Create primary key indexes on the standard tables.
f — Create foreign key constraints between the standard tables.

-F, --fillfactor=NUM — Set fill factor.
-n, --no-vacuum — Don't run VACUUM during initialization.
-q, --quiet — Quiet logging (one message every 5 seconds).
-s, --scale=NUM — Scaling factor.
--foreign-keys — Create foreign key constraints between tables.
--index-tablespace=TABLESPACE — Create indexes in the specified tablespace.
--partition-method=(range|hash) — Partition pgbench_accounts with this method. The default is range .
--partitions=NUM — Partition pgbench_accounts into NUM parts. The default is 0 .
--tablespace=TABLESPACE — Create tables in the specified tablespace.
--unlogged-tables — Create tables as unlogged tables. (Note: Unlogged tables aren't replicated.)

Options to select what to run

-b, --builtin=NAME[@W] — Add built-in script NAME weighted at W. The default is 1. Use -b list to list available scripts.
-f, --file=FILENAME[@W] — Add script FILENAME weighted at W. The default is 1.
-N, --skip-some-updates — Updates of pgbench_tellers and pgbench_branches. Same as -b simple-update .
-S, --select-only — Perform SELECT-only transactions. Same as -b select-only .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 386

https://www.enterprisedb.com/docs/pgd/latest/reference/testing-tuning
https://www.enterprisedb.com/docs/pgd/latest/reference/testing-tuning#pgd_bench
https://www.postgresql.org/docs/current/sql-set.html
https://www.postgresql.org/docs/current/pgbench.html

Benchmarking options

-c, --client=NUM — Number of concurrent database clients. The default is 1.
-C, --connect — Establish new connection for each transaction.
-D, --define=VARNAME=VALUE — Define variable for use by custom script.
-j, --jobs=NUM — Number of threads. The default is 1.
-l, --log — Write transaction times to log file.
-L, --latency-limit=NUM — Count transactions lasting more than NUM ms as late.
-m, --mode=regular|camo|failover — Mode in which to run pgbench. The default is regular .
-M, --protocol=simple|extended|prepared — Protocol for submitting queries. The default is simple .
-n, --no-vacuum — Don't run VACUUM before tests.
-o, --set-option=NAME=VALUE — Specify runtime SET option.
-P, --progress=NUM — Show thread progress report every NUM seconds.
-r, --report-per-command — Latencies, failures, and retries per command.
-R, --rate=NUM — Target rate in transactions per second.
-s, --scale=NUM — Report this scale factor in output.
-t, --transactions=NUM — Number of transactions each client runs. The default is 10.
-T, --time=NUM — Duration of benchmark test, in seconds.
-v, --vacuum-all — Vacuum all four standard tables before tests.
--aggregate-interval=NUM — Data over NUM seconds.
--failures-detailed — Report the failures grouped by basic types.
--log-prefix=PREFIX — Prefix for transaction time log file. The default is pgbench_log .
--max-tries=NUM — Max number of tries to run transaction. The default is 1 .
--progress-timestamp — Use Unix epoch timestamps for progress.
--random-seed=SEED — Set random seed (time , rand , integer).
--retry — Retry transactions on failover. Used with -m .
--sampling-rate=NUM — Fraction of transactions to log, for example, 0.01 for 1%.
--show-script=NAME — Show built-in script code, then exit.
--verbose-errors — Print messages of all errors.

Common options:

-d, --debug — Print debugging output.
-h, --host=HOSTNAME — Database server host or socket directory.
-p, --port=PORT — Database server port number.
-U, --username=USERNAME — Connect as specified database user.
-V, --version — Output version information, then exit.
-?, --help — Show help, then exit.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 387

29.1.13 Global sequence management interfaces

PGD provides an interface for converting between a standard PostgreSQL sequence and the PGD global sequence.

The following functions are considered to be DDL , so DDL replication and global locking applies to them.

Sequence functions

bdr.alter_sequence_set_kind

Allows the owner of a sequence to set the kind of a sequence. Once set, seqkind is visible only by way of the bdr.sequences view. In all other ways, the sequence appears as a normal sequence.

PGD treats this function as DDL , so DDL replication and global locking applies, if it's currently active. See DDL replication.

Synopsis

Parameters

seqoid — Name or Oid of the sequence to alter.
seqkind — local for a standard PostgreSQL sequence, snowflakeid or galloc for globally unique PGD sequences, or timeshard for legacy globally unique sequence.
start — Allows specifying new starting point for galloc and local sequences.

Notes

When changing the sequence kind to galloc , the first allocated range for that sequence uses the sequence start value as the starting point. When there are existing values that were used by the sequence before it was changed to galloc ,
we recommend moving the starting point so that the newly generated values don't conflict with the existing ones using the following command:

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the DDL filters configuration.

The function takes a global DDL lock. It also locks the sequence locally.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Only the owner of the sequence can execute the bdr.alter_sequence_set_kind function, unless bdr.backwards_compatibility is set to 30618 or lower.

bdr.extract_timestamp_from_snowflakeid

This function extracts the timestamp component of the snowflakeid sequence. The return value is of type timestamptz .

Synopsis

Parameters

snowflakeid — Value of a snowflakeid sequence.

Notes

This function executes only on the local node.

bdr.extract_nodeid_from_snowflakeid

This function extracts the nodeid component of the snowflakeid sequence.

Synopsis

Parameters

snowflakeid — Value of a snowflakeid sequence.

bdr.alter_sequence_set_kind(seqoid regclass, seqkind text, start bigint DEFAULT
NULL)

ALTER SEQUENCE seq_name START starting_value
RESTART

bdr.extract_timestamp_from_snowflakeid(snowflakeid bigint)

bdr.extract_nodeid_from_snowflakeid(snowflakeid bigint)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 388

Notes

This function executes only on the local node.

bdr.extract_localseqid_from_snowflakeid

This function extracts the local sequence value component of the snowflakeid sequence.

Synopsis

Parameters

snowflakeid — Value of a snowflakeid sequence.

Notes

This function executes only on the local node.

bdr.timestamp_to_snowflakeid

This function converts a timestamp value to a dummy snowflakeid sequence value.

This is useful for doing indexed searches or comparisons of values in the snowflakeid column and for a specific timestamp.

For example, given a table foo with a column id that's using a snowflakeid sequence, you can get the number of changes since yesterday midnight like this:

SELECT count(1) FROM foo WHERE id > bdr.timestamp_to_snowflakeid('yesterday')

A query formulated this way uses an index scan on the column id .

Synopsis

Parameters

ts — Timestamp to use for the snowflakeid sequence generation.

Notes

This function executes only on the local node.

bdr.extract_timestamp_from_timeshard

This function extracts the timestamp component of the timeshard sequence. The return value is of type timestamptz .

Synopsis

Parameters

timeshard_seq — Value of a timeshard sequence.

Notes

This function executes only on the local node.

bdr.extract_nodeid_from_timeshard

This function extracts the nodeid component of the timeshard sequence.

Synopsis

bdr.extract_localseqid_from_snowflakeid(snowflakeid bigint)

bdr.timestamp_to_snowflakeid(ts timestamptz)

bdr.extract_timestamp_from_timeshard(timeshard_seq bigint)

bdr.extract_nodeid_from_timeshard(timeshard_seq bigint)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 389

Parameters

timeshard_seq — Value of a timeshard sequence.

Notes

This function executes only on the local node.

bdr.extract_localseqid_from_timeshard

This function extracts the local sequence value component of the timeshard sequence.

Synopsis

Parameters

timeshard_seq — Value of a timeshard sequence.

Notes

This function executes only on the local node.

bdr.timestamp_to_timeshard

This function converts a timestamp value to a dummy timeshard sequence value.

This is useful for doing indexed searches or comparisons of values in the timeshard column and for a specific timestamp.

For example, given a table foo with a column id that's using a timeshard sequence, you can get the number of changes since yesterday midnight like this:

SELECT count(1) FROM foo WHERE id > bdr.timestamp_to_timeshard('yesterday')

A query formulated this way uses an index scan on the column id .

Synopsis

Parameters

ts — Timestamp to use for the timeshard sequence generation.

Notes

This function executes only on the local node.

bdr.galloc_chunk_info

This function retrieves the ranges allocated to a galloc sequence on the local node.

An empty result set will be returned if the sequence has not yet been accessed on the local node.

An ERROR will be raised if the provided sequence name is not a galloc sequence.

Synopsis

Parameters

seqname - the name of the galloc sequence to query

Notes

This function executes only on the local node.

bdr.extract_localseqid_from_timeshard(timeshard_seq bigint)

bdr.timestamp_to_timeshard(ts timestamptz)

bdr.galloc_chunk_info(seqname regclass)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 390

KSUUID v2 functions

Functions for working with KSUUID v2 data, K-Sortable UUID data. See also KSUUID in the sequences documentation.

bdr.gen_ksuuid_v2

This function generates a new KSUUID v2 value using the value of timestamp passed as an argument or current system time if NULL is passed. If you want to generate KSUUID automatically using the system time, pass a NULL argument.

The return value is of type UUID.

Synopsis

Notes

This function executes only on the local node.

bdr.ksuuid_v2_cmp

This function compares the KSUUID v2 values.

It returns 1 if the first value is newer, -1 if the second value is lower, or zero if they are equal.

Synopsis

Parameters

UUID — KSUUID v2 to compare.

Notes

This function executes only on the local node.

bdr.extract_timestamp_from_ksuuid_v2

This function extracts the timestamp component of KSUUID v2. The return value is of type timestamptz .

Synopsis

Parameters

UUID — KSUUID v2 value to extract timestamp from.

Notes

This function executes only on the local node.

KSUUID v1 functions

Functions for working with KSUUID v1 data, K-Sortable UUID data(v1). Deprecated - See KSUUID in the sequences documentation for details.

bdr.gen_ksuuid

This function generates a new KSUUID v1 value, using the current system time. The return value is of type UUID.

Synopsis

bdr.gen_ksuuid_v2(timestamptz)

bdr.ksuuid_v2_cmp(uuid, uuid)

bdr.extract_timestamp_from_ksuuid_v2(uuid)

bdr.gen_ksuuid()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 391

https://www.enterprisedb.com/docs/pgd/latest/reference/sequences/#ksuuids
https://www.enterprisedb.com/docs/pgd/latest/reference/sequences#ksuuids

Notes

This function executes only on the local node.

bdr.uuid_v1_cmp

This function compares the KSUUID v1 values.

It returns 1 if the first value is newer, -1 if the second value is lower, or zero if they are equal.

Synopsis

Notes

This function executes only on the local node.

Parameters

UUID — KSUUID v1 to compare.

bdr.extract_timestamp_from_ksuuid

This function extracts the timestamp component of KSUUID v1 or UUIDv1 values. The return value is of type timestamptz .

Synopsis

Parameters

UUID — KSUUID v1 value to extract timestamp from.

Notes

This function executes on the local node.

bdr.uuid_v1_cmp(uuid, uuid)

bdr.extract_timestamp_from_ksuuid(uuid)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 392

29.1.14 Autopartition

Autopartition allows you to split tables into several partitions. For more information, see Autopartition.

bdr.autopartition

The bdr.autopartition function configures automatic RANGE partitioning of a table.

Synopsis

Parameters

relation — Name or Oid of a table.
partition_increment — Interval or increment to next partition creation.
partition_initial_lowerbound — If the table has no partition, then the first partition with this lower bound and partition_increment apart upper bound is created.
partition_autocreate_expression — The expression used to detect if it's time to create new partitions.
minimum_advance_partitions — The system attempts to always have at least minimum_advance_partitions partitions.
maximum_advance_partitions — Number of partitions to create in a single go after the number of advance partitions falls below minimum_advance_partitions .
data_retention_period — Interval until older partitions are dropped, if defined. This value must be greater than migrate_after_period .
enabled — Allows activity to be disabled or paused and later resumed or reenabled.
analytics_offload_period — Provides support for partition offloading. Reserved for future use.
drop_after_retention_period — Allows a partition to be detached instead of dropped. Set this to false to detach instead of drop.

Examples

Daily partitions, keep data for one month:

Create five advance partitions when only two more partitions remain. Each partition can hold 1 billion orders.

bdr.drop_autopartition

Use bdr.drop_autopartition() to drop the autopartitioning rule for the given relation. All pending work items for the relation are deleted, and no new work items are created.

Parameters

relation — Name or Oid of a table.

bdr.autopartition_wait_for_partitions

Partition creation is an asynchronous process. AutoPartition provides a set of functions to wait for the partition to be created, locally or on all nodes.

Use bdr.autopartition_wait_for_partitions() to wait for the creation of partitions on the local node. The function takes the partitioned table name and a partition key column value and waits until the partition that holds that
value is created.

The function waits only for the partitions to be created locally. It doesn't guarantee that the partitions also exists on the remote nodes.

To wait for the partition to be created on all PGD nodes, use the bdr.autopartition_wait_for_partitions_on_all_nodes() function. This function internally checks local as well as all remote nodes and waits until the partition

bdr.autopartition(relation regclass,
 partition_increment
text,
 partition_initial_lowerbound text DEFAULT NULL,
 partition_autocreate_expression text DEFAULT
NULL,
 minimum_advance_partitions integer DEFAULT
2,
 maximum_advance_partitions integer DEFAULT
5,
 data_retention_period interval DEFAULT
NULL,
 enabled boolean DEFAULT on,
 analytics_offload_period interval DEFAULT
NULL,
 drop_after_retention_period boolean DEFAULT true);

CREATE TABLE measurement
(
logdate date not null,
peaktemp int,
unitsales int
) PARTITION BY RANGE (logdate);

bdr.autopartition('measurement', '1 day', data_retention_period := '30
days');

bdr.autopartition('Orders', '1000000000',
 partition_initial_lowerbound := '0',
 minimum_advance_partitions :=
2,
 maximum_advance_partitions :=
5
);

bdr.drop_autopartition(relation regclass);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 393

To wait for the partition to be created on all PGD nodes, use the bdr.autopartition_wait_for_partitions_on_all_nodes() function. This function internally checks local as well as all remote nodes and waits until the partition
is created everywhere.

Synopsis

Parameters

relation — Name or Oid of a table.
upperbound — Partition key column value.

bdr.autopartition_wait_for_partitions_on_all_nodes

Synopsis

Parameters

relation — Name or Oid of a table.
upperbound — Partition key column value.

bdr.autopartition_find_partition

Use the bdr.autopartition_find_partition() function to find the partition for the given partition key value. If partition to hold that value doesn't exist, then the function returns NULL. Otherwise Oid of the partition is returned.

Synopsis

Parameters

relname — Name of the partitioned table.
searchkey — Partition key value to search.

bdr.autopartition_enable

Use bdr.autopartition_enable to enable AutoPartitioning on the given table. If AutoPartitioning is already enabled, then no action occurs. See bdr.autopartition_disable to disable AutoPartitioning on the given table.

Synopsis

Parameters

relname — Name of the relation to enable AutoPartitioning.

bdr.autopartition_disable

Use bdr.autopartition_disable to disable AutoPartitioning on the given table. If AutoPartitioning is already disabled, then no action occurs.

Synopsis

Parameters

relname — Name of the relation to disable AutoPartitioning.

Internal functions

bdr.autopartition_create_partition

bdr.autopartition_wait_for_partitions(relation regclass, upperbound
text);

bdr.autopartition_wait_for_partitions_on_all_nodes(relation regclass, upperbound
text);

bdr.autopartition_find_partition(relname regclass, searchkey
text);

bdr.autopartition_enable(relname regclass);

bdr.autopartition_disable(relname regclass);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 394

bdr.autopartition_create_partition

AutoPartition uses an internal function bdr.autopartition_create_partition to create a standalone AutoPartition on the parent table.

Synopsis

Parameters

relname — Name or Oid of the parent table to attach to.
partname — Name of the new AutoPartition.
lowerb — Lower bound of the partition.
upperb — Upper bound of the partition.
nodes — List of nodes that the new partition resides on. This parameter is internal to PGD and reserved for future use.

Notes

This is an internal function used by AutoPartition for partition management. We recommend that you don't use the function directly.

bdr.autopartition_drop_partition

AutoPartition uses an internal function bdr.autopartition_drop_partition to drop a partition that's no longer required, as per the data-retention policy. If the partitioned table was successfully dropped, the function returns
true .

Synopsis

Parameters

relname — The name of the partitioned table to drop.

Notes

This function places a DDL lock on the parent table before using DROP TABLE on the chosen partition table. This function is an internal function used by AutoPartition for partition management. We recommend that you don't use the
function directly.

bdr.autopartition_create_partition(relname regclass,
 partname
name,
 lowerb
text,
 upperb
text,
 nodes oid[]);

bdr.autopartition_drop_partition(relname regclass)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 395

29.1.15 Stream triggers reference

SeeAlso

Stream Triggers for an introduction to Stream Triggers.

Both conflict triggers and transform triggers have access to information about rows and metadata by way of the predefined variables provided by the trigger API and additional information functions provided by PGD.

In PL/pgSQL, you can use the predefined variables and functions that follow:

Row variables
Row Information functions

bdr.trigger_get_row
bdr.trigger_get_committs
bdr.trigger_get_xid
bdr.trigger_get_type
bdr.trigger_get_conflict_type
bdr.trigger_get_origin_node_id
bdr.ri_fkey_on_del_trigger

Creating and dropping stream triggers is managed through the manipulation interfaces:

Manipulation interfaces
bdr.create_conflict_trigger
bdr.create_transform_trigger
bdr.drop_trigger

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 396

https://www.enterprisedb.com/docs/pgd/latest/reference/stream-triggers
https://www.enterprisedb.com/docs/pgd/latest/reference/stream-triggers/#conflict-triggers
https://www.enterprisedb.com/docs/pgd/latest/reference/stream-triggers/#transform-triggers

29.1.15.1 Stream triggers manipulation interfaces

You can create stream triggers only on tables with REPLICA IDENTITY FULL or tables without any columns to which TOAST applies.

bdr.create_conflict_trigger

This function creates a new conflict trigger.

Synopsis

Parameters

trigger_name — Name of the new trigger.
events — Array of events on which to fire this trigger. Valid values are ' INSERT ', ' UPDATE ', and ' DELETE '.
relation — Relation to fire this trigger for.
function — The function to execute.
args — Optional. Specifies the array of parameters the trigger function receives on execution (contents of TG_ARGV variable).

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration.

The function takes a global DML lock on the relation on which the trigger is being created.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Similar to normal PostgreSQL triggers, the bdr.create_conflict_trigger function requires TRIGGER privilege on the relation and EXECUTE privilege on the function. This applies with a
bdr.backwards_compatibility of 30619 or above. Additional security rules apply in PGD to all triggers including conflict triggers. See Security and roles.

bdr.create_transform_trigger

This function creates a transform trigger.

Synopsis

Parameters

trigger_name — Name of the new trigger.
events — Array of events on which to fire this trigger. Valid values are ' INSERT ', ' UPDATE ', and ' DELETE '.
relation — Relation to fire this trigger for.
function — The function to execute.
args — Optional. Specify array of parameters the trigger function receives on execution (contents of TG_ARGV variable).

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration.

The function takes a global DML lock on the relation on which the trigger is being created.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Similarly to normal PostgreSQL triggers, the bdr.create_transform_trigger function requires the TRIGGER privilege on the relation and EXECUTE privilege on the function. Additional security rules apply in PGD to all
triggers including transform triggers. See Security and roles.

bdr.drop_trigger

bdr.create_conflict_trigger(trigger_name text,
 events text[],
 relation
regclass,
 function regprocedure,
 args text[] DEFAULT
'{}')

bdr.create_transform_trigger(trigger_name text,
 events text[],
 relation
regclass,
 function regprocedure,
 args text[] DEFAULT
'{}')

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 397

bdr.drop_trigger

This function removes an existing stream trigger (both conflict and transform).

Synopsis

Parameters

trigger_name — Name of an existing trigger.
relation — The relation the trigger is defined for.
ifexists — When set to true , this function ignores missing triggers.

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration.

The function takes a global DML lock on the relation on which the trigger is being created.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Only the owner of the relation can execute the bdr.drop_trigger function.

bdr.drop_trigger(trigger_name text,
 relation
regclass,
 ifexists boolean DEFAULT
false)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 398

29.1.15.2 Stream triggers row functions

bdr.trigger_get_row

This function returns the contents of a trigger row specified by an identifier as a RECORD . This function returns NULL if called inappropriately, that is, called with SOURCE_NEW when the operation type (TG_OP) is DELETE .

Synopsis

Parameters

row_id — Identifier of the row. Can be any of SOURCE_NEW , SOURCE_OLD , and TARGET , depending on the trigger type and operation. (See the descriptions of the individual trigger types.)

bdr.trigger_get_committs

This function returns the commit timestamp of a trigger row specified by an identifier. If not available because a row is frozen or isn't available, returns NULL . Always returns NULL for row identifier SOURCE_OLD .

Synopsis

Parameters

row_id — Identifier of the row. Can be any of SOURCE_NEW , SOURCE_OLD , and TARGET , depending on trigger type and operation. (See the descriptions of the individual trigger types.)

bdr.trigger_get_xid

This function returns the local transaction id of a TARGET row specified by an identifier. If not available because a row is frozen or isn't available, returns NULL . Always returns NULL for SOURCE_OLD and SOURCE_NEW row identifiers.

Available only for conflict triggers.

Synopsis

Parameters

row_id — Identifier of the row. Can be any of SOURCE_NEW , SOURCE_OLD , and TARGET , depending on trigger type and operation. (See the descriptions of the individual trigger types.)

bdr.trigger_get_type

This function returns the current trigger type, which can be CONFLICT or TRANSFORM . Returns null if called outside a stream trigger.

Synopsis

bdr.trigger_get_conflict_type

This function returns the current conflict type if called inside a conflict trigger. Otherwise, returns NULL .

See Conflict types for possible return values of this function.

Synopsis

bdr.trigger_get_origin_node_id

This function returns the node id corresponding to the origin for the trigger row_id passed in as argument. If the origin isn't valid (which means the row originated locally), returns the node id of the source or target node, depending on the
trigger row argument. Always returns NULL for row identifier SOURCE_OLD . You can use this function to define conflict triggers to always favor a trusted source node.

Synopsis

bdr.trigger_get_row(row_id text)

bdr.trigger_get_committs(row_id text)

bdr.trigger_get_xid(row_id text)

bdr.trigger_get_type()

bdr.trigger_get_conflict_type()

bdr.trigger_get_origin_node_id(row_id text)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 399

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts/02_types_of_conflict/

Parameters

row_id — Identifier of the row. Can be any of SOURCE_NEW , SOURCE_OLD , and TARGET , depending on trigger type and operation. (See the descriptions of the individual trigger types.)

bdr.ri_fkey_on_del_trigger

When called as a BEFORE trigger, this function uses FOREIGN KEY information to avoid FK anomalies.

Synopsis

bdr.ri_fkey_on_del_trigger()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 400

29.1.15.3 Stream triggers row variables

TG_NAME

Data type name. This variable contains the name of the trigger actually fired. The actual trigger name has a _bdrt or _bdrc suffix (depending on trigger type) compared to the name provided during trigger creation.

TG_WHEN

Data type text. This variable says BEFORE for both conflict and transform triggers. You can get the stream trigger type by calling the bdr.trigger_get_type() information function. See bdr.trigger_get_type.

TG_LEVEL

Data type text: a string of ROW .

TG_OP

Data type text: a string of INSERT , UPDATE , or DELETE identifying the operation for which the trigger was fired.

TG_RELID

Data type oid: the object ID of the table that caused the trigger invocation.

TG_TABLE_NAME

Data type name: the name of the table that caused the trigger invocation.

TG_TABLE_SCHEMA

Data type name: the name of the schema of the table that caused the trigger invocation. For partitioned tables, this is the name of the root table.

TG_NARGS

Data type integer: the number of arguments given to the trigger function in the bdr.create_conflict_trigger() or bdr.create_transform_trigger() statement.

TG_ARGV[]

Data type array of text: the arguments from the bdr.create_conflict_trigger() or bdr.create_transform_trigger() statement. The index counts from 0. Invalid indexes (less than 0 or greater than or equal to
TG_NARGS) result in a NULL value.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 401

29.1.16 Internal catalogs and views

Catalogs and views are listed here in alphabetical order.

bdr.autopartition_partitions

An internal catalog table that stores information about the partitions created by the autopartitioning feature.

bdr.autopartition_partitions columns

Name Type Description

ap_parent_relid oid OID for relation

ap_part_relname name Name of created relation

ap_part_created_at timestamp with time zone Creation timestamp

ap_part_migrated_at timestamp with time zone Migration timestamp

ap_part_dropped_at timestamp with time zone Timestamp when dropped

bdr.autopartition_rules

An internal catalog table that stores information about the autopartitioning rules.

bdr.autopartition_rules columns

Name Type Description

ap_partition_relid oid

ap_partition_relname name

ap_partition_schemaname name

ap_partition_increment_kind "char"

ap_secondary_tablespace oid

ap_maximum_advance_partitions integer

ap_is_autoscaled boolean

ap_latest_partitions integer

ap_enabled boolean

ap_migrate_after_period interval

ap_data_retention_period interval

ap_last_triggered timestamp with time zone

ap_partition_increment_value text

ap_partition_autocreate_expr text

ap_partition_initial_lowerbound text

ap_partition_last_upperbound text

ap_partition_min_upperbound text

bdr.ddl_epoch

An internal catalog table holding state per DDL epoch.

bdr.ddl_epoch columns

Name Type Description

ddl_epoch int8 Monotonically increasing epoch number

origin_node_id oid Internal node ID of the node that requested creation of this epoch

epoch_consume_timeout timestamptz Timeout of this epoch

epoch_consumed boolean Switches to true as soon as the local node has fully processed the epoch

epoch_consumed_lsn boolean LSN at which the local node has processed the epoch

bdr.event_history

Internal catalog table that tracks cluster membership events for a given PGD node. Specifically, it tracks:

Node joins (to the cluster)
Raft state changes (that is, whenever the node changes its role in the consensus protocol - leader, follower, or candidate to leader); see Monitoring Raft consensus
Whenever a worker has errored out (see bdr.workers and Monitoring PGD replication workers)

bdr.event_history columns

Name Type Description

event_node_id oid ID of the node to which the event refers

event_type int Type of the event (a node, raft, or worker-related event)

event_sub_type int Subtype of the event, that is, if it's a join, a state change, or an error

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 402

event_source text Name of the worker process where the event was sourced

event_time timestamptz Timestamp at which the event occurred

event_text text Textual representation of the event (for example, the error of the worker)

event_detail text A more detailed description of the event (for now, only relevant for worker
errors)

Name Type Description

bdr.event_summary

A view of the bdr.event_history catalog that displays the information in a more human-friendly format. Specifically, it displays the event types and subtypes as textual representations rather than integers.

bdr.local_leader_change

This is a local cache of the recent portion of leader change history. It has the same fields as bdr.leader , except that it is an ordered set of (node_group_id, leader_kind, generation) instead of a map tracking merely the current version.

bdr.node_config

An internal catalog table with per-node configuration options.

bdr.node_config columns

Name Type Description

node_id oid Node ID

node_route_priority int Priority assigned to this node

node_route_fence boolean Switch to fence this node

node_route_writes boolean Switch to allow writes

node_route_reads boolean Switch to allow reads

node_route_dsn text Interface of this node

bdr.node_config_summary

A view of the bdr.node_config catalog that displays the information in a more human-readable format.

bdr.node_config_summary columns

Name Type Description

node_name text The name of this node

node_id oid Node ID

node_route_priority int Priority assigned to this node

node_route_fence boolean Switch to fence this node

node_route_writes boolean Switch to allow writes

node_route_reads boolean Switch to allow reads

node_route_dsn text Interface of this node

effective_route_dsn text Full DSN of this node

bdr.node_group_config

An internal catalog table with per-node group configuration options.

bdr.node_group_config columns

Name Type Description

node_group_id oid Node group ID

route_writer_max_lag bigint Maximum write lag accepted

route_reader_max_lag bigint Maximum read lag accepted

route_writer_wait_flush boolean Switch if we need to wait for the flush

bdr.node_group_routing_config_summary

Per-node-group routing configuration options.

bdr.node_group_routing_config_summary columns

Name Type Description

node_group_name name Node group name

location name Node group location

enable_routing boolean Group routing enabled?

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 403

node_group_type text Node group type (one of "global", "data", or "subscriber-only")

route_writer_max_lag bigint Maximum write lag accepted

route_reader_max_lag bigint Maximum read lag accepted

route_writer_wait_flush boolean Wait for flush

Name Type Description

bdr.node_group_routing_info

An internal catalog table holding current routing information for connection manager.

bdr.node_group_routing_info columns

Name Type Description

node_group_id oid Node group ID.

write_node_id oid Current write node.

prev_write_node_id oid Previous write node.

read_node_ids oid[] List of read-only nodes IDs.

record_version bigint Record version. Incremented by 1 on every material change to the routing record.

record_ts timestamptz Timestamp of last update to record_version.

write_leader_version bigint Write leader version. Copied from record_version every time write_node_id is changed.

write_leader_ts timestamptz Write leader timestamp. Copied from record_ts every time write_node_id is changed.

read_nodes_version bigint Read nodes version. Copied from record_version every time read_node_ids list is
changed.

read_nodes_ts timestamptz Read nodes timestamp. Copied from record_tw every time read_node_ids list is changed.

bdr.node_group_routing_summary

A view of bdr.node_group_routing_info catalog that shows the information in more friendly way.

bdr.node_group_routing_summary columns

Name Type Description

node_group_name name Node group name

write_lead name Current write lead

previous_write_lead name Previous write lead

read_nodes name[] Current read-only nodes

bdr.node_routing_config_summary

A friendly view of the per-node routing configuration options. Shows the node name rather than the oid and shorter field names.

bdr.node_routing_config_summary columns

Name Type Description

node_name name Node name

route_priority int Priority assigned to this node

route_fence boolean Switch to fence this node

route_writes boolean Switch to allow writes

route_reads boolean Switch to allow reads

route_dsn text Interface of this node

bdr.sequence_kind

An internal state table storing the type of each non-local sequence. We recommend the view bdr.sequences for diagnostic purposes.

bdr.sequence_kind columns

Name Type Description

seqid oid Internal OID of the sequence

seqkind char Internal sequence kind (l =local, t =timeshard, s =snowflakeid, g =galloc)

bdr.sync_node_requests

An internal state table storing the state of node synchronization requests. The view bdr.sync_node_requests_summary provides a human-readable representation of this table.

bdr.sync_node_requests columns

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 404

bdr.sync_node_requests columns

Name Type Description

sn_origin_node_id oid Unavailable node with changes to be synchronized

sn_target_node_id oid Node with the origin node's changes

sn_source_node_id oid Target node for the sync request

sn_sync_start_lsn pg_lsn Start LSN of the sync request

sn_sync_start_ts timestamptz Start timestamp of the sync request

sn_sync_end_lsn pg_lsn End LSN of the sync request

sn_sync_end_ts timestamptz End timestamp of the sync request

sn_sync_status text Status of the sync request

bdr.sync_node_requests_summary

A view providing a human-readable version of the underlying bdr.sync_node_requests table.

bdr.sync_node_requests_summary columns

Name Type Description

origin text Unavailable node with changes to be synchronized

source text Node with the origin node's changes

target text Target node for the sync request

sync_start_lsn pg_lsn Start LSN of the sync request

sync_start_ts timestamptz Start timestamp of the sync request

sync_end_lsn pg_lsn End LSN of the sync request

sync_end_ts timestamptz End timestamp of the sync request

sync_status text Status of the sync request

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 405

29.1.17 Internal system functions

The following are internal system functions. Many are used when creating various views. We recommend that you do not use the functions directly but instead use the views that they serve.

General internal functions

bdr.bdr_get_commit_decisions

Convenience routine to inspect shared memory state.

Synopsis

bdr.bdr_track_commit_decision

Save the transaction commit status in the shared memory hash table. This dunction is used by the upgrade scripts to transfer commit decisions saved in bdr.node_pre_commit catalog to the shared memory hash table. The transaction commit
status will also be logged to the WAL and hence can be reloaded from WAL.

Synopsis

bdr.consensus_kv_fetch

Fetch value from the consistent KV Store in JSON format.

Synopsis

Parameters

Parameter Description

key An arbitrary key to fetch.

Notes

This function is an internal function, mainly used by HARP.

Warning

Don't use this function in user applications.

bdr.consensus_kv_store

Stores value in the consistent KV Store.

Returns the timestamp of the value expiration time. This function depends on ttl . If ttl is NULL , then this function returns infinity . If the value was deleted, it returns -infinity .

Synopsis

Parameters

Parameter Description

key An arbitrary unique key to insert, update, or delete.

value JSON value to store. If NULL, any existing record is deleted.

bdr.bdr_get_commit_decisions(dbid OID,
 origin_node_id
OID,
 origin_xid xid,
 local_xid xid,
 decision
"char",
 decision_ts
timestamptz,
 is_camo boolean)

bdr.bdr_track_commit_decision(OID, xid, xid, "char", timestamptz, boolean);

bdr.consensus_kv_fetch(IN key text) RETURNS jsonb

bdr.consensus_kv_store(key text, value
jsonb,
 prev_value jsonb DEFAULT NULL, ttl int DEFAULT
NULL)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 406

prev_value If set, the write operation is done only if the current value is equal to prev_value .

ttl Time-to-live of the new value, in milliseconds.

Parameter Description

Notes

This is an internal function, mainly used by HARP.

Warning

Don't use this function in user applications.

bdr.decode_message_payload

PGD message payload function that decodes the payloads of consensus messages to a more human-readable output. Used primarily by the bdr.global_consensus_journal_details debug view.

bdr.decode_message_response_payload

PGD message payload function that decodes the payloads of responses to consensus messages to a more human-readable output. Used primarily by the bdr.global_consensus_journal_details debug view.

bdr.difference_fix_origin_create

Creates a replication origin with a given name passed as an argument but adding a bdr_ prefix. Returns the internal id of the origin. This function has the same functionality as pg_replication_origin_create() except this function
requires bdr_superuser rather than postgres superuser permissions.

bdr.difference_fix_session_reset

Marks the current session as not replaying from any origin, essentially resetting the effect of bdr.difference_fix_session_setup() . It returns void. This function has the same functionality as
pg_replication_origin_session_reset() except this function requires bdr_superuser rather than postgres superuser permissions.

Synopsis

bdr.difference_fix_session_setup

Marks the current session as replaying from the current origin. The function uses the pre-created bdr_local_only_origin local replication origin implicitly for the session. It allows replay progress to be reported and returns void. This
function has the same functionality as pg_replication_origin_session_setup() except that this function requires bdr_superuser rather than postgres superuser permissions. The earlier form of the function,
bdr.difference_fix_session_setup(text) , was deprecated and will be removed in a future release.

Synopsis

bdr.difference_fix_xact_set_avoid_conflict

Marks the current transaction as replaying a transaction that committed at LSN '0/0' and timestamp '2000-01-01'. This function has the same functionality as pg_replication_origin_xact_setup('0/0', '2000-01-01') except
this function requires bdr_superuser rather than postgres superuser permissions.

Synopsis

bdr.drop_node

Drops a node's metadata.

After a node has been PARTED its metadata remains present in the cluster's nodes. For example, the node will remain in the bdr.node_sumary results, marked as PARTED , until the node is dropped.

Calling bdr.drop_node('some node', force := true) can be necessary and appropriate when a node becomes stuck while parting. Note that it skips past syncing any data out of the node being dropped, if there is any data on that
node that still needs to be synced out. If a node stuck parting has already been reimaged or deleted, there is no harm in calling bdr.drop_node on it. Note that this must be called for this stuck node on all nodes in the cluster so they all
have a consistent view that the node has been dropped.

This function removes the metadata for a given node from the local database. The node can be either:

The local node, in which case it removes all the node metadata, including information about remote nodes.
A remote node, in which case it removes only metadata for that specific node.

When to use bdr.drop_node()

bdr.difference_fix_session_reset()

bdr.difference_fix_session_setup()

bdr.difference_fix_xact_set_avoid_conflict()

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 407

When to use bdr.drop_node()

It is not necessary to use bdr.drop_node() to drop node metadata just to reuse node names. PGD 5 and later can reuse existing node names as long as the node name in question belongs to a node in a PARTED state. Instead
of dropping the node, use bdr.part_node() to remove the original node and place it in a PARTED .

Use of this internal function is limited to:

When you're instructed to by EDB Technical Support.
Where you're specifically instructed to in the documentation.

Use bdr.part_node to remove a node from a PGD group. That function sets the node to PARTED state and enables reuse of the node name.

Synopsis

Parameters

Parameter Description

node_nam
e

Name of an existing node.

cascade Deprecated, will be removed in a future release.

force Circumvents all sanity checks and forces the removal of all metadata for the given PGD node despite a possible danger of causing inconsistencies. Only Technical Support uses a forced node drop in case of emergencies
related to parting.

Notes

Before you run this function, part the node using bdr.part_node() .

This function removes metadata for a given node from the local database. The node can be the local node, in which case all the node metadata is removed, including information about remote nodes. Or it can be the remote node, in which case
only metadata for that specific node is removed.

Note

PGD can have a maximum of 1024 node records (both ACTIVE and PARTED) at one time because each node has a unique sequence number assigned to it, for use by snowflakeid and timeshard sequences. PARTED nodes aren't
automatically cleaned up. If this becomes a problem, you can use this function to remove those records.

bdr.get_global_locks

Shows information about global locks held on the local node.

Used to implement the bdr.global_locks view to provide a more detailed overview of the locks.

bdr.get_node_conflict_resolvers

Displays a text string of all the conflict resolvers on the local node.

bdr.get_slot_flush_timestamp

Retrieves the timestamp of the last flush position confirmation for a given replication slot.

Used internally to implement the bdr.node_slots view.

bdr.internal_alter_sequence_set_kind

A function previously used internally for replication of the various function calls. No longer used by the current version of PGD. Exists only for backward compatibility during rolling upgrades.

bdr.internal_replication_set_add_table

A function previously used internally for replication of the various function calls. No longer used by the current version of PGD. Exists only for backward compatibility during rolling upgrades.

bdr.internal_replication_set_remove_table

A function previously used internally for replication of the various function calls. No longer used by the current version of PGD. Exists only for backward compatibility during rolling upgrades.

bdr.internal_submit_join_request

Submits a consensus request for joining a new node.

Needed by the PGD group reconfiguration internal mechanisms.

bdr.isolation_test_session_is_blocked

bdr.drop_node(node_name text, cascade boolean DEFAULT false, force boolean DEFAULT false)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 408

bdr.isolation_test_session_is_blocked

A helper function, extending (and actually invoking) the original pg_isolation_test_session_is_blocked with an added check for blocks on global locks.

Used for isolation/concurrency tests.

bdr.local_node_info

Displays information for the local node needed by the PGD group reconfiguration internal mechanisms.

The view bdr.local_node_summary provides similar information useful for user consumption.

bdr.msgb_connect

Connects to the connection pooler of another node. Used by the consensus protocol.

bdr.msgb_deliver_message

Sends messages to another node's connection pooler. Used by the consensus protocol.

bdr.node_catchup_state_name

Converts catchup state code in name.

Synopsis

Parameters

Parameter Description

catchup_state Oid code of the catchup
state.

bdr.node_kind_name

Returns human-friendly name of the node kind (data|standby|witness|subscriber-only).

bdr.peer_state_name

Transforms the node state (node_state) into a textual representation. Used mainly to implement the bdr.node_summary view.

bdr.pg_xact_origin

Returns the origin id of a given transaction.

Synopsis

Parameters

Parameter Description

xid Transaction id whose origin is returned.

bdr.request_replay_progress_update

Requests the immediate writing of a 'replay progress update' Raft message. Used mainly for test purposes but can also be used to test if the consensus mechanism is working.

bdr.reset_relation_stats

Returns a Boolean result after resetting the relation stats, as viewed by bdr.stat_relation .

bdr.reset_subscription_stats

Returns a Boolean result after resetting the statistics created by subscriptions, as viewed by bdr.stat_subscription .

bdr.resynchronize_table_from_node

bdr.node_catchup_state_name(catchup_state oid);

bdr.pg_xact_origin(xmin xid)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 409

bdr.resynchronize_table_from_node

Resynchronizes the relation from a remote node.

Synopsis

Parameters

Parameter Description

node_name The node from which to copy or resync the relation
data.

relation The relation to copy from the remote node.

Notes

This function acquires a global DML lock on the relation, truncates the relation locally, and copies data into it from the remote node.

The relation must exist on both nodes with the same name and definition.

The following are supported:

Resynchronizing partitioned tables with identical partition definitions
Resynchronizing partitioned table to nonpartitioned table and vice versa
Resynchronizing referenced tables by temporarily dropping and re-creating foreign key constraints

After running the function on a referenced table, if the referenced column data no longer matches the referencing column values, the function throws an error. After resynchronizing the referencing table data, rerun the function.

Furthermore, it supports resynchronization of tables with generated columns by computing the generated column values locally after copying the data from remote node.

Currently, row_filters are ignored by this function.

The bdr.resynchronize_table_from_node function can be executed only by the owner of the table, provided the owner has bdr_superuser privileges.

bdr.seq_currval

Part of the internal implementation of global sequence manipulation.

Invoked automatically when currval() is called on a galloc or snowflakeid sequence.

bdr.seq_lastval

Part of the internal implementation of global sequence manipulation.

Invoked automatically when lastval() is called on a galloc or snowflakeid sequence.

bdr.seq_nextval

Part of the internal implementation of global sequence increments.

Invoked automatically when nextval() is called on a galloc or snowflakeid sequence

bdr.show_subscription_status

Retrieves information about the subscription status. Used mainly to implement the bdr.subscription_summary view.

bdr.show_workers

Information related to the bdr workers.

Synopsis

bdr.show_writers

bdr.resynchronize_table_from_node(node_name name, relation
regclass)

bdr.show_workers(
 worker_pid int,
 worker_role
int,
 worker_role_name
text,
 worker_subid oid)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 410

bdr.show_writers

Function used in the bdr.writers view.

bdr.sync_status_name

Converts sync state code into a textual representation. Used mainly to implement the bdr.sync_node_requests_summary view.

Synopsis

Parameters

Parameter Description

sync_state Oid code of the sync state.

Task manager functions

bdr.taskmgr_set_leader

Requests the given node to be the task manager leader node. The leader node is responsible for creating new tasks. (Currently only autopartition makes use of this facility.) A witness node, a logical standby, or a subscriber-only node can't
become a leader. Such requests will fail with an error.

Synopsis

bdr.taskmgr_get_last_completed_workitem

Return the id of the last workitem successfully completed on all nodes in the cluster.

Synopsis

bdr.taskmgr_work_queue_check_status

Lets you see the status of the background workers that are doing their job to generate and finish the tasks.

The status can be seen through these views:

bdr.taskmgr_work_queue_local_status
bdr.taskmgr_work_queue_global_status

Synopsis

Parameters

Parameter Description

workid The key of the task.

local Check the local status only.

Notes

Taskmgr workers are always running in the background, even before the bdr.autopartition function is called for the first time. If an invalid workid is used, the function returns unknown . In-progress is the typical status.

bdr.get_min_required_replication_slots

Internal function intended for use by PGD-CLI.

bdr.get_min_required_worker_processes

bdr.sync_status_name(sync_state oid)

bdr.taskmgr_set_leader(node name, wait_for_completion boolean DEFAULT
true);

bdr.taskmgr_get_last_completed_workitem();

bdr.taskmgr_work_queue_check_status(workid
bigint
 local boolean DEFAULT false);

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 411

bdr.get_min_required_worker_processes

Internal function intended for use by PGD-CLI.

bdr.stat_get_activity

Internal function underlying view bdr.stat_activity . Do not use directly. Use the bdr.stat_activity view instead.

bdr.worker_role_id_name

Internal helper function used when generating view bdr.worker_tasks . Do not use directly. Use the bdr.worker_tasks view instead.

bdr.lag_history

Internal function used when generating view bdr.node_replication_rates . Do not use directly. Use the bdr.node_replication_rates view instead.

bdr.get_raft_instance_by_nodegroup

Internal function used when generating view bdr.group_raft_details . Do not use directly. Use the bdr.group_raft_details view instead.

bdr.monitor_camo_on_all_nodes

Internal function used when generating view bdr.group_camo_details . Do not use directly. Use the bdr.group_camo_details view instead.

bdr.monitor_raft_details_on_all_nodes

Internal function used when generating view bdr.group_raft_details . Do not use directly. Use the bdr.group_raft_details view instead.

bdr.monitor_replslots_details_on_all_nodes

Internal function used when generating view bdr.group_replslots_details . Do not use directly. Use the bdr.group_replslots_details view instead.

bdr.monitor_subscription_details_on_all_nodes

Internal function used when generating view bdr.group_subscription_summary . Do not use directly. Use the bdr.group_subscription_summary view instead.

bdr.monitor_version_details_on_all_nodes

Internal function used when generating view bdr.group_versions_details . Do not use directly. Use the bdr.group_versions_details view instead.

bdr.node_group_member_info

Internal function used when generating view bdr.group_raft_details . Do not use directly. Use the bdr.group_raft_details view instead.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 412

29.1.18 Column-level conflict functions

bdr.column_timestamps_create

This function creates column-level conflict resolution. It's called within column_timestamp_enable .

Synopsis

Parameters

p_source — The two options are current or commit .
p_timestamp — Timestamp depends on the source chosen. If commit , then TIMESTAMP_SOURCE_COMMIT . If current , then TIMESTAMP_SOURCE_CURRENT .

bdr.column_timestamps_create(p_source cstring, p_timestamp
timestampstz)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 413

29.2 EDB Postgres Distributed Command Line Interface (PGD CLI)

The EDB Postgres Distributed Command Line Interface (PGD CLI) is a tool for managing your EDB Postgres Distributed cluster. It's the key tool for inspecting and managing cluster resources.

It allows you to run commands against EDB Postgres Distributed clusters to:

Determine the health of the cluster, inspect the cluster's configuration, and manage the cluster's resources.
Inspect and manage the cluster's nodes and groups.
Perform a write-leader change operation on the group.

You can also install it manually on Linux and macOS systems that can connect to a PGD cluster, including:

HCP advanced and distributed high-availability clusters.
PGD clusters deployed using the CloudNative Postgres Global Clusters operator.
Manually deployed PGD clusters.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 414

29.2.1 Installing PGD CLI

You can install PGD CLI on any system that can connect to the PGD cluster. Linux and macOS are currently supported platforms to install PGD CLI on.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 415

29.2.1.1 Installing PGD CLI on Linux

PGD CLI is available for most Linux distributions. You can install it from the EDB repositories, which you can access with your EDB account. PGD users and EDB Cloud Service users, including those on a free trial, have an EDB account and
access to PGD CLI.

Obtain your EDB subscription token

These repositories require a token to enable downloads from them. To obtain your token, log in to EDB Repos 2.0. If this is your first time visiting the EDB Repos 2.0 page, you must select Request Access to generate your token. Once a
generated token is available, select the Copy icon to copy it to your clipboard, or select the eye icon to view it.

Set the EDB_SUBSCRIPTION_TOKEN environment variable

Once you have the token, execute the command shown for your operating system, substituting your token for <your-token> .

export EDB_SUBSCRIPTION_TOKEN=<your-token>

Then run the appropriate commands for your operating system.

Debian or Ubuntu

On Debian or Ubuntu, you can install PGD CLI using the apt package manager.

If this command returns an error like curl: (22) The requested URL returned error: 404 , check that you entered the correct token.

When the command is successful, you'll see output like this:

Executing the setup script for the 'enterprisedb/postgres_distributed' repository ...
...

You can now install the PGD CLI package using the command:

sudo apt-get install edb-pgd6-cli

RHEL, Rocky, AlmaLinux, or Oracle Linux

On RHEL, Rocky, AlmaLinux, or Oracle Linux, you can install PGD CLI using the yum package manager. You can also use the dnf package manager, which is the default package manager for RHEL 8 and later.

If this command returns an error like curl: (22) The requested URL returned error: 404 , check that you entered the correct token.

When the command is successful, you'll see output like this:

Executing the setup script for the 'enterprisedb/postgres_distributed' repository ...
...

You can now install the PGD CLI package using the command:

curl -1sSLf "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.deb.sh" | sudo -E bash

curl -1sSLf "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.rpm.sh" | sudo -E bash

sudo dnf install edb-pgd6-
cli

sudo yum install edb-pgd6-
cli

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 416

https://www.enterprisedb.com/repos-downloads

29.2.1.2 Installing PGD CLI on macOS

PGD CLI is available for macOS as a Homebrew formula. To install it, run the following commands:

brew tap enterprisedb/tap
brew install pgd-cli

To verify the installation, run:

pgd --version

Next: Using PGD CLI

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 417

https://brew.sh/

29.2.2 Using PGD CLI

What is the PGD CLI?

The PGD CLI is a convenient way to connect to and manage your PGD cluster. To use it, you need a user with PGD superuser privileges or equivalent. The PGD user with superuser privileges is the bdr_superuser role. An example of an
equivalent user is edb_admin on an EDB Cloud Service distributed high-availability cluster.

Setting passwords

PGD CLI doesn't interactively prompt for your password. You must pass your password using one of the following methods:

Adding an entry to your .pgpass password file, which includes the host, port, database name, user name, and password.
Setting the password in the PGPASSWORD environment variable.
Including the password in the connection string.

We recommend the first option, as the other options don't scale well with multiple databases, or they compromise password confidentiality.

Running the PGD CLI

Once you have installed pgd-cli, run the pgd command to access the PGD command line interface. The pgd command needs details about the host, port, and database to connect to, along with your username and password.

Passing a database connection string

Use the --dsn flag to pass a database connection string to the pgd command. When you pass the connection string with the --dsn flag, you don't need a configuration file. The flag takes precedence even if a configuration file is present.
For example:

The database conmnection string (DSN) can also be set using the PGD_CLI_DSN environment variable. For example:

The --dsn flag takes precedence over the environment variable, so if both are set, the --dsn value is used.

See PGD CLI Command reference for a description of the command options.

Specifying a configuration file

If a pgd-cli-config.yml file is in /etc/edb/pgd-cli or $HOME/.edb/pgd-cli , pgd uses it. You can override this behavior using the optional -f or --config-file flag. For example:

output
Node Name Group Name Node Kind Join State Node Status
--------- ------------ --------- ---------- -----------
kaftan dc1_subgroup data ACTIVE Up
kaolin dc1_subgroup data ACTIVE Up
kaboom dc1_subgroup data ACTIVE Up

Specifying the output format

Use the -o or --output flag to change the default output format to JSON. For example:

pgd nodes list --dsn "host=bdr-a1 port=5432 dbname=pgddb user=enterprisedb"

export PGD_CLI_DSN="host=bdr-a1 port=5432 dbname=pgddb user=enterprisedb"
pgd nodes list

pgd nodes list -f /opt/my-
config.yml

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 418

https://www.postgresql.org/docs/current/libpq-pgpass.html

The PGD CLI supports the following output formats.

Setting Format Description

simple Tabular A simple tabular view. (Default).

json JSON Presents the raw data with no formatting. For some commands, the JSON output might show more data than the tabular output, such as extra fields and more detailed
messages.

psql PSQL A tabular view in the style of PSQL output. format.

modern Tabular A tabular view which uses box characters to deliniate the table.

markdown Markdown A Markdown style output which may product long-form, non-tabular output for some commands such as pgd assess .

Accessing the command line help

To list the supported commands, enter:

For help with a specific command and its parameters, enter pgd <command_name> --help . For example:

Avoiding stale data

The PGD CLI can return stale data on the state of the cluster if it's still connecting to nodes previously parted from the cluster. Edit the pgd-cli-config.yml file, or change your --dsn settings to ensure you are connecting to
active nodes in the cluster.

pgd nodes list -o json
[

{
 "node_name": "kaftan",
 "node_group_name": "dc1_subgroup",
 "node_kind_name": "data",
 "join_state": "ACTIVE",
 "node_status": "Up",
 "node_id":
3490219809,
 "node_seq_id": 2,
 "node_local_dbname": "pgddb"
 },
 {
 "node_name": "kaolin",
 "node_group_name": "dc1_subgroup",
 "node_kind_name": "data",
 "join_state": "ACTIVE",
 "node_status": "Up",
 "node_id":
2111777360,
 "node_seq_id": 1,
 "node_local_dbname": "pgddb"
 },
 {
 "node_name": "kaboom",
 "node_group_name": "dc1_subgroup",
 "node_kind_name": "data",
 "join_state": "ACTIVE",
 "node_status": "Up",
 "node_id":
2710197610,
 "node_seq_id": 3,
 "node_local_dbname": "pgddb"
 }
]

pgd --help

pgd nodes list --help

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 419

29.2.3 Configuring PGD CLI

PGD CLI can be installed on any system that can connect to the PGD cluster. To use PGD CLI, you need a user with PGD superuser privileges or equivalent. The PGD user with superuser privileges is the bdr_superuser role. An example of an
equivalent user is edb_admin on a EDB Cloud Service distributed high-availability cluster.

PGD CLI and database connection strings

You might not need a database connection string. For example, when Trusted Postgres Architect installs the PGD CLI on a system, it also configures the connection to the PGD cluster, which means that the PGD CLI can connect to the cluster
when run.

If you're installing PGD CLI manually, you must give PGD CLI a database connection string so it knows which PGD cluster to connect to.

Setting passwords

PGD CLI doesn't interactively prompt for your password. You must pass your password using one of the following methods:

Adding an entry to your .pgpass password file, which includes the host, port, database name, user name, and password.
Setting the password in the PGPASSWORD environment variable.
Including the password in the connection string.

We recommend the first option, as the other options don't scale well with multiple databases, or they compromise password confidentiality.

If you don't know the database connection strings for your PGD-powered deployment, see discovering connection strings, which helps you to find the right connection strings for your cluster.

Once you have that information, you can continue.

Configuring the database to connect to

PGD CLI takes its database connection information from either the PGD CLI configuration file or the command line.

Using database connection strings in the command line

You can pass the connection string directly to pgd using the --dsn option. For details, see the sample use case. For example:

pgd --dsn "host=kaboom port=5432 user=enterprisedb dbname=pgddb" nodes show --versions

Using database connection strings in an environment variable

As an alternative to passing the connection string on the command line, you can set the PGD_CLI_DSN environment variable to the connection string. For example:

export PGD_CLI_DSN="host=kaboom port=5432 user=enterprisedb dbname=pgddb"
pgd nodes show --versions

Using a configuration file

Use the pgd-cli-config.yml configuration file to specify the database connection string for your cluster. The configuration file must contain the database connection string for at least one PGD node in the cluster. The cluster name is
optional and isn't validated.

For example:

By default, pgd-cli-config.yml is located in the /etc/edb/pgd-cli directory. The PGD CLI searches for pgd-cli-config.yml in the following locations. Precedence order is high to low.

1. /etc/edb/pgd-cli (default)
2. $HOME/.edb/pgd-cli

If your configuration file isn't in either of these directories, you can use the optional -f or --config-file flag on a pgd command to set the file to read as configuration. See the sample use case.

cluster:
 name: cluster-
name
 endpoints:
 - "host=host-1 port=5432 dbname=pgddb
user=postgres"
 - "host=host-2 port=5432 dbname=pgddb
user=postgres"
 - "host=host-3 port=5432 dbname=pgddb
user=postgres"

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 420

https://www.postgresql.org/docs/current/libpq-pgpass.html

29.2.4 Discovering connection strings

You can install PGD CLI on any system that can connect to the PGD cluster. To use PGD CLI, you need a user with PGD superuser privileges or equivalent. The PGD user with superuser privileges is the bdr_superuser role. An example of an
equivalent user is edb_admin on an EDB Cloud Service distributed high-availability cluster.

PGD CLI and database connection strings

You might not need a database connection string. For example, when Trusted Postgres Architect installs the PGD CLI on a system, it also configures the connection to the PGD cluster. This means that PGD CLI can connect to the cluster when
run.

Getting your database connection string

Because of the range of different configurations that PGD supports, every deployment method has a different way of deriving a connection string for it. Generally, you can obtain the required information from the configuration of your
deployment. You can then assemble that information into connection strings.

For a cluster deployed with EDB CloudNative Postgres Global Cluster

If you are using EDB CloudNative Postgres Global Cluster (CNPG-GC), the connection string is derived from the configuration of the deployment. It is very flexible so there are multiple ways to obtain a connection string. It depends, in large
part, on the configuration of the deployment's services:

If you use the Node Service Template, direct connectivity to each node and proxy service is available.
If you use the Group Service Template, there's a gateway service to each group.
If you use the Proxy Service Template, a single proxy provides an entry point to the cluster for all applications.

** TODO [DOCS-1499] : remove proxy references when CNPG-GC is updated to use PGD6 CM **

Consult your configuration file to determine this information.

Establish a host name or IP address, port, database name, and username. The default database name is pgddb . The default username is enterprisedb for EDB Postgres Advanced Server and postgres for PostgreSQL and EDB Postgres
Extended Server.

You can then assemble a connection string based on that information:

"host=<hostnameOrIPAddress> port=<portnumber> dbname=<databasename> user=<username>"

If the deployment's configuration requires it, add sslmode=<sslmode> .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 421

https://www.enterprisedb.com/docs/postgres_distributed_for_kubernetes/latest/connectivity/#services

29.2.5 Command reference

The command name for the PGD command line interface is pgd .

Synopsis

The EDB Postgres Distributed Command Line Interface (PGD CLI) is a tool to manage your EDB Postgres Distributed cluster. It allows you to run commands against EDB Postgres Distributed clusters. You can use it to inspect and manage cluster
resources.

Commands

cluster: Cluster-level commands for managing the cluster.
show: Show cluster-level information.
verify: Verify cluster-level information.

group: Group-level commands for managing groups.
show: Show group-level information.
set-option: Set group-level options.
get-option: Get group-level options.
set-leader: Set the write leader of a group (perform a switchover).

groups: Group related commands for listing groups.
list: List groups.

node: Node-level commands for managing nodes.
setup: Setup a node in the cluster.
show: Show node-level information.
part: Part a PGD node from an active cluster.
set-option: Set node-level options.
get-option: Get node-level options.
set-config: Set node-level configuration.
get-config: Get node-level configuration.
upgrade: Perform a major version upgrade of a PGD Postgres node.

nodes: Node related commands for listing nodes.
list: List nodes.

events: Event log commands for viewing events.
show: Show events.

replication: Replication related-commands for managing replication.
show: Show replication information.

raft: Raft related commands for managing Raft consensus.
show: Show information about Raft state.

commit-scope: Commit scope related commands for managing PGD commit scopes.
show: Show information about a commit-scope.
create: Create a commit-scope.
update: Update a commit-scope.
drop: Drop a commit-scope.

commit-scopes: Commit Scopes related commands for PGD cluster.
list: List commit scopes information for the cluster.
assess: Assesses a Postgres server's PGD compatibility.
completion: Generate shell completion scripts.

Global Options

All commands accept the following global options:

Short Long Description

-f --config-file
Name/Path to config file.
This is ignored if --dsn flag is present
Default "/etc/edb/pgd-cli/pgd-cli-config.yml"

--dsn
Database connection string
For example "host=bdr-a1 port=5432 dbname=pgddb user=postgres"
Also set by PGD_CLI_DSN environment variable.

-h --help Help for pgd - will show specific help for any command used

-o --output Output format: json , psql , modern , markdown , simple (see Output
formats)

Additional Options

Run pgd -V to see the version information for the pgd CLI.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 422

Output formats

Used with the -o / --output option:

Format Description

simple Simple format - Output as a simple ASCII table (Default).

json JSON format - Output as a JSON document, non-tabular

psql PSQL format - Output as an ASCII table in the style of PSQL

modern Modern format - Output as a table using box characters

markdown Markdown table format - Output as a markdown compatible ASCII
table

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 423

29.2.5.1 pgd assess

Synopsis

The pgd assess commands are used to assess the suitability of a Postgres server instance for migration to the EDB Postgres Distributed cluster.

The command must be run with a DSN that connects to the Postgres server instance that you want to assess. This can be passed as the argument to the --dsn option, or by setting the PGD_CLI_DSN environment variable. Not doing either
one will result in an error.

The command will then check the Postgres server instance for compatibility with the EDB Postgres Distributed cluster, and will provide a report on the compatibility of the Postgres server instance.

Syntax

pgd assess [OPTIONS]

Options

The assess command has no command specific options. But it does require a DSN to connect to the Postgres server instance that you want to assess. This can be passed as the argument to the --dsn option, or by setting the PGD_CLI_DSN
environment variable.

See also Global Options.

Example

output
Assessment | Result | Details
-------------------------------------+----------------------------+---
 Multiple Databases | Compatible | Found only one user database
 Materialized Views | Compatible | No materialized views found
 EPAS Queue Tables | Compatible | No EPAS Queue Tables found
 DDL Command Usage | Requires workload analysis | Cannot be checked automatically at this time
 Advisory Lock Usage | Potentially compatible | No advisory lock commands found in pg_stat_statements
 Large Objects | Compatible | No large objects found
 Trigger/Reference Privileges | Compatible | No triggers with incompatible privileges found
 Tables with Multiple Unique Indexes | Compatible | No tables with multiple unique indexes found
 LOCK TABLE Usage | Potentially compatible | No LOCK TABLE usage found in pg_stat_statements
 LISTEN/NOTIFY Usage | Compatible | No LISTEN/NOTIFY usage found in pg_stat_statements
 Row-Level Lock Usage | Potentially compatible | No row-level locking commands found in pg_stat_statements

pgd
assess

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 424

29.2.5.2 pgd cluster

The pgd cluster commands are used to manage the EDB Postgres Distributed cluster.

Subcommands

show: Show cluster-level information.
verify: Verify cluster-level information.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 425

29.2.5.2.1 pgd cluster show

Synopsis

The pgd cluster show command is used to display the cluster-level information in the EDB Postgres Distributed cluster.

Syntax

pgd cluster show [OPTIONS]

Options

The following table lists the options available for the pgd cluster show command:

Short Long Description

--clock-drift Only show detailed clock drift information.

--summary Only show cluster summary information.

--health Only show cluster health information.

Only one of the above options can be specified at a time.

See also Global Options.

Clock Drift

Please note that the current implementation of clock drift may return an inaccurate value if the cluster is under high load while running this command or has large number of nodes in it.

Symbol Meaning

* ok

~ warning (drift > 2
seconds)

! critical (drift > 5 seconds)

x down / unreachable

? unknown

- not applicable

Examples

Display the cluster information

pgd cluster show

output
Summary
Group Name Parent Group Group Type Node Name Node Kind
------------- ------------- ---------- --------- ---------
democluster global
dc1_subgroup democluster data kaboom data
dc1_subgroup democluster data kaftan data
dc1_subgroup democluster data kaolin data

Health
Check Status Details
----------------- ------ ---
Connections Ok All BDR nodes are accessible
Raft Ok Raft Consensus is working correctly
Replication Slots Ok All PGD replication slots are working correctly
Clock Drift Ok Clock drift is within permissible limit
Versions Ok All nodes are running the same PGD version

Clock Drift
Reference Node Node Name Clock Drift
-------------- --------- -----------
kaftan kaboom *
kaftan kaolin *

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 426

29.2.5.2.2 pgd cluster verify

Synopsis

The pgd cluster verify command is used to verify the configuration of an EDB Postgres Distributed cluster.

Syntax

pgd cluster verify [OPTIONS]

Options

The following table lists the options available for the pgd cluster verify command:

Short Long Description

--settings Verify Postgres settings in the cluster.

--arch Verify the cluster architecture

-v --verbose Display verbose output.

With no option set, both setting and arch are verified by default and output is not verbose.

Examples

Verify the cluster settings and architecture

pgd cluster verify

output
Architecture
Check Status Groups
------------------------ ------ ------
Cluster has data nodes Ok
Witness nodes per group Ok
Witness-only groups Ok
Data nodes per group Ok
Empty groups Ok
Nodes have node kind set Ok

Settings
Setting Name Status
-------------------------------- ------
bdr.accept_connections Ok
bdr.ddl_locking Ok
bdr.max_writers_per_subscription Ok
bdr.raft_group_max_connections Ok
bdr.replay_progress_frequency Ok
bdr.role_replication Ok
bdr.start_workers Ok
bdr.writers_per_subscription Ok
bdr.xact_replication Ok
max_connections Ok
max_prepared_transactions Ok
max_replication_slots Ok
max_wal_senders Ok
max_worker_processes Ok
shared_preload_libraries Ok
track_commit_timestamp Ok
wal_level Ok

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 427

29.2.5.3 pgd commit-scope

The pgd commit-scope commands are used to display and manage the commit scopes in the EDB Postgres Distributed cluster.

Subcommands

show: Show information about a commit scope.
create: Create a commit scope.
update: Update a commit scope.
drop: Drop a commit scope.
list: List commit scopes.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 428

29.2.5.3.1 pgd commit-scope create

Synopsis

The pgd commit-scope create command is used to create a commit scope in the EDB Postgres Distributed cluster.

Syntax

pgd commit-scope <COMMIT_SCOPE> create [OPTIONS] <RULE_DEFINITION> [GROUP_NAME]

Where <COMMIT_SCOPE> is the name of the commit scope to create.

The <RULE_DEFINITION> is the rule that defines the commit scope. The rule specifies the conditions that must be met for a transaction to be considered committed. See Commit Scopes and Commit Scope Rules for more information on
the rule syntax.

The optional [GROUP_NAME] is the name of the group to which the commit scope belongs. If omitted, it defaults to the top-level group.

Options

No command specific options. See Global Options.

Examples

Creating a Commit Scope

The following example creates a commit scope named abc1 with the rule ANY 2 (dc1) on replicated group commit on the dc1_subgroup group:

pgd commit-scope abc1 create "ANY 2 (dc1_subgroup) SYNCHRONOUS COMMIT" dc1_subgroup

output
Command executed successfully

Verify the commit scope:

pgd commit-scope abc1 show

output
Commit Scope Group Name Rule Definition
------------ ------------ ---------------------------------------
abc1 dc1_subgroup ANY 2 (dc1_subgroup) SYNCHRONOUS COMMIT

Creating a Commit Scope with the top-level group

The following example creates a commit scope named abc2 with the rule ANY 2 (dc1_subgroup) SYNCHRONOUS COMMIT on the top-level group:

pgd commit-scope abc2 create "ANY 2 (dc1_subgroup) SYNCHRONOUS COMMIT"

output
Command executed successfully

Verify the commit scope:

pgd commit-scope abc2 show

output
Commit Scope Group Name Rule Definition
------------ ----------- ---------------------------------------
abc2 democluster ANY 2 (dc1_subgroup) SYNCHRONOUS COMMIT

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 429

https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/commit-scope-rules/

29.2.5.3.2 pgd commit-scope drop

Synopsis

The pgd commit-scope drop command is used to drop a commit scope from the EDB Postgres Distributed cluster.

Syntax

pgd commit-scope <COMMIT_SCOPE> drop [OPTIONS] [GROUP_NAME]

Where <COMMIT_SCOPE> is the name of the commit scope to drop.

The optional [GROUP_NAME] is the name of the group to which the commit scope belongs. If omitted, it defaults to the top-level group. Note that the name of the group must match the group name the commit scope was created with.

Options

No command specific options. See Global Options.

Examples

Drop a Commit Scope

The following example drops the commit scope named abc2 from the top-level group:

pgd commit-scope abc2 drop

output
Command executed successfully

Drop a Commit Scope from a Group

The following example drops the commit scope named abc1 from the dc1_subgroup group:

pgd commit-scope abc1 drop dc1_subgroup

output
Command executed successfully

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 430

29.2.5.3.3 pgd commit-scopes list

Synopsis

The pgd commit-scopes list command is used to list the commit scopes information for the EDB Postgres Distributed cluster.

Syntax

pgd commit-scopes list [OPTIONS] [GROUP_NAME]

Where GROUP_NAME is the name of the group for which you want to list the commit scopes. If not provided, all commit scopes in the cluster are listed.

Options
No command specific options. See the [Global Options](../#global-options) for common global options.
Examples
List all commit-scopes
```shell
pgd commit-scopes list

output
 Commit Scope     | Group Name | Rule Definition
------------------+------------+-----------------------------------------------------------------------------------------------------------------------
 local protect    | pgdx6      | ASYNCHRONOUS COMMIT
 lag protect      | pgdx6      | MAJORITY ORIGIN GROUP LAG CONTROL (max_lag_time = 30s, max_commit_delay = 10s)
 majority protect | pgdx6      | MAJORITY ORIGIN GROUP SYNCHRONOUS COMMIT
 adaptive protect | pgdx6      | MAJORITY ORIGIN GROUP SYNCHRONOUS COMMIT DEGRADE ON (timeout = 10s, require_write_lead = true) TO ASYNCHRONOUS COMMIT
 subgroup protect | group-a    | ALL (group-a) SYNCHRONOUS COMMIT

List all commit-scopes for the given group

pgd commit-scopes list group-a

output
pgd commit-scopes list group-a
 Commit Scope     | Group Name | Rule Definition
------------------+------------+----------------------------------
 subgroup protect | group-a    | ALL (group-a) SYNCHRONOUS COMMIT

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 431



29.2.5.3.4          pgd commit-scope show

Synopsis

The pgd commit-scope show  command is used to display information about a commit scope in the EDB Postgres Distributed cluster.

Syntax

pgd commit-scope <COMMIT_SCOPE> show [OPTIONS]

Where <COMMIT_SCOPE>  is the name of the commit scope for which you want to display information.

Options

No command specific options. See Global Options.

Example

Showing a Commit Scope

The following example shows the information about the commit scope abc1 :

pgd commit-scope abc1 show

output
Commit Scope Group Name   Rule Definition
------------ ------------ ---------------------------------------
abc1         dc1_subgroup ANY 2 (dc1_subgroup) SYNCHRONOUS COMMIT

The Group Name  column shows the name of the group to which the commit scope belongs. In this case, the commit scope belongs to the dc1_subgroup  group.

The Rule Definition  column shows the rule that defines the commit scope. In this case, the rule is ANY 2 (dc1) SYCHRONOUS COMMIT . The dc1_subgroup  group is a replicated group, so the commit must be replicated to at
least two nodes in the group and any two nodes within it must acknowledge the commit before it is considered committed.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 432



29.2.5.3.5          pgd commit-scope update

Synopsis

The pgd commit-scope update  command is used to update a commit scope in the EDB Postgres Distributed cluster.

Syntax

pgd commit-scope <COMMIT_SCOPE> update [OPTIONS] <RULE_DEFINITION>[GROUP_NAME]

Where <COMMIT_SCOPE>  is the name of the commit scope to update.

The <RULE_DEFINITION>  is the rule that defines the commit scope. The rule specifies the conditions that must be met for a transaction to be considered committed. See Commit Scopes and Commit Scope Rules for more information on
the rule syntax.

The optional [GROUP_NAME]  is the name of the group to which the commit scope belongs. If omitted, it defaults to the top-level group.

Options

No command specific options. See Global Options.

Examples

Updating a Commit Scope

The following example updates the commit scope abc1  with the rule ANY 1 (dc1_subgroup) SYNCHRONOUS COMMIT :

pgd commit-scope abc1 update "ANY 1 (dc1_subgroup) SYNCHRONOUS COMMIT" dc1_subgroup

output
Command executed successfully

Updating a Commit Scope in the Top-Level Group

The following example updates the commit scope abc2  with the rule ANY 1 (dc1_subgroup) SYNCHRONOUS COMMIT  in the top-level group:

pgd commit-scope abc2 update "ANY 1 (dc1_subgroup) SYNCHRONOUS COMMIT"

output
Command executed successfully

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 433

https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/commit-scope-rules/


29.2.5.4          pgd completion

Synopsis

The pgd completion  commands are used to manage the completion settings for the EDB Postgres Distributed CLI.

Syntax

pgd completion <SHELL>

Where <SHELL>  is the shell for which to generate the autocompletion script.

Possible values for shell are bash , fish , zsh  and powershell .

Options

No command specific options. See Global Options.

Example

pgd completion zsh

This command would normally be evaluated as part of a shell session's startup files. It generates a completion script for the Zsh shell and writes it to the standard output. Therfore you would add to your .zshrc  file:

eval "$(pgd completion zsh)"

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 434



29.2.5.5          pgd events

The pgd events  commands are used to display the events in the EDB Postgres Distributed cluster.

Subcommands

show: Show events.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 435



29.2.5.5.1          pgd events show

Synopsis

The pgd events show  command is used to display the events in the EDB Postgres Distributed cluster. With no additional flags, the command displays the 20 most recent events for all nodes and groups.

Syntax

pgd events show [OPTIONS]

Options

The following table lists the options available for the pgd events show  command:

Short Long Description

--node <NODE_NAME> Only show events for the node with the specified name.

--group <GROUP_NAME> Only show events for the group with the specified name.

-n --limit <LIMIT> Limit the number of events to show. Defaults to 20.

See also Global Options.

Node States

State Description

NONE Node state is unset when the worker starts, expected to be set quickly to the current known state.

CREATED bdr.create_node() has been executed, but the node isn't a member of any EDB Postgres Distributed cluster yet.

JOIN_START bdr.join_node_group() begins to join the local node to an existing EDB Postgres Distributed cluster.

JOINING The node join has started and is currently at the initial sync phase, creating the schema and data on the node.

CATCHUP Initial sync phase is complete; now the join is at the last step of retrieving and applying transactions that were performed on the upstream peer node since the join started.

STANDBY Node join has finished, but not yet started to broadcast changes. All joins spend some time in this state, but if defined as a Logical Standby, the node will continue in this state.

PROMOTE Node was a logical standby and we just called bdr.promote_node to move the node state to ACTIVE. These two PROMOTE states have to be coherent to the fact, that only one node can be with a state higher than
STANDBY but lower than ACTIVE.

PROMOTING Promotion from logical standby to full BDR node is in progress.

ACTIVE The node is a full BDR node and is currently ACTIVE. This is the most common node status.

PART_START Node was ACTIVE or STANDBY and we just called bdr.part_node to remove the node from the EDB Postgres Distributed cluster.

PARTING Node disconnects from other nodes and plays no further part in consensus or replication.

PART_CATCHUP Non-parting nodes synchronize any missing data from the recently parted node.

PARTED Node parting operation is now complete on all nodes.

Only one node at a time can be in either of the states PROMOTE or PROMOTING. STANDBY indicates that the node is in a read-only state.

Examples

Display the last 5 events

$ pgd events show -n 5

output
Event Time                     Event Observer Event Subject Event Source Event Type Event Subtype Event Text    Event Detail                                               
------------------------------ -------------- ------------- ------------ ---------- ------------- ------------- ---------------------------------------------------------------
-----------------------------------------
2025-02-21 17:44:00.444902 UTC kaolin         kaftan        consensus    ROUTING    STATE_CHANGE  WRITE_LEADER  dc1_subgroup                                               
2025-02-21 17:44:00.445080 UTC kaolin         kaolin        consensus    ROUTING    STATE_CHANGE  RAFT_LEADER   
{"raft_leader":"kaolin","group_name":"dc1_subgroup","read_nodes_version":1,"read_nodes":"kaboom,kaolin"}
2025-02-21 17:44:00.452029 UTC kaftan         kaftan        consensus    ROUTING    STATE_CHANGE  LEADER_UPDATE                                                            
2025-02-21 17:44:00.456483 UTC kaboom         kaboom        consensus    ROUTING    STATE_CHANGE  LEADER_UPDATE                                                            
2025-02-21 17:44:00.456667 UTC kaolin         kaolin        consensus    ROUTING    STATE_CHANGE  LEADER_UPDATE     

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 436



29.2.5.6          pgd group

The pgd group  commands are used to manage the groups in the EDB Postgres Distributed cluster.

Subcommands

show: Show group-level information.
set-option: Set group-level options.
get-option: Get group-level options.
set-leader: Set the write leader of a group (perform a switchover).

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 437



29.2.5.6.1          pgd group show

Synopsis

The pgd group show  command is used to display group-level information in the EDB Postgres Distributed cluster.

Syntax

pgd group <GROUP_NAME> show [OPTIONS]

Where <GROUP_NAME>  is the name of the group for which you want to display information.

Options

The following table lists the options available for the pgd cluster show  command:

Long Description

--summary Only Show summary of the
group.

--options Only show options of the group.

--nodes Only show nodes of the group.

Only one of the above options can be specified at a time.

See Global Options.

Examples

Show group information

pgd group group-a show

output
# Summary
 Group Property    | Value
-------------------+---------
 Group Name        | group-a
 Parent Group Name | pgdx6
 Group Type        | data
 Write Leader      | pgd-a3
 Commit Scope      |

# Nodes
 Node Name | Node Kind | Join State | Node Status
-----------+-----------+------------+-------------
 pgd-a2    | data      | ACTIVE     | Up
 pgd-a3    | data      | ACTIVE     | Up
 pgd-a1    | data      | ACTIVE     | Up

# Options
 Option Name                       | Option Value  | Option Source
-----------------------------------+---------------+---------------
 analytics_autoadd_tables          | false         | group
 analytics_storage_location        |               | default
 apply_delay                       | 00:00:00      | inherited
 check_constraints                 | true          | inherited
 default_commit_scope              | local protect | group
 enable_raft                       | true          | group
 enable_routing                    | true          | group
 enable_wal_decoder                | false         | inherited
 http_port                         | 6434          | pg_config
 location                          | London        | group
 num_writers                       | 2             | pg_config
 read_only_consensus_timeout       | 00:00:00      | pg_config
 read_only_max_client_connections  | 250           | pg_config
 read_only_max_server_connections  | 250           | pg_config
 read_only_port                    | 6433          | pg_config
 read_write_consensus_timeout      | 00:00:00      | pg_config
 read_write_max_client_connections | 250           | pg_config
 read_write_max_server_connections | 250           | pg_config
 read_write_port                   | 6432          | pg_config
 route_reader_max_lag              | -1            | default
 route_writer_max_lag              | -1            | default
 route_writer_wait_flush           | false         | group
 streaming_mode                    | null          | group
 use_https                         | true          | group

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 438



Show group summary information

pgd group group-a show --summary

output
 Group Property    | Value
-------------------+---------
 Group Name        | group-a
 Parent Group Name | pgdx6
 Group Type        | data
 Write Leader      | pgd-a3
 Commit Scope      |

Show group nodes information

pgd group group-a show --nodes

output
 Node Name | Node Kind | Join State | Node Status
-----------+-----------+------------+-------------
 pgd-a1    | data      | ACTIVE     | Up
 pgd-a2    | data      | ACTIVE     | Up
 pgd-a3    | data      | ACTIVE     | Up

Show group options information

pgd group group-a show --options

output
 Option Name                       | Option Value  | Option Source
-----------------------------------+---------------+---------------
 analytics_autoadd_tables          | false         | group
 analytics_storage_location        |               | default
 apply_delay                       | 00:00:00      | inherited
 check_constraints                 | true          | inherited
 default_commit_scope              | local protect | group
 enable_raft                       | true          | group
 enable_routing                    | true          | group
 enable_wal_decoder                | false         | inherited
 http_port                         | 6434          | pg_config
 location                          | London        | group
 num_writers                       | 2             | pg_config
 read_only_consensus_timeout       | 00:00:00      | pg_config
 read_only_max_client_connections  | 250           | pg_config
 read_only_max_server_connections  | 250           | pg_config
 read_only_port                    | 6433          | pg_config
 read_write_consensus_timeout      | 00:00:00      | pg_config
 read_write_max_client_connections | 250           | pg_config
 read_write_max_server_connections | 250           | pg_config
 read_write_port                   | 6432          | pg_config
 route_reader_max_lag              | -1            | default
 route_writer_max_lag              | -1            | default
 route_writer_wait_flush           | false         | group
 streaming_mode                    | null          | group
 use_https                         | true          | group

Show group information as JSON

pgd group group-a show -o json

output
[
  {
    "Summary": [
      {
        "info": "Group Name",
        "value": "group-a"
      },
      {
        "info": "Parent Group Name",
        "value": "pgdx6"
      },
      {
        "info": "Group Type",
        "value": "data"
      },
      {
        "info": "Write Leader",
        "value": "pgd-a3"
      },
      {
        "info": "Commit Scope",
        "value": ""
      }
    ]
  },
  {
    "Nodes": [
      {
        "join_state": "ACTIVE",
        "node_kind_name": "data",
        "node_name": "pgd-a2",

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 439



        "node_status": "Up"
      },
      {
        "join_state": "ACTIVE",
        "node_kind_name": "data",
        "node_name": "pgd-a3",
        "node_status": "Up"
      },
      {
        "join_state": "ACTIVE",
        "node_kind_name": "data",
        "node_name": "pgd-a1",
        "node_status": "Up"
      }
    ]
  },
  {
    "Options": [
      {
        "option_name": "analytics_autoadd_tables",
        "option_source": "group",
        "option_value": "false"
      },
      {
        "option_name": "analytics_storage_location",
        "option_source": "default",
        "option_value": ""
      },
      {
        "option_name": "apply_delay",
        "option_source": "inherited",
        "option_value": "00:00:00"
      },
      {
        "option_name": "check_constraints",
        "option_source": "inherited",
        "option_value": "true"
      },
      {
        "option_name": "default_commit_scope",
        "option_source": "group",
        "option_value": "local protect"
      },
      {
        "option_name": "enable_raft",
        "option_source": "group",
        "option_value": "true"
      },
      {
        "option_name": "enable_routing",
        "option_source": "group",
        "option_value": "true"
      },
      {
        "option_name": "enable_wal_decoder",
        "option_source": "inherited",
        "option_value": "false"
      },
      {
        "option_name": "http_port",
        "option_source": "pg_config",
        "option_value": "6434"
      },
      {
        "option_name": "location",
        "option_source": "group",
        "option_value": "London"
      },
      {
        "option_name": "num_writers",
        "option_source": "pg_config",
        "option_value": "2"
      },
      {
        "option_name": "read_only_consensus_timeout",
        "option_source": "pg_config",
        "option_value": "00:00:00"
      },
      {
        "option_name": "read_only_max_client_connections",
        "option_source": "pg_config",
        "option_value": "250"
      },
      {
        "option_name": "read_only_max_server_connections",
        "option_source": "pg_config",
        "option_value": "250"
      },
      {
        "option_name": "read_only_port",
        "option_source": "pg_config",
        "option_value": "6433"
      },
      {
        "option_name": "read_write_consensus_timeout",
        "option_source": "pg_config",

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 440



        "option_value": "00:00:00"
      },
      {
        "option_name": "read_write_max_client_connections",
        "option_source": "pg_config",
        "option_value": "250"
      },
      {
        "option_name": "read_write_max_server_connections",
        "option_source": "pg_config",
        "option_value": "250"
      },
      {
        "option_name": "read_write_port",
        "option_source": "pg_config",
        "option_value": "6432"
      },
      {
        "option_name": "route_reader_max_lag",
        "option_source": "default",
        "option_value": "-1"
      },
      {
        "option_name": "route_writer_max_lag",
        "option_source": "default",
        "option_value": "-1"
      },
      {
        "option_name": "route_writer_wait_flush",
        "option_source": "group",
        "option_value": "false"
      },
      {
        "option_name": "streaming_mode",
        "option_source": "group",
        "option_value": "null"
      },
      {
        "option_name": "use_https",
        "option_source": "group",
        "option_value": "true"
      }
    ]
  }
]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 441



29.2.5.6.2          pgd group set-option

Synopsis

The pgd group set-option  command is used to set group-level options in the EDB Postgres Distributed cluster.

Syntax

pgd group <GROUP_NAME> set-option [OPTIONS] <OPTION> <VALUE>

Where <GROUP_NAME>  is the name of the group for which you want to get options.

And <OPTION>  is the name of a specific group option you want to get and <VALUE>  is the value you want it set to.

The following options are available:

Group Options

Option Description

apply_delay The delay in applying changes to the group.

check_constraints Whether to check constraints in the group.

default_commit_scope The default commit scope of the group.

enable_routing Whether to enable routing in the group.

enable_raft Whether to enable Raft in the group.

enable_wal_decoder Whether to enable the WAL decoder in the group.

location The location of the group.

num_writers The number of writers in the group.

route_reader_max_lag The maximum lag for the reader in the group.

route_writer_max_lag The maximum lag for the writer in the group.

streaming_mode The streaming mode of the group.

route_writer_wait_flush The wait time for flushing the writer in the group.

default_seqkind The default sequence kind of the group.

default_replica_identity The default replica identity of the group.

conflict_detection_method The conflict detection method of the group.

replay_progress_frequency The replay progress frequency of the group.

batch_inserts Whether to enable batch inserts in the group.

analytics_storage_location The storage location for analytics in the group.

analytics_autoadd_tables Whether to automatically add tables to analytics in the group.

Group Connection Manager Options

Option Description

read_write_port which port to listen on for read-write connections

read_only_port which port to listen on for read-only connections

http_port which http port to listen for REST API calls (for integration purposes)

use_https whether http listener should use HTTPS, if enabled, the server certificate is used to TLS

read_write_max_client_connections maximum read-write client connections allowed, defaults to max_connections

read_write_max_server_connections maximum read-write connections that will be opened to server

read_only_max_client_connections maximum read-only client connections allowed

read_only_max_server_connections maximum read-only connections that will be opened to server

read_write_consensus_timeout how long to wait on loss of consensus before read-write connections are no longer accepted

read_only_consensus_timeout how long to wait on loss of consensus before read-only connections are no longer accepted.

Group Proxy Options (For PGD 5.0 to 5.8 only)

Option Description

proxy_listen_address The listen address for the proxy in the group.

proxy_listen_addresses The listen addresses for the proxy in the group.

proxy_listen_port The listen port for the proxy in the group.

proxy_max_client_conn The maximum number of client connections for the proxy in the group.

proxy_max_server_conn The maximum number of server connections for the proxy in the group.

proxy_server_conn_timeout The server connection timeout for the proxy in the group.

proxy_server_conn_keepalive The server connection keepalive for the proxy in the group.

proxy_fallback_node_groups The fallback node groups for the proxy in the group.

proxy_fallback_node_group_timeout The fallback node group timeout for the proxy in the group.

proxy_consensus_grace_period The consensus grace period for the proxy in the group.

proxy_read_listen_address The listen address for the read proxy in the group.

proxy_read_listen_addresses The listen addresses for the read proxy in the group.

proxy_read_listen_port The listen port for the read proxy in the group.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 442



proxy_read_max_client_conn The maximum number of client connections for the read proxy in the group.

proxy_read_max_server_conn The maximum number of server connections for the read proxy in the group.

proxy_read_server_conn_keepalive The server connection keepalive for the read proxy in the group.

proxy_read_server_conn_timeout The server connection timeout for the read proxy in the group.

proxy_read_consensus_grace_period The consensus grace period for the read proxy in the group.

Option Description

Options

No command specific options. See Global Options.

Examples

Set the location of a group

pgd group dc1_subgroup set-option location London

output
Command executed successfully

Setting an option to a value with a space in it

pgd group dc1_subgroup set-option location "New York"

output
Command executed successfully

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 443



29.2.5.6.3          pgd group get-option

Synopsis

The pgd group get-option  command is used to get group-level options in the EDB Postgres Distributed cluster.

Syntax

pgd group <GROUP_NAME> get-option [OPTIONS] <OPTION>

Where <GROUP_NAME>  is the name of the group for which you want to get options.

And <OPTION>  is the name of a specific group option you want to get. If no option is specified, all group options are listed. The following options are available:

Group Options

Option Description

apply_delay The delay in applying changes to the group.

check_constraints Whether to check constraints in the group.

default_commit_scope The default commit scope of the group.

enable_routing Whether to enable routing in the group.

enable_raft Whether to enable Raft in the group.

enable_wal_decoder Whether to enable the WAL decoder in the group.

location The location of the group.

num_writers The number of writers in the group.

route_reader_max_lag The maximum lag for the reader in the group.

route_writer_max_lag The maximum lag for the writer in the group.

streaming_mode The streaming mode of the group.

route_writer_wait_flush The wait time for flushing the writer in the group.

analytics_storage_location The storage location for analytics in the group.

analytics_autoadd_tables Whether to automatically add tables to analytics in the group.

Group Connection Manager Options

Option Description

read_write_port which port to listen on for read-write connections

read_only_port which port to listen on for read-only connections

http_port which http port to listen for REST API calls (for integration purposes)

use_https whether http listener should use HTTPS, if enabled, the server certificate is used to TLS

read_write_max_client_connections maximum read-write client connections allowed, defaults to max_connections

read_write_max_server_connections maximum read-write connections that will be opened to server

read_only_max_client_connections maximum read-only client connections allowed

read_only_max_server_connections maximum read-only connections that will be opened to server

read_write_consensus_timeout how long to wait on loss of consensus before read-write connections are no longer accepted

read_only_consensus_timeout how long to wait on loss of consensus before read-only connections are no longer accepted.

Options

No command specific options. See Global Options.

Examples

List all group options

pgd group dc1_subgroup get-option

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 444



output
 Option Name                       | Option Value
-----------------------------------+---------------
 analytics_autoadd_tables          | false
 analytics_storage_location        |
 apply_delay                       | 00:00:00
 check_constraints                 | true
 default_commit_scope              | local protect
 enable_raft                       | true
 enable_routing                    | true
 enable_wal_decoder                | false
 http_port                         | 6434
 location                          |
 num_writers                       | 2
 read_only_consensus_timeout       | 00:00:00
 read_only_max_client_connections  | 250
 read_only_max_server_connections  | 250
 read_only_port                    | 6433
 read_write_consensus_timeout      | 00:00:00
 read_write_max_client_connections | 250
 read_write_max_server_connections | 250
 read_write_port                   | 6432
 route_reader_max_lag              | -1
 route_writer_max_lag              | -1
 route_writer_wait_flush           | false
 streaming_mode                    | null
 use_https                         | true

Get a specific group option

pgd group dc1_subgroup get-option location

output
 Option Name | Option Value
-------------+--------------
 location    | London

Get a specific group option as json

pgd group dc1_subgroup get-option location -o json

output
[
  {
    "option_name": "location",
    "option_value": "London"
  }
]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 445



29.2.5.6.4          pgd group set-leader

Synopsis

The pgd group set-leader  command is used to set the write leader of a group in the EDB Postgres Distributed cluster.

This command performs a switchover operation.

Syntax

pgd group <GROUP_NAME> set-leader [OPTIONS] <LEADER>

Where <GROUP_NAME>  is the name of the group for which you want to set the write leader and <LEADER>  is the name of the node that you want to set as the write leader.

Options

The following table lists the options available for the pgd group set-leader  command:

Short Long Description

--strict Strict method (default).

--timeout Timeout period when method is strict. (Defaults to 30s (30
seconds))

--fast Fast method.

Strict method is the default method. The strict method waits for the new leader to be in sync with the old leader before switching the leader. The fast method is immediate as it does not wait for the new leader to be in sync with the old leader
before switching the leader, ignoring route_write_max_lag .

See also Global Options.

Examples

Setting the write leader of a group

pgd group dc1_subgroup set-leader kaboom

output
Command executed successfully

Setting the write leader when node is already the leader

pgd group dc1_subgroup set-leader kaboom

output
Node kaboom is already the write leader

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 446



29.2.5.7          pgd groups

The pgd groups  commands are used to display the groups in the EDB Postgres Distributed cluster.

Subcommands

list: List groups.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 447



29.2.5.7.1          pgd groups list

Synopsis

The pgd groups list  command is used to display the groups in the EDB Postgres Distributed cluster.

Syntax

pgd groups list [OPTIONS]

Options

The following options are available for the pgd groups list  command:

Short Long Description

-v --verbose Display detailed information about the groups.

See the Global Options for common global options.

Examples

List all groups

pgd groups list

output
Group Name    Parent Group Name Group Type Nodes
------------- ----------------- ---------- -----
democluster                     global     0    
dc1_subgroup  democluster       data       3  

List all groups with detailed information

pgd groups list --verbose

output
Group Name    Parent Group Name Group Type Nodes Raft Leader Write Leader Commit Scope Node Group ID
------------- ----------------- ---------- ----- ----------- ------------ ------------ -------------
democluster                     global     0     kaftan                                150732310    
dc1_subgroup  democluster       data       3     kaftan      kaboom                    1302278103  

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 448



29.2.5.8          pgd node

The pgd node  commands are used to manage the nodes in the EDB Postgres Distributed cluster.

Subcommands

setup: Configure PGD data nodes in a cluster.
show: Show node-level information.
part: Part a PGD node from an active cluster.
set-option: Set node-level options.
get-option: Get node-level options.
set-config: Set node-level configuration.
get-config: Get node-level configuration.
upgrade: Perform a major version upgrade of a PGD Postgres node.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 449



29.2.5.8.1          pgd node get-config

Synopsis

The pgd node get-config  command is used to get node-level configuration settings (GUC) in the EDB Postgres Distributed cluster.

Syntax

pgd node <NODE_NAME> get-config [OPTIONS] [CONFIG]

Where <NODE_NAME>  is the name of the node for which you want to get options.

And [CONFIG]  is the name of a specific GUC you want to get. If no option is specified, all GUCs are displayed.

Option

The following options are available for the pgd node get-config  command:

Short Long Description

-v --verbose Display additional information like min value, max value and description for the
GUC(s)

See Global Options.

Examples

Get a specific node config

pgd node pgd-a1 get-config bdr.batch_inserts

output
 Config Name       | Config Value
-------------------+--------------
 bdr.batch_inserts | 15

Get a specific node config with verbose output

pgd node pgd-a1 get-config max_wal_senders --verbose

output
 Config Name     | Config Value | Min Value | Max Value | Description
-----------------+--------------+-----------+-----------+-------------------------------------------------------------------------
 max_wal_senders | 7            | 0         | 262143    | Sets the maximum number of simultaneously running WAL sender processes.

Get a specific node config as json

 pgd node pgd-a1 get-config max_wal_senders -o json

output
[
  {
    "config_name": "max_wal_senders",
    "config_value": "6",
    "min_value": "0",
    "max_value": "262143",
    "description": "Sets the maximum number of simultaneously running WAL sender processes."
  }
]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 450



29.2.5.8.2          pgd node get-option

Synopsis

The pgd node get-option  command is used to get node-level options in the EDB Postgres Distributed cluster.

Syntax

pgd node <NODE_NAME> get-option [OPTIONS] [OPTION]

Where <NODE_NAME>  is the name of the node for which you want to get options.

And [OPTION]  is the name of a specific group option you want to get. If no option is specified, all options are displayed.

The following options are available:

Node Options

Option Description Type

route_priority Relative routing priority of the node against other nodes in the same node group. Used only when electing a write leader. intege
r

route_fence Set to fence the node. When fenced, the node can't receive connections from the Connection Manager. It therefore can't become the write leader or be available in the read-only node pool. Replication is not
impacted.

bool

route_writes Determines whether writes can be routed to this node, that is, whether the node can become write leader. bool

route_reads Determines whether read-only connections can be routed to this node (PGD 5.5.0 and later). bool

route_dsn The dsn used by the Connection Manager to connect to this node. string

Options

No command specific options. See Global Options.

Examples

Get all node options

pgd node kaboom get-option

output
Option Name    Option Value                                     
-------------- -------------------------------------------------
route_dsn      host=kaboom port=5444 dbname=pgddb user=postgres 
route_fence    false                                            
route_priority 100                                              
route_reads    true                                             
route_writes   true 

Get a specific node option

pgd node kaboom get-option route_priority

output
Option Name    Option Value
-------------- ------------
route_priority 100   

Get all node options as json

pgd node kaboom get-option -o json

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 451



output
[
  {
    "option_name": "route_dsn",
    "option_value": "host=kaboom port=5444 dbname=pgddb user=postgres"
  },
  {
    "option_name": "route_fence",
    "option_value": "false"
  },
  {
    "option_name": "route_priority",
    "option_value": "100"
  },
  {
    "option_name": "route_reads",
    "option_value": "true"
  },
  {
    "option_name": "route_writes",
    "option_value": "true"
  }
]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 452



29.2.5.8.3          pgd node part

Synopsis

The pgd node part  parts a PGD node from an active cluster. The part operation may take some time so the command waits for the operation to complete by default. However, if the --no-wait  option is set, the command schedules the
part operation and return with an advise.

Syntax

pgd node <NODE_NAME> part [OPTIONS]

Where <NODE_NAME>  is the name of the node to be parted.

Options

The following options are available for the pgd node part  command:

Long Description

--no-wait Do not wait for the part operation to
complete.

See Global Options.

Examples

Part a node with --no-wait option

pgd node pgd-a1 part --no-wait

output
Initiating a part node operation for node: pgd-b1
The operation will be performed in background and may take some time
NOTICE:  node pgd-a2 removal started in the background
DETAIL:  node is parting nodegroup group-a (19805032)

Part a node without --no-wait option

pgd node pgd-a1 part

output
Starting a part node operation for node: pgd-a1
This may take some time, please wait...
NOTICE: Node pgd-a1 has been removed from the BDR group

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 453



29.2.5.8.4          pgd node set-config

Synopsis

The pgd node set-config  command is used to set node-level Postgres setting (GUC) in the EDB Postgres Distributed cluster. The command requires node DSN  for superuser  i.e. Postgres process owner user.

The command reloads the configuration on the node after setting the config and displays a warning of the GUC requires a server restart.

Syntax

pgd node <NODE_NAME> set-config [OPTIONS] <CONFIG> <VALUE>

Where <NODE_NAME>  is the name of the node for which you want to get options.

And <CONFIG>  is the name of a specific node config you want to get and <VALUE>  is the value you want it set to.

Options

No command specific options. See Global Options.

Examples

Set a specific node config

pgd node pgd-a1 set-config bdr.batch_inserts 20 --dsn "host=pgd-a1 port=5432 user=postgres "

output
Command executed successfully

Set a specific node config with a space in the value

pgd node pgd-a2 set-config unix_socket_directories "/var/run/edb-pge, /tmp, /var/lib/postgresql" --dsn "host=pgd-a2 port=5432 user=postgres "

output
WARN: Config change requires a Postgres restart to take effect.
Command executed successfully

Please note the WARN  message indicates that the configuration change will not take effect until the Postgres server is restarted.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 454



29.2.5.8.5          pgd node set-option

Synopsis

The pgd node set-option  command is used to set node-level options in the EDB Postgres Distributed cluster.

Syntax

pgd node <NODE_NAME> set-option [OPTIONS] <OPTION> <VALUE>

Where <NODE_NAME>  is the name of the node for which you want to get options.

And <OPTION>  is the name of a specific node option you want to get and <VALUE>  is the value you want it set to.

The following options are available:

Node Options

Option Description Type

route_priority Relative routing priority of the node against other nodes in the same node group. Used only when electing a write leader. intege
r

route_fence Set to fence the node. When fenced, the node can't receive connections from the Connection Manager. It therefore can't become the write leader or be available in the read-only node pool. Replication is not
impacted.

bool

route_writes Determines whether writes can be routed to this node, that is, whether the node can become write leader. bool

route_reads Determines whether read-only connections can be routed to this node (PGD 5.5.0 and later). bool

route_dsn The dsn used by the Connection Manager to connect to this node. string

Options

No command specific options. See Global Options.

Examples

Set a specific node option

pgd node kaboom set-option route_priority 100

output
Command executed successfully

Set a specific node option with a space in the value

pgd node kaboom set-option route_dsn "host=kaboom port=5444 dbname=pgddb user=postgres"

output
Command executed successfully

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 455



29.2.5.8.6          pgd node setup

Synopsis

The pgd node setup  command is used to configure PGD data nodes in a cluster. It can be used to set up a new node, join an existing node to a cluster, or perform a logical join of a node to the cluster.

Version requirement for physical joins

When pgd node setup  performs a physical join (copying data from the remote node when the local node isn't up and running), it requires that both the source node and the joining node have exactly the same PGD version. You
can't use physical joins to join a node with a different PGD version to an existing cluster. For rolling upgrades, ensure you use logical joins instead. See Rolling upgrade using node join for more details.

The behavior of the command depends on the state of the local node and the remote node specified in the command.

If this is the first node in the cluster, pgd node setup  will perform initdb  and setup PGD node.

If this is not the first node, but the local node is not up and running, pgd node setup  will perform a physical join of the node to the cluster. This will copy the data from the remote node to the local node as part of the initialization process,
then join the local node to the cluster. This is the fastest way to load data into a new node.

If the local node is up and running and remote node also is reachable, pgd node setup  will perform a logical join of the node to the cluster. This will create a new node in the cluster and start streaming replication from the remote node.
This is the recommended way to add a new node to an existing cluster.

If the local node is up and running and remote node dsn is not provided, pgd node setup  will do a node group switch if node not part of the given group.

Users and roles

The pgd node setup  command requires a superuser role to run. The superuser role is used to create the data directory and initialize the database. The superuser role must have the CREATEDB  privilege to create the database.

The user specified in the --dsn  option will be created if it does not exist. It will only be granted the bdr_superuser  role which will allow it to administer PGD functionality. It will not, though have any other privileges on the database.

Syntax

pgd node <NODE_NAME> setup [OPTIONS] -D <PG_DATA>

Arguments

<NODE_NAME> The name of the node to be created. This is the name that will be used to identify the node in the cluster. It must be unique within the cluster.

Options

Option                                             Description

--listen-addr 
<LISTEN_ADDR>

The address that the configured node will listen on for incoming connections, and the address that other nodes will use to connect to this node. This is typically set to at least localhost , but
can be set to any valid address. The default is localhost . The host  value from the --dsn  will also be appended to this list.

--initial-node-count 
<INITIAL_NODE_COUNT>

Number of nodes in the cluster (or planned to be in the cluster). Used to calculate various resource settings for the node. Default is 3.

--bindir <BINDIR> <BINDIR> Specifies the directory where the binaries are located. Defaults to the directory where the running pgd binary is located.

--log-file <LOG_FILE> Path to log file, used for postgres startup logs. Default is to write to a file in the current directory named postgres-<port>.log  where the port value is fetched from the port  attribute of -
-dsn  option.

-D , --pgdata <PG_DATA> Uses <PG_DATA> as the data directory of the node. (Also set with environment variable PGDATA ). It must be a valid directory and must be writable by the user running the command.

--superuser <SUPERUSER> Superuser name for initdb . Default is postgres .

--node-kind <NODE_KIND> Specifies the kind of node to be created. Default is data . Possible values are data , witness , subscriber-only .

--group-name <GROUP_NAME> Node group name. If not provided, the node will be added to the group of the active node. It is a mandatory argument for the first node of a group.

--create-group Set this flag to create the given group, if it is not already present. This will be true by default for the first node.

--cluster-name 
<CLUSTER_NAME>

Name of the cluster to join the node to. When setting up cluster for the first time this will be used to create the parent node group . Defaults to pgd  if not specified.

--cluster-dsn  
<CLUSTER_DSN>

A DSN which belongs to the active PGD cluster. This is not required when configuring the first node of a cluster, however is mandatory for subsequent nodes. Should point to the DSN of an existing
active node.

--postgresql-conf 
<POSTGRESQL_CONF>

Optional path of the postgresql.conf  file to be used for the node.

--postgresql-auto-conf 
<POSTGRESQL_AUTO_CONF>

Optional path of the postgresql.auto.conf  file to be used for the node.

--hba-conf <HBA_CONF> Optional path of the pg_hba.conf  file to be used for the node.

--update-pgpass If set, the pgpass file for the new nodes password will be stored in the current user's .pgpass  file.

--verbose Print verbose messages.

See also Global Options.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 456



Examples

In these examples, we will set up a cluster with on three hosts, host-1 , host-2  and host-3 , to create three nodes: node-1 , node-2 , and node-3 . The three nodes will be data nodes, and part of a cluster named pgd  with the
group name group-1 .

We recommend that you export the PGPASSWORD environment variable to avoid having to enter the password for the pgdadmin  user each time you run a command. You can do this with the following command:

export PGPASSWORD=pgdsecret

Configuring the first node

pgd node node-1 setup --dsn "host=host-1 port=5432 user=pgdadmin dbname=pgddb" \
--listen-addr "localhost,host-1" \
--group-name group-1 --cluster-name pgd \
-D /var/lib/edb-pge/17/main

Stepping through the command, we are setting up node-1 . The first option is the --dsn  option, which is the connection string for the node. This is typically set to host=hostname port=5432 user=pgdadmin dbname=pgd ,
which is a typical connection string for a local Postgres instance.

The --listen-address  option is used to specify the address that the node will listen on for incoming connections. In this case, we are setting it to localhost,host-1 , which means that the node will listen on both the localhost and
the host-1  address.

This is the first node in the cluster, so we set the group name to group-1  and the cluster name to pgd  (which is actually the default). As this is the first node in the cluster, the --create-group  option is automatically set.

Finally, we set the data directory for the node with the -D  option; this is where the Postgres data files will be stored. In this example, we are using /var/lib/edb-pge/17/main  as the data directory.

The command will create the data directory and initialize the database correctly for PGD. It will then start the node and make it available for new connections, including the other nodes joining the cluster.

Configuring a second node

pgd node node-2 setup --dsn "host=host-2 port=5432 user=pgdadmin dbname=pgddb" \
--listen-addr "localhost,host-2" \
-D /var/lib/edb-pge/17/main
--cluster-dsn "host=host-1 port=5432 user=pgdadmin dbname=pgddb"

This command is similar to the first node, but we are setting up node-2 . The --dsn  option is the connection string for the node, which is typically set to host=hostname port=5432 user=pgdadmin dbname=pgd . The 
cluster-dsn  must point to an active node, it can point to connection manager, or proxy endpoint etc., CLI will get the real DSN of the node behind it. In this case, we are setting it to host=host-1 port=5432 user=pgdadmin 
dbname=pgd , which is the connection string for the first node in the cluster.

Configuring a third node

pgd node node-3 setup --dsn "host=host-3 port=5432 user=pgdadmin dbname=pgddb" \
--listen-addr "localhost,host-3" \
--cluster-dsn "host=host-1 port=5432 user=pgdadmin dbname=pgddb" \
-D /var/lib/edb-pge/17/main

This command is similar to the second node, but we are setting up node-3 . The --dsn  option is the connection string for the node, which is typically set to host=hostname port=5432 user=pgdadmin dbname=pgd . The 
cluster-dsn  must point to an active node, it can point to connection manager, or proxy endpoint etc., CLI will get the real DSN of the node behind it. In this case, we are setting it to host=host-1 port=5432 user=pgdadmin 
dbname=pgd , which is the connection string for the first node in the cluster.

Joining a parted and dropped node to the cluster

pgd node node-2 setup --dsn "host=host-2 port=5432 user=pgdadmin dbname=pgddb" \
--listen-addr "localhost,host-2" \
--cluster-dsn "host=host-1 port=5432 user=pgdadmin dbname=pgddb" \
-D /var/lib/edb-pge/17/main

This command is similar to the setting up the subsequent nodes, but we are setting up node-2  again. The --dsn  option is the connection string for the node, which is typically set to host=hostname port=5432 user=pgdadmin 
dbname=pgd . The cluster-dsn  must point to an active node, it can point to connection manager, or proxy endpoint etc., CLI will get the real DSN of the node behind it. In this case, we are setting it to host=host-1 port=5432 
user=pgdadmin dbname=pgd , which is the connection string for the first node in the cluster.

This is useful when a node has been parted  and dropped  from the cluster for some activity like maintenance and needs to be rejoined to the cluster. The command will perform a logical join of the node to the cluster, which will create a
new node in the cluster and start streaming replication from the remote node.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 457



29.2.5.8.7          pgd node show

Synopsis

The pgd node show  command is used to display node-level information in the EDB Postgres Distributed cluster.

Syntax

pgd node <NODE_NAME> show [OPTIONS]

Where <NODE_NAME>  is the name of the node for which you want to display information.

Options

No command specific options. See Global Options.

Examples

Show node information

pgd node kaboom show

output
# Summary
Node Property   Value       
--------------- ------------
Node Name       kaboom      
Group Name      dc1_subgroup
Node Kind       data        
Join State      ACTIVE      
Node Status     Up          
Node ID         2710197610  
Snowflake SeqID 2           
Database        pgddb       

# Options
Option Name    Option Value                                     
-------------- -------------------------------------------------
route_dsn      host=kaboom port=5444 dbname=pgddb user=postgres 
route_fence    false                                            
route_priority 100                                              
route_reads    true                                             
route_writes   true   

Show node information as JSON

pgd node kaboom show -o json

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 458



output
[
  {
    "Summary": [
      {
        "info": "Node Name",
        "value": "kaboom"
      },
      {
        "info": "Group Name",
        "value": "dc1_subgroup"
      },
      {
        "info": "Node Kind",
        "value": "data"
      },
      {
        "info": "Join State",
        "value": "ACTIVE"
      },
      {
        "info": "Node Status",
        "value": "Up"
      },
      {
        "info": "Node ID",
        "value": "2710197610"
      },
      {
        "info": "Snowflake SeqID",
        "value": "2"
      },
      {
        "info": "Database",
        "value": "pgddb"
      }
    ]
  },
  {
    "Options": [
      {
        "option_name": "route_dsn",
        "option_value": "host=kaboom port=5444 dbname=pgddb user=postgres "
      },
      {
        "option_name": "route_fence",
        "option_value": "false"
      },
      {
        "option_name": "route_priority",
        "option_value": "100"
      },
      {
        "option_name": "route_reads",
        "option_value": "true"
      },
      {
        "option_name": "route_writes",
        "option_value": "true"
      }
    ]
  }
]

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 459



29.2.5.8.8          pgd node upgrade

Synopsis

The pgd node upgrade  command is used to upgrade the PostgreSQL version on a node in the EDB Postgres Distributed cluster.

Syntax

pgd node <NODE_NAME> upgrade [OPTIONS] --old-bindir <OLD_BINDIR> --new-bindir <NEW_BINDIR> --old-datadir <OLD_DATADIR> --new-datadir <NEW_DATADIR> --database <DATABASE> 
--username <USER_NAME>

Where <NODE_NAME>  is the name of the node which you want to upgrade and <OLD_BINDIR> , <NEW_BINDIR> , <OLD_DATADIR> , <NEW_DATADIR> , <DATABASE> , and <USER_NAME>  are the old and new Postgres instance
bin directories, old and new Postgres instance data directories, database name, and cluster's install user name respectively.

Options

The following table lists the options available for the pgd node upgrade  command:

Short Long Default Env Description

-b --old-bindir PGBINOLD Old Postgres instance bin directory

-B --new-bindir PGBINNEW New Postgres instance bin directory

-d --old-datadir PGDATAOLD Old Postgres instance data directory

-D --new-datadir PGDATANEW New Postgres instance data directory

--database PGDATABASE PGD database name

-p --old-port 5432 PGPORTOLD Old Postgres instance port

--socketdir /var/run/postgresql PGSOCKETDIR Directory to use for postmaster sockets during upgrade

--new-socketdir /var/run/postgresql PGSOCKETDIRNEW Directory to use for postmaster sockets in the new cluster

--check Specify to only perform checks and not modify clusters

-j --jobs 1 Number of simultaneous processes or threads to use

-k --link Use hard links instead of copying files to the new cluster

--old-options Option to pass to old postgres command, multiple invocations are appended

--new-options Option to pass to new postgres command, multiple invocations are appended

-N --no-sync Don't wait for all files in the upgraded cluster to be written to disk

-P --new-port 5432 PGPORTNEW New Postgres instance port number

-r --retain Retain SQL and log files even after successful completion

-U --username PGUSER Cluster's install user name

--clone Use efficient file cloning

See also Global Options.

Examples

In the following examples, "kaolin" is the name of the node to upgrade, from the Quickstart democluster.

Upgrade the PostgreSQL version on a node

pgd node kaolin upgrade --old-bindir /usr/pgsql-16/bin --new-bindir /usr/pgsql-17/bin --old-datadir /var/lib/pgsql/16/data --new-datadir /var/lib/pgsql/17/data --
database pgddb --username enterprisedb

Upgrade the PostgreSQL version on a node with hard links

pgd node kaolin upgrade --old-bindir /usr/pgsql-16/bin --new-bindir /usr/pgsql-17/bin --old-datadir /var/lib/pgsql/16/data --new-datadir /var/lib/pgsql/17/data --
database pgddb --username enterprisedb --link

Upgrade the PostgreSQL version on a node with efficient file cloning

pgd node kaolin upgrade --old-bindir /usr/pgsql-16/bin --new-bindir /usr/pgsql-17/bin --old-datadir /var/lib/pgsql/16/data --new-datadir /var/lib/pgsql/17/data --
database pgddb --username enterprisedb --clone

Upgrade the PostgreSQL version on a node with a different port number

pgd node kaolin upgrade --old-bindir /usr/pgsql-16/bin --new-bindir /usr/pgsql-17/bin --old-datadir /var/lib/pgsql/16/data --new-datadir /var/lib/pgsql/17/data --
database pgddb --username enterprisedb --old-port 5433 --new-port 5434

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 460



29.2.5.9          pgd nodes

The pgd nodes  commands are used to display the nodes in the EDB Postgres Distributed cluster.

Subcommands

list: List nodes.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 461



29.2.5.9.1          pgd nodes list

Synopsis

The pgd nodes list  command is used to display the nodes in the EDB Postgres Distributed cluster. By default, this shows the node name, group name, node kind, join state of the node and whether it is up or down.

Syntax

pgd nodes list [OPTIONS]

Options

The following options are available for the pgd nodes list  command:

Short Long Description

--versions Display only version information about the nodes. For each node, the BDR version and Postgres version are shown.

-v --verbose Display detailed information about the nodes. For each node, this option addes the node id, Snowflake sequence id and database
name.

See the Global Options for common global options.

Examples

List all nodes

pgd nodes list

output
Node Name Group Name   Node Kind Join State Node Status
--------- ------------ --------- ---------- -----------
kaftan    dc1_subgroup data      ACTIVE     Up         
kaboom    dc1_subgroup data      ACTIVE     Up         
kaolin    dc1_subgroup data      ACTIVE     Up   

List all nodes with detailed information

pgd nodes list --verbose

output
Node Name Group Name   Node Kind Join State Node Status Node ID    Snowflake SeqID Database
--------- ------------ --------- ---------- ----------- ---------- --------------- --------
kaftan    dc1_subgroup data      ACTIVE     Up          3490219809 1               pgddb   
kaboom    dc1_subgroup data      ACTIVE     Up          2710197610 2               pgddb   
kaolin    dc1_subgroup data      ACTIVE     Up          2111777360 3               pgddb

List all nodes version information

pgd nodes list --versions

output
Node Name BDR Version Postgres Version                   
--------- ----------- -----------------------------------
kaboom    5.7.0       15.12.0 (Debian 15.12.0-1.bullseye)
kaftan    5.7.0       15.12.0 (Debian 15.12.0-1.bullseye)
kaolin    5.7.0       15.12.0 (Debian 15.12.0-1.bullseye)

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 462



29.2.5.10          pgd raft

The pgd raft  commands are used to display the raft status in the EDB Postgres Distributed cluster.

Subcommands

show: Show raft status for the cluster.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 463



29.2.5.10.1          pgd raft show

Synopsis

The pgd raft show  command is used to display the Raft status in the EDB Postgres Distributed cluster. In particular, it lists all nodes in all groups, including the top level group, and their Raft status - leader or follower, number of nodes in
the group with them, number of voting nodes in the group, presence of a leader, and the term number.

Syntax

pgd raft show [OPTIONS]

Options

No command specific options. See Global Options.

Examples

Show Raft status

pgd raft show

output
Group Name    Node Name State         Leader Name Current Term Commit Index Nodes Voting Nodes Protocol Version
------------- --------- ------------- ----------- ------------ ------------ ----- ------------ ----------------
dc1_subgroup  kaftan    RAFT_LEADER   kaftan      1            4            3     3            0               
dc1_subgroup  kaboom    RAFT_FOLLOWER kaftan      1            4            3     3            0               
dc1_subgroup  kaolin    RAFT_FOLLOWER kaftan      1            4            3     3            0               
democluster   kaftan    RAFT_LEADER   kaftan      0            335          3     3            5007            
democluster   kaboom    RAFT_FOLLOWER kaftan      0            335          3     3            5007            
democluster   kaolin    RAFT_FOLLOWER kaftan      0            335          3     3            5007     

Note that dc1_subgroup  here is a data group with local routing, and democluster  is the top level group with global routing.

The Protocol Version  column shows the version of the Raft protocol in use. The Commit Index  column shows the index of the last committed log entry. The Nodes  column shows the total number of nodes in the group. The 
Voting Nodes  column shows the number of nodes that participate in the Raft consensus. The State  column shows the Raft state of the node - leader or follower. The Leader Name  column shows the name of the leader node in the

group. The Current Term  column shows the current term number.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 464



29.2.5.11          pgd replication

The pgd replication  commands are used to display the various aspects of replication status in the EDB Postgres Distributed cluster.

Subcommands

show: Show replication status for the cluster.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 465



29.2.5.11.1          pgd replication show

Synopsis

The pgd replication show  command is used to display the replication status in the EDB Postgres Distributed cluster.

By default, with no options, it produces reports on the following:

Node Replication Progress: A matrix of the replication status between nodes.
Replication Slots: The replication slots status for each node's slots.
Subscriptions: The subscription status for each subscription between nodes.
Analytics Replication: The analytics replication status for each node.

Options can be used to restrict the output to any one of the above reports. The --verbose  option can be used to increase the detail in the default report to show the LSN and the replication lag for each node's connection to other nodes.

Syntax

pgd replication show [OPTIONS]

Options

The following options are available for the pgd replication show  command:

Short Long Description

--nodes Display only node to node replication status in a matrix format.

--slots Display the replication slots for each node.

--subscriptions Display the subscription status for each subscription between nodes.

--analytics Display the analytics replication status for each node.

-v --verbose Display detailed information about the replication status.

See the Global Options for common global options.

--slots

This shows Shows the status of BDR replication slots. Output with the verbose flag gives details such as is slot active, replication state (disconnected, streaming, catchup), and approximate lag.

Symbol Meaning

* ok

~ warning (lag > 10M)

! critical (lag > 100M OR slot is 'inactive' OR
'disconnected')

x down / unreachable

- n/a

In matrix view, sometimes byte lag is shown in parentheses. It is maxOf(WriteLag, FlushLag, ReplayLag, SentLag).

Examples

Display the replication status in the EDB Postgres Distributed cluster

pgd replication show

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 466



output
# Node Replication Progress
Node   kaboom kaftan kaolin
------ ------ ------ ------
kaboom -      *      *     
kaftan *      -      *     
kaolin *      *      -     

# Replication Slots
Group Name   Origin Node Target Node Slot Name                      Active State     Write Lag Replay Lag Sent Lag Bytes Write Lag Bytes Replay Lag Bytes
------------ ----------- ----------- ------------------------------ ------ --------- --------- ---------- -------------- --------------- ----------------
dc1_subgroup kaboom      kaftan      bdr_pgddb_democluster15_kaftan t      streaming 00:00:00  00:00:00   0              0               0               
dc1_subgroup kaboom      kaolin      bdr_pgddb_democluster15_kaolin t      streaming 00:00:00  00:00:00   0              0               0               
dc1_subgroup kaftan      kaboom      bdr_pgddb_democluster15_kaboom t      streaming 00:00:00  00:00:00   0              0               0               
dc1_subgroup kaftan      kaolin      bdr_pgddb_democluster15_kaolin t      streaming 00:00:00  00:00:00   0              0               0               
dc1_subgroup kaolin      kaboom      bdr_pgddb_democluster15_kaboom t      streaming 00:00:00  00:00:00   0              0               0               
dc1_subgroup kaolin      kaftan      bdr_pgddb_democluster15_kaftan t      streaming 00:00:00  00:00:00   0              0               0               

# Subscriptions
Origin Node Target Node Last Applied Tx Timestamp      Last Applied Tx Age Subscription Status
----------- ----------- ------------------------------ ------------------- -------------------
kaboom      kaftan      2025-02-21 19:18:12.661520 UTC 00:00:18.616        replicating        
kaboom      kaolin      2025-02-21 19:18:12.661520 UTC 00:00:18.939        replicating        
kaftan      kaboom      2025-02-21 19:18:12.658069 UTC 00:00:18.787        replicating        
kaftan      kaolin      2025-02-21 19:18:12.658069 UTC 00:00:18.943        replicating        
kaolin      kaboom      2025-02-21 19:18:12.663201 UTC 00:00:18.782        replicating        
kaolin      kaftan      2025-02-21 19:18:12.663201 UTC 00:00:18.614        replicating        

# Analytics Replication Progress
Origin Node Replicating Node Replicated LSN Last Updated
----------- ---------------- -------------- ------------

Display only the node to node replication status in a matrix format

pgd replication show --nodes

output
Node   kaboom kaftan kaolin
------ ------ ------ ------
kaboom -      *      *     
kaftan *      -      *     
kaolin *      *      -   

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 467



30          Terminology

This terminology list includes terms associated with EDB Postgres Distributed that you might be unfamiliar with.

Asynchronous replication

A type of replication that copies data to other PGD cluster members after the transaction completes on the origin node. Asynchronous replication can provide higher performance and lower latency than synchronous replication. However,
asynchronous replication can see a lag in how long changes take to appear in the various cluster members. While the cluster will be eventually consistent, there's potential for nodes to be apparently out of sync with each other.

Commit scopes

Rules for managing how transactions are committed between the nodes and groups of a PGD cluster. Used to configure synchronous replication, Group Commit, CAMO, Eager, Lag Control, and other PGD features.

CAMO or commit-at-most-once

High-value transactions in some applications require that the application successfully commits exactly once, and in the event of failover and retrying, only once. To ensure this happens in PGD, CAMO can be enabled, allowing the application to
actively participate in the transaction.

Conflicts

As data is replicated across the nodes of a PGD cluster, there might be occasions when changes from one source clash with changes from another source. This is a conflict and can be handled with conflict resolution. (Conflict resolution is a set
of rules that decide which source is correct or preferred.) Conflicts can also be avoided with conflict-free data types.

Consensus

How Raft makes group-wide decisions. Given a number of nodes in a group, Raft looks for a consensus of the majority (number of nodes divided by 2 plus 1) voting for a decision. For example, when a write leader is being selected, a Raft
consensus is sought over which node in the group will be the write leader. Consensus can be reached only if there's a quorum of voting members.

Cluster

Generically, a cluster is a group of multiple systems arranged to appear to end users as one system. See also PGD cluster and Postgres cluster.

DDL (data definition language)

The subset of SQL commands that deal with defining and managing the structure of a database. DDL statements can create, modify, and delete objects (that is, schemas, tables, and indexes) in the database. Common DDL commands are
CREATE, ALTER, and DROP.

DML (data manipulation language)

The subset of SQL commands that deal with manipulating the data held in a database. DML statements can create, modify, and delete rows in tables in the database. Common DML commands are INSERT, UPDATE, and DELETE.

Eager

A synchronous commit mode that avoids conflicts by detecting incoming potentially conflicting transactions and “eagerly” aborts one of them to maintain consistency.

Eventual consistency

A distributed computing consistency model stating changes to the same item in different cluster members will eventually converge to the same value. Asynchronous logical replication with conflict resolution and conflict-free replicated data
types exhibit eventual consistency in PGD.

Failover

The automated process that recognizes a failure in a highly available database cluster and takes action to maintain consistency and availability. The goal is to minimize downtime and data loss.

Group commit

A synchronous commit mode that requires more than one PGD node to successfully receive and confirm a transaction at commit time.

Immediate consistency

A distributed computing model where all replicas are updated synchronously and simultaneously. This model ensures that all reads after a write completes will see the same value on all nodes. The downside of this approach is its negative
impact on performance.

Logical replication

A more efficient method of replicating changes in the database. While physical streaming replication duplicates the originating database’s disk blocks, logical replication instead takes the changes made, independent of the underlying physical
storage format, and publishes them to all systems that subscribed to see the changes. Each subscriber then applies the changes locally. Logical replication can't support most DDL commands.

Node

A general term for an element of a distributed system. A node can play host to any service. In PGD, PGD nodes run a Postgres database, the BDR extension and the Connection Manager.

Typically, for high availability, each node runs on separate physical hardware, but that's not always the case.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 468



Node groups

PGD nodes in PGD clusters can be organized into groups to reflect the logical operation of the cluster. For example, the data nodes in a particular physical location can be part of a dedicated node group for the location.

PGD cluster

A group of multiple redundant database systems and proxies arranged to avoid single points of failure while appearing to end users as one system. PGD clusters can be run on Docker instances, cloud instances or “bare” Linux hosts, or a
combination of those platforms. A PGD cluster can also include backup nodes. The data nodes in a cluster are grouped together in a top-level group and into various local node groups.

PGD node

In a PGD cluster are nodes that run databases and participate in the PGD cluster. A typical PGD node runs a Postgres database, the BDR extension, and the Connection Manager. PGD modes are also referred to as data nodes, which suggests
they store data. However, some PGD nodes, specifically witness nodes, don't do that.

Physical replication

By making an exact copy of database disk blocks as they're modified to one or more standby cluster members, physical replication provides an easily implemented method to replicate servers. But there are restrictions on how it can be used.
For example, only one master node can run write transactions. Also, the method requires that all cluster members are on the same major version of the database software with the same operating system and CPU architecture.

Postgres cluster

Traditionally, in PostgreSQL, a number of databases running on a single server is referred to as a cluster (of databases). This kind of Postgres cluster isn't highly available. To get high availability and redundancy, you need a PGD cluster.

Quorum

A quorum is the minimum number of voting nodes needed to participate in a distributed vote. It ensures that the decision made has validity. For example, when a Raft consensus is needed by a PGD cluster, a minimum number of voting nodes
participating in the vote are needed. With a 5-node cluster, the quorum is 3 nodes in the cluster voting. A consensus is 5/2+1 nodes, 3 nodes voting the same way. If there are only 2 voting nodes, then a consensus is never established. Quorums
are required in PGD for global locks and Raft decisions.

Replicated available fault tolerance (Raft)

A consensus algorithm that uses votes from a quorum of machines in a distributed cluster to establish a consensus. PGD uses Raft within groups (top-level or local) to establish the node that's the write leader.

Read scalability

The ability of a system to handle increasing read workloads. For example, PGD can introduce one or more read replica nodes to a cluster and have the application direct writes to the primary node and reads to the replica nodes. As the read
workload grows, you can increase the number of read replica nodes to maintain performance.

Subscription

PGD nodes will publish changes being made to data to nodes that are interested. Other PGD nodes will ask to subscribe to those changes. This behavior creates a subscription and is the mechanism by which each node is updated. PGD nodes
bidirectionally subscribe to other PGD nodes' changes.

Switchover

A planned change in connection between the application or proxies and the active database node in a cluster, typically done for maintenance.

Synchronous replication

When changes are updated at all participating nodes at the same time, typically leveraging a two-phase commit. While this approach replicates changes and resolves conflicts before committing, a performance cost in latency occurs due to the
coordination required across nodes.

Subscriber-only nodes

A PGD cluster is based around bidirectional replication. But in some use cases, such as needing a read-only server, bidirectional replication isn't needed. A subscriber-only node is used in this case. It subscribes only to changes in the database
to keep itself up to date and provide correct results to any run directly on the node. This feature can be used to enable horizontal read scalability in a PGD cluster.

Two-phase commit (2PC)

A multi-step process for achieving consistency across multiple database nodes. The first phase sees a transaction prepared on an originating node and sent to all participating nodes. Each participating node validates that it can apply the
transaction and signals its readiness to the originating node. This is the prepare phase. In the second phase, if all the participating nodes signal they're ready, the originating node proceeds to commit the transaction and signals the
participating nodes to commit, too. This is the commit phase. If, in the prepare phase, any node signals it isn't ready, the entire transaction is aborted. This process ensures all nodes get the same changes.

Vertical scaling or scale up

A traditional computing approach of increasing a resource (CPU, memory, storage, network) to support a given workload until the physical limits of that architecture are reached, for example, Oracle Exadata.

Witness nodes

Witness nodes primarily serve to help the cluster establish a consensus. An odd number of data nodes is needed to establish a consensus. Where resources are limited, a witness node can be used to participate in cluster decisions but not
replicate the data. Not holding the data means it can't operate as a standby server or provide majorities in synchronous commits.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 469

https://www.enterprisedb.com/docs/pgd/latest/reference/ddl/ddl-locking/


Write leader

In an Always-on architecture, a node is selected as the correct connection endpoint for applications. This node is called the write leader. Once selected, the PGD Connection Manager routes queries and updates to it. With only one node
receiving writes, unintended multi-node writes can be avoided. The write leader is selected by consensus of a quorum of data nodes. If the write leader becomes unavailable, the data nodes select another node to become write leader. Nodes
that aren't the write leader are referred to as shadow nodes.

Writer

When a subscription delivers data changes to a PGD node, the database server tasks a worker process, called a writer, with getting those changes applied.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 470



31          Choosing a Postgres distribution

EDB Postgres Distributed can be deployed with three different Postgres distributions: PostgreSQL, EDB Postgres Extended Server, or EDB Postgres Advanced Server. The availability of particular EDB Postgres Distributed features depends on
the Postgres distribution being used. Therefore, it's essential to adopt the Postgres distribution best suited to your business needs. For example, if having the Commit At Most Once (CAMO) feature is mission critical to your use case, don't adopt
open source PostgreSQL, which doesn't have the core capabilities required to handle CAMO.

The following table lists features of EDB Postgres Distributed that are dependent on the Postgres distribution and version.

Feature PostgreSQL EDB Postgres Extended EDB Postgres Advanced

Rolling application and database upgrades Y Y Y

Row-level last-update wins conflict resolution Y Y Y

DDL replication Y Y Y

Granular DDL Locking Y Y Y

Streaming of large transactions Y Y Y

Distributed sequences Y Y Y

Subscriber-only nodes Y Y Y

Monitoring Y Y Y

Parallel apply Y Y Y

Conflict-free replicated data types (CRDTs) Y Y Y

Column-level conflict resolution Y Y Y

Transform triggers Y Y Y

Conflict triggers Y Y Y

Asynchronous replication Y Y Y

Legacy synchronous replication Y Y Y

Group Commit N Y Y

Commit At Most Once (CAMO) N Y Y

Eager Conflict Resolution N Y Y

Lag Control N Y Y

Decoding Worker N Y Y

Lag tracker N Y Y

Missing partition conflict N Y Y

No need for UPDATE Trigger on tables with TOAST N Y Y

Automatically hold back FREEZE N Y Y

Transparent Data Encryption N 15+ 15+

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 471

https://www.enterprisedb.com/docs/tde/latest/


32          PGD compatibility

PGD compatibility with PostgreSQL versions

The following table shows the major versions of PostgreSQL that EDB Postgres Distributed (PGD) is compatible with.

PGD 6 Postgres Version

6 17.5.0+

6 16.9.0+

6 15.13.0+

6 14.18.0+

EDB recommends that you use the latest minor version of any Postgres major version with a supported PGD.

PGD compatibility with operating systems and architectures

The following tables show the versions of EDB Postgres Distributed and their compatibility with various operating systems and architectures.

Linux

Operating System x86_64
(amd64)

ppc64le arm64/
aarch64

RHEL 8 Yes Yes

RHEL 9 Yes Yes Yes

Oracle Linux 8 Yes

Oracle Linux 9 Yes

Rocky Linux/AlmaLinux Yes

SUSE Linux Enterprise Server 15SP6 Yes Yes

Ubuntu 22.04 Yes

Ubuntu 24.04 Yes

Debian 12 Yes Yes

IBM Linux One Yes

Note

See PGD 5 Compatibility for previous versions of PGD.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 472

https://www.enterprisedb.com/docs/pgd/5.8/compatibility


33          EDB Postgres Distributed 6 release notes

The EDB Postgres Distributed documentation describes the latest version of EDB Postgres Distributed 6, including minor releases and patches. The release notes provide information on what was new in each release. For new functionality
introduced in a minor or patch release, the content also indicates the release that introduced the feature.

Release Date EDB Postgres Distributed

06 Nov 2025 6.1.2

09 Oct 2025 6.1.1

19 Aug 2025 6.1.0

25 Jun 2025 6.0.2

09 Jun 2025 6.0.1

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 473



33.1          EDB Postgres Distributed 6.1.2 release notes

Released: 6 November 2025

EDB Postgres Distributed 6.1.2 includes only bug fixes focused on improving stability and reliability. No new features or enhancements are included in this release. Please see the details below.

Bug Fixes

Description Addresses

Fixed ALTER TABLE failure during streamed transaction with table rewrite

The ALTER TABLE  command failed to create a temporary table when using table rewrite support and streaming to a file or a writer. The fix implements a stream message callback method, preventing a potential
data loss scenario during these operations.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 474



33.2          EDB Postgres Distributed 6.1.1 release notes

Released: 09 October 2025

EDB Postgres Distributed 6.1.1 includes only bug fixes focused on improving stability and reliability. No new features or enhancements are included in this release. Please see the details below.

Bug Fixes

Description Addresses

Fix physical join when running 'pgd node setup'

The pgd node setup  command in the PGD CLI has been fixed to correctly set up a physical copy as a physical replica. Previously, a bug prevented the command from properly configuring physical replication
which could result in some changes being missed on the new node. For any nodes added using pgd node setup  with earlier versions of the PGD CLI, we recommend performing a consistency check.

Fix handling of DDL commands that trigger table rewrites

Executing specific DDL operations (such as ALTER TABLE ... ADD COLUMN ... DEFAULT <volatile expression>  or ALTER TABLE ... ALTER COLUMN ... SET DATA TYPE  when not
binary-compatible) could cause replication failures. With this fix in PGD 6.1.1, replication now correctly handles DDL commands that trigger table rewrites.

Connection Manager respects currentSchema JDBC parameter

Previously, a JDBC client connected through the PGD Connection Manager would have the currentSchema  parameter ignored. As a result, a connection's search_path  would incorrectly default to public .
This issue has now been resolved.

prefer_analytics_engine works with Iceberg REST Catalog tables

The prefer_analytics_engine  flag has been updated to correctly function with tables that are replicated to Iceberg REST Catalog. Setting bdr.prefer_analytics_engine = true  will now cause a
query referencing a table with pgd.replicate_to_analytics = true  to be executed by the analytics engine when possible.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 475



33.3          EDB Postgres Distributed 6.1.0 release notes

Released: 19 August 2025

This is a minor release of PGD 6, which introduces direct upgrade support from PGD 4.4.0+ and PGD 5.9.0+. This makes it the first version of PGD 6 that allows for a seamless, in-place upgrade from older versions. In addition to this key feature,
PGD 6.1.0 also includes a variety of new features, enhancements, and important bug fixes.

Highlights

Seamless upgrades from PGD 4 and PGD 5 to PGD 6 : PGD 4.4.0+ and PGD 5.9.0+ users can now perform a direct upgrade to PGD 6, beginning with PGD 6.1.0, ensuring a smooth transition to the latest features.
Replication to Apache Iceberg: PGD now supports replication to Apache Iceberg when using the Analytics Accelerator. This new capability allows you to stream data directly from your PGD cluster to an Iceberg data lake and also query
the Iceberg data directly from within PGD. This significantly expands your options for large-scale data analytics and integration.
PGD 6 now supports Materialized Views: The CREATE, ALTER, REFRESH, and DROP commands are replicated across the cluster, ensuring that materialized views are consistent on all nodes. When a materialized view is created or
concurrently refreshed, the data is populated on the upstream node and then replicated to others, providing full support for this functionality.
PGD 6 is now on IBM LinuxONE : PGD's native capabilities are expanded with new support for IBM LinuxONE, offering optimized uptime, throughput, and energy efficiency.

Features

Description Addresses

Added CLI commands to get and update Postgres settings (GUC).

Add the pgd node get-config  and pgd node set-config  commands to allow users to retrieve and modify Postgres settings (GUC) via the CLI.

New drop_after_retention_period  argument added to the bdr.autopartition  function

bdr.autopartition()  now takes an additional boolean argument drop_after_retention_period  which can be set to false if the user does not want the partition to be dropped, but only detached. 82332

Simplified Node Configuration with the PGD CLI

The pgd command-line tool now includes new commands to make managing individual node configurations easier. You can now use pgd node <node-name> get-config  and pgd node <node-name> 
set-config  to retrieve and update specific Postgres settings (GUCs) for any node in your cluster directly from the CLI.

PGD CLI View Commit Scopes

The PGD CLI now includes a new command, pgd commit-scopes list , that allows you to view the commit scope configuration for your cluster. This command provides details on all commit scopes, including
their rules and the groups they apply to, which improves the visibility and management of your data consistency settings.

PGD CLI - Part a Node from a Cluster

The PGD CLI now includes a new command, pgd node part , which provides a streamlined way to remove a node from an active cluster. This command automates the process of calling the node_part  SQL
function and reports on its progress, simplifying node management directly from the command line.

Leader DDL Lock

New lock type leader DDL lock is used by default for locking DDL statements. This lock locks on write-leaders only, not requiring majority nodes to participate in the locking operation. Old behavior can be restored by
adjusting bdr.ddl_locking  configuration parameter.

Replication of Roles to witness nodes

Roles are now replicated to witness nodes when they join the nodegroup, and also as and when they are created or altered on data nodes. This is useful mainly when dealing with GUC permissions.

Added command to list commit scopes for PGD cluster.

Add a command pgd commit-scopes list  to list commit scopes information for PGD cluster.

Added command to part a PGD node from cluster.

Add a command pgd node part  to part a PGD node from cluster.

Enhancements

Description Addresses

Update the pgd group get-option  and pgd group show  commands to show default values.

The pgd group get-option  and pgd group show  commands will now display the default values for all options. The pgd group show  command will display the source of the option values as well.

Apply the PGD Essential constraints for CLI commands.

The CLI will check for and enforce the PGD Essential constraints for the commands as applicable. See PGD Essential CLI Constraints for more details.

Improve Raft snapshot export/import to reset Raft completely

We've made improvements to how our Raft consensus mechanism handles snapshots. This ensures that in the rare event of a data consistency issue, restoring a snapshot will now fully reset the system's state,
allowing operations to resume smoothly from a consistent starting point.

EPAS Interval Partition Support for PGD

A new enhancement allows partitions created by EDB Postgres Advanced Server (EPAS) AutoPartition to work correctly within a multi-node PGD environment. This fix ensures partitions are created consistently on
each node and are visible across all nodes.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 476



Improved max_connections Error Reporting

The Connection Manager now provides more helpful and specific error messages when a max_connections limit is reached. Users will now see a clear message like "sorry, too many clients already," making it much
easier to diagnose connection issues.

Support for commands that generate Table Rewrites in an explicit transaction block

PGD now supports executing ALTER TABLE commands that generate a table rewrite within a transaction block. Multiple commands are supported in a single transaction block. This simplifies complex DDL
operations by applying all changes as a single atomic unit and provides performance optimizations when multiple commands target the same table.

Postgres Compatibility with PGD - Phase 5

This is a placeholder for future updates regarding Postgres compatibility.

Description Addresses

Changes

Description Addresses

Removal of listen_address Group Option

The listen_address  option has been removed from pgd group set-option  to simplify configuration. The Connection Manager will now use the value from the listen_addresses  GUC directly,
resolving issues with setting hostnames or multiple addresses that were previously unsupported.

Bug Fixes

Description Addresses

Fix the pgd cluster verify  command warning for witness-only  group.

The pgd cluster verify  command displayed warning for Data nodes per group  check for witness-only  group. The check is not applicable for witness-only  groups and hence the status Ok
will be displayed.

Fix the data dir check for the setup command.

The pgd node setup  command checks for the presence of PG_VERSION  file in the given data dir option. However the code incorrectly uses the bindir  option instead of pgdata .

Fix for Mixed_version Clusters

We've resolved a bug that could cause replication to fail in a mixed-version PGD cluster (e.g., combining Postgres 12 and Postgres 16), an architecture used temporarily during postgres rolling upgrade. Previously,
DDL statements on a newer node could lead to replication slot disconnection on older nodes, with an "unrecognized configuration parameter" error. This fix ensures that replication now functions correctly during a
rolling upgrade or in a temporary mixed-version state.

46373

Connection Manager Behavior on Routing Changes

The Connection Manager now correctly handles connections following a change in cluster routing configuration (e.g., switching between global and no routing). This resolves unexpected behavior and ensures client
connections are routed as intended after a configuration update.

Fix for node_pkey Errors When Rebuilding Parted Nodes

A fix has been added to address a bug that could cause a consensus worker to crash with a duplicate key value violates unique constraint "node_pkey" error when a parted node was being rebuilt. This fix ensures that
you can now successfully rebuild a parted node using bdr_init_physical  without encountering this issue.

44467, 45084

PGD CLI cluster verify Command Fix for Witness-Only Groups

The pgd cluster verify command no longer displays a warning for witness-only groups that do not contain data nodes. This resolves an issue where the command incorrectly flagged these groups, ensuring that the
verification output is now accurate for all cluster types.

Raft Fix for Parting Lagging Nodes

Raft no longer fails to recover after a heavily-lagging node that was previously a leader is parted from the cluster. This fixes a bug where the Raft leader could crash with a "BDR node XXX not found" error, which
previously required a manual, forceful reset of the Raft state. Now, Raft correctly handles this scenario and recovers automatically, ensuring cluster stability.

50099

Fix for PGD CLI Multi-Group Setup

A bug has been fixed in the PGD CLI setup command that prevented the creation of multi-group clusters. Previously, the command would fail with an unhelpful error when attempting to add a node to a second
group. The fix ensures that the command now correctly handles the creation of nodes in new groups, allowing for successful multi-group cluster setup.

Fix for CLI setup Command GUC Update

The PGD CLI setup command no longer fails when attempting to update Postgres settings on remote nodes. This fix resolves a "malformed array literal" error that occurred during the cluster setup, improving the
reliability of the initialization process.

Fix for "Clock Has Moved Backwards" Error with Snowflake Sequences

A race condition has been fixed that could cause a "clock has moved backwards" error when using Snowflake sequences, even when the system clock was functioning correctly. This fix ensures the sequence
correctly handles concurrent access, preventing this error and improving the reliability of Snowflake sequence generation.

49376, 43659

Fix a crash with pg_failover_slots

Ensure that CDC hooks are no-op when recovery is in progress or the backend is not connected to a database. This can definitely happen if pg_failover_slots  is active.

Fix a crash on a stat view for connection manager stat

The view bdr.stat_connection_manager_hba_file_rules  had some parsing issues on the pg_hba.conf  file specifically in the Address/Mask  column for the "all" value.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 477



Node kind check

PGD CLI now has a verify check for nodes not having a node kind properly set. This check emits a warning on nodes that are coming from a previous major version upgrade that missed setting the node kind.

Skip the node GUCs update with pgd node setup  command.

The pgd node setup  verifies the Postgres settings while setting up a PGD node. The command will now skip the node GUCs update as the bdr_superuser  role, used by CLI is not allowed to run ALTER
SYSTEM queries. The command will continue to verify the Postgres settings and will display a warning message if any of the settings require modification.

Description Addresses

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 478



33.4          EDB Postgres Distributed 6.0.2 release notes

Released: 25 June 2025

This is the first patch release of EDB Postgres Distributed 6.0, which includes bug fixes and enhancements to the new features introduced in PGD 6.0.

Bug Fixes

Description Addresses

Fixed an issue with the slot names generated by node setup  command.

The command generated the slot names as UUID values with underscore ( _ ) which is not compatible with PGD slot names.

Fixed segmentation fault in bdr.stat_connection_manager_get_stats().

The memory returned by the function was allocated in an incorrect memory context.

Ensure that GRANT check for BDR objects works for EPAS object types

The mechanism for determining whether user can be granted permissions on BDR extension objects was failing for EPAS-specific objects. This was a regression from PGD release 5.7.0 and is now
fixed.

49649

Renamed the check Clock Skew  to Clock Drift  for pgd cluster show  command.

The check is renamed to be consistent with the terminology used at other places in PGD.

Added a warning message if CLI fails to fetch value of a GUC for pgd cluster verify  command.

The command could crash if the CLI could not fetch a value for a GUC for some reason.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 479



33.5          EDB Postgres Distributed 6.0.1 release notes

Released: 9 June 2025

PGD 6 delivers simpler, more resilient high availability for Postgres. Traditional streaming replication often requires downtime for upgrades and routine maintenance—and depends on complex tooling. PGD solves these challenges with a
built-in, logical replication-based architecture that enables online upgrades and maintenance without disrupting applications, helping teams keep services running smoothly even during operational changes. It also provides seamless failover
and eliminates the need for external proxies, load balancers, or consensus systems.

Highlights

New built-in Connection Manager: Automatically routes client connections to the correct node, simplifies application architecture, supports dynamic topology changes, and includes a built-in session pooler and dedicated read/write
and read-only ports, all without external software or complex configuration. This new component replaces PGD Proxy, which is no longer available starting with PGD 6.
Predefined Commit Scopes: Simplify consistency choices with built-in transaction durability profiles—no complicated setup needed. Choose the right balance of performance and protection, with scopes defined in system catalogs and
ready to use out of the box.
New CLI command for Cluster Setup: The pgd node setup command now enables initial cluster creation and node addition directly from the command line. This gives users more flexibility in how they deploy PGD and allows deployment
tools to standardize on a consistent method.

Features

Description Addresses

Built-in connection manager

New built-in connection manager which handles routing of connections automatically and allows enforcing of read-only connections to non-leader.

CLI cluster setup

The PGD CLI now allows initial cluster setup as well as adding nodes from command-line using pgd node setup  command.

Set sequence kind on group create/join

Transform the sequences in distributed based on the bdr.default_sequence_kind  GUC when creating/joining a bdr group instead of when creating the node as done in older versions.

Set startvalue for distributed sequences automatically

Set the startvalue for galloc sequences to the following valid number after the last used by the local sequence. With this change, when creating distributed sequences and specifically galloc, there is no need to
adjust the startvalue based on what might be already used.

Enabling of automatic sync and reconciliation

Automatic synchronization and reconciliation of node states is now enabled by default. This means that nodes will automatically synchronize their state with the leader node and reconcile any differences without
requiring manual intervention. Read more in the documentation.

Add node_uuid column to bdr.node and bdr.local_node

The node_uuid uniquely identifies instance of a node of a given name. Random node_uuid is generated when node is created and remains constant for the lifetime of the node. The node_id column is now derived
from node_uuid instead of node name.

For the time being a node needs to be fully parted before before node of the same name can be rejoined, this may be relaxed in future releases to permit rejoin as soon as part_node process for the old instance has
commenced and before it completed.

For the time being upgrades from older PGD versions and mixed-version operation in clusters with older PGD nodes are not supported. This limitation will be addressed in future releases.

Change replication origin and slot naming scheme

Replication origin and slot names now use node uuid and thus correspond to particular incarnation of a node of a given name. Similarly node group uuid is used instead of group name. Hash of database name is used
in lieu of database name.

Please note that origin and node names should be treated as opaque identifiers from user's perspective, one shouldn't rely on the structure of these names nor expect these to be particularly meaningful to a human
operator.

The new naming scheme is as follows:

Slots Naming Convention

normal slot to a node => bdr_node_<targetuuid>_<dbhash>
join slot for node => bdr_node_<targetuuid>_<dbhash>_tmp
group slot for a topgroup => bdr_group_<topgroupuuid>_<dbhash>
slot for any forwarding + lead to lead => bdr_node_<targetuuid>_<originidhex>_<dbhash>
analytics slot => bdr_analytics_<groupuuid>_<dbhash>
decoding slot => bdr_decoder_<topgroupuuid>_<dbhash>

Origins Naming Convention:

normal origin to a node => bdr_<originuuid>_<dbhash>
fwd origin to a source node => bdr_<originuuid>_<sourceoidhex>_<dbhash>

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 480

https://www.enterprisedb.com/docs/pgd/latest/reference/node_management/automatic_sync


Limit on the number of node groups allowed in the system for PGD Essential.

Ensure that no more than three node groups (one top group and two subgroups) can exist at any given time. If the limit is exceeded, an error is raised.

Enforced PGD Essential limits - data node count

Don't allow PGD Essential clusters to join more than 4 data nodes.

Added bdr.wait_node_confirm_lsn()  function which waits until a given reaches a given LSN

bdr.wait_node_confirm_lsn( ) will look at the confirmed_flush_lsn of the given node when available, otherwise it will query pg_replication_origin_progress()  of that node, and wait for the
specified LSN to be reached by said node.

Subscriber-only nodes can now be added to data node groups

In previous versions, subscriber-only nodes could only be added to node groups of type "subscriber-only". In PGD 6, a subscriber-only node can be also be added to a data node group by specifying
node_kind='subscriber_only' when using create_node. The join_node_group can then be done using a data node group.

Add bdr.local_analytics_slot_name()  SQL function.

Returns name of analytics slot. This merely produces the correct name irrespective of whether analytics feature is in use.

Add node_uuid column to bdr.node_summary  view.

Added to complement the addition of the node_uuid column to bdr.node and bdr.local_node

Description Addresses

Enhancements

Description Addresses

Multiple conflicting rows resolution

Both pk_exists  and multiple_unique_conflicts  conflict types can now resolve more than one conflicting row by removing any old rows that are part of the conflict. The 
multiple_unique_conflicts  now defaults to update_if_newer  resolver, so it does not throw error by default anymore.

Improved bdr.stat_activity  view

The backend_type  now shows consistent worker type for PGD workers without the extra process identification. The wait_event_type  and wait_event  include more wait events now, instead of showing
"extension" for some events. Also, connection management related columns are added to show real client address/port and whether the session is read-only.

The PARTED node is removed automatically from all nodes in the cluster.

From PGD 6.0.0, bdr.part_node functionality is enhanced to remove the parted node’s metadata automatically from all nodes in the cluster.

For local node, it will remove all the node metadata, including information about remote nodes.
For remote node, it removes only metadata for that specific node. Hence with this release
A node will remain in PART_CLEANUP state till group slots of all nodes are caught up to all the transactions originating from the PARTED node
A node will not remain in PARTED state as the node is removed as soon as it moves to PARTED state.

The --summary  and --options  flags for pgd node show  CLI command.

Add the --summary  and --options  flags to pgd node show  command to filter the output of the pgd node show  command. This also maintains symmetry with other show  commands.

More GUCs verfied in pgd cluster verify  CLI command.

Add the bdr.lock_table_locking  and bdr.truncate_locking  GUCs to list of GUCs verfied in pgd cluster verify  command.

Table rewriting ALTER TABLE... ALTER COLUMN  calls are now supported.

Changing a column's type command which causes the whole table to be rewritten and the change isn't binary coercible is now supported:

CREATE TABLE foo (c1 int,c2 int, c3 int, c4 box, UNIQUE(c1, c2) INCLUDE(c3,c4));
ALTER TABLE foo ALTER c1 TYPE bigint; – results into table rewrite

This also includes support for ALTER TYPE  when using the USING  clause:

CREATE TABLE foo (id serial primary key,data text);
ALTER TABLE foo ALTER data TYPE BYTEA USING data::bytea;

Table rewrites can hold an AccessExclusiveLock for extended periods on larger tables.

Restrictions on non-immutable ALTER TABLE... ADD COLUMN  calls have been removed.

The restrictions on non-immutable ALTER TABLE... ADD COLUMN  calls have been removed.

Synchronize roles and tablespaces during logical join

Roles and tablespaces are now synchronized before the schema is restored from the join source node. If there are already existing roles or tablespaces (or EPAS profiles, they will be updated to have the same
settings, passwords etc. as the ones from the join source node. System roles (i.e. the ones created by initdb) are not synchronized.

Introduce bdr.node_group_config_summary  view

The new bdr.node_group_config_summary  view contains detailed information about group options, including effective value, source of the effective value, default value, whether the value can be inherited,
etc. This is in similar spirit to pg_settings

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 481



Leader DML lock

New lock type leader DML lock is used by default for locking DDL statements that need to block DML. This lock locks on write-leaders only, no requiring all nodes to participate in the locking operation. Old behavior
can be restored by adjusting bdr.ddl_locking  configuration parameter.

Disabling bdr.xact_replication in run_on_* functions

Functions run_on_nodes , run_on_all_nodes  and run_on_group  now sets bdr.xact_replication  to off  by default.

Replica Identity full by default

The auto  value for bdr.default_replica_identity  changed to REPLICA IDENTITY FULL. This setting prevents some edge cases in conflict detection between inserts, updates and deletes across node
crashes and recovery.

When the PGD group is created and the database of the initial PGD node is not empty (i.e. has some tables with data) the REPLICA IDENTITY of all tables will be set according to 
bdr.default_replica_identity .

Tablespace replication as a DDL operation is supported.

Tablespace operations CREATE/ALTER/DROP TABLESPACE  are now replicated as a DDL operation. Where users are running a configuration with multiple nodes on the same machine, you will need to enable
the developer option allow_in_place_tablespace .

Improve the CLI debug messages.

Improve the formating of the log messages to be more readable and symmetrical with Postgres log messages.

New column for pgd cluster verify --settings  CLI command output.

Add the recommended_value  column to the result of the pgd cluster verify --settings  command. The column will not be displayed in tabular output but will be displayed in JSON output.

Display sorted output for CLI.

The output for the commands with tabular output are now sorted by the resource name. Commands that display more than one resource will sort output by each resource column in order.

Subscriber-only nodes replication.

Subscriber-only nodes now receive data only after it has been replicated to majority of data nodes. This does not require any special configuration. Subsequently bdr.standby_slot_names and
bdr.standby_slots_min_confirmed options are removed as similar physical standby functionality is provided in pg_failover_slots extension and in PG17+.

automatic node sync and reconciliation is enabled by default.

The GUC bdr.enable_auto_sync_reconcile  was off by default, but is made on by default in 6.0. This GUC setting ensures that when a node is down for some time, all other nodes get caught up equally with
respect to this node automatically. It also ensures that if there are any prepared transactions that are orphaned by the node going down, they are resolved, either aborted or committed as per the rules of the commit
scope that created them.

Remove the deprecated legacy CLI commands.

Remove the old (PGD 5 and below) CLI commands, which were deprecated but supported for backward compatibility.

Commit scope logic is now only run on data nodes.

Previously, non-data nodes would attempt to handle, but not process commit scope logic, which could lead to confusing, albeit harmless log messages.

Explicitly log the start and stop of dump and restore operations.

This provides greater visibility into the node cloning process and assists with debugging possible issues.

Description Addresses

Changes

Description Addresses

Routing is now enabled by default on subgroups

Routing (and by extension raft) is now enabled by default on data-groups (subgroups with data nodes).

Function bdr.join_node_group  may no longer be executed in a transaction.

As it is not possible to roll back a group join, it can not form part of an idempotent transaction.

Deprecated pause_in_standby  parameter removed from function bdr.join_node_group() .

pause_in_standby  has been deprecated since PGD 5.0.0. Logical standby nodes should be specified as such when executing 
bdr.create_node()

BDR global sequences can no longer created as or set to UNLOGGED

Unlogged BDR sequences may display unexpected behaviour following a server crash. Existing unlogged BDR sequences may be converted to logged ones.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 482

https://www.postgresql.org/docs/current/runtime-config-developer.html#GUC-ALLOW-IN-PLACE-TABLESPACES


Bug Fixes

Description Addresses

Fix the CLI pgd cluster show  command issues on a degraded cluster.

The pgd cluster show  command failed with an error for clock drift if only one node was up and running in a N node cluster. The command now returns valid output for the other components, health  and 
summary , while reporting an appropriate error for clock-drift .

Fix the CLI pgd node show  command issue if a non-existent node is specified.

The pgd node show  command crashed if a non-existent node is specified to the command. The command is fixed to fail gracefully with appropriate error message.

Fix the broken replication slot issue after rolling Postgres upgrade using pgd node upgrade  command.

Merge writer origin positions to the parent origin during node upgrade. In PGD 5 and older writer origin names map to parent origin id which may change during inplace upgrade. 46412,48747

Fixed the timestamp parsing issue for pgd replication show  CLI command.

The pgd replication show  command previously crashed when formatting EPAS timestamps.

Fixed issue where parting node may belong to a non-existing group

When parting a given node, that same node may have subscriptions whose origin was already parted and the group dropped. Previously this would break PGD, and has since been fixed.

num_writers should be positive or -1

The num_writers option, used in bdr.alter_node_group_option() and bdr.alter_node_group_config() should be positive or -1.

Fix replication breakage with updates to non-unique indexes

Fixes the case where an update to a table with non-unique indexes results in the ERROR concurrent INSERT when looking for delete rows , which breaks replication.
43523,43802,45244
,47815

Fix Raft leader election timeout/failure after upgrade

Ensure that any custom value set in the deprecated GUC bdr.raft_election_timeout  is applied to the replacement bdr.raft_global_election_timeout

Ensure that disables subscriptions on subscriber-only nodes are not re-enabled

During subscription reconfiguration, if there is no change required to a subscription, do not enable it since it could have been disabled explicitly by the user. Skip reconfiguring subscriptions if there are no leadership
changes.

46519

Subscriber-only nodes will not take a lock when running DDL

Subscriber-only nodes will no longer attempt to take a lock on the cluster when running DDL. The DDL will be executed locally and not replicated to other nodes. 47233

Fixed hang in database system shutdown.

Fixed non-transactional WAL message acknowledgment by downstream that could cause a WAL sender to never exit during fast database system shutdown. 49022

Fixed deadlock issue in bdr_init_physical.

Fixed deadlock between bdr_init_physical cleaning unwanted node data and concurrent monitoring queries. 46952

Fixed new cluster node consistency issue.

Fixed an issue when new node joining the cluster finishes CATCHUP phase before getting its replication progress against all data nodes. This may cause new node being out of sync with the cluster.

Ensure correct sequence type is displayed in CREATE SEQUENCE warnings

In some cases, warning messages referred to timeshard  when the sequence was actually snowflakeid .

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 483



34          Known issues and limitations

Known issues

These are currently known issues in EDB Postgres Distributed 6.1. These known issues are tracked in PGD's ticketing system and are expected to be resolved in a future release.

Replication of materialized views only works with newly-created materialized views. Materialized views that were created before upgrading to 6.1.0 do not get replicated after upgrading. To prevent this issue, you can do one of the
following:

Before upgrading to PGD 6.1.0., manually create the materialized view on each node.
OR

After upgrading to PGD 6.1.0., drop and create the materialized view so that it gets replicated.

If the resolver for the update_origin_change  conflict is set to skip , synchronous_commit=remote_apply  is used, and concurrent updates of the same row are repeatedly applied on two different nodes, then one of the
update statements might hang due to a deadlock with the PGD writer. As mentioned in Conflicts, skip  isn't the default resolver for the update_origin_change  conflict, and this combination isn't intended to be used in
production. It discards one of the two conflicting updates based on the order of arrival on that node, which is likely to cause a divergent cluster. In the rare situation that you do choose to use the skip  conflict resolver, note the issue
with the use of the remote_apply  mode.

The Decoding Worker feature doesn't work with CAMO/Eager/Group Commit. Installations using CAMO/Eager/Group Commit must keep enable_wal_decoder  disabled.

Lag Control doesn't adjust commit delay in any way on a fully isolated node, that's in case all other nodes are unreachable or not operational. As soon as at least one node connects, replication Lag Control picks up its work and adjusts
the PGD commit delay again.

For time-based Lag Control, PGD currently uses the lag time, measured by commit timestamps, rather than the estimated catch up time that's based on historic apply rates.

Changing the CAMO partners in a CAMO pair isn't currently possible. It's possible only to add or remove a pair. Adding or removing a pair doesn't require a restart of Postgres or even a reload of the configuration.

Group Commit can't be combined with CAMO.

Transactions using Eager Replication can't yet execute DDL. The TRUNCATE command is allowed.

Parallel Apply isn't currently supported in combination with Group Commit. Make sure to disable it when using Group Commit by either (a) Setting num_writers  to 1 for the node group using bdr.alter_node_group_option
or (b) using the GUC bdr.writers_per_subscription . See Configuration of generic replication.

There currently is no protection against altering or removing a commit scope. Running transactions in a commit scope that's concurrently being altered or removed can lead to the transaction blocking or replication stalling completely
due to an error on the downstream node attempting to apply the transaction. Make sure that any transactions using a specific commit scope have finished before altering or removing it.

The PGD CLI can return stale data on the state of the cluster if it's still connecting to nodes that were previously parted from the cluster. Edit the pgd-cli-config.yml  file, or change your --dsn  settings to ensure only active
nodes in the cluster are listed for connection.

To modify a commit scope safely, use bdr.alter_commit_scope .

DDL run in serializable transactions can face the error: ERROR: could not serialize access due to read/write dependencies among transactions . A workaround is to run the DDL outside serializable
transactions.

The EDB Postgres Advanced Server 17 data type BFILE  is not currently supported. This is due to BFILE  being a file reference that is stored in the database, and the file itself is stored outside the database and not replicated.

Limitations

Take these EDB Postgres Distributed (PGD) design limitations into account when planning your deployment.

Nodes

PGD can run hundreds of nodes, assuming adequate hardware and network. However, for mesh-based deployments, we generally don’t recommend running more than 48 nodes in one cluster. If you need extra read scalability beyond
the 48-node limit, you can add subscriber-only nodes without adding connections to the mesh network.

The minimum recommended number of nodes in a group is three to provide fault tolerance for PGD's consensus mechanism. With just two nodes, consensus would fail if one of the nodes were unresponsive. Consensus is required for
some PGD operations, such as distributed sequence generation. For more information about the consensus mechanism used by EDB Postgres Distributed, see Architectural details.

Multiple databases on single instances

Support for using PGD for multiple databases on the same Postgres instance is deprecated beginning with PGD 5 and will no longer be supported with PGD 6. As we extend the capabilities of the product, the added complexity introduced
operationally and functionally is no longer viable in a multi-database design.

It's best practice and we recommend that you configure only one database per PGD instance.

The tooling such as the CLI and Connection Manager currently codify that recommendation.

While it's still possible to host up to 10 databases in a single instance, doing so incurs many immediate risks and current limitations:

If PGD configuration changes are needed, you must execute administrative commands for each database. Doing so increases the risk for potential inconsistencies and errors.

You must monitor each database separately, adding overhead.

Connection Manager works at the Postgres instance level, not at the database level, meaning the leader node is the same for all databases.

Each additional database increases the resource requirements on the server. Each one needs its own set of worker processes maintaining replication, for example, logical workers, WAL senders, and WAL receivers. Each one also needs
its own set of connections to other instances in the replication cluster. These needs might severely impact performance of all databases.

Synchronous replication methods, for example, CAMO and Group Commit, won’t work as expected. Since the Postgres WAL is shared between the databases, a synchronous commit confirmation can come from any database, not
necessarily in the right order of commits.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 484

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts/
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/camo/
https://www.enterprisedb.com/docs/epas/latest/reference/sql_reference/02_data_types/03a_bfiles/
https://www.enterprisedb.com/docs/pgd/latest/reference/overview/basic-architecture/


CLI integration assumes one database.

Durability options (Group Commit/CAMO)

There are various limits on how the PGD durability options work. These limitations are a product of the interactions between Group Commit and CAMO, and how they interact with PGD features such as the WAL decoder and transaction
streaming.

Also, there are limitations on interoperability with legacy synchronous replication, interoperability with explicit two-phase commit, and unsupported combinations within commit scope rules.

The following limitations apply to the use of commit scopes and the various durability options they enable.

General durability limitations

Legacy synchronous replication uses a mechanism for transaction confirmation different from the one used by CAMO, Eager, and Group Commit. The two aren't compatible, so don't use them together. Whenever you use Group Commit,
CAMO, or Eager, make sure none of the PGD nodes are configured in synchronous_standby_names .

Postgres two-phase commit (2PC) transactions (that is, PREPARE TRANSACTION ) can't be used with CAMO, Group Commit, or Eager because those features use two-phase commit underneath.

Group Commit

Group Commit enables configurable synchronous commits over nodes in a group. If you use this feature, take the following limitations into account:

Not all DDL can run when you use Group Commit. If you use unsupported DDL, a warning is logged, and the transactions commit scope is set to local. The only supported DDL operations are:

Nonconcurrent CREATE INDEX
Nonconcurrent DROP INDEX
Nonconcurrent REINDEX  of an individual table or index
CLUSTER  (of a single relation or index only)
ANALYZE
TRUNCATE

Explicit two-phase commit isn't supported by Group Commit as it already uses two-phase commit.

Combining different commit decision options in the same transaction or combining different conflict resolution options in the same transaction isn't supported.

Currently, Raft commit decisions are extremely slow, producing very low TPS. We recommended using them only with the eager  conflict resolution setting to get the Eager All-Node Replication behavior of PGD 4 and older.

Eager

Eager is available through Group Commit. It avoids conflicts by eagerly aborting transactions that might clash. It's subject to the same limitations as Group Commit.

Eager doesn't allow the NOTIFY  SQL command or the pg_notify()  function. It also doesn't allow LISTEN  or UNLISTEN .

CAMO

Commit At Most Once (CAMO) is a feature that aims to prevent applications committing more than once. If you use this feature, take these limitations into account when planning:

CAMO is designed to query the results of a recently failed COMMIT on the origin node. In case of disconnection, the application must request the transaction status from the CAMO partner. Ensure that you have as little delay as possible
after the failure before requesting the status. Applications must not rely on CAMO decisions being stored for longer than 15 minutes.

If the application forgets the global identifier assigned, for example, as a result of a restart, there's no easy way to recover it. Therefore, we recommend that applications wait for outstanding transactions to end before shutting down.

For the client to apply proper checks, a transaction protected by CAMO can't be a single statement with implicit transaction control. You also can't use CAMO with a transaction-controlling procedure or in a DO  block that tries to start
or end transactions.

CAMO resolves commit status but doesn't resolve pending notifications on commit. CAMO doesn't allow the NOTIFY  SQL command or the pg_notify()  function. They also don't allow LISTEN  or UNLISTEN .

When replaying changes, CAMO transactions might detect conflicts just the same as other transactions. If timestamp-conflict detection is used, the CAMO transaction uses the timestamp of the prepare-on-the-origin node, which is
before the transaction becomes visible on the origin node itself.

CAMO isn't currently compatible with transaction streaming. Be sure to disable transaction streaming when planning to use CAMO. You can configure this option globally or in the PGD node group. See Transaction streaming
configuration.

CAMO isn't currently compatible with decoding worker. Be sure to not enable decoding worker when planning to use CAMO. You can configure this option in the PGD node group. See Decoding worker disabling.

Not all DDL can run when you use CAMO. If you use unsupported DDL, a warning is logged and the transactions commit scope is set to local only. The only supported DDL operations are:

Nonconcurrent CREATE INDEX
Nonconcurrent DROP INDEX
Nonconcurrent REINDEX  of an individual table or index
CLUSTER  (of a single relation or index only)
ANALYZE
TRUNCATE

Explicit two-phase commit isn't supported by CAMO as it already uses two-phase commit.

You can combine only CAMO transactions with the DEGRADE TO  clause for switching to asynchronous operation in case of lowered availability.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 485

https://www.enterprisedb.com/docs/pgd/latest/reference/decoding_worker/
https://www.enterprisedb.com/docs/pgd/latest/reference/transaction-streaming/
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/legacy-sync
https://www.postgresql.org/docs/current/sql-prepare-transaction.html
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/group-commit
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/group-commit/#eager-conflict-resolution
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/camo
https://www.enterprisedb.com/docs/pgd/latest/reference/transaction-streaming#configuration
https://www.enterprisedb.com/docs/pgd/latest/reference/decoding_worker#enabling


Mixed PGD versions

PGD was developed to enable rolling upgrades of PGD by allowing mixed versions of PGD to operate during the upgrade process. We expect users to run mixed versions only during upgrades and, once an upgrade starts, that they complete
that upgrade. We don't support running mixed versions of PGD except during an upgrade.

Other limitations

This noncomprehensive list includes other limitations that are expected and are by design. We don't expect to resolve them in the future. Consider these limitations when planning your deployment:

A galloc  sequence might skip some chunks if you create the sequence in a rolled back transaction and then create it again with the same name. Skipping chunks can also occur if you create and drop the sequence when DDL
replication isn't active and then you create it again when DDL replication is active. The impact of the problem is mild because the sequence guarantees aren't violated. The sequence skips only some initial chunks. Also, as a workaround,
you can specify the starting value for the sequence as an argument to the bdr.alter_sequence_set_kind()  function.

EDB Postgres Distributed (PGD)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 486


	1          EDB Postgres Distributed (PGD)
	Why PGD?
	What does PGD enable?
	What are the differences between PGD Essential and PGD Expanded?

	2          Get started with PGD
	What is EDB Postgres Distributed?
	What is EDB Postgres Distributed Essential?
	What is the PGD Essential Standard architecture
	Create your first PGD Essential cluster with Docker Compose

	2.1          An introduction to PGD Essential
	Standard/One-location architecture

	2.2          Creating your first cluster (PGD Essential)
	Prerequisites
	Install the PGD Docker Quickstart kit
	Accessing the PGD Cluster
	Next Steps

	2.3          First steps with your Quickstart PGD Cluster
	2.3.1          Working with SQL and the PGD Cluster
	Connecting within the PGD Cluster
	Working with SQL
	Differences with PGD
	Next Steps

	2.3.2          Loading Data into your PGD Cluster
	Online CSV Importing
	Next Steps

	2.3.3          Using PGD CLI
	Getting started with PGD CLI
	Viewing cluster status
	Viewing groups and group status
	Viewing nodes and node status
	Setting node options

	2.4          Expanded Examples and Use Cases
	Use Cases
	Use Case 1: Multi-Master Replication
	Use Case 2: Data Distribution
	Use Case 3: Geo-Distribution
	Use Case 4: Tiered Tables


	3          Essential How-To
	Overview
	Essential features
	Essential How-To Guides

	3.1          PGD Essential architectures
	Choosing an architecture
	Standard architecture - Ideal for a highly available single location
	Near/far architecture - Ideal for disaster recovery

	3.1.1          Standard PGD architecture
	3.1.1.1          Manually deploying PGD Essential standard architecture
	PGD configuration
	Worked example
	For the first node
	For the second node
	For the third node


	3.1.2          Near/far architecture
	Synchronous replication in near/far architecture

	3.1.2.1          Manually Deploying PGD Essential near-far architecture
	PGD configuration

	3.2          Installing and configuring EDB Postgres Distributed 6
	3.2.1          1 - Prerequisites for Essential installation
	Provisioning hosts
	Configuring hosts
	Create an admin user
	Ensure networking connectivity


	Worked example

	3.2.2          Step 2 - Configure repositories
	Configure repositories
	EDB_SUBSCRIPTION_TOKEN
	EDB_REPO_TYPE

	Install the repositories
	Worked example
	Set the environment variables


	3.2.3          Step 3 - Installing the database and pgd
	Install the database and PGD software
	Set the Postgres version
	Set the package names
	Run the installation command

	Worked example

	3.2.4          Step 4 - Configuring the cluster
	Configuring the cluster
	Cluster name
	Group names
	Node names
	Paths and users
	On each host
	On the first host
	On the second host
	On the third host

	Worked example
	On the first host
	On the second host
	On the third host


	3.2.5          Step 5 - Checking the cluster
	Checking the cluster
	Worked example
	Preparation
	Ensure the cluster is ready

	Create data
	On node-1, create a table
	On node-1, populate the table
	On node-1, monitor performance
	On node-1 get a checksum

	Check data
	Log in to host-2's Postgres server
	On node-2, get a checksum
	Compare with the result from node-one
	Log in to host-3's Postgres server
	On node-3, get a checksum
	Compare with the result from node-one and node-two



	3.3          Connections
	Connecting through the connection manager
	Connecting directly to a data node

	3.4          Using PGD CLI
	Using PGD CLI
	Configuring and connecting PGD CLI
	Use PGD CLI to explore the cluster

	Worked example
	Ensure PGD CLI is installed
	(Optionally) Create a configuration file
	Running PGD CLI
	Using PGD CLI to explore the cluster
	Check the health of the cluster
	Show the nodes in the cluster
	Show the groups in the cluster
	Set a group option
	Set the write leader

	PGD Essential constraints
	Verify cluster architecture
	PGD compatibility assessment
	Commit Scope management commands
	Set group options
	PGD node setup


	3.5          Durability in PGD Essential
	Commit Scopes
	local protect
	lag protect
	majority protect
	adaptive protect

	Using Commit Scopes
	Within a transaction
	For a session
	For a group


	3.6          Autopartitioning
	Autopartitioning and replication
	Range partitioning

	3.7          Production Best Practices
	3.7.1          Sizing
	CPU/Core sizing

	3.7.2          Time and PGD
	Clocks and timezones

	3.8          Essential Standard Operating Procedures
	Overview
	Installation and Configuration
	Data Movement
	Monitoring
	Maintenance
	Backup and Restore
	Upgrade
	Troubleshooting

	3.8.1          How to use Standard Operating Procedures
	How to use SOPs

	3.8.2          Installation and Configuration SOPs
	Overview
	SOPs

	3.8.2.1          SOP - Adding a Node to an Existing Cluster
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	3.8.2.2          SOP - Creating a New Group
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	3.8.2.3          SOP - Installing PGD on a New Node
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	3.8.3          Data Movement SOPs
	SOPs

	3.8.3.1          SOP - Moving Data into the Cluster
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	3.8.3.2          SOP - Moving Data Out of the Cluster
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	3.8.4          Monitoring SOPs
	SOPs

	3.8.4.1          SOP - Monitoring PGD clusters using SQL
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	3.8.5          Backup and Restore SOPs
	SOPs

	3.8.5.1          Backup and Restore with pg_dump
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	3.8.5.2          Backup and Restore with Barman
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	3.8.6          Upgrading Postgres
	SOPs

	3.8.6.1          SOP - Minor upgrades of Postgres
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	3.8.6.2          SOP - Major upgrades of Postgres
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	3.8.6.3          SOP - Upgrading PGD in PGD clusters
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	3.8.7          Troubleshooting
	SOPs

	3.8.7.1          SOP - Troubleshooting Cluster Operations
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	3.8.8          Maintenance SOPs
	SOPs

	3.8.8.1          SOP - Performing Routine Maintenance
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	3.8.8.2          SOP - Handling Node Failures
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	3.8.8.3          SOP - Online Vacuuming
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	4          Expanded How-to
	Overview
	Expanded Features

	4.1          PGD Architectures
	4.1.1          Always-On Architecture
	Standard EDB Always-on architectures
	Architecture details
	Always-on Single Location
	Always-on Multi-location

	Choosing your architecture
	Adding flexibility to the standard architectures

	4.1.2          Essential Architectures
	4.1.3          Multi-Location Architectures
	4.1.4          Geo-Distributed Architectures
	4.2          Installing and configuring EDB Postgres Distributed 6
	4.2.1          1 - Prerequisites for Expanded installation
	Provisioning hosts
	Configuring hosts
	Create an admin user
	Ensure networking connectivity


	Worked example

	4.2.2          Step 2 - Configure repositories
	Configure repositories
	EDB_SUBSCRIPTION_TOKEN
	EDB_SUBSCRIPTION_PLAN
	EDB_REPO_TYPE

	Install the repository/repositories
	Worked example
	Set the environment variables
	Install the repositories


	4.2.3          Step 3 - Installing the database and pgd
	Install the database and PGD software
	Set the Postgres version
	Set the package names
	EDB Postgres Advanced Server
	EDB Postgres Extended
	Community PostgreSQL

	Run the installation command

	Worked example

	4.2.4          Step 4 - Configuring the cluster
	Configuring the cluster
	Cluster name
	Group names
	Node names
	Paths and users
	On each host
	On the first host
	On the second host
	On the third host

	Worked example
	On the first host
	On the second host
	On the third host


	4.2.5          Step 5 - Checking the cluster
	Checking the cluster
	Quick test

	Worked example
	Preparation
	Ensure the cluster is ready

	Create data
	On node-1, create a table
	On node-1, populate the table
	On node-1, monitor performance
	On node-1 get a checksum

	Check data
	Log in to host-2's Postgres server
	On node-2, get a checksum
	Compare with the result from node-one
	Log in to host-3's Postgres server
	On node-3, get a checksum
	Compare with the result from node-one and node-two



	4.3          Expanded Standard Operating Procedures
	Overview
	Installation and Configuration
	Data Movement
	Monitoring
	Maintenance
	Backup and Restore
	Upgrade
	Troubleshooting

	4.3.1          How to use Standard Operating Procedures
	How to use SOPs

	4.3.2          Installation and Configuration SOPs
	Overview
	SOPs

	4.3.2.1          SOP - Adding a Node to an Existing Cluster
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	4.3.2.2          SOP - Creating a New Group
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	4.3.2.3          SOP - Installing PGD on a New Node
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	4.3.3          Data Movement SOPs
	SOPs

	4.3.3.1          SOP - Moving Data into the Cluster
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	4.3.3.2          SOP - Moving Data Out of the Cluster
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	4.3.4          Monitoring SOPs
	SOPs

	4.3.4.1          SOP - Monitoring PGD clusters using SQL
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	4.3.5          Backup and Restore SOPs
	SOPs

	4.3.5.1          Backup and Restore with pg_dump
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	4.3.5.2          Backup and Restore with Barman
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	4.3.6          Upgrading Postgres
	SOPs

	4.3.6.1          SOP - Minor upgrades of Postgres
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	4.3.6.2          SOP - Major upgrades of Postgres
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	4.3.6.3          SOP - Upgrading PGD in PGD clusters
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	4.3.7          Troubleshooting
	SOPs

	4.3.7.1          SOP - Troubleshooting Cluster Operations
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	4.3.8          Maintenance SOPs
	SOPs

	4.3.8.1          SOP - Performing Routine Maintenance
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	4.3.8.2          SOP - Handling Node Failures
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	4.3.8.3          SOP - Online Vacuuming
	Overview
	Prerequisites
	Instructions
	Worked Example
	Notes
	Troubleshooting
	References

	5          PGD concepts explained
	PGD concepts
	PGD Expanded concepts

	5.1          Replication
	How Replication Works
	Commit scopes and replication
	What is replicated?

	5.2          PGD Nodes and Groups
	Data Nodes
	Groups
	Witness Nodes
	Subscriber-only Nodes
	Logical Standby Nodes

	5.3          Connection Management
	5.4          Locking
	Kinds of Locks
	DDL locking
	DML locking
	Which locks are used when?


	5.5          Durability
	5.6          Lag Control
	Lag Control in PGD

	5.7          Expanded Commit Scopes
	5.8          Geo-Distributed Clusters
	5.9          Conflict Management
	6          PGD overview
	6.1          Architecture overview
	High-level architecture
	Architectural elements
	Node types
	Node roles

	Architectural flexibility

	6.2          PGD overview - architecture and performance
	Architectural options and performance
	Always-on architectures
	Supported Postgres database servers
	Characteristics affecting performance


	6.3          PGD compared
	7          Node types and capabilities
	7.1          An overview of PGD Node types
	Data nodes
	Witness nodes
	Logical standby nodes
	Subscriber-only nodes

	7.2          Witness nodes
	Witness nodes within PGD groups or regions
	Witness node outside regions

	7.3          Logical standby nodes
	7.4          Subscriber-only nodes and groups
	7.4.1          An overview of Subscriber-only nodes
	Overview
	Subscriber-only nodes
	Subscriber-only groups
	Optimizing subscriber-only groups
	Subscriber-only nodes and DDL

	7.4.2          Creating Subscriber-only groups and nodes
	Creating a Subscriber-only group manually
	Adding a node to a new Subscriber-only group manually

	7.4.3          Joining nodes to a Subscriber-only group
	Joining a node to an existing subscriber-only group

	7.4.4          Optimizing subscriber-only groups
	Requirements for the optimized topology
	How the optimized topology works
	Subscriber-only group leaders
	Group leaders in the optimized topology
	Enabling the optimized model

	8          Node management
	8.1          Creating PGD nodes
	It's just Postgres
	Which Postgres version?
	Installing Postgres
	Installing the BDR extension
	Configuring the database for PGD

	Initializing a PGD node
	Next steps

	8.2          Groups and subgroups
	Groups
	Sub-groups

	8.3          Creating and joining PGD groups
	Creating and joining PGD groups

	8.4          Viewing PGD topology
	Listing PGD groups
	Using pgd-cli
	Using SQL

	Listing nodes in a PGD group
	Using pgd-cli
	Using SQL


	8.5          Removing nodes and groups
	Removing a node from a PGD group
	Removing a whole PGD group

	8.6          Connection DSNs and SSL (TLS)
	8.7          Node restart and down node recovery
	8.8          Automatic synchronization
	Auto-triggering the Sync
	Cancellation
	Sync Request Life Cycle
	GUC

	8.9          Node UUIDs
	Why UUIDs?
	How are UUIDs generated?
	What happens if a node is removed and a replacement added?
	UUID-related changes in PGD 6

	8.10          Replication slots created by PGD
	Group slot
	Other slot names

	9          Connection Manager
	9.1          Connection Manager overview
	About Connection Manager
	Using Connection Manager
	Read-Only connections
	TLS and Authentication

	9.2          Connection Manager Authentication
	Connection Manager connection types
	Connection Manager authentication methods
	Connection Manager authentication options
	Unsupported pg_hba.conf rules

	9.3          Configuring Connection Manager
	Configuring Connection Manager

	9.4          Load Balancing with Connection Manager
	Connection Manager routing
	HAProxy example: Connection Manager routing

	Direct routing
	HAProxy example: Direct routing


	9.5          Monitoring the Connection Manager
	Available SQL tables and views
	Available HTTP/HTTPS endpoints
	Logging

	10          Postgres configuration
	Postgres settings
	Max prepared transactions
	max_prepared_transactions

	Considerations for global configuration

	11          Backup and recovery
	Logical backup and restore
	Temporary postgresql.conf settings
	pg_dump / pg_restore
	Prefer restoring to a single node cluster
	Sequences

	Physical backup and restore
	Restore
	EDB Postgres Distributed cluster failure or seeding a new cluster from a backup
	Cleanup of PGD metadata
	Cleanup of replication origins
	Cleanup of replication slots


	Eventual consistency
	Point-in-time recovery (PITR)

	Monitoring

	12          Monitoring
	12.1          Monitoring through SQL
	Monitoring overview
	Monitoring node join and removal
	Monitoring the manager worker
	Monitoring Routing
	Monitoring Replication Peers
	Monitoring outgoing replication
	Monitoring incoming replication
	Monitoring WAL senders using LCR

	Monitoring PGD replication workers
	Monitoring PGD writers
	Monitoring commit scopes
	Monitoring global locks
	Monitoring conflicts
	Apply statistics
	Standard PostgreSQL statistics views
	Monitoring PGD versions
	Monitoring Raft consensus
	Monitoring replication slots
	Monitoring transaction COMMITs

	13          AutoPartition in PGD
	Auto creation of partitions
	AutoPartition examples
	RANGE-partitioned tables
	Stopping automatic creation of partitions
	Waiting for partition creation
	Finding a partition
	Enabling or disabling autopartitioning
	Dropping or detaching a partition

	14          Commit Scopes
	Introducing
	Commit scope kinds
	Working with commit scopes

	14.1          Overview of durability options
	Overview

	14.2          Durability terminology
	Durability terminology
	Nodes


	14.3          Commit scopes
	Commit scope structure
	How a commit scope is selected
	Creating a Commit Scope
	Using a commit scope

	14.4          Origin groups
	ORIGIN_GROUP

	14.5          Commit scope rules
	The commit scope group
	The confirmation level
	The commit scope kinds
	SYNCHRONOUS COMMIT
	GROUP COMMIT
	CAMO
	LAG CONTROL

	Combining rules

	14.6          Comparing durability options
	Comparison
	ON RECEIVED
	ON REPLICATED
	ON DURABLE
	ON VISIBLE


	14.7          Degrading commit scope rules
	Behavior
	SYNCHRONOUS COMMIT and GROUP COMMIT
	CAMO

	14.8          Synchronous Commit
	Overview
	Example
	Configuration
	Confirmation
	Details

	14.9          Group Commit
	Overview
	Example
	Requirements
	Limitations
	Configuration
	Confirmation
	Behavior
	Commit decisions
	Conflict resolution
	Aborts
	Transaction reconciliation

	Eager conflict resolution
	Usage
	Error handling
	Effects of Eager Replication in general
	Increased abort rate

	Effects of MAJORITY and ALL node replication in general
	Increased commit latency



	14.10          Commit At Most Once
	Overview
	Requirements
	Configuration
	Confirmation
	Limitations
	Failure scenarios
	Data persistence at receiver side
	Asynchronous mode
	Example
	With asynchronous mode
	Without asynchronous mode


	Application use
	Overview and requirements
	Working with the CAMO partner
	Connection pools and proxies

	CAMO limitations
	Performance implications
	Client application testing

	14.11          Lag Control
	Overview
	Background
	Requirements
	Configuration
	Confirmation
	Transaction application
	Limitations
	Caveats
	Meeting organizational objectives
	Lag Control and extensions

	14.12          Administering
	Planned shutdown and restarts

	14.13          Legacy synchronous replication using PGD
	Usage
	Comparison
	Postgres configuration parameters
	Migration to commit scopes

	14.14          Predefined Commit Scopes
	local protect
	lag protect
	majority protect
	adaptive protect

	14.15          Internal timing of operations
	15          Conflict Management
	15.1          Conflicts
	15.1.1          Overview
	How conflicts happen
	Avoiding or tolerating conflicts

	15.1.2          Types of Conflict
	PRIMARY KEY or UNIQUE conflicts
	INSERT/INSERT conflicts
	INSERT operations that violate UNIQUE or EXCLUDE constraints
	UPDATE/UPDATE conflicts
	UPDATE conflicts on the PRIMARY KEY
	UPDATE operations that violate UNIQUE or EXCLUDE constraints
	UPDATE/DELETE conflicts
	INSERT/UPDATE conflicts
	INSERT/DELETE conflicts
	DELETE/DELETE conflicts
	Conflicts with three or more nodes

	Foreign key constraint conflicts
	TRUNCATE conflicts
	Data conflicts for roles and tablespace differences
	Lock conflicts and deadlock aborts
	Divergent conflicts
	TOAST support details

	15.1.3          Conflict detection
	Origin conflict detection
	Row version conflict detection

	15.1.4          Conflict resolution
	15.1.5          Conflict logging
	Conflict reporting

	15.1.6          Data verification with LiveCompare
	15.2          Column-level conflict detection
	15.2.1          Overview
	When to resolve at the column level
	Special problems for column-level conflict resolution
	Handling column-level conflicts using CRDT data types

	15.2.2          Enabling and disabling column-level conflict resolution
	Using bdr.alter_table_conflict_detection to enable column-level conflict resolution
	Listing tables with column-level conflict resolution

	15.2.3          Timestamps in column-level conflict resolution
	Comparing column_modify_timestamp and column_commit_timestamp
	column_modify_timestamp
	column_commit_timestamp

	Inspecting column timestamps
	bdr.column_timestamps_to_text(bdr.column_timestamps)
	bdr.column_timestamps_to_jsonb(bdr.column_timestamps)
	bdr.column_timestamps_resolve(bdr.column_timestamps, xid)


	15.3          Conflict-free replicated data types
	15.3.1          CRDTs Overview
	Introduction to CRDTs
	CRDTs in PostgreSQL

	15.3.2          Using CRDTs
	Using CRDTs in tables
	Non-CRDT example
	CRDT example

	Configuration options
	Different types of CRDTs
	Query planning and optimization

	15.3.3          Operation-based and state-based CRDTs
	Operation-based CRDT types (CmCRDT)
	State-based CRDT types (CvCRDT)

	15.3.4          CRDT Disk-space requirements
	Operation-based CRDT disk-space reqs
	State-based CRDT disk-space reqs

	15.3.5          CRDTs vs conflict handling/reporting
	CRDT types versus conflicts handling
	CRDT types versus conflict reporting

	15.3.6          Resetting CRDT values
	Challenges when resetting CRDT values
	How to reliably handle resetting CRDT values

	15.3.7          Implemented CRDTs
	Grow-only counter (crdt_gcounter)
	Grow-only sum (crdt_gsum)
	Positive-negative counter (crdt_pncounter)
	Positive-negative sum (crdt_pnsum)
	Delta counter (crdt_delta_counter)
	Delta sum (crdt_delta_sum)

	16          Testing and tuning PGD clusters
	pgd_bench
	Notes on pgd_bench usage
	Performance testing and tuning

	17          Upgrading
	Upgrading PGD
	Upgrading Postgres or Postgres and PGD major versions
	Other upgrades

	17.1          Upgrading PGD clusters manually
	Upgrade planning
	Rolling upgrade considerations
	Rolling server software upgrades
	Rolling upgrade using node join
	Upgrading a CAMO-enabled cluster

	Upgrade preparation
	Server software upgrade
	BDR extension upgrade
	Fence the node
	Stop Postgres
	Upgrade packages
	Start Postgres
	Unfence the node

	Postgres upgrade
	Minor version Postgres upgrade
	Major version Postgres upgrade


	Upgrade check and validation
	PGD 5 - Moving from PGD Proxy to Connection Manager

	17.2          Supported PGD upgrade paths
	Upgrading to version 6.1.0

	17.3          Compatibility changes
	Summary
	Connection Manager
	DDL Locking changes
	Join/part behavior
	Function and node state changes
	Sequences conversion
	Parting a node drops it

	Administration function changes
	Other
	Replica identity
	Run on (all) writes
	General UI improvements

	Changes to defaults
	Global lock timeout
	Auto sync


	17.4          Application schema upgrades
	Rolling application schema upgrades

	17.5          In-place Postgres or Postgres and PGD major version upgrades
	Terminology
	Precautions
	Usage
	pgd node upgrade command-line
	Synopsis
	Options
	Environment variables

	Example
	Steps performed
	PGD Postgres checks
	pg_upgrade steps
	PGD post-upgrade steps



	17.6          Performing a Postgres major version rolling upgrade on a PGD cluster
	Upgrading Postgres major versions
	Prepare the upgrade
	Perform the upgrade on each node

	Worked example: Upgrade PGD 4 to PGD 6.1
	Overview
	Confirm the harp-proxy leader
	Fence the node
	Stop the Postgres service
	Stop HARP manager
	Remove and install packages
	Start the Postgres service
	Start HARP manager
	Unfence the node
	Repeat steps for all nodes
	Confirm cluster version
	Confirm SCRAM hashes
	Enable routing
	Switch to Connection Manager
	Stop harp manager and proxy services.

	Worked example: Upgrade PGD 5 to PGD 6.1
	Prerequisites
	Install packages for the new server and PGD

	Pre-upgrade steps
	Version Check
	Move to Connection Manager
	Write leader node verification
	Fence the node
	Initialize the new Postgres instance
	Migrate configuration to the new Postgres version
	Dry run check
	Execute the upgrade.

	Post-upgrade steps
	Update the Postgres service file
	Start the postgres service
	Verify the upgraded cluster versions
	Unfence the node
	Verify the Connection Manager is working
	Clean up and vacuum analyze
	Upgrade the remaining nodes
	Verify the final state of the cluster
	Verify the Connection Manager


	18          DDL replication
	18.1          DDL overview
	Replicated DDL
	Differences from PostgreSQL
	Executing DDL on PGD systems
	DDL and mixed PostgreSQL versions

	18.2          DDL replication options
	18.3          DDL locking details
	The global DDL lock
	The global DML lock

	18.4          Managing DDL with PGD replication
	Minimizing the impact of DDL
	Handling DDL with down nodes
	Statement-specific DDL replication concerns

	18.5          DDL command handling matrix
	Command matrix
	Command notes
	ALTER SEQUENCE
	ALTER TABLE
	ALTER TABLE disallowed commands
	ALTER TABLE locking
	ALTER TABLE examples

	ALTER TYPE
	COMMENT ON
	CREATE PROFILE or ALTER PROFILE
	CREATE SEQUENCE
	CREATE TABLE AS and SELECT INTO
	EXPLAIN
	EXPLAIN ANALYZE Replication
	EXPLAIN ANALYZE Locking

	GRANT and REVOKE
	LOCK TABLE
	SECURITY LABEL
	TRUNCATE Replication
	TRUNCATE Locking


	18.6          DDL and role manipulation statements
	18.7          Workarounds for DDL restrictions
	Adding a CONSTRAINT

	18.8          PGD functions that behave like DDL
	19          Decoding worker
	Enabling
	Disabling
	LCR file names
	Using with transaction streaming


	20          CDC Failover support
	Background
	CDC Failover support
	How CDC Failover works
	At-least-once delivery guarantees
	Exactly-once delivery

	Enabling CDC Failover support
	CDC Failover support with Postgres 17+
	Obtaining Initial Consistent Snapshot
	Failing Over to Newly Joined Nodes
	Tracking Per-Origin Progress
	Limitations

	21          Parallel Apply
	What is Parallel Apply?
	Configuring Parallel Apply
	When to use Parallel Apply
	Monitoring Parallel Apply
	Disabling Parallel Apply
	Deadlock mitigation
	Parallel Apply support


	22          Replication sets
	Using replication sets
	Behavior of partitioned tables
	Behavior with foreign keys
	Replication set membership
	Listing replication sets
	DDL replication filtering
	Selective replication example
	Cluster configuration
	Application requirements
	Creating tables
	Viewing groups and replication sets
	Adding tables to replication sets
	Testing selective replication


	23          Security and roles
	23.1          Roles
	23.2          Role management
	Role rule - No un-replicated roles
	Roles for new nodes
	Connections and roles

	23.3          PGD predefined roles
	bdr_superuser
	Privileges

	bdr_read_all_stats
	Privileges

	bdr_monitor
	Privileges

	bdr_application
	Privileges

	bdr_read_all_conflicts
	Privileges


	23.4          Roles and replication
	DDL and DML replication and users
	Differing table ownership
	Replication and row-level security
	bdr_superuser role and replication
	Privilege restrictions
	Foreign key privileges

	23.5          Access control
	Catalog tables
	PGD functions and operators
	Granting privileges on catalog objects
	Triggers

	24          Sequences
	PGD global sequences
	Automatic sequence conversion
	SnowflakeId sequences
	Timeshard sequences

	Unlogged sequences and PGD
	Globally allocated range sequences
	Converting a local sequence to a galloc sequence


	UUIDs, KSUUIDs, and other approaches
	KSUUID v2 functions
	UUIDs
	KSUUIDs
	Step and offset sequences
	Composite keys


	See also

	25          Stream triggers
	Trigger execution during apply
	Missing-column conflict resolution
	Data loss and divergence risk


	Terminology of row-types
	Conflict triggers
	Transform triggers
	Row contents
	Execution order
	Stream triggers examples

	26          Transaction streaming
	PGD enhancements
	Caveats

	Configuration
	Node configuration using bdr.default_streaming_mode
	Group configuration using bdr.alter_node_group_option()
	Configuration setting effects

	Monitoring

	27          Explicit two-phase commit (2PC)
	Use

	28          Application use
	28.1          Application behavior
	Replication behavior
	Truncate
	Row-level locks
	Sequences
	Binary objects
	Rules
	Base tables only
	Partitioned tables
	Triggers
	Toast
	Other restrictions

	28.2          DML and DDL replication and nonreplication
	DML replication
	DDL replication
	Nonreplicated statements

	28.3          Nodes with differences
	Replicating between nodes with differences
	Comparison between nodes with differences
	Replicating between different release levels

	28.4          General rules for applications
	Background
	Rules for applications

	28.5          Timing considerations and synchronous replication
	28.6          Using extensions with PGD
	PGD and other PostgreSQL extensions
	Extensions providing logical decoding
	Extensions providing replication or HA functionality

	Supported extensions
	EDB Advanced Storage table access methods
	pgaudit

	Installing extensions
	Configuring shared_preload_libraries
	Installing the extension


	28.7          Use of table access methods (TAMs) in PGD
	28.8          Feature compatibility
	Server feature/commit scope interoperability
	Notes

	Commit scope/commit scope interoperability
	Notes


	29          PGD Reference
	29.1          Tables, views and functions reference
	User visible catalogs and views
	System functions
	Version information functions
	System information functions
	System and progress information parameters
	Node status functions
	Consensus function
	Utility functions
	Global advisory locks
	Monitoring functions
	Routing functions
	CAMO functions
	Commit Scope functions

	PGD settings
	Conflict handling
	Global sequence parameters
	DDL handling
	Global locking
	Node management
	Generic replication
	CRDTs
	Commit scope
	Commit At Most Once
	Transaction streaming
	Lag Control
	Monitoring and logging
	Decoding worker
	Connectivity settings
	Topology settings
	Internal settings - Raft timeouts
	Internal settings - Other Raft values
	Internal settings - Other values

	Node management
	Node management interfaces
	Routing functions
	Commit scopes
	Conflicts
	Conflict functions
	Replication set management
	Replication set membership
	DDL replication filtering
	Testing and tuning commands
	Global sequence management interfaces
	Sequence functions
	KSUUID v2 functions
	KSUUID v1 functions

	Autopartition
	Stream triggers reference
	Stream triggers manipulation interfaces
	Stream triggers row functions
	Stream triggers row variables
	Internal catalogs and views
	Internal system functions
	General internal functions
	Task manager functions

	Conflict functions
	Column-level conflict functions
	Conflicts

	29.1.1          User visible catalogs and views
	bdr.camo_decision_journal
	bdr.camo_decision_journal columns

	bdr.commit_scopes
	bdr.commit_scopes columns

	bdr.conflict_history
	bdr.conflict_history columns

	bdr.conflict_history_summary
	bdr.conflict_history_summary columns

	bdr.consensus_kv_data
	bdr.consensus_kv_data Columns

	bdr.crdt_handlers
	bdr.crdt_handlers Columns

	bdr.ddl_replication
	bdr.ddl_replication columns

	bdr.depend
	bdr.failover_replication_slots
	bdr.failover_replication_slots columns

	bdr.global_consensus_journal
	bdr.global_consensus_journal columns

	bdr.global_consensus_journal_details
	bdr.global_consensus_journal_details columns

	bdr.global_consensus_response_journal
	bdr.global_consensus_response_journal columns

	bdr.global_lock
	bdr.global_lock columns

	bdr.global_locks
	bdr.global_locks columns

	bdr.group_camo_details
	bdr.group_camo_details columns

	bdr.group_raft_details
	bdr.group_raft_details columns

	bdr.group_replslots_details
	bdr.group_replslots_details columns

	bdr.group_subscription_summary
	bdr.group_subscription_summary columns

	bdr.group_versions_details
	bdr.group_versions_details columns

	bdr.leader
	bdr.leader columns

	bdr.local_consensus_snapshot
	bdr.local_consensus_snapshot columns

	bdr.local_consensus_state
	bdr.local_consensus_state columns

	bdr.local_node
	bdr.local_node columns

	bdr.local_node_summary
	bdr.local_sync_status
	bdr.local_sync_status columns

	bdr.node
	bdr.node columns

	bdr.node_catchup_info
	bdr.node_catchup_info columns

	bdr.node_catchup_info_details
	bdr.node_conflict_resolvers
	bdr.node_conflict_resolvers columns

	bdr.node_group
	bdr.node_group columns

	bdr.node_group_replication_sets
	bdr.node_group_replication_sets columns

	bdr.node_group_summary
	bdr.node_group_summary columns

	bdr.node_local_info
	bdr.node_local_info columns

	bdr.node_log_config
	bdr.node_log_config columns

	bdr.node_peer_progress
	bdr.node_peer_progress columns

	bdr.node_replication_rates
	bdr.node_replication_rates columns

	bdr.node_slots
	bdr.node_slots columns

	bdr.node_summary
	bdr.node_summary columns

	bdr.parted_origin_catchup_info
	bdr.parted_origin_catchup_info columns

	bdr.parted_origin_catchup_info_details
	bdr.parted_origin_catchup_info_details columns

	bdr.queue
	bdr.queue columns

	bdr.replication_set
	bdr.replication_set columns

	bdr.replication_set_table
	bdr.replication_set_table columns

	bdr.replication_set_ddl
	bdr.replication_set_ddl Columns

	bdr.replication_sets
	bdr.replication_sets columns

	bdr.schema_changes
	bdr.schema_changes columns

	bdr.sequence_alloc
	bdr.sequence_alloc columns

	bdr.sequences
	bdr.sequences columns

	bdr.stat_activity
	bdr.stat_activity additional columns
	bdr.stat_commit_scope
	bdr.stat_commit_scope columns

	bdr.stat_commit_scope_state
	bdr.stat_commit_scope_state columns

	bdr.stat_connection_manager
	bdr.stat_connection_manager columns

	bdr.stat_connection_manager_connections
	bdr.stat_connection_manager_connections columns

	bdr.stat_connection_manager_node_stats
	bdr.stat_connection_manager_node_stats columns

	bdr.stat_connection_manager_hba_file_rules
	bdr.stat_connection_manager_hba_file_rules columns

	bdr.stat_raft_followers_state
	bdr.stat_raft_followers_state columns

	bdr.stat_raft_state
	bdr.stat_raft_state columns

	bdr.stat_receiver
	bdr.stat_receiver columns

	bdr.stat_relation
	bdr.stat_relation columns

	bdr.stat_routing_candidate_state
	bdr.stat_routing_candidate_state columns

	bdr.stat_routing_state
	bdr.stat_routing_state columns

	bdr.stat_subscription
	bdr.stat_subscription columns

	bdr.stat_worker
	bdr.stat_worker columns

	bdr.stat_writer
	bdr.stat_writer columns

	bdr.subscription
	bdr.subscription columns

	bdr.subscription_summary
	bdr.subscription_summary columns

	bdr.tables
	bdr.tables columns

	bdr.taskmgr_work_queue
	bdr.taskmgr_work_queue columns

	bdr.taskmgr_workitem_status
	bdr.taskmgr_workitem_status columns

	bdr.taskmgr_local_work_queue
	bdr.taskmgr_local_work_queue columns

	bdr.taskmgr_local_workitem_status
	bdr.taskmgr_local_workitem_status columns

	bdr.trigger
	bdr.trigger columns

	bdr.triggers
	bdr.workers
	bdr.workers Columns

	bdr.writers
	bdr.writers columns

	bdr.worker_tasks
	bdr.worker_tasks columns


	29.1.2          System functions
	Version information functions
	bdr.bdr_version
	bdr.bdr_version_num

	System information functions
	bdr.get_relation_stats
	bdr.get_subscription_stats

	System and progress information parameters
	bdr.local_node_id
	bdr.last_committed_lsn
	transaction_id

	Node status functions
	bdr.is_node_connected
	Synopsis

	bdr.is_node_ready
	Synopsis


	Consensus function
	bdr.consensus_disable
	bdr.consensus_enable
	bdr.consensus_proto_version
	bdr.consensus_snapshot_export
	Synopsis

	bdr.consensus_snapshot_import
	Synopsis

	bdr.consensus_snapshot_verify
	Synopsis

	bdr.get_consensus_status
	bdr.get_raft_status
	bdr.raft_leadership_transfer
	Synopsis


	Utility functions
	bdr.wait_slot_confirm_lsn
	Synopsis
	Notes
	Parameters

	bdr.wait_node_confirm_lsn
	Synopsis
	Parameters
	Notes

	bdr.wait_for_apply_queue
	Synopsis
	Parameters

	bdr.get_node_sub_receive_lsn
	Synopsis
	Parameters

	bdr.get_node_sub_apply_lsn
	Synopsis
	Parameters

	bdr.replicate_ddl_command
	Synopsis
	Parameters
	Notes

	bdr.run_on_all_nodes
	Synopsis
	Parameters
	Notes
	Example

	bdr.run_on_nodes
	Synopsis
	Parameters
	Notes

	bdr.run_on_group
	Synopsis
	Parameters
	Notes

	bdr.global_lock_table
	Synopsis
	Parameters
	Notes

	bdr.wait_for_xid_progress
	Synopsis
	Parameters
	Notes

	bdr.local_group_slot_name
	Example

	bdr.node_group_type
	Example

	bdr.alter_node_kind
	Synopsis
	Parameters

	bdr.alter_subscription_skip_changes_upto
	Synopsis
	Example


	Global advisory locks
	bdr.global_advisory_lock
	Synopsis
	parameters
	Synopsis
	Parameters

	bdr.global_advisory_unlock
	Synopsis
	Parameters
	Synopsis
	Parameters


	Monitoring functions
	bdr.monitor_group_versions
	Synopsis
	Notes

	bdr.monitor_group_raft
	Synopsis
	Parameters
	Notes

	bdr.monitor_local_replslots
	Synopsis
	Notes

	bdr.wal_sender_stats
	Synopsis
	Output columns

	bdr.get_decoding_worker_stat
	Synopsis
	Output columns
	Notes

	bdr.lag_control
	Synopsis
	Output columns


	Routing functions
	bdr.routing_leadership_transfer
	Synopsis
	Parameters


	CAMO functions
	bdr.is_camo_partner_connected
	Synopsis
	Return value

	bdr.is_camo_partner_ready
	Synopsis
	Return value

	bdr.get_configured_camo_partner
	Synopsis

	bdr.wait_for_camo_partner_queue
	Synopsis

	bdr.camo_transactions_resolved
	Synopsis

	bdr.logical_transaction_status
	Synopsis
	Parameters
	Return value


	Commit Scope functions
	bdr.add_commit_scope
	bdr.create_commit_scope
	Synopsis
	Note

	bdr.alter_commit_scope
	Synopsis

	bdr.drop_commit_scope
	Synopsis

	bdr.remove_commit_scope


	29.1.3          PGD settings
	Conflict handling
	bdr.default_conflict_detection

	Global sequence parameters
	bdr.default_sequence_kind

	DDL handling
	bdr.default_replica_identity
	bdr.ddl_replication
	bdr.role_replication
	bdr.ddl_locking
	bdr.truncate_locking

	Global locking
	bdr.global_lock_max_locks
	bdr.global_lock_timeout
	bdr.global_lock_statement_timeout
	bdr.global_lock_idle_timeout
	bdr.lock_table_locking
	bdr.predictive_checks

	Node management
	bdr.replay_progress_frequency

	Generic replication
	bdr.writers_per_subscription
	bdr.max_writers_per_subscription
	bdr.xact_replication
	bdr.permit_unsafe_commands
	bdr.batch_inserts
	bdr.maximum_clock_skew
	bdr.maximum_clock_skew_action
	bdr.accept_connections
	bdr.writer_input_queue_size
	bdr.writer_output_queue_size
	bdr.min_worker_backoff_delay

	CRDTs
	bdr.crdt_raw_value

	Commit scope
	bdr.commit_scope

	Commit At Most Once
	bdr.camo_local_mode_delay
	bdr.camo_enable_client_warnings

	Transaction streaming
	bdr.default_streaming_mode

	Lag Control
	bdr.lag_control_max_commit_delay
	bdr.lag_control_max_lag_size
	bdr.lag_control_max_lag_time
	bdr.lag_control_min_conforming_nodes
	bdr.lag_control_commit_delay_adjust
	bdr.lag_control_sample_interval
	bdr.lag_control_commit_delay_start

	Monitoring and logging
	bdr.debug_level
	bdr.trace_level
	bdr.track_subscription_apply
	bdr.track_relation_apply
	bdr.track_apply_lock_timing

	Decoding worker
	bdr.enable_wal_decoder
	bdr.receive_lcr
	bdr.lcr_cleanup_interval

	Connectivity settings
	bdr.global_connection_timeout
	bdr.global_keepalives
	bdr.global_keepalives_idle
	bdr.global_keepalives_interval
	bdr.global_keepalives_count
	bdr.global_tcp_user_timeout

	Topology settings
	bdr.force_full_mesh

	Internal settings - Raft timeouts
	bdr.raft_global_election_timeout
	bdr.raft_group_election_timeout
	bdr.raft_response_timeout

	Internal settings - Other Raft values
	bdr.raft_keep_min_entries
	bdr.raft_log_min_apply_duration
	bdr.raft_log_min_message_duration
	bdr.raft_group_max_connections

	Internal settings - Other values
	bdr.backwards_compatibility
	bdr.track_replication_estimates
	bdr.lag_tracker_apply_rate_weight
	bdr.enable_auto_sync_reconcile


	29.1.4          Node management
	List of node states
	Node-management commands
	bdr_init_physical
	Synopsis
	Options
	Notes

	bdr_config
	Synopsis
	Options
	Example



	29.1.5          Node management interfaces
	bdr.alter_node_group_option
	Synopsis
	Parameters
	Return value
	Notes

	bdr.alter_node_interface
	Synopsis
	Parameters
	Notes

	bdr.alter_node_option
	Synopsis
	Parameters

	bdr.alter_subscription_enable
	Synopsis
	Parameters
	Notes

	bdr.alter_subscription_disable
	Synopsis
	Parameters
	Notes

	bdr.create_node
	Synopsis
	Parameters
	Notes

	bdr.create_node_group
	Synopsis
	Parameters
	Notes

	bdr.drop_node_group
	Synopsis
	Parameters
	Notes

	bdr.join_node_group
	Synopsis
	Parameters
	Notes

	bdr.part_node
	Synopsis
	Parameters
	Notes

	bdr.promote_node
	Synopsis
	Notes

	bdr.switch_node_group
	Synopsis
	Parameters
	Notes

	bdr.sync_node_cancel
	Synopsis
	Parameters
	Notes

	bdr.wait_for_join_completion
	Synopsis
	Parameters
	Notes


	29.1.6          Commit scopes
	Commit scope syntax
	commit_scope_degrade_operation

	Commit scope targets
	ORIGIN_GROUP

	Commit scope groups
	ANY
	ANY NOT
	MAJORITY
	MAJORITY NOT
	ALL
	ALL NOT

	Confirmation level
	ON received
	ON replicated
	ON durable
	ON visible

	Commit Scope kinds
	SYNCHRONOUS COMMIT
	DEGRADE ON parameters
	commit_scope_degrade_operation

	GROUP COMMIT
	GROUP COMMIT parameters
	ABORT ON parameters
	DEGRADE ON parameters
	transaction_tracking settings
	conflict_resolution settings
	commit_decision settings
	commit_scope_degrade_operation settings

	CAMO
	DEGRADE ON parameters

	LAG CONTROL
	LAG CONTROL parameters


	29.1.7          Conflicts
	Conflict detection
	List of conflict types

	Conflict resolution
	List of conflict resolvers
	Default conflict resolvers
	List of conflict resolutions

	Conflict logging

	29.1.8          Conflict functions
	bdr.alter_table_conflict_detection
	Synopsis
	Parameters
	Notes

	bdr.alter_node_set_conflict_resolver
	Synopsis
	Parameters
	Notes

	bdr.alter_node_set_log_config
	Synopsis
	Parameters
	Notes
	Listing conflict logging configurations
	Logging conflicts to a table


	29.1.9          Replication set management
	bdr.create_replication_set
	Synopsis
	Parameters
	Notes

	bdr.alter_replication_set
	Synopsis
	Parameters
	Notes

	bdr.drop_replication_set
	Synopsis
	Parameters
	Notes

	bdr.alter_node_replication_sets
	Synopsis
	Parameters
	Notes


	29.1.10          Replication set membership
	bdr.replication_set_add_table
	Synopsis
	Parameters
	Notes

	bdr.replication_set_remove_table
	Synopsis
	Parameters
	Notes


	29.1.11          DDL replication filtering
	bdr.replication_set_add_ddl_filter
	Synopsis
	Parameters
	Notes
	Examples

	bdr.replication_set_remove_ddl_filter
	Synopsis
	Parameters
	Notes


	29.1.12          Testing and tuning commands
	pgd_bench
	Synopsis
	Options
	Setting mode
	Setting GUC variables
	Initialization options
	Options to select what to run
	Benchmarking options
	Common options:



	29.1.13          Global sequence management interfaces
	Sequence functions
	bdr.alter_sequence_set_kind
	Synopsis
	Parameters
	Notes

	bdr.extract_timestamp_from_snowflakeid
	Synopsis
	Parameters
	Notes

	bdr.extract_nodeid_from_snowflakeid
	Synopsis
	Parameters
	Notes

	bdr.extract_localseqid_from_snowflakeid
	Synopsis
	Parameters
	Notes

	bdr.timestamp_to_snowflakeid
	Synopsis
	Parameters
	Notes

	bdr.extract_timestamp_from_timeshard
	Synopsis
	Parameters
	Notes

	bdr.extract_nodeid_from_timeshard
	Synopsis
	Parameters
	Notes

	bdr.extract_localseqid_from_timeshard
	Synopsis
	Parameters
	Notes

	bdr.timestamp_to_timeshard
	Synopsis
	Parameters
	Notes

	bdr.galloc_chunk_info
	Synopsis
	Parameters
	Notes


	KSUUID v2 functions
	bdr.gen_ksuuid_v2
	Synopsis
	Notes

	bdr.ksuuid_v2_cmp
	Synopsis
	Parameters
	Notes

	bdr.extract_timestamp_from_ksuuid_v2
	Synopsis
	Parameters
	Notes


	KSUUID v1 functions
	bdr.gen_ksuuid
	Synopsis
	Notes

	bdr.uuid_v1_cmp
	Synopsis
	Notes
	Parameters

	bdr.extract_timestamp_from_ksuuid
	Synopsis
	Parameters
	Notes



	29.1.14          Autopartition
	bdr.autopartition
	Synopsis
	Parameters
	Examples

	bdr.drop_autopartition
	Parameters

	bdr.autopartition_wait_for_partitions
	Synopsis
	Parameters

	bdr.autopartition_wait_for_partitions_on_all_nodes
	Synopsis
	Parameters

	bdr.autopartition_find_partition
	Synopsis
	Parameters

	bdr.autopartition_enable
	Synopsis
	Parameters

	bdr.autopartition_disable
	Synopsis
	Parameters

	Internal functions
	bdr.autopartition_create_partition
	Synopsis
	Parameters
	Notes

	bdr.autopartition_drop_partition
	Synopsis
	Parameters
	Notes


	29.1.15          Stream triggers reference
	29.1.15.1          Stream triggers manipulation interfaces
	bdr.create_conflict_trigger
	Synopsis
	Parameters
	Notes

	bdr.create_transform_trigger
	Synopsis
	Parameters
	Notes

	bdr.drop_trigger
	Synopsis
	Parameters
	Notes


	29.1.15.2          Stream triggers row functions
	bdr.trigger_get_row
	Synopsis
	Parameters

	bdr.trigger_get_committs
	Synopsis
	Parameters

	bdr.trigger_get_xid
	Synopsis
	Parameters

	bdr.trigger_get_type
	Synopsis

	bdr.trigger_get_conflict_type
	Synopsis

	bdr.trigger_get_origin_node_id
	Synopsis
	Parameters

	bdr.ri_fkey_on_del_trigger
	Synopsis


	29.1.15.3          Stream triggers row variables
	TG_NAME
	TG_WHEN
	TG_LEVEL
	TG_OP
	TG_RELID
	TG_TABLE_NAME
	TG_TABLE_SCHEMA
	TG_NARGS
	TG_ARGV[]

	29.1.16          Internal catalogs and views
	bdr.autopartition_partitions
	bdr.autopartition_partitions columns

	bdr.autopartition_rules
	bdr.autopartition_rules columns

	bdr.ddl_epoch
	bdr.ddl_epoch columns

	bdr.event_history
	bdr.event_history columns

	bdr.event_summary
	bdr.local_leader_change
	bdr.node_config
	bdr.node_config columns

	bdr.node_config_summary
	bdr.node_config_summary columns

	bdr.node_group_config
	bdr.node_group_config columns

	bdr.node_group_routing_config_summary
	bdr.node_group_routing_config_summary columns

	bdr.node_group_routing_info
	bdr.node_group_routing_info columns

	bdr.node_group_routing_summary
	bdr.node_group_routing_summary columns

	bdr.node_routing_config_summary
	bdr.node_routing_config_summary columns

	bdr.sequence_kind
	bdr.sequence_kind columns

	bdr.sync_node_requests
	bdr.sync_node_requests columns

	bdr.sync_node_requests_summary
	bdr.sync_node_requests_summary columns


	29.1.17          Internal system functions
	General internal functions
	bdr.bdr_get_commit_decisions
	Synopsis

	bdr.bdr_track_commit_decision
	Synopsis

	bdr.consensus_kv_fetch
	Synopsis
	Parameters
	Notes

	bdr.consensus_kv_store
	Synopsis
	Parameters
	Notes

	bdr.decode_message_payload
	bdr.decode_message_response_payload
	bdr.difference_fix_origin_create
	bdr.difference_fix_session_reset
	Synopsis

	bdr.difference_fix_session_setup
	Synopsis

	bdr.difference_fix_xact_set_avoid_conflict
	Synopsis

	bdr.drop_node
	Synopsis
	Parameters
	Notes

	bdr.get_global_locks
	bdr.get_node_conflict_resolvers
	bdr.get_slot_flush_timestamp
	bdr.internal_alter_sequence_set_kind
	bdr.internal_replication_set_add_table
	bdr.internal_replication_set_remove_table
	bdr.internal_submit_join_request
	bdr.isolation_test_session_is_blocked
	bdr.local_node_info
	bdr.msgb_connect
	bdr.msgb_deliver_message
	bdr.node_catchup_state_name
	Synopsis
	Parameters

	bdr.node_kind_name
	bdr.peer_state_name
	bdr.pg_xact_origin
	Synopsis
	Parameters

	bdr.request_replay_progress_update
	bdr.reset_relation_stats
	bdr.reset_subscription_stats
	bdr.resynchronize_table_from_node
	Synopsis
	Parameters
	Notes

	bdr.seq_currval
	bdr.seq_lastval
	bdr.seq_nextval
	bdr.show_subscription_status
	bdr.show_workers
	Synopsis

	bdr.show_writers
	bdr.sync_status_name
	Synopsis
	Parameters


	Task manager functions
	bdr.taskmgr_set_leader
	Synopsis

	bdr.taskmgr_get_last_completed_workitem
	Synopsis

	bdr.taskmgr_work_queue_check_status
	Synopsis
	Parameters
	Notes

	bdr.get_min_required_replication_slots
	bdr.get_min_required_worker_processes
	bdr.stat_get_activity
	bdr.worker_role_id_name
	bdr.lag_history
	bdr.get_raft_instance_by_nodegroup
	bdr.monitor_camo_on_all_nodes
	bdr.monitor_raft_details_on_all_nodes
	bdr.monitor_replslots_details_on_all_nodes
	bdr.monitor_subscription_details_on_all_nodes
	bdr.monitor_version_details_on_all_nodes
	bdr.node_group_member_info


	29.1.18          Column-level conflict functions
	bdr.column_timestamps_create
	Synopsis
	Parameters


	29.2          EDB Postgres Distributed Command Line Interface (PGD CLI)
	29.2.1          Installing PGD CLI
	29.2.1.1          Installing PGD CLI on Linux
	Obtain your EDB subscription token
	Set the EDB_SUBSCRIPTION_TOKEN environment variable
	Debian or Ubuntu
	RHEL, Rocky, AlmaLinux, or Oracle Linux


	29.2.1.2          Installing PGD CLI on macOS
	29.2.2          Using PGD CLI
	What is the PGD CLI?
	Running the PGD CLI
	Passing a database connection string
	Specifying a configuration file
	Specifying the output format
	Accessing the command line help

	29.2.3          Configuring PGD CLI
	PGD CLI and database connection strings
	Configuring the database to connect to
	Using database connection strings in the command line
	Using database connection strings in an environment variable
	Using a configuration file


	29.2.4          Discovering connection strings
	PGD CLI and database connection strings
	Getting your database connection string
	For a cluster deployed with EDB CloudNative Postgres Global Cluster


	29.2.5          Command reference
	Synopsis
	Commands
	Global Options
	Additional Options
	Output formats

	29.2.5.1          pgd assess
	Synopsis
	Syntax
	Options
	Example

	29.2.5.2          pgd cluster
	Subcommands

	29.2.5.2.1          pgd cluster show
	Synopsis
	Syntax
	Options
	Clock Drift
	Examples
	Display the cluster information


	29.2.5.2.2          pgd cluster verify
	Synopsis
	Syntax
	Options
	Examples
	Verify the cluster settings and architecture


	29.2.5.3          pgd commit-scope
	Subcommands

	29.2.5.3.1          pgd commit-scope create
	Synopsis
	Syntax
	Options
	Examples
	Creating a Commit Scope
	Creating a Commit Scope with the top-level group


	29.2.5.3.2          pgd commit-scope drop
	Synopsis
	Syntax
	Options
	Examples
	Drop a Commit Scope
	Drop a Commit Scope from a Group


	29.2.5.3.3          pgd commit-scopes list
	Synopsis
	Syntax
	List all commit-scopes for the given group


	29.2.5.3.4          pgd commit-scope show
	Synopsis
	Syntax
	Options
	Example
	Showing a Commit Scope


	29.2.5.3.5          pgd commit-scope update
	Synopsis
	Syntax
	Options
	Examples
	Updating a Commit Scope
	Updating a Commit Scope in the Top-Level Group


	29.2.5.4          pgd completion
	Synopsis
	Syntax
	Options
	Example

	29.2.5.5          pgd events
	Subcommands

	29.2.5.5.1          pgd events show
	Synopsis
	Syntax
	Options
	Node States
	Examples
	Display the last 5 events


	29.2.5.6          pgd group
	Subcommands

	29.2.5.6.1          pgd group show
	Synopsis
	Syntax
	Options
	Examples
	Show group information
	Show group summary information
	Show group nodes information
	Show group options information
	Show group information as JSON


	29.2.5.6.2          pgd group set-option
	Synopsis
	Syntax
	Group Options
	Group Connection Manager Options
	Group Proxy Options (For PGD 5.0 to 5.8 only)

	Options
	Examples
	Set the location of a group
	Setting an option to a value with a space in it


	29.2.5.6.3          pgd group get-option
	Synopsis
	Syntax
	Group Options
	Group Connection Manager Options

	Options
	Examples
	List all group options
	Get a specific group option
	Get a specific group option as json


	29.2.5.6.4          pgd group set-leader
	Synopsis
	Syntax
	Options
	Examples
	Setting the write leader of a group
	Setting the write leader when node is already the leader


	29.2.5.7          pgd groups
	Subcommands

	29.2.5.7.1          pgd groups list
	Synopsis
	Syntax
	Options
	Examples
	List all groups
	List all groups with detailed information


	29.2.5.8          pgd node
	Subcommands

	29.2.5.8.1          pgd node get-config
	Synopsis
	Syntax
	Option
	Examples
	Get a specific node config
	Get a specific node config with verbose output
	Get a specific node config as json


	29.2.5.8.2          pgd node get-option
	Synopsis
	Syntax
	Node Options

	Options
	Examples
	Get all node options
	Get a specific node option
	Get all node options as json


	29.2.5.8.3          pgd node part
	Synopsis
	Syntax
	Options
	Examples
	Part a node with --no-wait option
	Part a node without --no-wait option


	29.2.5.8.4          pgd node set-config
	Synopsis
	Syntax
	Options
	Examples
	Set a specific node config
	Set a specific node config with a space in the value


	29.2.5.8.5          pgd node set-option
	Synopsis
	Syntax
	Node Options

	Options
	Examples
	Set a specific node option
	Set a specific node option with a space in the value


	29.2.5.8.6          pgd node setup
	Synopsis
	Users and roles

	Syntax
	Arguments
	Options
	Examples
	Configuring the first node
	Configuring a second node
	Configuring a third node
	Joining a parted and dropped node to the cluster


	29.2.5.8.7          pgd node show
	Synopsis
	Syntax
	Options
	Examples
	Show node information
	Show node information as JSON


	29.2.5.8.8          pgd node upgrade
	Synopsis
	Syntax
	Options
	Examples
	Upgrade the PostgreSQL version on a node
	Upgrade the PostgreSQL version on a node with hard links
	Upgrade the PostgreSQL version on a node with efficient file cloning
	Upgrade the PostgreSQL version on a node with a different port number


	29.2.5.9          pgd nodes
	Subcommands

	29.2.5.9.1          pgd nodes list
	Synopsis
	Syntax
	Options
	Examples
	List all nodes
	List all nodes with detailed information
	List all nodes version information


	29.2.5.10          pgd raft
	Subcommands

	29.2.5.10.1          pgd raft show
	Synopsis
	Syntax
	Options
	Examples
	Show Raft status


	29.2.5.11          pgd replication
	Subcommands

	29.2.5.11.1          pgd replication show
	Synopsis
	Syntax
	Options
	--slots

	Examples
	Display the replication status in the EDB Postgres Distributed cluster
	Display only the node to node replication status in a matrix format


	30          Terminology
	Asynchronous replication
	Commit scopes
	CAMO or commit-at-most-once
	Conflicts
	Consensus
	Cluster
	DDL (data definition language)
	DML (data manipulation language)
	Eager
	Eventual consistency
	Failover
	Group commit
	Immediate consistency
	Logical replication
	Node
	Node groups
	PGD cluster
	PGD node
	Physical replication
	Postgres cluster
	Quorum
	Replicated available fault tolerance (Raft)
	Read scalability
	Subscription
	Switchover
	Synchronous replication
	Subscriber-only nodes
	Two-phase commit (2PC)
	Vertical scaling or scale up
	Witness nodes
	Write leader
	Writer

	31          Choosing a Postgres distribution
	32          PGD compatibility
	PGD compatibility with PostgreSQL versions
	PGD compatibility with operating systems and architectures
	Linux


	33          EDB Postgres Distributed 6 release notes
	33.1          EDB Postgres Distributed 6.1.2 release notes
	Bug Fixes

	33.2          EDB Postgres Distributed 6.1.1 release notes
	Bug Fixes

	33.3          EDB Postgres Distributed 6.1.0 release notes
	Highlights
	Features
	Enhancements
	Changes
	Bug Fixes

	33.4          EDB Postgres Distributed 6.0.2 release notes
	Bug Fixes

	33.5          EDB Postgres Distributed 6.0.1 release notes
	Highlights
	Features
	Slots Naming Convention
	Origins Naming Convention:

	Enhancements
	Changes
	Bug Fixes

	34          Known issues and limitations
	Known issues
	Limitations
	Nodes
	Multiple databases on single instances
	Durability options (Group Commit/CAMO)
	General durability limitations
	Group Commit
	Eager


	CAMO
	Mixed PGD versions
	Other limitations



