EDB

EDB Postgres Distributed (PGD)

Version 6.2.0

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. Built at 2026-02-04T12:27:15

1

2

21
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.41
3.4.2
3.4.3
3.4.4

4.1
411
4.1.2
41.3
4.1.4
4.1.5
4.1.6
4.2
4.3
4.4
4.5
45.1
4.5.2

51
5.2
5.3
5.4
5.5
5.6

6.1
6.2
6.3
6.4
6.4.1
6.4.2
6.4.3
6.4.4
7

EDB Postgres Distributed (PGD)
EDB Postgres Distributed 6 release notes

EDB Postgres Distributed 6.2.0 release notes
EDB Postgres Distributed 6.1.2 release notes
EDB Postgres Distributed 6.1.1 release notes
EDB Postgres Distributed 6.1.0 release notes
EDB Postgres Distributed 6.0.2 release notes
EDB Postgres Distributed 6.0.1 release notes

Overview

Known issues and limitations
PGD compatibility
Postgres Distributed terminology
Quickstart guide
Creating your first cluster
Working with SQL and the PGD cluster
Loading data into your PGD Cluster
Using PGD CLI

Planning your PGD deployment

Architecture
Architecture and performance
Standard PGD architecture
Near/far architecture
Always-On Architecture
Multi-Location Architectures
Geo-Distributed Architectures
Choosing a Postgres distribution
Choosing your deployment method
PGD compared
Other considerations
Sizing
Time and PGD

Installing and configuring EDB Postgres Distributed

Prerequisites

Configuring PGD repositories
Installing the database and pgd
Configuring the cluster
Checking the cluster
Connecting to your PGD cluster

Node types and capabilities

An overview of PGD Node types

Witness nodes

Logical standby nodes

Subscriber-only nodes and groups
An overview of Subscriber-only nodes
Creating Subscriber-only groups and nodes
Joining nodes to a Subscriber-only group
Optimizing subscriber-only groups

Node management

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

oo

12
13
14
17
18
22
23
26
27
30
31
33
35
37
42
43
45
46
48
49
53
54
55
56
57
59
60
61
62
63
64
65
67
70
73
74
75
76
77
78
79
80
81
82
83

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

8

8.1
8.2
8.3
8.4
8.5

9

10

11
111
12

13
131
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13
13.14
13.15
14
141
1411
14.1.2
14.1.3
14.1.4
14.1.5
14.1.6
14.2
14.2.1
14.2.2

Creating PGD nodes
Groups and subgroups
Creating and joining PGD groups
Viewing PGD topology
Removing nodes and groups
Connection DSNs and SSL (TLS)
Node restart and down node recovery
Automatic synchronization
Node UUIDs
Replication slots created by PGD
Connection Manager
Connection Manager overview
Connection Manager Authentication
Configuring Connection Manager
Load Balancing with Connection Manager
Monitoring the Connection Manager
Postgres configuration
Backup and recovery
Monitoring
Monitoring through SQL
AutoPartition in PGD
Commit Scopes
Overview of durability options
Durability terminology
Commit scopes
Predefined commit scopes
Origin groups
Commit scope rules
Comparing durability options
Degrading commit scope rules
Synchronous Commit
Group Commit
Commit At Most Once
Lag Control
Administering
Legacy synchronous replication using PGD
Internal timing of operations
Conflict Management
Conflicts
Overview
Types of Conflict
Conflict detection
Conflict resolution
Conflict logging
Data verification with LiveCompare
Column-level conflict detection
Overview
Enabling and disabling column-level conflict resolution

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

84

86

87

88

90

91

92

93

95

96

97

98

99
100
101
103
104
105
109
110
118
120
121
122
123
125
127
129
131
132
134
135
138
142
145
146
147
148
149
150
151
157
158
159
160
161
162
163

14.2.3
14.3
14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.3.6
14.3.7
15

16
16.1
16.2
16.3
16.4
16.5
16.6
17
171
17.2
17.3
17.4
17.5
17.6
17.7
17.8
18

19

20

21

22
22.1
22.2
22.3
22.4
22.5
23

24

25

26

27
27.1
27.2
27.3
27.4
27.5
27.6
27.7

Timestamps in column-level conflict resolution
Conflict-free replicated data types
CRDTs Overview
Using CRDTs
Operation-based and state-based CRDTs
CRDT Disk-space requirements
CRDTs vs conflict handling/reporting
Resetting CRDT values
Implemented CRDTs
Testing and tuning PGD clusters
Upgrading
Upgrading PGD clusters manually
Supported PGD upgrade paths
Compatibility changes
Application schema upgrades
In-place Postgres or Postgres and PGD major version upgrades
Performing a Postgres major version rolling upgrade on a PGD cluster
DDL replication
DDL overview
DDL replication options
DDL locking details
Managing DDL with PGD replication
DDL command handling matrix
DDL and role manipulation statements
Workarounds for DDL restrictions
PGD functions that behave like DDL
Decoding worker
CDC Failover support
Parallel Apply
Replication sets
Security and roles
Roles
Role management
PGD predefined roles
Roles and replication
Access control
Sequences
Stream triggers
Transaction streaming
Explicit two-phase commit (2PC)
Application use
Application behavior
DML and DDL replication and nonreplication
Nodes with differences
General rules for applications
Timing considerations and synchronous replication
Using extensions with PGD
Use of table access methods (TAMs) in PGD

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

164
166
167
168
170
171
172
173
174
179
180
181
184
185
187
188
191
201
202
203
204
205
206
212
213
214
215
216
218
220
226
227
228
229
231
232
233
238
242
244
245
246
248
249
250
251
252
253

27.8

Feature compatibility

28 PGD Reference

28.1
28.1.1
28.1.2
28.1.3
28.1.4
28.1.5
28.1.6
28.1.7
28.1.8
28.1.9
28.1.10
28.1.11
28.1.12
28.1.13
28.1.14
28.1.15
28.1.15.1
28.1.15.2
28.1.15.3
28.1.16
28.1.17
28.1.18
28.2
28.2.1
28.2.11
28.2.1.2
28.2.2
28.2.3
28.2.4
28.2.5
28.2.5.1
28.2.5.2

Tables, views and functions reference
User visible catalogs and views
System functions
PGD settings
Node management
Node management interfaces
Commit scopes
Conflicts
Conflict functions
Replication set management

Replication set membership
DDL replication filtering
Testing and tuning commands
Global sequence management interfaces
Autopartition
Stream triggers reference
Stream triggers manipulation interfaces
Stream triggers row functions
Stream triggers row variables
Internal catalogs and views
Internal system functions
Column-level conflict functions

EDB Postgres Distributed Command Line Interface (PGD CLI)

Installing PGD CLI

Installing PGD CLI on Linux

Installing PGD CLI on macOS
Using PGD CLI
Configuring PGD CLI
Discovering connection strings
Command reference

pgd assess

pgd cluster

28.2.5.2.1 pgd cluster show
28.2.5.2.2 pgd cluster verify

28.2.5.3

pgd commit-scope

28.2.5.3.1 pgd commit-scope create
28.2.5.3.2 pgd commit-scope drop
28.2.5.3.3 pgd commit-scopes list
28.2.5.3.4 pgd commit-scope show
28.2.5.3.5 pgd commit-scope update

28.2.5.4
28.2.5.5

pgd completion
pgd events

28.2.5.5.1 pgd events show

28.2.5.6

pgd group

28.2.5.6.1 pgd group show
28.2.5.6.2 pgd group set-option

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

254
255
256
264
286
300
307
309
316
320
322
324
326
327
329
331
336
339
340
342
344
345
349
356
357
358
359
360
361
363
364
365
367
368
369
370
372
373
374
375
376
377
378
379
380
381
382
386

28.2.5.6.3
28.2.5.6.4
28.2.5.7
28.2.5.7.1
28.2.5.8
28.2.5.8.1
28.2.5.8.2
28.2.5.8.3
28.2.5.8.4
28.2.5.8.5
28.2.5.8.6
28.2.5.8.7
28.2.5.8.8
28.2.5.9
28.2.5.9.1
28.2.5.10

28.2.5.10.1

28.2.5.11

28.2.5.11.1

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

pgd group get-option
pgd group set-leader
pgd groups
pgd groups list
pgd node
pgd node get-config
pgd node get-option
pgd node part
pgd node set-config
pgd node set-option
pgd node setup
pgd node show
pgd node upgrade
pgd nodes
pgd nodes list
pgd raft
pgd raft show
pgd replication
pgd replication show

EDB Postgres Distributed (PGD)

388
390
391
392
393
394
395
397
398
399
400
403
405
407
408
409
410
411
412

EDB Postgres Distributed (PGD)

1 EDB Postgres Distributed (PGD)

Welcome to the PGD 6.2 documentation. PGD 6.2 is available in two editions: Essential and Expanded.

Why PGD?

Modern data architectures require an extensible approach to data management, whether the requirement is for high availability, disaster recovery or multi-region data distribution. PGD is designed to meet these needs, and in PGD 6 we have
made it easier to get started with PGD, while also providing a pathway to using advanced features as your use case becomes more complex.

What does PGD enable?

PGD enables you to build a distributed database architecture that can span multiple regions, data centers, or cloud providers. It provides multi-master replication and data distribution. Postgres databases can be deployed into data groups
within the cluster and data within each node can be distributed across multiple nodes.

What are the differences between PGD Essential and PGD Expanded?

PGD Expanded is the full-featured version of PGD. It includes all the features of PGD Essential, as well as additional features such as advanced conflict management, data distribution, and support for large-scale deployments. PGD Expanded
is designed for users who need the most advanced features and capabilities of PGD.

PGD Essential is a simplified version of PGD Expanded. It is designed for users who want to get started with PGD quickly and easily, without the need for advanced features or complex configurations. PGD Essential includes the core features of
PGD but enables them in a way that makes replication and availability simple. It therefore does not include some of the more advanced features available in PGD Expanded.

PGD Essential limits the number of data nodes in a cluster to four and the number of groups to two. It also limits the number of nodes in a group to four. PGD Expanded does not have these limitations.

Learn more about PGD in Get Started with PGD.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 7

https://www.enterprisedb.com/docs/pgd/latest/get-started/

2 EDB Postgres Distributed 6 release notes

EDB Postgres Distributed (PGD)

The EDB Postgres Distributed documentation describes the latest version of EDB Postgres Distributed 6, including minor releases and patches. The release notes provide information on what was new in each release. For new functionality

introduced in a minor or patch release, the content also indicates the release that introduced the feature.

Release Date
05 Dec 2025
06 Nov 2025
09 Oct 2025
19 Aug 2025
25 Jun 2025

09 Jun 2025

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed
6.2.0
6.1.2
6.1.1

6.1.0

6.0.1

EDB Postgres Distributed (PGD)

21 EDB Postgres Distributed 6.2.0 release notes

Released: 5 December 2025

EDB Postgres Distributed 6.2.0 includes new features, enhancements, and bug fixes focused on improving stability and reliability.

Highlights

First release with Postgres 18 support: PGD 6.2.0 introduces support for the newly released PostgreSQL 18, EDB Postgres Extended (PGE) 18, and EDB Postgres Advanced Server (EPAS) 18.

Connection Manager enhancements: PGD 6.2.0 introduces significant enhancements to Connection Manager, including LDAP authentication support and improved routing stability that prevents existing client connections from
dropping during leader changes.

Easier adoption of Transparent Data Encryption (TDE): The pgd node setup and pgd node upgrade commands now include TDE options. This allows simplified adoption of TDE such as single-command conversion of non-TDE
nodes to TDE nodes, significantly streamlining adopting TDE when upgrading PGD clusters running older PGE or EPAS versions (prior to v15).

Features

Description Addresses

Added TDE options to pgd node upgrade and pgd node setup commands.

The pgd node upgrade command now supports in-place conversion of a non-TDE PGD node to a TDE-enabled node with the —~key-unwrap-command and --copy-by-block options. The pgd node
setup command now includes comprehensive options to configure TDE during the initial provisioning of a new cluster node. These new options are: ~-data-encryption, —-copy-key-from, --key-
wrap-command , ——key-unwrap-command, --no-key-wrap ,and --data-encryption-keylen (accepts the AES key length).

Added bdr.stat_receiver_transactions view.

The view provides real-time information on transactions in the receiver pipeline. This view reports on transactions currently being received, sent to writers for processing, and indicates whether a transaction is being
streamed to a file or writer, including the writer's application progress.

Added support for LDAP authentication to Connection Manager.

Connection Manager now supports the same LDAP authentication features as PostgreSQL, with the exception that OpenLDAP configuration files and environment variables are not supported.

Added detailed monitoring columns to bdr.writers view.

The bdr.writers view now includes several new columns for enhanced monitoring. It now reports the transaction apply source, the total size of the transaction, the progress of the application, the last change
applied, and the upstream LSN corresponding to that last applied change.

Enhancements

Description Addresses

Inferred default superuser value for EPAS cluster setup command.

When provisioning an EPAS cluster, the ——superuser option forthe pgd node setup command now automatically defaultsto enterprisedb unless explicitly specified.

Added Details columnto pgd cluster verify --verbose --arch output.

The pgd cluster verify command nowincludesa Details columnin the architecture verification section when using the ~~verbose option. This column provides specific, detailed information about
any issues encountered during the architecture check.

Enhanced pgd node part command for reuse of parting node name.

The behavior of the pgd node part command is modified so it now only waits until the node is renamed (allowing its original name to be reused) and continues the complex parting operation in the background.
This enhancement also deprecates the ——no-wait option when all nodes in the PGD cluster are running version 6.2 or above.

Allow reuse of parting node names with bdr.part_node .

The PGD node management interface now allows you to reuse the names of parting nodes even while the parting operation is still in progress. This is accomplished through by setting the new concurrent=true
option when calling the bdr.part_node function.

Support for encrypted server side certificates.

Connection Manager now supports the PostgreSQL ss'l_passhrase_command option to decrypt the server private key. 53695
Improved PGD database user authentication for pgd node setup.
The command has been enhanced to read user authentication credentials from a password file. This file location is resolved by checking the —-dsn global option, the PGPASSFILE environment variable, or the

~/.pgpass file, inthat order.

The bdr.prefer_analytics_engine setting now works for Iceberg REST catalogs by using the analytics_write_catalog node group option.

Previously, this setting only applied to PGFS storage locations.

Only synchronize relevant PGD role settings.

The role synchronization logic has been refined to only apply role settings from the source node if they are global, or are specifically configured for the PGD database on the source node.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 9

EDB Postgres Distributed (PGD)

Description Addresses

Added statistics for commit scope degrade events.

The bdr.stat_commit_scope view now includes three new metrics to track degrade behavior: ndegrades (counts per-transaction degrade events), nconfig_degrades (tracks configuration-level state

50223

changes to degraded mode), and last_state_change_time (records the timestamp of the last state transition between normal and degraded operation).
Emit warning message for synchronous_standby_names clash with commit scope.
Added a new sanity check that emits a warning during startup if the PostgreSQL configuration parameter synchronous_standby_names is configured in a way that might clash with a PGD commit scope. This
helps administrators quickly identify and correct potential misconfigurations.
Added --group filter to pgd nodes list and pgd raft show commands.
The ——group filter provides the capability to filter the output by a specified data group when administering a multi-group PGD cluster.
Bug Fixes
Description Addresses
Fixed an issue where the pgd node upgrade command failed withan invalid_slots error when upgrading to PostgreSQL 18 or later.
The BDR extension has been updated to improve compatibility with the pg_upgrade utility, which ensures the upgrade process runs cleanly.
Fixed contradictory output for switchover with Connection Manager DSN.
Resolved an issue where the pgd group set-leader command displayed confusing messages of both success and failure. This issue occurred because after the switchover completed successfully, the
Connection Manager immediately reset the connection due to the write-leader change.
Fixed unexpected subscription and slot creation involving subscriber-only and witness nodes.
This fix prevents the incorrect creation of both subscriptions and replication slots between subscriber-only nodes and witness nodes. The fix also addresses a problem seen during upgrades from PGD 5.9.0 to 6.2.0
where an unexpected slot was left behind on the witness node.
Improved Connection Manager routing change logic.
Resolved an issue where the Connection Manager dropped existing client connections whenever a write-leader or read-only node routing change occurred. With this fix, client connections are no longer affected by a
routing refresh, as long as the PGD node they are currently connected to remains operational.
Fixed an issue whereby a connection is silently dropped in the Connection Manager.
The fix improves the handling of authentication failures in the Connection Manager.
Fixed an issue whereby Connection Manager crashed when full hostname is used in the pg_hba.conf address field.
The fix also corrects the handling of hostname suffixes. Since hostname matching is not supported by the Connection Manager, HBA rules using hostnames or hostname suffixes are now correctly ignored by the
Connection Manager, preventing instability.
Fixed writer error could not open temporary file afterrestart.
This issue occurred when streaming a large transaction, and the writer restarted only to find the temporary file name had been incorrectly freed. The bug was introduced with parallel apply and is resolved now. 53341
Fixed an issue to ensure that the values of node_uuid and node_kind of a node are preserved after joining a cluster in a different PGD version.
This bug caused the node_uuid in system tables (bdr.local_node and bdr.node) to diverge after a full cluster upgrade. The fix ensures that the joining node's UUID and kind are correctly preserved
throughout the process.
Allow rename of sequence or schema containing galloc sequences.
Resolved an issue where concurrent operations, such as renaming a sequence or schema containing a galloc sequence, could cause problems with Raft synchronization. The fix introduces a global UUID identifier for
each sequence in the bdr.sequence_kind catalog, which remains constant despite any sequence or schema renames.
Added version and distribution checks for physical joinin pgd node setup.
The pgd node setup command now performs stricter compatibility checks before allowing a physical join:

e If the BDR version of the local and remote nodes are not an exact match, the command attempts a logical join instead of a physical join.

o |f the Postgres major version of the local and remote nodes are not the same, the command attempts a logical join instead of a physical join.

e |fthe PostgreSQL distribution (flavor) of the local and remote nodes are not the same, the command exits with an error.
Fixed backward compatibility issue for pgd group commands.
Resolved a backward compatibility issue where PGD 6.x CLI commands, such as pgd group show, reported the error No query found for version wheninvoked against an older PGD 5.x cluster. The fix
ensures these commands function correctly across major PGD versions.
Fixed invalid system identifier check for pgd node setup.
Resolved an issue where the pgd node setup command incorrectly reported a mismatch error when validating a valid base backup node of the given remote node.
Handle returned CONTEXT value for bdr.run_on_x functions.
The PGD CLI now adjusts the database connection's verbosity to ignore the CONTEXT value, which previously added noise to the output, especially for errors from bdr.run_on_x functions.
Fixed the bdr.msgb_connect hang by introducing a connection timeout.
Resolved an issue where the bdr.msgb_connect function could hang indefinitely due to a missing network timeout setting. The fix adds a timeout to the function. 53442

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

10

EDB Postgres Distributed (PGD)

Description

Fixed pgd node setup to create a PGD node from an existing data directory.

Resolved an issue which prevented the pgd node setup command from successfully creating and configuring a PGD node using an existing data directory.

Connection Manager now starts and responds on its configured ports on all nodes, even those that are not currently part of a node group with routing enabled.

In these cases, the configuration inherited from the top-level node group is automatically applied.

Fixed a unique constraint violation error that could occur during an UPDATE operation on tables configured with both primary and unique keys.

Previously, an UPDATE conflict with an update_missing resolution (which attempts to insert a new record) did not check for conflicts against existing primary or unique keys, leading to an error. This issue is
now fixed by treating the scenario as an insert_exists conflict and applying the appropriate resolution logic.

The ALTER TABLE SET pgd.replicate_to_analytics property can now be applied to individual partitions.

This allows for granular control over which partitions replicate data to analytical targets.

Fixed an issue that caused consensus breakage when a duplicate value was assigned to either the analytics_storage_location or analytics_write_catalog settings.
Fixed join inconsistency during physical node setup.

Resolved an issue during physical node joins where the last transaction was redundantly included in the physical snapshot. The system now ensures this final transaction is excluded from the snapshot, as it will be
correctly received later via logical replication, preventing duplication.

Fixed various issues with EPAS role and profile synchronization.

Resolved various synchronization issues affecting the correct replication and management of EDB Postgres Advanced Server (EPAS) roles and profiles across the cluster.

Fixed Segmentation faulton bdr.stat_get_activity.

Resolved a bug that caused a segmentation fault when calling bdr.stat_get_activity . This function is used by views such as bdr.stat_workers and bdr_stat_activity.

Fixed cleanup of stale LSN records in bdr.node_peer_progress_mapping.

Resolved an issue where stale records from parted or dropped nodes were retained in the bdr.node_peer_progress_mapping table. Proper cleanup is now enforced to prevent these stale records from
unnecessarily holding back the group replication slot.

Fixed spurious walsender timeouts during lengthy transactions.

Resolved an issue where spurious walsender timeouts could occur while the receiver process was flushing a lengthy transaction.

Fixed error during join due to altered non-database role settings.

Resolved an issue where the error database with remote_datid © not found in remote_databases occurred during the node join process. This failure happened when a role on the upstream
source node had been altered to include a setting that was not specific to the database, causing a lookup failure during synchronization.

Ensure hard-coded CRDT merge functions are always available.

Resolved an issue where the system incorrectly required built-in, hard-coded CRDT merge functions to be explicitly registered in the bdr.crdt_handlers catalog.

Fixed incorrect error during bdr.commit_scope check.

Resolved an issue where the check for the configuration parameter bdr.commit_scope incorrectly raised an error if the PostgreSQL configuration was reloaded while a transaction was in progress, even when
the parameter's value had not actually been modified.

Fixed EPAS role and profile replication issues.
Resolved two replication issues related to EPAS roles and profiles:
e Fixed an issue where profile names were incorrectly quoted as string literals instead of identifiers, causing syntax errors when replicating CREATE ROLE or ALTER ROLE commands with the PROFILE
clause.

® Corrected a bug where ALTER ROLE commands that did not change passwords incorrectly included the PASSWORD clause, which triggered password reuse policy violations when profiles had
PASSWORD_REUSE_TIME or PASSWORD_REUSE_MAX constraints.

Fixed consensus timeout errors during initial cluster setup.

Resolved consensus request timed out errors that could occur during BDR cluster initialization. This issue happened when vacuum operations on internal consensus tables interfered with critical group
creation processes. The fix now defers vacuum operations until the cluster is properly established.

Implemented slot checkpoint mechanism for fast group slot advancement.
Implemented a slot checkpoint system that periodically saves the replication slot state to disk. This mechanism allows the group replication slot to advance quickly without decoding massive amounts of WAL,

resolving issues where the manager process would hang for extended periods. Checkpoints are stored as small binary filesin $PGDATA/pgd/slot/ with CRC32 validation for integrity.

Fixed segmentation faultin bdr.local_topology_info.

Resolved a corner-case bug that could cause a segmentation fault when querying the internal function bdr.local_topology_info.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

Addresses

50539, 51417,
54323

52572

50616, 50778,
50856

52018

52859

52759

51457

54909

54507

53568

11

EDB Postgres Distributed (PGD)

2.2 EDB Postgres Distributed 6.1.2 release notes

Released: 6 November 2025

EDB Postgres Distributed 6.1.2 includes only bug fixes focused on improving stability and reliability. No new features or enhancements are included in this release. Please see the details below.

Bug Fixes

Description Addresses

Fixed ALTER TABLE failure during streamed transaction with table rewrite

The ALTER TABLE command failed to create a temporary table when using table rewrite support and streaming to a file or a writer. The fix implements a stream message callback method, preventing a potential
data loss scenario during these operations.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 12

EDB Postgres Distributed (PGD)

2.3 EDB Postgres Distributed 6.1.1 release notes

Released: 09 October 2025

EDB Postgres Distributed 6.1.1 includes only bug fixes focused on improving stability and reliability. No new features or enhancements are included in this release. Please see the details below.

Bug Fixes

Description Addresses

Fix physical join when running 'pgd node setup'

The pgd node setup command inthe PGD CLI has been fixed to correctly set up a physical copy as a physical replica. Previously, a bug prevented the command from properly configuring physical replication
which could result in some changes being missed on the new node. For any nodes added using pgd node setup with earlier versions of the PGD CLI, we recommend performing a consistency check.

Fix handling of DDL commands that trigger table rewrites

Executing specific DDL operations (suchas ALTER TABLE ... ADD COLUMN ... DEFAULT <volatile expression> or ALTER TABLE ... ALTER COLUMN ... SET DATA TYPE when not
binary-compatible) could cause replication failures. With this fix in PGD 6.1.1, replication now correctly handles DDL commands that trigger table rewrites.

Connection Manager respects currentSchema JDBC parameter

Previously, a JDBC client connected through the PGD Connection Manager would have the currentSchema parameter ignored. As a result, a connection's search_path would incorrectly default to public.
This issue has now been resolved.

prefer_analytics_engine works with Iceberg REST Catalog tables

The prefer_analytics_engine flag has been updated to correctly function with tables that are replicated to Iceberg REST Catalog. Setting bdr.prefer_analytics_engine = true will now cause a
query referencing a table with pgd.replicate_to_analytics = true to be executed by the analytics engine when possible.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 13

EDB Postgres Distributed (PGD)

2.4 EDB Postgres Distributed 6.1.0 release notes

Released: 19 August 2025

This is a minor release of PGD 6, which introduces direct upgrade support from PGD 4.4.0+ and PGD 5.9.0+. This makes it the first version of PGD 6 that allows for a seamless, in-place upgrade from older versions. In addition to this key feature,
PGD 6.1.0 also includes a variety of new features, enhancements, and important bug fixes.

Highlights

Seamless upgrades from PGD 4 and PGD 5 to PGD 6 : PGD 4.4.0+ and PGD 5.9.0+ users can now perform a direct upgrade to PGD 6, beginning with PGD 6.1.0, ensuring a smooth transition to the latest features.

Replication to Apache Iceberg: PGD now supports replication to Apache Iceberg when using the Analytics Accelerator. This new capability allows you to stream data directly from your PGD cluster to an Iceberg data lake and also query
the Iceberg data directly from within PGD. This significantly expands your options for large-scale data analytics and integration.

PGD 6 now supports Materialized Views: The CREATE, ALTER, REFRESH, and DROP commands are replicated across the cluster, ensuring that materialized views are consistent on all nodes. When a materialized view is created or
concurrently refreshed, the data is populated on the upstream node and then replicated to others, providing full support for this functionality.

PGD 6 is now on IBM LinuxONE: PGD's native capabilities are expanded with new support for IBM LinuxONE, offering optimized uptime, throughput, and energy efficiency.

Features

Description Addresses

Added CLI commands to get and update Postgres settings (GUC).

Add the pgd node get-config and pgd node set-config commands to allow users to retrieve and modify Postgres settings (GUC) via the CLI.

New drop_after_retention_period argumentadded tothe bdr.autopartition function

bdr.autopartition() now takes an additional boolean argument drop_after_retention_period which can be set to false if the user does not want the partition to be dropped, but only detached. 82332

Simplified Node Configuration with the PGD CLI

The pgd command-line tool now includes new commands to make managing individual node configurations easier. You can now use pgd node <node-name> get-config and pgd node <node-name>
set-config to retrieve and update specific Postgres settings (GUCs) for any node in your cluster directly from the CLI.

PGD CLI View Commit Scopes

The PGD CLI now includes a new command, pgd commit-scopes list,thatallows you to view the commit scope configuration for your cluster. This command provides details on all commit scopes, including
their rules and the groups they apply to, which improves the visibility and management of your data consistency settings.

PGD CLI - Part a Node from a Cluster

The PGD CLI now includes a new command, pgd node part, which provides a streamlined way to remove a node from an active cluster. This command automates the process of calling the node_part SQL
function and reports on its progress, simplifying node management directly from the command line.

Leader DDL Lock

New lock type leader DDL lock is used by default for locking DDL statements. This lock locks on write-leaders only, not requiring majority nodes to participate in the locking operation. Old behavior can be restored by
adjusting bdr.dd1l_locking configuration parameter.

Replication of Roles to witness nodes

Roles are now replicated to witness nodes when they join the nodegroup, and also as and when they are created or altered on data nodes. This is useful mainly when dealing with GUC permissions.

Added command to list commit scopes for PGD cluster.

Add a command pgd commit-scopes list to list commit scopes information for PGD cluster.

Added command to part a PGD node from cluster.

Add a command pgd node part to parta PGD node from cluster.

Enhancements

Description Addresses

Update the pgd group get-option and pgd group show commands to show default values.

The pgd group get-option and pgd group show commands will now display the default values for all options. The pgd group show command will display the source of the option values as well.

Apply the PGD Essential constraints for CLI commands.

The CLI will check for and enforce the PGD Essential constraints for the commands as applicable. See PGD Essential CLI Constraints for more details.

Improve Raft snapshot export/import to reset Raft completely

We've made improvements to how our Raft consensus mechanism handles snapshots. This ensures that in the rare event of a data consistency issue, restoring a snapshot will now fully reset the system's state,
allowing operations to resume smoothly from a consistent starting point.

EPAS Interval Partition Support for PGD

A new enhancement allows partitions created by EDB Postgres Advanced Server (EPAS) AutoPartition to work correctly within a multi-node PGD environment. This fix ensures partitions are created consistently on
each node and are visible across all nodes.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 14

https://www.enterprisedb.com/docs/pgd/latest/essential-how-to/pgd-cli/#pgd-essential-constraints

EDB Postgres Distributed (PGD)

Description Addresses

Improved max_connections Error Reporting

The Connection Manager now provides more helpful and specific error messages when a max_connections limit is reached. Users will now see a clear message like "sorry, too many clients already," making it much
easier to diagnose connection issues.

Support for commands that generate Table Rewrites in an explicit transaction block

PGD now supports executing ALTER TABLE commands that generate a table rewrite within a transaction block. Multiple commands are supported in a single transaction block. This simplifies complex DDL
operations by applying all changes as a single atomic unit and provides performance optimizations when multiple commands target the same table.

Postgres Compatibility with PGD - Phase 5

This is a placeholder for future updates regarding Postgres compatibility.

Changes

Description Addresses

Removal of listen_address Group Option

The listen_address option has been removed from pgd group set-option to simplify configuration. The Connection Manager will now use the value from the Tisten_addresses GUC directly,
resolving issues with setting hostnames or multiple addresses that were previously unsupported.

Bug Fixes

Description Addresses

Fixthe pgd cluster verify command warning for witness-only group.

The pgd cluster verify command displayed warning for Data nodes per group checkfor witness-only group. The check is not applicable for witness-only groups and hence the status Ok
will be displayed.

Fix the data dir check for the setup command.

The pgd node setup command checks for the presence of PG_VERSION file in the given data dir option. However the code incorrectly uses the bindir option instead of pgdata.

Fix for Mixed_version Clusters

We've resolved a bug that could cause replication to fail in a mixed-version PGD cluster (e.g., combining Postgres 12 and Postgres 16), an architecture used temporarily during postgres rolling upgrade. Previously,
DDL statements on a newer node could lead to replication slot disconnection on older nodes, with an "unrecognized configuration parameter” error. This fix ensures that replication now functions correctly during a 46373
rolling upgrade or in a temporary mixed-version state.

Connection Manager Behavior on Routing Changes

The Connection Manager now correctly handles connections following a change in cluster routing configuration (e.g., switching between global and no routing). This resolves unexpected behavior and ensures client
connections are routed as intended after a configuration update.

Fix for node_pkey Errors When Rebuilding Parted Nodes

A fix has been added to address a bug that could cause a consensus worker to crash with a duplicate key value violates unique constraint "node_pkey" error when a parted node was being rebuilt. This fix ensures that

P . 44467, 45084
you can now successfully rebuild a parted node using bdr_init_physical without encountering this issue.

PGD CLI cluster verify Command Fix for Witness-Only Groups

The pgd cluster verify command no longer displays a warning for witness-only groups that do not contain data nodes. This resolves an issue where the command incorrectly flagged these groups, ensuring that the
verification output is now accurate for all cluster types.

Raft Fix for Parting Lagging Nodes

Raft no longer fails to recover after a heavily-lagging node that was previously a leader is parted from the cluster. This fixes a bug where the Raft leader could crash with a "BDR node XXX not found" error, which 50009
previously required a manual, forceful reset of the Raft state. Now, Raft correctly handles this scenario and recovers automatically, ensuring cluster stability.

Fix for PGD CLI Multi-Group Setup

Abug has been fixed in the PGD CLI setup command that prevented the creation of multi-group clusters. Previously, the command would fail with an unhelpful error when attempting to add a node to a second
group. The fix ensures that the command now correctly handles the creation of nodes in new groups, allowing for successful multi-group cluster setup.

Fix for CLI setup Command GUC Update

The PGD CLI setup command no longer fails when attempting to update Postgres settings on remote nodes. This fix resolves a "malformed array literal" error that occurred during the cluster setup, improving the
reliability of the initialization process.

Fix for "Clock Has Moved Backwards" Error with Snowflake Sequences

A race condition has been fixed that could cause a "clock has moved backwards" error when using Snowflake sequences, even when the system clock was functioning correctly. This fix ensures the sequence
correctly handles concurrent access, preventing this error and improving the reliability of Snowflake sequence generation.

49376, 43659

Fix a crash with pg_failover_slots

Ensure that CDC hooks are no-op when recovery is in progress or the backend is not connected to a database. This can definitely happen if pg_failover_slots is active.

Fix a crash on a stat view for connection manager stat

Theview bdr.stat_connection_manager_hba_file_rules had some parsingissuesonthe pg_hba.conf file specifically in the Address/Mask column for the "all" value.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 15

EDB Postgres Distributed (PGD)

Description Addresses
Node kind check

PGD CLI now has a verify check for nodes not having a node kind properly set. This check emits a warning on nodes that are coming from a previous major version upgrade that missed setting the node kind.

Skip the node GUCs update with pgd node setup command.

The pgd node setup verifies the Postgres settings while setting up a PGD node. The command will now skip the node GUCs update as the bdr_superuser role, used by CLI is not allowed to run ALTER
SYSTEM queries. The command will continue to verify the Postgres settings and will display a warning message if any of the settings require modification.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 16

2.5 EDB Postgres Distributed 6.0.2 release notes

Released: 25 June 2025

This is the first patch release of EDB Postgres Distributed 6.0, which includes bug fixes and enhancements to the new features introduced in PGD 6.0.

Bug Fixes

Description

Fixed an issue with the slot names generated by node setup command.

The command generated the slot names as UUID values with underscore (_) which is not compatible with PGD slot names.

Fixed segmentation fault in bdr.stat_connection_manager_get_stats().

The memory returned by the function was allocated in an incorrect memory context.

Ensure that GRANT check for BDR objects works for EPAS object types

The mechanism for determining whether user can be granted permissions on BDR extension objects was failing for EPAS-specific objects. This was a regression from PGD release 5.7.0 and is now

fixed.

Renamed the check Clock Skew to Clock Drift for pgd cluster show command.

The check is renamed to be consistent with the terminology used at other places in PGD.

Added a warning message if CLI fails to fetch value of a GUC for pgd cluster verify command.

The command could crash if the CLI could not fetch a value for a GUC for some reason.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

Addresses

49649

17

EDB Postgres Distributed (PGD)

2.6 EDB Postgres Distributed 6.0.1 release notes

Released: 9 June 2025

PGD 6 delivers simpler, more resilient high availability for Postgres. Traditional streaming replication often requires downtime for upgrades and routine maintenance—and depends on complex tooling. PGD solves these challenges with a
built-in, logical replication-based architecture that enables online upgrades and maintenance without disrupting applications, helping teams keep services running smoothly even during operational changes. It also provides seamless failover
and eliminates the need for external proxies, load balancers, or consensus systems.

Highlights

® New built-in Connection Manager: Automatically routes client connections to the correct node, simplifies application architecture, supports dynamic topology changes, and includes a built-in session pooler and dedicated read/write
and read-only ports, all without external software or complex configuration. This new component replaces PGD Proxy, which is no longer available starting with PGD 6.

o Predefined Commit Scopes: Simplify consistency choices with built-in transaction durability profiles—no complicated setup needed. Choose the right balance of performance and protection, with scopes defined in system catalogs and
ready to use out of the box.

® New CLI command for Cluster Setup: The pgd node setup command now enables initial cluster creation and node addition directly from the command line. This gives users more flexibility in how they deploy PGD and allows deployment
tools to standardize on a consistent method.

Features

Description Addresses

Built-in connection manager

New built-in connection manager which handles routing of connections automatically and allows enforcing of read-only connections to non-leader.

CLI cluster setup

The PGD CLI now allows initial cluster setup as well as adding nodes from command-line using pgd node setup command.

Set sequence kind on group create/join

Transform the sequences in distributed based on the bdr.default_sequence_kind GUC when creating/joining a bdr group instead of when creating the node as done in older versions.

Set startvalue for distributed sequences automatically

Set the startvalue for galloc sequences to the following valid number after the last used by the local sequence. With this change, when creating distributed sequences and specifically galloc, there is no need to
adjust the startvalue based on what might be already used.

Enabling of automatic sync and reconciliation

Automatic synchronization and reconciliation of node states is now enabled by default. This means that nodes will automatically synchronize their state with the leader node and reconcile any differences without
requiring manual intervention. Read more in the documentation.

Add node_uuid column to bdr.node and bdr.local_node
The node_uuid uniquely identifies instance of a node of a given name. Random node_uuid is generated when node is created and remains constant for the lifetime of the node. The node_id column is now derived

from node_uuid instead of node name.

For the time being a node needs to be fully parted before before node of the same name can be rejoined, this may be relaxed in future releases to permit rejoin as soon as part_node process for the old instance has
commenced and before it completed.

For the time being upgrades from older PGD versions and mixed-version operation in clusters with older PGD nodes are not supported. This limitation will be addressed in future releases.

Change replication origin and slot naming scheme
Replication origin and slot names now use node uuid and thus correspond to particular incarnation of a node of a given name. Similarly node group uuid is used instead of group name. Hash of database name is used

in lieu of database name.

Please note that origin and node names should be treated as opaque identifiers from user's perspective, one shouldn't rely on the structure of these names nor expect these to be particularly meaningful to a human
operator.

The new naming scheme is as follows:

Slots Naming Convention

e normalslot to a node => bdr_node_<targetuuid>_<dbhash>

join slot for node => bdr_node_<targetuuid>_<dbhash>_tmp

group slot for a topgroup => bdr_group_<topgroupuuid>_<dbhash>

slot for any forwarding + lead to lead => bdr_node_<targetuuid>_<originidhex>_<dbhash>

analytics slot => bdr_analytics_<groupuuid>_<dbhash>
decoding slot => bdr_decoder_<topgroupuuid>_<dbhash>

Origins Naming Convention:

e normal origin to a node => bdr_<originuuid>_<dbhash>
e fwd origin to a source node => bdr_<originuuid>_<sourceoidhex>_<dbhash>

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 18

https://www.enterprisedb.com/docs/pgd/latest/reference/node_management/automatic_sync

EDB Postgres Distributed (PGD)

Description Addresses

Limit on the number of node groups allowed in the system for PGD Essential.

Ensure that no more than three node groups (one top group and two subgroups) can exist at any given time. If the limit is exceeded, an error is raised.

Enforced PGD Essential limits - data node count

Don't allow PGD Essential clusters to join more than 4 data nodes.

Added bdr.wait_node_confirm_lsn() functionwhich waits until a given reaches a given LSN

bdr.wait_node_confirm_Tlsn()will look at the confirmed_flush_lsn of the given node when available, otherwise it will query pg_replication_origin_progress() ofthatnode, and wait for the
specified LSN to be reached by said node.

Subscriber-only nodes can now be added to data node groups

In previous versions, subscriber-only nodes could only be added to node groups of type "subscriber-only". In PGD 6, a subscriber-only node can be also be added to a data node group by specifying
node_kind="subscriber_only' when using create_node. The join_node_group can then be done using a data node group.

Add bdr.local_analytics_slot_name() SQL function.

Returns name of analytics slot. This merely produces the correct name irrespective of whether analytics feature is in use.

Add node_uuid column to bdr.node_summary view.

Added to complement the addition of the node_uuid column to bdr.node and bdr.local_node

Enhancements

Description Addresses

Multiple conflicting rows resolution

Both pk_exists and multiple_unique_conflicts conflict types can now resolve more than one conflicting row by removing any old rows that are part of the conflict. The
multiple_unique_conflicts now defaultsto update_if_newer resolver, so it does not throw error by default anymore.

Improved bdr.stat_activity view

The backend_type now shows consistent worker type for PGD workers without the extra process identification. The wait_event_type and wait_event include more wait events now, instead of showing
"extension" for some events. Also, connection management related columns are added to show real client address/port and whether the session is read-only.

The PARTED node is removed automatically from all nodes in the cluster.

From PGD 6.0.0, bdr.part_node functionality is enhanced to remove the parted node’s metadata automatically from all nodes in the cluster.

For local node, it will remove all the node metadata, including information about remote nodes.

For remote node, it removes only metadata for that specific node. Hence with this release

A node will remain in PART_CLEANUP state till group slots of all nodes are caught up to all the transactions originating from the PARTED node
A node will not remain in PARTED state as the node is removed as soon as it moves to PARTED state.

The --summary and --options flagsfor pgd node show CLIcommand.

Add the —-summary and --options flagsto pgd node show command to filter the output of the pgd node show command. This also maintains symmetry with other show commands.

More GUCs verfied in pgd cluster verify CLIcommand.

Add the bdr.lock_table_locking and bdr.truncate_locking GUCs to list of GUCs verfiedin pgd cluster verify command.

Table rewriting ALTER TABLE... ALTER COLUMN calls are now supported.

Changing a column's type command which causes the whole table to be rewritten and the change isn't binary coercible is now supported:

CREATE TABLE foo (cl int,c2 int, c3 int, c4 box, UNIQUE(cl, c2) INCLUDE(c3,c4));
ALTER TABLE foo ALTER cl TYPE bigint; - results into table rewrite

This also includes support for ALTER TYPE when using the USING clause:

CREATE TABLE foo (id serial primary key,data text);
ALTER TABLE foo ALTER data TYPE BYTEA USING data::bytea;

Table rewrites can hold an AccessExclusiveLock for extended periods on larger tables.

Restrictions on non-immutable ALTER TABLE... ADD COLUMN calls have been removed.

The restrictions on non-immutable ALTER TABLE... ADD COLUMN calls have been removed.

Synchronize roles and tablespaces during logical join

Roles and tablespaces are now synchronized before the schema is restored from the join source node. If there are already existing roles or tablespaces (or EPAS profiles, they will be updated to have the same
settings, passwords etc. as the ones from the join source node. System roles (i.e. the ones created by initdb) are not synchronized.

Introduce bdr.node_group_config_summary view

The new bdr.node_group_config_summary view contains detailed information about group options, including effective value, source of the effective value, default value, whether the value can be inherited,
etc. This is in similar spiritto pg_settings

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 19

EDB Postgres Distributed (PGD)

Description Addresses

Leader DML lock

New lock type leader DML lock is used by default for locking DDL statements that need to block DML. This lock locks on write-leaders only, no requiring all nodes to participate in the locking operation. Old behavior
can be restored by adjusting bdr.dd1_locking configuration parameter.

Disabling bdr.xact_replication in run_on_* functions

Functions run_on_nodes, run_on_all_nodes and run_on_group nowsets bdr.xact_replication to off bydefault.

Replica Identity full by default
The auto value for bdr.default_replica_identity changedto REPLICA IDENTITY FULL. This setting prevents some edge cases in conflict detection between inserts, updates and deletes across node

crashes and recovery.

When the PGD group is created and the database of the initial PGD node is not empty (i.e. has some tables with data) the REPLICA IDENTITY of all tables will be set according to
bdr.default_replica_identity.

Tablespace replication as a DDL operation is supported.

Tablespace operations CREATE/ALTER/DROP TABLESPACE are now replicated as a DDL operation. Where users are running a configuration with multiple nodes on the same machine, you will need to enable
the developer option allow_in_place_tablespace.

Improve the CLI debug messages.

Improve the formating of the log messages to be more readable and symmetrical with Postgres log messages.

New column for pgd cluster verify --settings CLIcommand output.

Add the recommended_value column to the result of the pgd cluster verify --settings command. The column will not be displayed in tabular output but will be displayed in JSON output.

Display sorted output for CLI.

The output for the commands with tabular output are now sorted by the resource name. Commands that display more than one resource will sort output by each resource column in order.

Subscriber-only nodes replication.

Subscriber-only nodes now receive data only after it has been replicated to majority of data nodes. This does not require any special configuration. Subsequently bdr.standby_slot_names and
bdr.standby_slots_min_confirmed options are removed as similar physical standby functionality is provided in pg_failover_slots extension and in PG17+.

automatic node sync and reconciliation is enabled by default.

The GUC bdr.enable_auto_sync_reconcile was off by default, but is made on by default in 6.0. This GUC setting ensures that when a node is down for some time, all other nodes get caught up equally with
respect to this node automatically. It also ensures that if there are any prepared transactions that are orphaned by the node going down, they are resolved, either aborted or committed as per the rules of the commit
scope that created them.

Remove the deprecated legacy CLI commands.

Remove the old (PGD 5 and below) CLI commands, which were deprecated but supported for backward compatibility.

Commit scope logic is now only run on data nodes.

Previously, non-data nodes would attempt to handle, but not process commit scope logic, which could lead to confusing, albeit harmless log messages.

Explicitly log the start and stop of dump and restore operations.

This provides greater visibility into the node cloning process and assists with debugging possible issues.

Changes

Description Addresses

Routing is now enabled by default on subgroups

Routing (and by extension raft) is now enabled by default on data-groups (subgroups with data nodes).

Function bdr.join_node_group may no longer be executed in a transaction.

As it is not possible to roll back a group join, it can not form part of an idempotent transaction.
Deprecated pause_in_standby parameter removed from function bdr.join_node_group() .
pause_in_standby has been deprecated since PGD 5.0.0. Logical standby nodes should be specified as such when executing

bdr.create_node()

BDR global sequences can no longer created as or set to UNLOGGED

Unlogged BDR sequences may display unexpected behaviour following a server crash. Existing unlogged BDR sequences may be converted to logged ones.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 20

https://www.postgresql.org/docs/current/runtime-config-developer.html#GUC-ALLOW-IN-PLACE-TABLESPACES

EDB Postgres Distributed (PGD)

Bug Fixes

Description

Fix the CLI pgd cluster show command issues on a degraded cluster.

The pgd cluster show command failed with an error for clock drift if only one node was up and running in a N node cluster. The command now returns valid output for the other components, health and
summary , while reporting an appropriate error for clock-drift.

Fix the CLI pgd node show command issue if a non-existent node is specified.

The pgd node show command crashed if a non-existent node is specified to the command. The command is fixed to fail gracefully with appropriate error message.

Fix the broken replication slot issue after rolling Postgres upgrade using pgd node upgrade command.

Merge writer origin positions to the parent origin during node upgrade. In PGD 5 and older writer origin names map to parent origin id which may change during inplace upgrade.

Fixed the timestamp parsing issue for pgd replication show CLI command.

The pgd replication show command previously crashed when formatting EPAS timestamps.

Fixed issue where parting node may belong to a non-existing group

When parting a given node, that same node may have subscriptions whose origin was already parted and the group dropped. Previously this would break PGD, and has since been fixed.

num_writers should be positive or -1

The num_writers option, used in bdr.alter_node_group_option() and bdr.alter_node_group_config() should be positive or -1.

Fix replication breakage with updates to non-unique indexes

Fixes the case where an update to a table with non-unique indexes results in the ERROR concurrent INSERT when looking for delete rows,which breaks replication.

Fix Raft leader election timeout/failure after upgrade

Ensure that any custom value set in the deprecated GUC bdr.raft_election_timeout isapplied to the replacement bdr.raft_global_election_timeout

Ensure that disables subscriptions on subscriber-only nodes are not re-enabled

During subscription reconfiguration, if there is no change required to a subscription, do not enable it since it could have been disabled explicitly by the user. Skip reconfiguring subscriptions if there are no leadership
changes.

Subscriber-only nodes will not take a lock when running DDL

Subscriber-only nodes will no longer attempt to take a lock on the cluster when running DDL. The DDL will be executed locally and not replicated to other nodes.

Fixed hang in database system shutdown.

Fixed non-transactional WAL message acknowledgment by downstream that could cause a WAL sender to never exit during fast database system shutdown.

Fixed deadlock issue in bdr_init_physical.

Fixed deadlock between bdr_init_physical cleaning unwanted node data and concurrent monitoring queries.

Fixed new cluster node consistency issue.

Fixed an issue when new node joining the cluster finishes CATCHUP phase before getting its replication progress against all data nodes. This may cause new node being out of sync with the cluster.

Ensure correct sequence type is displayed in CREATE SEQUENCE warnings

In some cases, warning messages referred to timeshard when the sequence was actually snowflakeid .

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

Addresses

46412,48747

43523,43802,45244
,47815

46519

47233

49022

46952

21

EDB Postgres Distributed (PGD)

3 Overview

EDB Postgres Distributed (PGD) provides multi-master replication and data distribution with advanced conflict management, data-loss protection, and throughput up to 5X faster than native logical replication. It also enables distributed
Postgres clusters with high availability up to five 9s.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 22

https://www.enterprisedb.com/blog/performance-improvements-edb-postgres-distributed

EDB Postgres Distributed (PGD)

34 Known issues and limitations

Known issues
These are currently known issues in EDB Postgres Distributed 6.2. These known issues are tracked in PGD's ticketing system and are expected to be resolved in a future release.

® Replication of materialized views only works with newly-created materialized views. Materialized views that were created before upgrading to 6.2.0 do not get replicated after upgrading. To prevent this issue, you can do one of the
following:

o Before upgrading to PGD 6.2.0., manually create the materialized view on each node.
= OR

o After upgrading to PGD 6.2.0., drop and create the materialized view so that it gets replicated.

o |f the resolver for the update_origin_change conflictissetto skip, synchronous_commit=remote_apply is used, and concurrent updates of the same row are repeatedly applied on two different nodes, then one of the
update statements might hang due to a deadlock with the PGD writer. As mentioned in Conflicts, skip isn't the default resolver for the update_origin_change conflict, and this combination isn't intended to be used in
production. It discards one of the two conflicting updates based on the order of arrival on that node, which is likely to cause a divergent cluster. In the rare situation that you do choose to use the skip conflict resolver, note the issue
with the use of the remote_apply mode.

® The Decoding Worker feature doesn't work with CAMO/Eager/Group Commit. Installations using CAMO/Eager/Group Commit must keep enable_wal_decoder disabled.

® Lag Control doesn't adjust commit delay in any way on a fully isolated node, that's in case all other nodes are unreachable or not operational. As soon as at least one node connects, replication Lag Control picks up its work and adjusts
the PGD commit delay again.

® Fortime-based Lag Control, PGD currently uses the lag time, measured by commit timestamps, rather than the estimated catch up time that's based on historic apply rates.

e Changing the CAMO partners in a CAMO pair isn't currently possible. It's possible only to add or remove a pair. Adding or removing a pair doesn't require a restart of Postgres or even a reload of the configuration.
® Group Commit can't be combined with CAMO.

e Transactions using Eager Replication can't yet execute DDL. The TRUNCATE command is allowed.

e Parallel Apply isn't currently supported in combination with Group Commit. Make sure to disable it when using Group Commit by either (a) Setting num_writers to 1 for the node group using bdr.alter_node_group_option
or (b) using the GUC bdr.writers_per_subscription . See Configuration of generic replication.

e There currently is no protection against altering or removing a commit scope. Running transactions in a commit scope that's concurrently being altered or removed can lead to the transaction blocking or replication stalling completely
due to an error on the downstream node attempting to apply the transaction. Make sure that any transactions using a specific commit scope have finished before altering or removing it.

® The PGD CLI can return stale data on the state of the cluster if it's still connecting to nodes that were previously parted from the cluster. Edit the pgd—-cli-config.yml file, or change your —-dsn settings to ensure only active
nodes in the cluster are listed for connection.

To modify a commit scope safely, use bdr.alter_commit_scope .

® DDL run in serializable transactions can face the error: ERROR: could not serialize access due to read/write dependencies among transactions.Aworkaround is to run the DDL outside serializable
transactions.

e The EDB Postgres Advanced Server 17 data type BFILE is not currently supported. This is due to BFILE being a file reference that is stored in the database, and the file itself is stored outside the database and not replicated.

Limitations

Take these EDB Postgres Distributed (PGD) design limitations into account when planning your deployment.

Nodes

® PGD can run hundreds of nodes, assuming adequate hardware and network. However, for mesh-based deployments, we generally don’t recommend running more than 48 nodes in one cluster. If you need extra read scalability beyond
the 48-node limit, you can add subscriber-only nodes without adding connections to the mesh network.

® The minimum recommended number of nodes in a group is three to provide fault tolerance for PGD's consensus mechanism. With just two nodes, consensus would fail if one of the nodes were unresponsive. Consensus is required for

some PGD operations, such as distributed sequence generation. For more information about the consensus mechanism used by EDB Postgres Distributed, see Architectural details.

Multiple databases on single instances

Support for using PGD for multiple databases on the same Postgres instance is deprecated beginning with PGD 5 and will no longer be supported with PGD 6. As we extend the capabilities of the product, the added complexity introduced
operationally and functionally is no longer viable in a multi-database design.

It's best practice and we recommend that you configure only one database per PGD instance.
The tooling such as the CLI and Connection Manager currently codify that recommendation.

While it's still possible to host up to 10 databases in a single instance, doing so incurs many immediate risks and current limitations:

If PGD configuration changes are needed, you must execute administrative commands for each database. Doing so increases the risk for potential inconsistencies and errors.

You must monitor each database separately, adding overhead.

Connection Manager works at the Postgres instance level, not at the database level, meaning the leader node is the same for all databases.

Each additional database increases the resource requirements on the server. Each one needs its own set of worker processes maintaining replication, for example, logical workers, WAL senders, and WAL receivers. Each one also needs
its own set of connections to other instances in the replication cluster. These needs might severely impact performance of all databases.

Synchronous replication methods, for example, CAMO and Group Commit, won’t work as expected. Since the Postgres WAL is shared between the databases, a synchronous commit confirmation can come from any database, not
necessarily in the right order of commits.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 23

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts/
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/camo/
https://www.enterprisedb.com/docs/epas/latest/reference/sql_reference/02_data_types/03a_bfiles/
https://www.enterprisedb.com/docs/pgd/latest/reference/overview/basic-architecture/

EDB Postgres Distributed (PGD)

e CLlintegration assumes one database.

Durability options (Group Commit/CAMO)

There are various limits on how the PGD durability options work. These limitations are a product of the interactions between Group Commit and CAMO, and how they interact with PGD features such as the WAL decoder and transaction
streaming.

Also, there are limitations on interoperability with legacy synchronous replication, interoperability with explicit two-phase commit, and unsupported combinations within commit scope rules.

The following limitations apply to the use of commit scopes and the various durability options they enable.

General durability limitations

® Legacy synchronous replication uses a mechanism for transaction confirmation different from the one used by CAMO, Eager, and Group Commit. The two aren't compatible, so don't use them together. Whenever you use Group Commit,
CAMO, or Eager, make sure none of the PGD nodes are configured in synchronous_standby_names .

® Postgres two-phase commit (2PC) transactions (that is, PREPARE TRANSACTION) can't be used with CAMO, Group Commit, or Eager because those features use two-phase commit underneath.

Group Commit

Group Commit enables configurable synchronous commits over nodes in a group. If you use this feature, take the following limitations into account:

e Not all DDL can run when you use Group Commit. If you use unsupported DDL, a warning is logged, and the transactions commit scope is set to local. The only supported DDL operations are:

o

Nonconcurrent CREATE INDEX

Nonconcurrent DROP INDEX

Nonconcurrent REINDEX of an individual table or index
CLUSTER (of a single relation or index only)

ANALYZE

TRUNCATE

o

o

o

o

o

o Explicit two-phase commit isn't supported by Group Commit as it already uses two-phase commit.
e Combining different commit decision options in the same transaction or combining different conflict resolution options in the same transaction isn't supported.

e Currently, Raft commit decisions are extremely slow, producing very low TPS. We recommended using them only with the eager conflict resolution setting to get the Eager All-Node Replication behavior of PGD 4 and older.

Eager
Eager is available through Group Commit. It avoids conflicts by eagerly aborting transactions that might clash. It's subject to the same limitations as Group Commit.

Eager doesn't allow the NOTIFY SQL command orthe pg_notify() function. Italso doesn'tallow LISTEN or UNLISTEN .

CAMO
Commit At Most Once (CAMO) is a feature that aims to prevent applications committing more than once. If you use this feature, take these limitations into account when planning:

e CAMO is designed to query the results of a recently failed COMMIT on the origin node. In case of disconnection, the application must request the transaction status from the CAMO partner. Ensure that you have as little delay as possible
after the failure before requesting the status. Applications must not rely on CAMO decisions being stored for longer than 15 minutes.

If the application forgets the global identifier assigned, for example, as a result of a restart, there's no easy way to recover it. Therefore, we recommend that applications wait for outstanding transactions to end before shutting down.

For the client to apply proper checks, a transaction protected by CAMO can't be a single statement with implicit transaction control. You also can't use CAMO with a transaction-controlling procedure orina DO block that tries to start
or end transactions.

CAMO resolves commit status but doesn't resolve pending notifications on commit. CAMO doesn't allow the NOTIFY SQL command or the pg_notify () function. Theyalso don'tallow LISTEN or UNLISTEN .

When replaying changes, CAMO transactions might detect conflicts just the same as other transactions. If timestamp-conflict detection is used, the CAMO transaction uses the timestamp of the prepare-on-the-origin node, which is
before the transaction becomes visible on the origin node itself.

CAMO isn't currently compatible with transaction streaming. Be sure to disable transaction streaming when planning to use CAMO. You can configure this option globally or in the PGD node group. SeeTransaction streaming
configuration.

CAMO isn't currently compatible with decoding worker. Be sure to not enable decoding worker when planning to use CAMO. You can configure this option in the PGD node group. See Decoding worker disabling.

Not all DDL can run when you use CAMO. If you use unsupported DDL, a warning is logged and the transactions commit scope is set to local only. The only supported DDL operations are:

o

Nonconcurrent CREATE INDEX

Nonconcurrent DROP INDEX

Nonconcurrent REINDEX of an individual table or index
CLUSTER (of a single relation or index only)

ANALYZE

TRUNCATE

o

o

o

o

o

e Explicit two-phase commit isn't supported by CAMO as it already uses two-phase commit.

e You can combine only CAMO transactions with the DEGRADE TO clause for switching to asynchronous operation in case of lowered availability.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 24

https://www.enterprisedb.com/docs/pgd/latest/reference/decoding_worker/
https://www.enterprisedb.com/docs/pgd/latest/reference/transaction-streaming/
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/legacy-sync
https://www.postgresql.org/docs/current/sql-prepare-transaction.html
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/group-commit
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/group-commit/#eager-conflict-resolution
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/camo
https://www.enterprisedb.com/docs/pgd/latest/reference/transaction-streaming#configuration
https://www.enterprisedb.com/docs/pgd/latest/reference/decoding_worker#enabling

EDB Postgres Distributed (PGD)

Mixed PGD versions

PGD was developed to enable rolling upgrades of PGD by allowing mixed versions of PGD to operate during the upgrade process. We expect users to run mixed versions only during upgrades and, once an upgrade starts, that they complete
that upgrade. We don't support running mixed versions of PGD except during an upgrade.

Other limitations

This noncomprehensive list includes other limitations that are expected and are by design. We don't expect to resolve them in the future. Consider these limitations when planning your deployment:

e A galloc sequence might skip some chunks if you create the sequence in a rolled back transaction and then create it again with the same name. Skipping chunks can also occur if you create and drop the sequence when DDL
replication isn't active and then you create it again when DDL replication is active. The impact of the problem is mild because the sequence guarantees aren't violated. The sequence skips only some initial chunks. Also, as a workaround,
you can specify the starting value for the sequence as an argument to the bdr.alter_sequence_set_kind() function.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 25

3.2 PGD compatibility

PGD compatibility with PostgreSQL versions

The following table shows the major versions of PostgreSQL that EDB Postgres Distributed (PGD) is compatible with.

PGD6 Postgres Version

6 18.1.0+
6 17.5.0+
6 16.9.0+
6 15.13.0+
6 14.18.0+

EDB recommends that you use the latest minor version of any Postgres major version with a supported PGD.

PGD compatibility with operating systems and architectures

The following tables show the versions of EDB Postgres Distributed and their compatibility with various operating systems and architectures.

Linux

Operating System ?:::i?li) ppcé4le ::1?11;/4
RHEL 8 Yes Yes

RHEL 9 Yes Yes Yes
Oracle Linux 8 Yes

Oracle Linux 9 Yes

Rocky Linux/AlmaLinux Yes

SUSE Linux Enterprise Server 155P6 Yes Yes

Ubuntu 22.04 Yes

Ubuntu 24.04 Yes

Debian 12 Yes Yes
IBM Linux One Yes

Note

See PGD 5 Compatibility for previous versions of PGD.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

26

https://www.enterprisedb.com/docs/pgd/5.8/compatibility

EDB Postgres Distributed (PGD)

3.3 Postgres Distributed terminology

This terminology list includes terms associated with EDB Postgres Distributed (PGD) that you might be unfamiliar with.

Asynchronous replication

A type of replication that copies data to other PGD cluster members after the transaction completes on the origin node. Asynchronous replication can provide higher performance and lower latency thansynchronous replication. However,
asynchronous replication can see a lag in how long changes take to appear in the various cluster members. While the cluster will be eventually consistent, there's potential for nodes to be apparently out of sync with each other.

Commit scopes

Rules for managing how transactions are committed between the nodes and groups of a PGD cluster. Used to configure synchronous replication, Group Commit, CAMO, Eager, Lag control, and other PGD features.

CAMO or commit-at-most-once

High-value transactions in some applications require that the application successfully commits exactly once, and in the event of failover and retrying, only once. To ensure this happens in PGD, CAMO can be enabled, allowing the application to
actively participate in the transaction.

Conflicts

As data is replicated across the nodes of a PGD cluster, there might be occasions when changes from one source clash with changes from another source. This is a conflict and can be handled with conflict resolution. Conflict resolution is a set
of rules that decide which source is correct or preferred. Conflicts can also be avoided with conflict-free data types.

Connection Manager

To ensure that clients can connect to the right nodes in the distributed cluster, PGD provides a connection management system that allows clients to connect to the appropriate nodes based on their needs.

This system is designed to ensure that clients can access the data they need while maintaining the performance and availability of the cluster. Unlike Proxy systems, this connection management system is built into the database instance itself,
allowing for more efficient and reliable connections.

Consensus

How Raft makes group-wide decisions. Given a number of nodes in a group, Raft looks for a consensus of the majority (number of nodes divided by 2 plus 1) voting for a decision. For example, when a write leader is being selected, a Raft
consensus is sought over which node in the group will be the write leader. Consensus can be reached only if there's a quorum of voting members.

Cluster

Generically, a cluster is a group of multiple systems arranged to appear to end users as one system. See also PGD cluster and Postgres cluster.

DDL (data definition language)

The subset of SQL commands that deal with defining and managing the structure of a database. DDL statements can create, modify, and delete objects (that is, schemas, tables, and indexes) in the database. Common DDL commands are
CREATE, ALTER, and DROP.

DML (data manipulation language)

The subset of SQL commands that deal with manipulating the data held in a database. DML statements can create, modify, and delete rows in tables in the database. Common DML commands are INSERT, UPDATE, and DELETE.

Durability

Durability guarantees that once a transaction is committed, it remains committed even in the event of a system failure. PGD manages this throughCommit scopes.

Eager

A synchronous commit mode that avoids conflicts by detecting incoming potentially conflicting transactions and “eagerly” aborts one of them to maintain consistency.

Eventual consistency

A distributed computing consistency model stating changes to the same item in different cluster members will eventually converge to the same value. Asynchronous logical replication with conflict resolution and conflict-free replicated data
types exhibit eventual consistency in PGD.

Failover

The automated process that recognizes a failure in a highly available database cluster and takes action to maintain consistency and availability. The goal is to minimize downtime and data loss.

Group commit

A synchronous commit mode that requires more than one PGD node to successfully receive and confirm a transaction at commit time.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 27

EDB Postgres Distributed (PGD)

Immediate consistency

A distributed computing model where all replicas are updated synchronously and simultaneously. This model ensures that all reads after a write completes will see the same value on all nodes. The downside of this approach is its negative
impact on performance.

Lag Control

Lag Control is a throttling mechanism used to ensure that secondary nodes do not fall too far behind the primary. If a node’s replication delay exceeds a set threshold, PGD automatically throttles the ingestion on the origin node to allow the
rest of the cluster to catch up.

Logical replication

A more efficient method of replicating changes in the database. While physical streaming replication duplicates the originating database’s disk blocks, logical replication instead takes the changes made, independent of the underlying physical
storage format, and publishes them to all systems that subscribed to see the changes. Each subscriber then applies the changes locally. Logical replication can't support most DDL commands.

Logical standby node

Logical standby nodes are used to provide a read-only replica of the data in the cluster. They are similar to subscriber-only nodes, but they are designed to be more flexible and can be used in a wider range of scenarios.

Node

A general term for an element of a distributed system. A node can play host to any service. In PGD, PGD nodes run a Postgres database, the BDR extension and the Connection Manager.

Typically, for high availability, each node runs on separate physical hardware, but that's not always the case.

Node groups

PGD nodes in PGD clusters can be organized into groups to reflect the logical operation of the cluster. For example, the data nodes in a particular physical location can be part of a dedicated node group for the location.
Each group uses the Raft consensus algorithm to elect a leader; in data-specific groups, this leader acts as the write leader, which handles all incoming write operations to maintain consistency.

Groups manage data replication, with a "top-level" group representing the entire cluster and serving as the parent to all other sub-groups.

PGD cluster

A group of multiple redundant database systems and proxies arranged to avoid single points of failure while appearing to end users as one system. PGD clusters can be run on Docker instances, cloud instances or “bare” Linux hosts, or a
combination of those platforms. A PGD cluster can also include backup nodes. The data nodes in a cluster are grouped together in a top-level group and into various local node groups.

PGD node

Ina PGD cluster are nodes that run databases and participate in the PGD cluster. A typical PGD node runs a Postgres database, the BDR extension, and the Connection Manager. PGD modes are also referred to as data nodes, which suggests
they store data. However, some PGD nodes, specifically witness nodes, don't do that.

Physical replication

By making an exact copy of database disk blocks as they're modified to one or more standby cluster members, physical replication provides an easily implemented method to replicate servers. But there are restrictions on how it can be used.
For example, only one master node can run write transactions. Also, the method requires that all cluster members are on the same major version of the database software with the same operating system and CPU architecture.

Postgres cluster

Traditionally, in PostgreSQL, a number of databases running on a single server is referred to as a cluster (of databases). This kind of Postgres cluster isn't highly available. To get high availability and redundancy, you need aPGD cluster.

Quorum
A quorum is the minimum number of voting nodes needed to participate in a distributed vote. It ensures that the decision made has validity. For example, when aRaft consensus is needed by a PGD cluster, a minimum number of voting nodes

participating in the vote are needed. With a 5-node cluster, the quorum is 3 nodes in the cluster voting. A consensus is 5/2+1 nodes, 3 nodes voting the same way. If there are only 2 voting nodes, then a consensus is never established. Quorums
are required in PGD for global locks and Raft decisions.

Replicated available fault tolerance (Raft)

A consensus algorithm that uses votes from a quorum of machines in a distributed cluster to establish a consensus. PGD uses Raft within groups (top-level or local) to establish the node that's the write leader.

Read scalability

The ability of a system to handle increasing read workloads. For example, PGD can introduce one or more read replica nodes to a cluster and have the application direct writes to the primary node and reads to the replica nodes. As the read
workload grows, you can increase the number of read replica nodes to maintain performance.

Subscription

PGD nodes will publish changes being made to data to nodes that are interested. Other PGD nodes will ask to subscribe to those changes. This behavior creates a subscription and is the mechanism by which each node is updated. PGD nodes
bidirectionally subscribe to other PGD nodes' changes.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 28

https://www.enterprisedb.com/docs/pgd/latest/reference/ddl/ddl-locking/

EDB Postgres Distributed (PGD)

Switchover

A planned change in connection between the application or proxies and the active database node in a cluster, typically done for maintenance.

Synchronous replication

When changes are updated at all participating nodes at the same time, typically leveraging a two-phase commit. While this approach replicates changes and resolves conflicts before committing, a performance cost in latency occurs due to the
coordination required across nodes.

Subscriber-only nodes

APGD cluster is based around bidirectional replication. But in some use cases, such as needing a read-only server, bidirectional replication isn't needed. A subscriber-only node is used in this case. It subscribes only to changes in the database
to keep itself up to date and provide correct results to any run directly on the node. This feature can be used to enable horizontal read scalability in a PGD cluster. They can be configured in two ways:

* Within a data group: These nodes act as read-only replicas alongside standard data nodes. While they provide local access to data, they do not benefit from specific replication optimizations.
e Within a subscriber-only group: This configuration lacks a write leader. All nodes are strictly read-only, allowing PGD to apply optional optimizations that streamline the replication process.

Two-phase commit (2PC)
A multi-step process for achieving consistency across multiple database nodes. The first phase sees a transaction prepared on an originating node and sent to all participating nodes. Each participating node validates that it can apply the

transaction and signals its readiness to the originating node. This is the prepare phase. In the second phase, if all the participating nodes signal they're ready, the originating node proceeds to commit the transaction and signals the
participating nodes to commit, too. This is the commit phase. If, in the prepare phase, any node signals it isn't ready, the entire transaction is aborted. This process ensures all nodes get the same changes.

Vertical scaling or scale up

A traditional computing approach of increasing a resource (CPU, memory, storage, network) to support a given workload until the physical limits of that architecture are reached, for example, Oracle Exadata.

Witness nodes

Witness nodes primarily serve to help the cluster establish a consensus. An odd number of data nodes is needed to establish a consensus. Where resources are limited, a witness node can be used to participate in cluster decisions but not
replicate the data. Not holding the data means it can't operate as a standby server or provide majorities in synchronous commits.

Write leader

In an Always-on architecture, a node is selected as the correct connection endpoint for applications. This node is called the write leader. Once selected, the PGD Connection Manager routes queries and updates to it. With only one node
receiving writes, unintended multi-node writes can be avoided. The write leader is selected by consensus of a quorum of data nodes. If the write leader becomes unavailable, the data nodes select another node to become write leader. Nodes
that aren't the write leader are referred to as shadow nodes.

Writer

When a subscription delivers data changes to a PGD node, the database server tasks a worker process, called a writer, with getting those changes applied.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 29

EDB Postgres Distributed (PGD)

3.4 Quickstart guide

This guide will guide your through installing a basic PGD cluster, connect to the it, load data, and perform basic SQL operations.

e Creating a cluster.

® Working with SQL and the PGD Cluster.
e |oading Data into your PGD Cluster.

e Using the PGD CLI.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 30

EDB Postgres Distributed (PGD)

3.4.1 Creating your first cluster

This guide helps you create a local cluster using Docker Compose. This is a great way to get familiar with the EDB Postgres Distributed (PGD) features and functionality.

Prerequisites

e Docker and Docker Compose installed on your local machine.

Install the PGD Docker Quickstart kit
To create your first PGD cluster, you can use the Docker Compose file provided by EDB. This will set up a local cluster with three nodes, which is perfect for testing and development purposes.

1. Make sure you have Docker and Docker Compose installed on your local machine. You can follow the Docker installation guide if you haven't done so already.

2. Open a terminal and on the machine where you have docker installed, create a new directory for your PGD cluster, for example:
mkdir pgd-cluster
cd pgd-cluster
3. Run the following command to download the PGD Docker Compose file:
curl https://enterprisedb.com/docs/pgd/latest/quickstart/assets/pgd_quickstart.sh | bash
This will download the PGD Docker Quickstart kit, which includes the Docker Compose file and other necessary files to get started with PGD Essential.
4. Once the download is complete, you will need to prepare the environment for the PGD cluster. This is done by running the following command:
./qs.sh prepare
This command will create the necessary directories and files for the PGD cluster.
5. Now you have to build the Docker images for the PGD cluster. You can do this by running the following command:
export EDB_SUBSCRIPTION_TOKEN=...
./qs.sh build
This command will build the Docker image needed for the PGD Quickstart cluster.
6. After the images are built, you can start the PGD cluster using Docker Compose. Run the following command:

./gs.sh start

This command will start the Docker containers and create a local cluster with the default configuration, running in the background.

Accessing the PGD Cluster

1. Once the containers are up and running, you can access the PGD cluster using the following command:

docker compose exec host-1 psql pgddb

This command will connect you directly to the first node of the cluster using the psql command-line interface.

This is how you would connect to the database for maintenance and management tasks.

For application and user access you will usually connect using the connection manager which, by default, is running on TCP port 6432 of all the hosts in the cluster.

N

. You can connect to the write leader node in the cluster using the following command:
docker compose exec host-1 psql host-1 6432 pgddb
You can replace ~h host-1 with the name of any host in the cluster, as they all run the connection manager.
If you have the psql client installed on your local machine, you can also connect to the cluster using the following command:

export PGPASSWORD=secret

psql localhost 6432 postgres
pgddb

This connects to the connection manager running on the host-3 container on port 6432. This is then routed to the write leader node in the cluster.

pgddb=# select node_name from bdr.local_node_summary;
node_name

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 31

https://docs.docker.com/get-docker/

EDB Postgres Distributed (PGD)

3. To use the PGD CLI from outside the containers, you can run the following command:

docker compose exec host-1 pgd nodes list

output

Node Name | Group Name | Node Kind | Join State | Node Status

| group-1 | ACTIVE
| group-1 | ACTIVE
node-3 | group-1 | ACTIVE

This pgd command will lists the nodes in the cluster and their status.

You can also get a shell on the host-1 container and run the pgd command directly:

docker compose exec host-1 bash
pgd nodes list

output

group-1
group-1
group-1

This will give you access to the PGD CLI and allow you to run any PGD commands directly on the host-1 container.

Next Steps
Now that you have created your first PGD cluster, you can explore the following topics:
e Working with SQL and the cluster to understand how to connect and interact with the cluster using SQL commands.

e Loading datainto the cluster using the COPY command or pg_dump and pg_restore.
® Using PGD CLI to monitor and manage the cluster.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

32

EDB Postgres Distributed (PGD)

3.4.2 Working with SQL and the PGD cluster

The first step in working with your PGD cluster is to connect to it using SQL. You can do this using the psql command-line interface or any other SQL client that supports PostgreSQL.

The psqgl command is already installed and configured, if you are using the Docker Compose setup of the Quickstart kit. That means all you have to do is get a shell on one of the hosts so you can start working with it. You can sign into the
host-1 container to run commands within the cluster.

docker compose exec host-1 bash

This will give you a shell inside the host-1 container where you can run PGD and SQL commands against the PGD cluster.

Connecting within the PGD Cluster
With PGD Essential, unless you are performing maintenance tasks, you will usually connect to the cluster using the connection manager, which is running on TCP port 6432 of all the hosts in the cluster.

You can connect to the write leader node in the cluster using the following command:

psql <host> -p 6432 <username>
<database>

As we have a new cluster running with no users (apart from the postgres superuser) and one replicated database (pgddb), you can connect to the cluster using the following command:

psql host-1 6432 postgres
pgddb

This connects to the connection manager running on the host-1 container on port 6432, which is then routed to the write leader node in the cluster. You can replace host-1 with the name of any host in the cluster, as they all run the
connection manager.

If we run the following command, we can see which node we are connected to in the cluster:

select node_name from bdr.local_node_summary;

output

node_name

Which doesn't surprise us, as we connected to the host-1 container, which is running the node-1 node in the cluster.

Ifwe exit psql,and reconnect with:

psql host-2 6432 postgres
pgddb

We can see that we are now connected to the node-1 node in the cluster:

select node_name from bdr.local_node_summary;
node_name

That's the connection manager routing us to the write leader node in the cluster, which is node-1 . To confirm this, we can run:

\! pgd group group-1 show
summary

output
Group Property
Group Name group-1
Parent Group Name pgd
Group Type data
Write Leader node-1

Commit Scope

(You canuse the \! commandin psql to run shell commands directly from within the psql session.)

Working with SQL

Now that you are connected to the cluster, you can start working with SQL commands. You can create tables, insert data, and run queries just like you would in a regular PostgreSQL database.

For example, you can create a table and insert some data:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 33

EDB Postgres Distributed (PGD)

CREATE TABLE users
(

id SERIAL PRIMARY
KEY,

name VARCHAR(100),

email VARCHAR(100) UNIQUE
)5
INSERT INTO users (name, email)
VALUES

('Alice', 'alice@example.com'),

('Bob', 'bob@example.com');
You can then query the data:

SELECT * FROM
users;

output

2 | Alice alice@example.com
3 | Bob bob@example.com

(2 rows)

You can also run more complex queries, join tables, and use all the features of PostgreSQL. It's not withing the scope of this guide to cover all SQL commands, but you can refer to thePostgreSQL documentation for more information on SQL
syntax and commands.

Differences with PGD

What is important is that those SQL commands are replicated across the cluster. PGD has taken care of the replication for you. For example, that serial key has automatically been converted to a globally unique key across the cluster, so
you can insert data on any node in the cluster and it will be replicated to all other nodes. For PGD Essential, this is less important as you are required to connect to the write leader, but with PGD Expanded, you can connect to any node in the
cluster and run SQL commands, and this automatic change enables you to do that without worrying about conflicts or duplicates. With PGD Essential you are future proofed and can easily move to PGD Expanded later, with no changes to your

SQL commands or application code.

Next Steps

Now that you have connected to your PGD cluster and run some SQL commands, you can explore the following topics:

® Loading Data into your PGD Cluster to learn how to import data from external sources.
e Using PGD CLI to manage your PGD cluster from the command line.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 34

https://www.postgresql.org/docs/current/sql.html

3.4.3 Loading data into your PGD Cluster

EDB Postgres Distributed (PGD)

PGD is, at its core, a Postgres database, so you can use the same tools and methods to load data into your PGD cluster as you would with any PostgreSQL database. To get you started, this guide will walk you through the process of loading data

into your PGD cluster.

Online CSV Importing

First, we are going to show how you can import data from an online CSV file into your PGD cluster. In this case, it's some historical baseball data fromBaseball Databank. We are going to use the \COPY command in psql to import directly

from a URL. One thing \COPY doesn't do is create the table for you, so we will need to create the table first.

Connect to your PGD cluster using psql , either using docker compose exec host-1 psql orifyouhave psql installed locally, using that to connect to port 6432 on your host machine.

CREATE TABLE batters

(
id SERIAL,
playerid
VARCHAR(9) ,
yearid

INTEGER,
stint INTEGER,
teamid
VARCHAR (3) ,

1lgid VARCHAR(2),

g
INTEGER,

ab INTEGER,

r
INTEGER,

INTEGER,
"2b" INTEGER,
"3b" INTEGER,
hr INTEGER,
rbi

INTEGER,
sb INTEGER,
cs INTEGER,
bb INTEGER,
so INTEGER,
ibb

INTEGER,
hbp

INTEGER,
sh INTEGER,
sf INTEGER,
gidp INTEGER,
PRIMARY KEY

(id)

)5

Now we can import the CSV data into the batters table using the \COPY command:

\COPY batters(playerid,yearid,stint,teamid,lgid,g,ab,r,h,"2b","3b",hr,rbi,sb,cs,bb,so,ibb,hbp,sh,sf,gidp) FROM PROGRAM 'curl
"https://raw.githubusercontent.com/cbwinslow/baseballdatabank/master/core/Batting.csv"' DELIMITER ',

This command uses curl to fetch the CSV file from the URL and pipes it directly into the \COPY command, which imports the data into the batters table. The batters(...) entry defines which fields in the row the CSV data should go to.
The DELIMITER ',' CSV HEADER options specify that the file is a CSV, using commas, with a header row, that gets skipped.

Copy and the command and paste it into your psql session. If everything is set up correctly, you should see the data being imported without any errors. You should see output indicating the number of rows copied, like this:

COPY 110495
To verify that the data has been loaded correctly, you can run a simple query:

SELECT COUNT(*) FROM
batters;

You should see a result like this:

110495
(1 row)

This confirms that 110,495 rows have been successfully imported into the batters table.
Let's quickly user it to work out who 1998's home run leader was

SELECT playerid, yearid, teamid, hr
FROM batters

WHERE yearid =

1998

ORDER BY hr DESC
LIMIT 1;

You should see output like this:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

35

https://github.com/cbwinslow/baseballdatabank

playerid | yearid | teamid | hr

mcgwima@l |
(1 row)

And if we want to put that into the context of the top 5 highest ranked home run hitters in 1998, we can do:

1998 | SLN | 70

SELECT playerid, yearid, teamid,

rank() OVER (PARTITION BY yearid ORDER BY hr desc)

hr_rank,

hr
FROM batters
WHERE yearid =
1998

ORDER BY hr_rank LIMIT 5;

You should see output like this:

playerid | yearid | teamid | hr_rank | hr
mcgwima®l | 1998 | SLN | 1] 70
sosasa®l | 1998 | CHN | 2 | 66
griffke02 | 1998 | SEA | 3| 56
vaughgrol | 1998 | SDN | 4 | 50
bellealol | 1998 | CHA | 5 | 49
(5 rows)

EDB Postgres Distributed (PGD)

With PGD, you can enjoy the full power of PostgreSQL, including advanced SQL features like window functions, to analyze your data, but with the added benefit of it being fully replicated and highly available across multiple nodes even when a

node goes offline.

Next Steps

Now that you have loaded some data into your PGD cluster, you can explore the following topics:

e Using the PGD CLI to manage your PGD cluster from the command line.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

36

EDB Postgres Distributed (PGD)

3.4.4 Using PGD CLI

PGD CLI is a command-line interface for managing and monitoring your EDB Postgres Distributed (PGD) clusters. It provides a set of commands to perform various operations on the cluster, such as creating nodes, joining nodes, and
managing replication.

It's already installed and configured if you are using the Quickstart Docker Compose kit.
Log into the first host in your PGD cluster:

docker compose exec host-1 bash

and check the version of PGD CLI:

pgd version

output

pgd-cli version 6

Note

You can also run any of the following commands from outside the containers, using the docker compose exec command to run them in the context of the first host in your PGD cluster:

docker compose exec host-1 pgd <command>

And you can run the pgd command from any host in the cluster, as they all have the PGD CLI installed and configured.

Getting started with PGD CLI

Start by viewing the cluster's overall status with the pgd cluster show command:

pgd cluster show

output

Summary
Group Name Parent Group | Group Type | Node Name Node Kind

group-1
group-1
group-1
pgd

Health

Check | Status | Details

______ -

Connections | All BDR nodes are accessible

Raft | Raft Consensus 1is working correctly

Replication Slots | A1l PGD replication slots are working correctly
Clock Skew | Clock drift is within permissible limit
Versions | All nodes are running the same PGD version

Clock Drift
Reference Node | Node Name | Clock Drift

This command provides a summary of the cluster, its nodes, and their health status. It also shows the clock drift between nodes, which is important for replication consistency.

You can also view the status of individual nodes using the pgd node show command:

pgd node node-1 show

output

Summary
Node Property

Node Name

Group Name group-1
Node Kind data

Join State ACTIVE
Node Status Up

Node ID 4153941939
Snowflake SeqID 1

Database pgddb

route_dsn port=5432 dbname=pgddb host=host-1 user=postgres

route_fence false
route_priority -1
route_reads true

route_writes true

The structure of the pgd CLI commands is hierarchical, with commands grouped by functionality. You can view the available commands and their descriptions by running:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 37

https://www.enterprisedb.com/docs/pgd/latest/quickstart/first-cluster

EDB Postgres Distributed (PGD)

pgd --help

output

Manages PGD clusters

Usage: pgd [OPTIONS] <COMMAND>

Commands :
cluster Cluster-level commands

group Group related commands

groups Groups listing commands

node Node related commands

nodes Nodes listing commands

events Event log commands

replication Replication related commands

raft Raft related commands

commit-scope Commit scope management commands

assess PGD compatibility assessment of Postgres server

completion Generate the autocompletion script for pgd for the specified shell

Options:
-V, --version Print version

Global Options:
-f, -—config-file <CONFIG_FILE> Sets the configuration file path
--dsn <DSN> Sets the PostgreSQL connection string e.g. "host=localhost port=6000 user=postgres dbname=postgres" [env: PGD_CLI_DSN=]
-0, --output <OUTPUT_FORMAT> Sets the output format for tables [env: PGD_CLI_OUTPUT=] [default: psql] [possible values: json, psql, modern, markdown, simple]
--debug Print debug messages, useful while troubleshooting [env: PGD_CLI_DEBUG=]
-h, --help Print help

Commands suchas group, node take a group or a node name as their next argument, followed by a specific command. Commands such as cluster, groups,and nodes do not require a group or node name, as they operate at the
cluster level or list all groups or nodes.

You can also get help for a specific command by running:

pgd <COMMAND> --help

Viewing cluster status

To view the overall status of your PGD cluster, we have already used the pgd cluster show command. This shows all the cluster information. To see just the health status of the cluster, you can use the ——health option:

pgd cluster show --health

output
Details

Connections | A1l BDR nodes are accessible

Raft | Raft Consensus is working correctly

Replication Slots | A1l PGD replication slots are working correctly
Clock Skew | Clock drift is within permissible limit
Versions | A1l nodes are running the same PGD version

Or if you want to see the summary status only, you can use the ——summary option:

pgd cluster show —--summary

output
Group Name Parent Group | Group Type | Node Name

group-1
group-1 node-2
group-1 node-3

Viewing groups and group status

To view the status of all groups in the cluster, you can use the pgd groups list command:

pgd groups list

output

Now we can see the top level group pgd and the data group group-1 with 3 nodes in it. All nodes are a member of the top-level group which coordinates all activity across the cluster. The data group group-1 is a group of three data
nodes which are replicating data between themselves, routing incoming queries within the group to the write leader node in the group.

We can dig deeper into the group details using the pgd group show command:

pgd group group-1 show

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 38

EDB Postgres Distributed (PGD)

Summary
Group Property

Group Name group-1
Parent Group Name pgd
Group Type data
Write Leader node-1
Commit Scope

Nodes
Node Name | Node Kind | Join State

ACTIVE
ACTIVE
ACTIVE

Options
Option Name

analytics_storage_location
apply_delay

check_constraints
default_commit_scope

enable_raft

enable_routing
enable_wal_decoder

http_port

Tlocation

num_writers
read_only_consensus_timeout
read_only_max_client_connections
read_only_max_server_connections
read_only_port
read_write_consensus_timeout
read_write_max_client_connections
read_write_max_server_connections
read_write_port
route_reader_max_lag
route_writer_max_lag
route_writer_wait_flush
streaming_mode

use_https

This command provides a summary of the group, its nodes, and their status. It also shows the group options, such as whether routing is enabled, the HTTP port for monitoring, and other configuration settings.

output

Node Status

Option Value

(inherited)
00:00:00 (inherited)
true (inherited)

(inherited)
true
true
false (inherited)

(inherited)

-1 (inherited)
(inherited)
(inherited)
(inherited)
(inherited)
(inherited)
(inherited)
(inherited)
(inherited)

-1

-1

false

default (dinherited)

true

Like the cluster command, you can also use the ~—summary options to view just the summary of the group:

pgd group group-1 show --summary

Group Name group-1
Parent Group Name pgd
Group Type data
Write Leader node-1
Commit Scope

Now we can see the group is a child of the top-level group pgd , itis a data group, and the write leader node in the group is node~-1 . There are no commit scopes set for this group, which means it is using the default commit scope.

output

The -—nodes option can be used to view the nodes in the group:

pgd group group-1 show --nodes

Node Name | Node Kind | Join State

ACTIVE

node-2 ACTIVE
node-3 ACTIVE

output
Node Status

And, similarly, you can use the ——options option to view the group options:

pgd group group-1 show --options

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

39

EDB Postgres Distributed (PGD)

Option Name |
_________ -

analytics_storage_location

apply_delay

check_constraints

default_commit_scope

enable_raft

enable_routing

|

I

I

I

I

|
enable_wal_decoder |
http_port |
location |
num_writers |
read_only_consensus_timeout |
read_only_max_client_connections |
read_only_max_server_connections |
read_only_port |
read_write_consensus_timeout |
read_write_max_client_connections |
read_write_max_server_connections |
read_write_port |
route_reader_max_lag |
route_writer_max_lag |
route_writer_wait_flush |
streaming_mode |
use_https |

As you can see, many of the options are inherited from the parent group, which is the top-level group pgd . The enable_raft and enable_routing optionsaresetto true , which means that the group is using Raft consensus for

replication and routing queries (that are made throug

output

Option Value

(inherited)
00:00:00 (inherited)
true (inherited)

(inherited)
true
true
false (inherited)

(inherited)

-1 (inherited)
(inherited)
(inherited)
(inherited)
(inherited)
(inherited)
(inherited)
(inherited)
(inherited)

-1

-1

false

default (inherited)

true

h the connection manager port) to the write leader node.

Let's take a look at the parent group pgd using the pgd group pgd show command:

pgd group pgd show

Summary
Group Property

Group Name

Parent Group Name
Group Type

Write Leader
Commit Scope

output

This shows that the top-level group pgd is a global group, which means it is not a data group and does not have any data nodes of its own. In this case, it is just userd to coordinate the activity of the data groups in the cluster. It does not have

a write leader, as it does not have any data nodes.

The next part of the output shows the nodes in the group, which is empty:

Nodes
Node Name | Node Kind | Join State

Node Status

The options for the pgd group are shown next:

Options
Option Name

Option Value

analytics_storage_location
apply_delay

check_constraints
default_commit_scope

enable_raft

enable_routing
enable_wal_decoder

http_port

location

num_writers
read_only_consensus_timeout
read_only_max_client_connections
read_only_max_server_connections
read_only_port
read_write_consensus_timeout
read_write_max_client_connections
read_write_max_server_connections
read_write_port
route_reader_max_lag
route_writer_max_lag
route_writer_wait_flush
streaming_mode

use_https

00:00:00
true

true
false
false

-1

-1
false
default
true

These are the options for the top-level group pgd . Thisis where group-1 inherits its options from. Here though, the enable_routing optionissetto false,which means that the top-level group does not route queries to any data
nodes, because it does not have any data nodes of its own. The enable_raft optionissetto true,which means that the top-level group uses Raft consensus to coordinate management of the cluster.

Where options are not set, the default values are used, such as the apply_delay option whichissetto 00:00:00 , meaning there is no delay in applying changes to the cluster.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 40

EDB Postgres Distributed (PGD)

Viewing nodes and node status

To view the status of all nodes in the cluster, you can use the pgd nodes 1ist command:

pgd nodes list

output

Node Name | Group Name | Node Kind | Join State | Node Status

node-1 | group-1 ACTIVE
node-2 | group-1 ACTIVE
node-3 | group-1 ACTIVE

You can also view the status of a specific node using the pgd node show command:

pgd node node-1 show

output
Summary
Node Property
Node Name node-1
Group Name group-1
Node Kind data
Join State ACTIVE
Node Status Up
Node ID 4153941939
Snowflake SeqID 1
DEYCLERT]

Options
Option Name
route_dsn |

route_fence | false

route_priority | -1

|
|

port=5432 dbname=pgddb host=host-1 user=postgres

route_reads true

route_writes true

Here we can see more about the node itself. We can see the node's name and group it belongs to, that it is a data node, that it is actively joined to the group and that it is up and running. The node ID is a unique identifier for the node, and the
Snowflake SeqlID is used for ordering events in the cluster. Finally, we can see that its database is pgddb , which is the default database created in the Quickstart Docker Compose kit.

The options for the node are shown next, and these are specific to this particular node:

e route_dsn isthe connection string for the node, which is used by the connection manager to route queries to this node.

e route_fence issetto false,which means that the node does not have a fence set up to prevent routing queries to it.

e route_priority issetto -1 ,which means that the node does not have a specific priority for routing queries.

e route_reads and route_writes arebothsetto true ,which means thatthe node can handle both read and write queries.

These are used by the connection manager when routing queries to the node. They are also how you can control which nodes are active, without taking them down. Setting route_fence to true will prevent the connection manager from
routing queries to this node, while still allowing it to be part of the cluster and replicate data.

Setting node options

You can set options for a node using the pgd node set command. For example, to set the route_fence optionto true forthe node-1,you canrun:

pgd node node-1 set-option route_fence true

If we now try and connect to the node~-1"'s connection manager:

psql -h host-1 -p 6432

We get a connection. But it is not routed to the node-1 node, as it is fenced off from routing queries. Instead, it is routed to the current write leader in the group, which is node-2 :

select node_name from bdr.local_node_summary;
node_name

node-2
(1 row)

If we exit and undo the fencing by running:

pgd node node-1 set-option route_fence false

We can now connect to the node-1 node's connection manager again:
psql -h host-1 -p 6432

And we can see that we are now connected to the node-1 node:

select node_name from bdr.local_node_summary;
node_name

node-1
(1 row)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 41

EDB Postgres Distributed (PGD)

4 Planning your PGD deployment

Planning your EDB Postgres Distributed (PGD) deployment involves understanding the requirements of your application and the capabilities of PGD. This section provides an overview of the key considerations for planning your PGD
deployment.

® Choosing your architecture: Understand the different architectures that PGD supports and choose the one that best fits your requirements.
® Choosing a Postgres distribution: Choose the Postgres distribution to deploy with PGD.

® Choosing your deployment method: Pick the deployment method that suits your needs.

e Compared: A comparison of EDB Postgres Distributed with other replication solutions.

e Other considerations: Consider other factors that may affect your deployment.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 42

EDB Postgres Distributed (PGD)

4.1 Architecture

EDB Postgres Distributed (PGD) is a distributed database solution that extends PostgreSQL's capabilities, enabling highly available and fault-tolerant database deployments across multiple nodes. PGD provides data distribution with advanced
conflict management, data-loss protection, high availability up to five 9s, and throughput up to 5X faster than native logical replication.

PGD is built on a multi-master foundation (bi-directional replication, or BDR) which is then optimized for performance and availability through Connection Manager. You can run PGD without Connection Manager if you need a custom
deployment better utilizing the multi-master functionality. When running without Connection Manager, writes are distributed among the nodes and replicated to one another, and conflict resolution is relied upon for maintaining consistency.
This can be more efficient depending on your architectural needs. However, Connection Manager ensures lower contention and conflict through the use of a write leader. Raft is implemented to help the system make important decisions, like
deciding which node is the Raft election leader and which node is the write leader.

High-level architecture

At the highest level, PGD comprises two main components: Bi-Directional Replication (BDR) and Connection Manager. BDR is a Postgres extension that enables a multi-master replication mesh between different BDR-enabled Postgres
instances/nodes. Connection Manager sends requests to the write leader—ensuring a lower risk of conflicts (stronger consistency) between nodes.

The below diagram shows 3 application nodes and 3 PGD nodes. Traffic is being directed from each of the PGD nodes by the Connection Manager to the write leader node.

'Region A

s N\

AZ1

(Az2 ‘
A § Data
pp 3 Bidirectional
H A2 Replication
(Az3 |
| Data
App g A3

Changes are replicated directly, row-by-row between all nodes. Logical replication in PGD is asynchronous by default, so only eventual consistency is guaranteed (within seconds usually). However,commit scope options offer immediate
consistency and durability guarantees via CAMO, group and synchronous commits.

The Raft algorithm provides a mechanism for electing leaders (both Raft leader and write leader), deciding which nodes to add or subtract from the cluster. It generally ensures that the distributed system remains consistent and fault tolerant,
even in the face of node failures.

Architectural elements
PGD comprises several key architectural elements that work together to provide its distributed database solution:
® PGD nodes: These are individual Postgres instances that store and manage data. They are the basic building blocks of a PGD cluster.

e Groups: By default, all nodes are also members of a top-level group with its own Raft leader but without a write leader. PGD nodes can be further organized intosubgroups, which enhance manageability and high availability. Each group
can contain multiple nodes, allowing for redundancy and failover within the group. Groups facilitate organized replication and data consistency among nodes within the same group and across different groups. Each group has its own
write leader.

® Replication mechanisms: PGD's replication mechanisms include BDR for efficient replication across nodes, enabling multi-master replication. BDR supports asynchronous replication by default but can be configured for varying levels of
synchronicity, such as Group Commit or Synchronous Commit, to enhance data durability.

® Monitoring tools: To monitor performance, health, and usage with PGD, you can use its built-in command-line interface (CLI), which offers several useful commands. For example:

o The pgd nodes list command provides a summary of all nodes in the cluster, including their state and status.
o The pgd cluster show --health command checks the health of the cluster, reporting on node accessibility, replication slot health, and other critical metrics.
o The pgd events show command lists significant events like background worker errors and node membership changes, which helps in tracking the operational status and issues within the cluster.

Furthermore, the BDR extension allows for monitoring your cluster using SQL using the bdr.monitor role.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 43

https://en.wikipedia.org/wiki/Raft_(algorithm)
https://www.enterprisedb.com/docs/pgd/latest/terminology/#logical-replication

EDB Postgres Distributed (PGD)

Node types

All nodes in PGD are effectively data nodes. They vary only in their purpose in the cluster.
e Data nodes: Store and manage data, handle read and write operations, and participate in replication.
There are then three types of nodes which, although built like a data node, have a specific purpose. These are:
® Subscriber-only nodes: Subscribe to changes from data nodes for read-only purposes. Used in reporting or analytics.
® Witness nodes: Participate in the consensus process without storing data, aiding in achieving quorum and maintaining high availability.

e Logical standby nodes: Act as standby nodes that can be promoted to data nodes if needed, ensuring high availability and disaster recovery.

Node roles

Data nodes in a group can also take on particular roles to enable particular features. These roles are transient and can be transferred to any other capable node in the group if needed. These roles can include:
® Raft leader: Arbitrates and manages consensus between a group's nodes.

® Write leader: Receives all write operations when applications connect through the connection manager.

Architectural flexibility
PGD offers flexible options with how its architecture can be deployed, maintained, and scaled to meet various performance, availability, and compliance needs.

PGD supports rolling maintenance, including blue/green deployments for both Postgres upgrades and other system or application-level changes. This approach ensures that the database remains available during routine tasks, such as minor
or major version upgrades, schema changes, and vacuuming operations. The system seamlessly switches between active database versions, achieving zero downtime.

PGD provides automatic failover to ensure high availability. If a node in the cluster becomes unavailable, another node takes over its responsibilities, minimizing downtime. Also, PGD includes self-healing capabilities, where nodes that have
failed or disconnected reconnect to the cluster and resume normal operations once the issue is resolved.

PGD allows for selective replication, enabling users to replicate only a subset of data to specific nodes. This feature can be used to optimize performance by reducing unnecessary data traffic between nodes or to meet regulatory requirements,
such as geographical data restrictions. For instance, a healthcare application might only replicate patient data within a specific region to comply with local data privacy laws.

With commit scopes, PGD also provides configurable durability. Accordingly, durability can be increased from the default asynchronous behavior and tuned using various configurable commit scopes:

® Synchronous Commit: Works a lot like PostgreSQL’s synchronous_commit option in its underlying operation. Requires writing to at least one other node at COMMIT time but can be tuned to require all nodes.

CAMO (Commit At Most Once): Works by tracking each transaction with a unique ID and using a pair of nodes to confirm the transaction's outcome, ensuring the application knows whether to retry the transaction or not.

Group Commit: An experimental commit scope, the goal of which is to protect against data loss in case of single-node failures of temporary outages by requiring more than one PGD node to successfully confirm a transaction at COMMIT
time.

Lag Control: If replication is running outside of set limits (taking too long for another node to be replicated to), a delay is injected into the node that originally received the transaction, slowing things down until other nodes have caught
up.

Architecture types

You can deploy a cluster in a wide range of architectures, including:

Standard/One-location: A single PGD cluster with three nodes in the same data center or availability zone.

Near/far: Designed for a single location that needs to be reasonably highly available and needs to be able to recover from a disaster. It does this by having a two-data-node cluster in the primary location and a single data node in a
secondary location.

Always-on: A single PGD cluster with two or more groups in the same data center or availability zone. This architecture is designed for high availability and disaster recovery, ensuring that the database remains operational even if one
group fails. Only available for PGD Expanded.

Multi-location: A single PGD cluster with two or more groups in different data centers or availability zones. Only available for PGD Expanded.

Geo-distributed: A single PGD cluster with two or more groups in different regions, like a multi-location architecture but with higher latency and potential network partitioning issues. Only available for PGD Expanded.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 44

https://www.enterprisedb.com/docs/pgd/latest/terminology/#write-leader

EDB Postgres Distributed (PGD)

411 Architecture and performance

Architectural options and performance

Always-on architectures

A number of different architectures can be configured, each of which has different performance and scalability characteristics.

The group is the basic building block consisting of 2+ nodes (servers). In a group, each node is in a different availability zone, with a dedicated router and backup, giving immediate switchover and high availability. Each group has a dedicated
replication set defined on it. If the group loses a node, you can easily repair or replace it by copying an existing node from the group.

The Always-on architectures are built from either one group in a single location or two groups in two separate locations. Each group provides high availability. When two groups are leveraged in remote locations, they together also provide
disaster recovery (DR).

Tables are created across both groups, so any change goes to all nodes, not just to nodes in the local group.

One node in each group is selected as the group's write leader. Proxies then direct application writes and queries to the write leader. The other nodes are replicas of the write leader. If, at any point, the write leader is seen to be unavailable, the
remaining nodes in the group select a new write leader from the group and the proxies direct traffic to that node. Scalability isn't the goal of this architecture.

Since writes are mainly to only one node, the possibility of contention between nodes is reduced to almost zero. As a result, performance impact is much reduced.
Secondary applications might execute against the shadow nodes, although these are reduced or interrupted if the main application begins using that node.

In the future, one node will be elected as the main replicator to other groups, limiting CPU overhead of replication as the cluster grows and minimizing the bandwidth to other groups.

Supported Postgres database servers

PGD is compatible with PostgreSQL, EDB Postgres Extended Server, and EDB Postgres Advanced Serverand is deployed as a standard Postgres extension named BDR. See Compatibility for details about supported version combinations.

Some key PGD features depend on certain core capabilities being available in the target Postgres database server. Therefore, PGD users must also adopt the Postgres database server distribution that's best suited to their business needs. For
example, if having the PGD feature Commit At Most Once (CAMO) is mission critical to your use case, don't adopt the community PostgreSQL distribution. It doesn't have the core capability required to handle CAMO.

PGD offers close-to-native Postgres compatibility. However, some access patterns don't necessarily work as well in multi-node setup as they do on a single instance. There are also some limitations in what you can safely replicate in a multi-

node setting. Application usage goes into detail about how PGD behaves from an application development perspective.

Characteristics affecting performance

By default, PGD keeps one copy of each table on each node in the group, and any changes propagate to all nodes in the group.

Since copies of data are everywhere, SELECTs need only ever access the local node. On a read-only cluster, performance on any one node isn't affected by the number of nodes and is immune to replication conflicts on other nodes caused by
long-running SELECT queries. Thus, adding nodes increases linearly the total possible SELECT throughput.

If an INSERT, UPDATE, and DELETE (DML) is performed locally, then the changes propagate to all nodes in the group. The overhead of DML apply is less than the original execution. So if you run a pure write workload on multiple nodes
concurrently, a multi-node cluster can handle more TPS than a single node.

Conflict handling has a cost that acts to reduce the throughput. The throughput then depends on how much contention the application displays in practice. Applications with very low contention perform better than a single node. Applications
with high contention can perform worse than a single node. These results are consistent with any multimaster technology and aren't particular to PGD.

Synchronous replication options can send changes concurrently to multiple nodes so that the replication lag is minimized. Adding more nodes means using more CPU for replication, so peak TPS reduces slightly as each node is added.
If the workload tries to use all CPU resources, then this resource constrains replication, which can then affect the replication lag.

In summary, adding more master nodes to a PGD group doesn't result in significant write throughput increase when most tables are replicated because all the writes are replayed on all nodes. Because PGD writes are in general more effective
than writes coming from Postgres clients by way of SQL, you can increase performance. Read throughput generally scales linearly with the number of nodes.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 45

https://www.postgresql.org/
https://www.enterprisedb.com/docs/pge/latest
https://www.enterprisedb.com/docs/epas/latest
https://www.enterprisedb.com/docs/pgd/latest/compatibility

EDB Postgres Distributed (PGD)

4.1.2 Standard PGD architecture

Using core PGD capabilites, the standard architecture configures the three nodes in a multi-master replication configuration. That is, each node operates as a master node and logically replicates its data to the other nodes. While PGD is
capable of handling conflicts between data changes on nodes, the standard architecture uses PGD's integrated connection manager to ensure that all writes are directed to a single node, the write leader. Conflicts are avoided by allowing that
singular leader to handle all updates to the data. Changes are then replicated to the other nodes in the cluster.

If the write leader fails, the remaining nodes in the cluster will elect a new write leader, and the connection managers in those nodes then failover to send writes to the new leader. When the failed node comes back online, it rejoins the cluster
and begins replicating data from the new write leader.

The standard architecture was created to be easy to deploy and manage, based on user experience. Unlike other high availability solutions, moving to a more complex architecture is simple and straightforward, and then add new data groups to
the cluster as needed.

Manually deploying PGD standard architecture

Manually deploying the PGD standard architecture is a straightforward process. This architecture is designed for a single location that needs to be highly available and can recover from a disaster. It does this by having three data nodes in a
multi-master replication configuration, with one node acting as the write leader.

PGD configuration
Install PGD on each of the three nodes using the instructions in the install guide. Specifically:

e Configure repositories to enable installation of the PGD packages.
o Install PGD and Postgres to install the PGD packages.
® Configure the PGD cluster to configure the PGD cluster.

Worked example

This example create a three-node RHEL cluster with EDB Postgres Extended Server, using the PGD Standard architecture and the following parameters:

The first node is called nodel andis located on host-1.
The second node is called node2 and is located on host-2.
The third node is called node3 andis located on host-3.

the cluster name is pgd (the default name).

The group name is groupl .

The Postgres versionis 17 .

The Postgres data directoryis /var/lib/edb-pge/17/main/ .
The Postgres executable files arein /usr/edb/pgel7/bin/ .
The Postgres database useris postgres .

The Postgres database portis 5432 .

The Postgres database name is pgddb .

For the first node

This is the common setup for all three nodes, installing the software:

export EDB_SUBSCRIPTION_TOKEN=XXXXXXXXXXXXXX

export EDB_SUBSCRIPTION_PLAN=enterprise

export EDB_REPO_TYPE=rpm

curl -1sSLf " https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/$EDB_SUBSCRIPTION_PLAN/setup.$EDB_REPO_TYPE.sh" | sudo -E bash
export PG_VERSION=17

export PGD_EDITION=essential

export EDB_PACKAGES="edb-as$PG_VERSION-server edb-pgd6-$PGD_EDITION-epas$PG_VERSION"

sudo dnf dinstall
$EDB_PACKAGES

On the first node, the following command creates the cluster and the group. It also creates the data directory and initializes the database.

sudo su -

postgres

export PATH=$PATH:/usr/edb/pgel7/bin/

pgd node nodel setup "host=host-1 user=postgres port=5432 dbname=pgddb" pgdata /var/lib/edb-pge/17/main/ group-name groupl cluster-name pgd create-group

initial e-count 3

For the second node

Repeat the software installation steps on the second node.

Then run the following command to initialize the node and join the cluster and group:

sudo su -

postgres

export PATH=$PATH:/usr/edb/pgel7/bin/

pgd node node2 setup "host=host-2 user=postgres port=5432 dbname=pgddb"
dbname=pgddb"

lata /var/lib/edb-pge/17/main/ cluster-dsn "host=host-1 user=postgres port=5432

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 46

https://www.enterprisedb.com/docs/pgd/latest/essential-how-to/install/02-configure-repositories/
https://www.enterprisedb.com/docs/pgd/latest/essential-how-to/install/03-installing-database-and-pgd/
https://www.enterprisedb.com/docs/pgd/latest/essential-how-to/install/04-configuring-cluster/

EDB Postgres Distributed (PGD)

For the third node

Repeat the software installation steps on the third node.

The command to initialize the node and join the cluster and group is similar to the second node but with a different host and node name:

sudo su
postgres
export PATH=$PATH:/usr/edb/pgel7/bin/

pgd node node3 setup "host=host-3 user=postgres port=5432 dbname=pgddb"

/var/1lib/edb-pge/17/main/ "host=host-1 user=postgres port=5432
dbname=pgddb"

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 47

EDB Postgres Distributed (PGD)

4.1.3 Near/far architecture

In the near/far architecture, there are two data nodes in the primary location and one data node in a secondary location. The primary location is where the majority of the data is stored and where most of the client connections are made. The
secondary location is used for disaster recovery and isn't used for client connections by default.

The data nodes are all configured in a multi-master replication configuration, just like the standard architecture. The difference is that the node at the secondary location is fenced off from the other nodes in the cluster and doesn't receive
client connections by default. In this configuration, the secondary location node has a complete replica of the data in the primary location.

Using a PGD commit scope, the data nodes in the primary location are configured to synchronously replicate data to the other node in the primary location and to the node in the secondary location. This ensures that the data is replicated to all
nodes before it's committed to on the primary location. In the case of a node going down, the commit scope rule detects the situation and degrades the replication to asynchronous replication. This behavior allows the system to continue to
operate.

In the event of a partial failure at the primary location, the system switches to the other data node, also with a complete replica of the data, and continues to operate. It also continues replication to the secondary location. When the failed node
at the primary location comes back, it rejoins and begins replicating data from the node that's currently primary.

In the event of a complete failure in the primary location, the secondary location's database has a complete replica of the data. Depending on the failure, options for recovery include restoring the primary location from the secondary location
or restoring the primary location from a backup of the secondary location. The secondary location can be configured to accept client connections, but this isn't the default configuration and requires some additional reconfiguration.

Synchronous replication in near/far architecture

For best results, configure the near/far architecture with synchronous replication. This ensures that the data is replicated to the secondary location before it's committed to the primary location.

Manually Deploying PGD near-far architecture

The following instructions describe how to manually deploy the PGD near-far architecture. This architecture is designed for a single location that needs to be reasonably highly available and needs to be able to recover from a disaster. It does
this by having a two-data-node cluster in the primary location and a single data node in a secondary location.

These instructions use the pgd command line tool to create the cluster and configure the nodes. They assume that you have already installed PGD and have access to the pgd command line tool.

The primary location is referred to as the active location and the secondary location as the dr location.

PGD configuration

The primary location is configured with two data nodes, in their own group "active". This location is where the majority of the client connections will be made.
The secondary location is configured with one data node, in its own group "dr".

They are all members of the same cluster.

Once created with pgd-cli, the routing and fencing of the nodes needs to be configured.

First, disable the routing on both the "active" and "dr" groups:

pgd group dr set-option enable_routing off --dsn "host=localhost port=5432 dbname=pgddb user=pgdadmin"
pgd group active set-option enable_routing off --dsn "host=localhost port=5432 dbname=pgddb user=pgdadmin"

Then, enable the routing on the "pgd" top-level group:

pgd group pgd set-option enable_routing on --dsn "host=localhost port=5432 dbname=pgddb user=pgdadmin"
Finally, enable the fencing on the "dr" group:

pgd group dr set-option enable_fencing on --dsn "host=localhost port=5432 dbname=pgddb user=pgdadmin"

This approach ensures that the "dr" group is fenced off from the other nodes in the cluster and doesn't receive client connections by default. The "active" group will continue to operate normally and will continue to replicate data to the "dr"
group.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 48

EDB Postgres Distributed (PGD)

41.4 Always-On Architecture

PGD's architectures have evolved over time to meet the needs of organizations. At it's core is the Always-on architecture, which is designed to provide high availability and disaster recovery for Postgres databases. Defined in PGD 4 and 5, the
Always-on architecture been evolved to support PGD 6's new features and capabilities.

Always-on architectures reflect EDB’s Trusted Postgres architectures. They encapsulate practices and help you to achieve the highest possible service availability in multiple configurations. These configurations range from single-location
architectures to complex distributed systems that protect from hardware failures and data center failures. The architectures leverage EDB Postgres Distributed’s multi-master capability and its ability to achieve 99.999% availability, even
during maintenance operations.

You can use EDB Postgres Distributed for architectures beyond the examples described here. Use-case-specific variations have been successfully deployed in production. However, these variations must undergo rigorous architecture review
first.

Note

This architecture is only available for PGD Expanded.

Standard EDB Always-on architectures

EDB has identified a set of standardized architectures to support single- or multi-location deployments with varying levels of redundancy, depending on your recovery point objective (RPO) and recovery time objective (RTO) requirements.
The Always-on architecture uses three database node groups as a basic building block. You can also use a five-node group for extra redundancy.

EDB Postgres Distributed consists of the following major building blocks:

e Bi-Directional Replication (BDR) — A Postgres extension that creates the multi-master mesh network
e Connection Manager — A connection router that makes sure the application is connected to the right data nodes.

All Always-on architectures protect an increasing range of failure situations. For example, a single active location with two data nodes protects against local hardware failure but doesn't provide protection from location (data center or
availability zone) failure. Extending that architecture with a backup at a different location ensures some protection in case of the catastrophic loss of a location. However, you still must restore the database from backup first, which might
violate RTO requirements. Adding a second active location connected in a multi-master mesh network ensures that service remains available even if a location goes offline. Finally, adding a third location (this can be a witness-only location)
allows global Raft functionality to work even if one location goes offline. The global Raft is primarily needed to run administrative commands. Also, some features like DDL or sequence allocation might not work without it, while DML
replication can continue to work even without global Raft.

Each architecture can provide zero RPO, as data can be streamed synchronously to at least one local master, guaranteeing zero data loss in case of local hardware failure.

Increasing the availability guarantee always drives added cost for hardware and licenses, networking requirements, and operational complexity. It's important to carefully consider the availability and compliance requirements before choosing
an architecture.

Architecture details

By default, application transactions don't require cluster-wide consensus for DML (selects, inserts, updates, and deletes), allowing for lower latency and better performance. However, for certain operations, such as generating new global
sequences or performing distributed DDL, EDB Postgres Distributed requires an odd number of nodes to make decisions using a Raft-based consensus model. Thus, even the simpler architectures always have three nodes, even if not all of
them are storing data.

Applications connect to the standard Always-on architectures by way of multi-host connection strings, where each Connection Manager is a distinct entry in the multi-host connection string.

Other connection mechanisms have been successfully deployed in production. However, they aren't part of the standard Always-on architectures.

Always-on Single Location

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 49

https://raft.github.io/

'Region A

(A1

AZ2

|
Data “

.
App - i Bidirectional
g A2 Replication
[Az3 ‘
N Data
App e A3

o Additional replication between data nodes 1 and 3 isn't shown but occurs as part of the replication mesh
e Redundant hardware to quickly restore from local failures
o 3 PGD nodes
= Can be 3 data nodes (recommended)
= Can be 2 data nodes and 1 witness that doesn't hold data (not depicted)

o Configuration and infrastructure symmetry of data nodes is expected to ensure proper resources are available to handle application workload when rerouted

e Barman for backup and recovery (not depicted)
o Offsite is optional but recommended
o Can be shared by multiple PGD clusters

® Postgres Enterprise Manager (PEM) for monitoring (not depicted)
o Can be shared by multiple PGD clusters

Always-on Multi-location

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

50

Replicatr

Replication

Connection Manager

N/ I\ 7

EDB Postgres Distributed (PGD)

l <

NI/ &/ 4

Additional replication between data nodes 1 and 3 isn't shown but occurs as part of the replication mesh.
Redundant hardware to quickly restore from local failures.
o 6 PGD nodes total, 3 in each location
= Can be 3 data nodes (recommended)
= Can be 2 data nodes and 1 witness which does not hold data (not depicted)

o Configuration and infrastructure symmetry of data nodes and locations is expected to ensure proper resources are available to handle application workload when rerouted

Barman for backup and recovery (not depicted).
o Can be shared by multiple PGD clusters

Postgres Enterprise Manager (PEM) for monitoring (not depicted).
o Can be shared by multiple PGD clusters

An optional witness node must be placed in a third region to increase tolerance for location failure.

Application can be Active/Active in each location or can be Active/Passive or Active DR with only one location taking writes.

o Otherwise, when a location fails, actions requiring global consensus are blocked, such as adding new nodes and distributed DDL.

Choosing your architecture
All architectures provide the following:

e Hardware failure protection
e Zero downtime upgrades
e Support for availability zones in public/private cloud

Use these criteria to help you to select the appropriate Always-on architecture.

Single-data location Two data locations
Locations needed 1 2
Yes - if 3 PGD data nodes Yes - if 3 PGD data nodes
i f ft fai
Fast restoration of local HA after data node failure No - if 2 PGD data nodes No - if 2 PGD data nodes

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

Two data locations + witness

3

Yes - if 3 PGD data nodes
No - if 2 PGD data nodes

Three or more data
locations

3

Yes - if 3 PGD data nodes
No - if 2 PGD data nodes

51

Data protection in case of location failure
Global consensus in case of location failure
Data restore required after location failure
Immediate failover in case of location failure
Cross-location network traffic

License cost

Single-data location

No (unless offsite backup)

N/A

Yes

No - requires data restore from backup
Only if backup is offsite

2 or 3 PGD data nodes

Adding flexibility to the standard architectures

Two data locations

Yes

No

No

Yes - alternate Location
Full replication traffic

4or6 PGD data nodes

Two data locations + witness

Yes - alternate Location
Full replication traffic

4 or 6 PGD data nodes

EDB Postgres Distributed (PGD)

Three or more data
locations

Yes

Yes

No

Yes - alternate Location
Full replication traffic

6+ PGD data nodes

To provide the data resiliency needed and proximity to applications and to the users maintaining the data, you can deploy the single-location architecture in as many locations as you want. While EDB Postgres Distributed has a variety of
conflict-handling approaches available, do take care to minimize the number of expected collisions if allowing write activity from geographically disparate locations.

You can also expand the standard architectures with two additional types of nodes:

® Subscriber-only nodes, which you can use to achieve additional read scalability and to have data closer to users when the majority of an application’s workload is read intensive with infrequent writes. You can also leverage them to
publish a subset of the data for reporting, archiving, and analytic needs.

® [ogical standbys, which receive replicated data from another node in the PGD cluster but don't participate in the replication mesh or consensus. They contain all the same data as the other PGD data nodes and can quickly be promoted
to a master if one of the data nodes fails to return the cluster to full capacity/consensus. You can use them in environments where network traffic between data centers is a concern. Otherwise, three PGD data nodes per location is

always preferred.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

52

EDB Postgres Distributed (PGD)

4.1.5 Multi-Location Architectures

PGD 6 inherently supports architectures that span multiple locations, such as data centers or availability zones. This is a key feature allows you to build robust and resilient distributed databases that can handle failures and maintain high
availability across different geographic locations.

Note

This architecture is only available for PGD Expanded.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 53

EDB Postgres Distributed (PGD)

4.1.6 Geo-Distributed Architectures

PGD supports clusters that span multiple geographic, as well as logical, locations. These clusters are known as geo-distributed architectures.
Note

This architecture is only available for PGD Expanded.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 54

4.2 Choosing a Postgres distribution

EDB Postgres Distributed (PGD)

EDB Postgres Distributed can be deployed with three different Postgres distributions: PostgreSQL, EDB Postgres Extended Server, or EDB Postgres Advanced Server. The availability of particular EDB Postgres Distributed features depends on
the Postgres distribution being used. Therefore, it's essential to adopt the Postgres distribution best suited to your business needs. For example, if having the Commit At Most Once (CAMO) feature is mission critical to your use case, don't adopt
open source PostgreSQL, which doesn't have the core capabilities required to handle CAMO.

The following table lists features of EDB Postgres Distributed that are dependent on the Postgres distribution and version.

Feature

Rolling application and database upgrades
Row-level last-update wins conflict resolution
DDL replication

Granular DDL Locking

Streaming of large transactions
Distributed sequences

Subscriber-only nodes

Monitoring

Parallel apply

Conflict-free replicated data types (CRDTs)
Column-level conflict resolution
Transform triggers

Conflict triggers

Asynchronous replication

Legacy synchronous replication

Group Commit

Commit At Most Once (CAMO)

Eager Conflict Resolution

Lag Control

Decoding Worker

Lag tracker

Missing partition conflict

No need for UPDATE Trigger on tables with TOAST
Automatically hold back FREEZE

Transparent Data Encryption

PostgreSQL

z z =z z z z z zZ zZ zZ < < < < < < < < < < =< < < =< <

EDB Postgres Extended

< < < <= < < < < < < < < < < < < < < < < < < =< =<

EDB Postgres Advanced

< < < <= < < < < < < < < < < < < < < < < < < =< =<

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

55

https://www.enterprisedb.com/docs/tde/latest/

EDB Postgres Distributed (PGD)

4.3 Choosing your deployment method

You can deploy and install EDB Postgres Distributed (PGD) products using the following methods:

Manual deployment and administration provides granular control by allowing you to manually provision, install, and configure PGD directly on your chosen infrastructure. This method involves manually setting up the underlying
Postgres engine, and configuring the node group settings. While this approach offers maximum flexibility for bespoke environments, it requires a deep understanding of PGD's configuration parameters and life-cycle management.

Trusted Postgres Architect (TPA) is an orchestration tool that uses Ansible to build Postgres clusters using a set of reference architectures that document how to set up and operate Postgres in various scenarios. TPA represents the best
practices followed by EDB, and its recommendations apply to quick testbed and production environments. TPA's flexibility allows deployments to virtual machines, AWS cloud instances, or Linux host hardware.

EDB Postgres Distributed for Kubernetes is a Kubernetes operator designed, developed, and supported by EDB. It covers the full lifecycle of highly available Postgres database clusters with a multi-master architecture, using PGD
replication. It's based on the open source CloudNativePG operator and provides additional value, such as compatibility with Oracle using EDB Postgres Advanced Server, Transparent Data Encryption (TDE) using EDB Postgres Extended
or Advanced Server, and additional supported platforms including IBM Power and OpenShift.

Hybrid Manager is a management component designed to orchestrate and monitor PGD clusters across hybrid and multi-cloud environments. It simplifies the complexity of managing PGD nodes that span different infrastructure
providers, providing a unified interface for lifecycle operations, health monitoring, and configuration management. By bridging the gap between on-premises data centers and public cloud deployments, Hybrid Manager ensures
consistent operational standards and high availability for geographically dispersed clusters.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 56

https://www.enterprisedb.com/docs/tpa/latest
https://www.enterprisedb.com/docs/postgres_distributed_for_kubernetes/latest/
https://www.enterprisedb.com/docs/edb-postgres-ai/latest/hybrid-manager/

EDB Postgres Distributed (PGD)

A PGD compared

The following table compares EDB Postgres Distributed with other replication solutions.

PG Builtin
PGD PGD ‘ ;
Standalone Managed PSR + EFM pglogical 2 Logn.:al .
Replication
Version at
last update 6.X 6.x 4.10 245 17

(2025-06-19)

On Premise Yes Yes Yes Yes Yes
Multi-cloud Yes Yes Yes Yes Yes
Hybrid (on-prem + cloud) Yes Coming Soon Yes Yes Yes
SLA 99.999 99.995 99.99 N/A N/A
Read Scalability Yes No Yle)shysical standbys Yi/lsore nodes Yi\sore nodes
Horizontal Scalability No No No No No
Transaction Streaming Yes Yes Yes No Yes
Partial
Parallel Apply (Vertical Scalability) Yes Yes No No - for large transactions
only
Asynchronous Replication Yes Yes Yes Yes Yes
Optional RPO limit for asynchronous replication Yes Yes No No No
Synchronous Replication Yes Yes Yes Yes Yes
Consensus based replication Yes Yes No No No
Per transaction durability setting Yes Yes Yes Yes Yes

Consistenct

Automatic conflict management Yes Yes N/A Yes No

Conflict avoidance types Yes Yes N/A No No

Conflict avoidance at commit (pessimistic conflict handling) Yes Yes N/A No No
Yes Yes

Builtin distributed sequence - snowflake (bigint) - snowflake (bigint) N/A No No
- galloc (int/bigint) - galloc (int/bigint)

Data Distibution

Data residency/selective replication Yes Yes No Yes Yes
Cluster level Active-Active (writers in different regions) Yes Yes No Manual setup No
Regional Active-Active (multiple writers within region) -v:)t recommended unless specific setup No No Manual setup No
Automatic partitioning Yes Yes Yes with EPAS No No
Offload cold data to cheaper storage Yes Yes No No No

Maintenance

Yes
Near-zero downtime major version upgrades by adding nodes Yes Yes - using logical Yes Yes
replication
Near-zero downtime inplace major version upgrades Yes Yes No No No
Rol.lmg schema upgrades/green-blue (with application Ves Yes No No No
assistance)
Rolling maintenance operations Yes Yes No Yes Yes

Connection Mgmt

Automatic failover Yes Yes Yes N/A N/A
Automatic connection failover for switchover Yes Yes Yes N/A N/A
Cluster level connection routing Yes Yes Yes N/A N/A
Region level connection routing Yes Yes No N/A N/A
pgbouncer support Yes No Yes N/A N/A

=]
o
=
17
=
°
°
g

General DDL replication Yes Yes Yes Manual No
Granular (per-object) DDL locking Yes Yes Yes No No
Create and drop objects Yes Yes Yes Manual No
Add columns to table Yes Yes Yes Unsafe/manual No
Yes Yes
Change column type - rewrite requires - rewrite requires Yes Unsafe/manual ~ No
permit_unsafe_commands permit_unsafe_commands
Y Y
CREATE TABLE AS e . e -, Yes Unsafe/manual No
- with restrictions - with restrictions

PG Compatibility

Latest supported version 17 17 17 17 17

Works on standard PG Yes No Yes Yes Yes

Supports TDE Yes with EPAS/PGE Yes with EPAS/PGE Yes with EPAS/PGE No Yes with EPAS/PGE
Supports custom types (i.e. Postgis) Yes Yes Yes Yes Yes

Supports extensions Many Many All Many Many

CDC failover support No No Yes N/A N/A

Large Object support No No Yes No No

Multiple DB support No No Yes N/A N/A

(&)
~

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

PGD R PSR + EFM logical 2 EG l'?'u‘llt‘n
Standalone Managed pglogica ogu.:a .
Replication
CLI Yes Yes Yes No No
GUI PEM Yes PEM No No
-SQL -SQL -SQL
Monitoring options -CLI -CLI -CLI SQL sQL
-PEM -UPM -PEM
Source available No No No Yes Yes
Open source No No No Yes Yes

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 58

EDB Postgres Distributed (PGD)

4.5 Other considerations

There are a number of best practices to follow when deploying Postgres Distributed (PGD) in production. These practices help ensure the reliability, performance, and security of your PGD clusters. This section outlines some of the key best
practices to consider when deploying PGD in a production environment.

® Sizing and Scaling PGD Clusters
e Time and PGD Clusters

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 59

https://www.enterprisedb.com/docs/pgd/latest/essential-how-to/production-best-practices/sizing
https://www.enterprisedb.com/docs/pgd/latest/essential-how-to/production-best-practices/time-and-pgd

EDB Postgres Distributed (PGD)

451 Sizing

CPU/Core sizing

For production deployments, EDB recommends a minimum of 4 cores for each Postgres data node. Witness nodes don't participate in the data replication operation and don't have to meet this requirement. One core is enough without
subgroup Raft. Two cores are enough when using subgroup Raft.

Always size logical standbys exactly like the data nodes to avoid performance degradations in case of a node promotion.
We recommend detailed benchmarking of your specific performance requirements to determine appropriate sizing based on your workload. The EDB Professional Services team is available to assist if needed.
For development purposes, don't assign Postgres data nodes fewer than two cores. The sizing of Barman nodes depends on the database size and the data change rate.

You can deploy Postgres data nodes and Barman nodes on virtual machines or in a bare metal deployment mode. However, don't deploy multiple data nodes on VMs that are on the same physical hardware, as that reduces resiliency.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 60

EDB Postgres Distributed (PGD)

4.5.2 Time and PGD

Clocks and timezones

EDB Postgres Distributed is designed to operate with nodes in multiple timezones, allowing a truly worldwide database cluster. Individual servers don't need to be configured with matching timezones, though we do recommend using
log_timezone = UTC to ensure the human readable server log is more accessible and comparable.

Synchronize server clocks using NTP or other solutions.

Clock synchronization isn't critical to performance, as it is with some other solutions. Clock skew can affect origin conflict detection, though EDB Postgres Distributed provides controls to report and manage any skew that exists. EDB Postgres
Distributed also provides row-version conflict detection, as described in Conflict detection.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 61

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts/

5 Installing and configuring EDB Postgres Distributed

This section covers how to manually deploy and configure EDB Postgres Distributed (PGD).
If you want to install a learning/test environment, we recommend using theQuickstart guide.
Manually deploying a PGD cluster consists of the following steps:

. Meet the prerequisites.

. Configure the EDB repositories.

. Install the database and PGD software.
. Configure the cluster.

. Check the cluster.

. Learn how to connect to your cluster.

[NS VY NN

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

62

https://www.enterprisedb.com/docs/pgd/latest/quickstart

EDB Postgres Distributed (PGD)

5.1 Prerequisites

Provisioning hosts
The first step in the process of deploying PGD is to provision and configure hosts.
You can deploy to virtual machine instances in the cloud with Linux installed, on-premises virtual machines with Linux installed, or on-premises physical hardware, also with Linux installed.

Whichever supported Linux operating system and whichever deployment platform you select, the result of provisioning a machine must be a Linux system that you can access using SSH with a user that has superuser, administrator, or sudo
privileges.

Each machine provisioned must be able to make connections to any other machine you're provisioning for your cluster.
On cloud deployments, you can do this over the public network or over a VPC.
On-premises deployments must be able to connect over the local network.

Cloud provisioning guides

If you're new to cloud provisioning, these guides may provide assistance:

Vendor Platform Guide

Amazon AWS Tutorial: Get started with Amazon EC2 Linux instances
Microsoft Azure Quickstart: Create a Linux virtual machine in the Azure portal
Google GCP Create a Linux VM instance in Compute Engine

Configuring hosts

Create an admin user
We recommend that you configure an admin user for each provisioned instance. The admin user must have superuser or sudo (to superuser) privileges. We also recommend that the admin user be configured for passwordless SSH access

using certificates.

Ensure networking connectivity

With the admin user created, ensure that each machine can communicate with the other machines you're provisioning.

In particular, the PostgreSQL TCP/IP port (5444 for EDB Postgres Advanced Server, 5432 for EDB Postgres Extended and community PostgreSQL) must be open to all machines in the cluster. The PGD Connection Manager must also be
accessible to all nodes in the cluster. By default, the Connection Manager uses port 6432 (or 6444 for EDB Postgres Advanced Server).

Worked example
For this series of worked examples, three hosts with Red Hat Enterprise Linux 9 were provisioned:

e host-1
e host-2
® host-3

These hosts were configured in the cloud. As such, each host has both a public and private IP address. We will use the private IP addresses for the cluster.
The private IP addresses are:

® host-1: 192.168.254.166
® host-2: 192.168.254.247
® host-3: 192.168.254.135

For the example cluster, /etc/hosts was also edited to use those private IP addresses:

192.168.254.166 host-1
192.168.254.247 host-2
192.168.254.135 host-3

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 63

https://www.enterprisedb.com/resources/platform-compatibility#bdr
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://learn.microsoft.com/en-us/azure/virtual-machines/linux/quick-create-portal?tabs=ubuntu
https://cloud.google.com/compute/docs/create-linux-vm-instance

5.2 Configuring PGD repositories

0On each host which you want to use as a PGD data node, you need to install the database and the PGD software.

Configure the PGD repositories

Set the following environment variables:

EDB_SUBSCRIPTION_TOKEN

This is the token you received when you registered for the EDB subscription. It is used to authenticate your access to the EDB repository.

export EDB_SUBSCRIPTION_TOKEN=<your-token>

EDB_SUBSCRIPTION_PLAN

This is the type of subscription you have with EDB. It can be standard, enterprise,or community .

export EDB_SUBSCRIPTION_PLAN=<your-subscription-plan>

EDB_REPO_TYPE

This is the type of package manager you use, which informs the installer which type of package you need. This can be deb for Ubuntu/Debian or rpm for CentOS/RHEL.

export EDB_REPO_TYPE=<your-repo-type>

Install the repositories
There are two repositories you need to configure: one for the database software and one for the PGD software.

The following command will download and run a script that configures your package manager to use the EDB repository for databases.
curl ~1sSLf "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/$EDB_SUBSCRIPTION_PLAN/setup.$EDB_REPO_TYPE.sh" | sudo -E bash
The following command will download and run a script that configures your package manager to use the EDB repository for PGD.

curl -1sSLf "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.$EDB_REPO_TYPE.sh" | sudo -E bash

Worked example

In this example, we will configure the repositories on a CentOS/RHEL system that will allow us to install EDB Postgres Advanced Server 17 with PGD Expanded using an enterprise subscription.

Set the environment variables
export EDB_SUBSCRIPTION_TOKEN=XXXXXXXXXXXXXX

export EDB_SUBSCRIPTION_PLAN=enterprise
export EDB_REPO_TYPE=rpm

Install the repositories

For PGD Expanded, there are two repositories to
install.

curl -1sSLf " https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/$EDB_SUBSCRIPTION_PLAN/setup.$EDB_REPO_TYPE.sh" | sudo -E bash
curl -1sSLf " https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.$EDB_REPO_TYPE.sh" | sudo -E bash

The next step is to install the database and PGD software.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

64

EDB Postgres Distributed (PGD)

5.3 Installing the database and pgd

0On each host which you want to use as a PGD data node, you need to install the database and the PGD software.

After you have configured the EDB repository, you can install the database and PGD software using your package manager.

Install the database and PGD software

Set the Postgres version

Set an environment variable to specify the version of Postgres you want to install. This is typically 17 for Postgres 17.

export PG_VERSION=17

Set the package names

Set an environment variable to specify the package names for the database and PGD software. The package names will vary depending on the database you are using and the platform you are on.

EDB Postgres Advanced Server

export EDB_PACKAGES="edb-as$PG_VERSION-server edb-pgd6-<edition>-epas$PG_VERSION"
Where <edition> isthe PGD edition you want to install: essential or expanded .

export EDB_PACKAGES="edb-as$PG_VERSION-server edb-pgd6-<edition>-epas$PG_VERSION"

Where <edition> isthe PGD edition you want to install: essential or expanded.

EDB Postgres Extended
export EDB_PACKAGES="edb-postgresextended-$PG_VERSION edb-pgd6-<edition>-pgextended$PG_VERSION"
Where <edition> isthe PGD edition you want to install: essential or expanded .

export EDB_PACKAGES="edb-postgresextended$PG_VERSION-server edb-postgresextended$PG_VERSION-contrib edb-pgd6-<edition>-pgextended$PG_VERSION"

Where <edition> isthe PGD edition you want to install: essential or expanded .

Community PostgreSQL
export EDB_PACKAGES="postgresql-$PG_VERSION edb-pgd6-<edition>-pg$PG_VERSION"
Where <edition> isthe PGD edition you want toinstall: essential or expanded .
export EDB_PACKAGES="postgresql$PG_VERSION-server postgresql$PG_VERSION-contrib edb-pgd6-<edition>-pg$PG_VERSION"

Where <edition> isthe PGD edition you want toinstall: essential or expanded.

Run the installation command

Run the installation command appropriate for your platform.

sudo apt install -y $EDB_PACKAGES
sudo dnf dinstall -y $EDB_PACKAGES

This command will install the specified packages and any dependencies they require. Once the installation is complete, you will have the database and PGD software installed on your system.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 65

EDB Postgres Distributed (PGD)

Worked example

In this example, we will install EDB Postgres Extended Server 17 with PGD Expanded on a CentOS/RHEL system using the repository configuration we set up in theprevious step's worked example.

export PG_VERSION=17

export EDB_PACKAGES="edb-as$PG_VERSION edb-pgd6-expanded-epas$PG_VERSION"
sudo dnf dinstall

$EDB_PACKAGES

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 66

5.4 Configuring the cluster

Configuring the cluster
The next step in the process is to configure the database and the cluster.
This involves logging into each host and running the pgd command to create the cluster as the database user.

These steps will vary according to which platform you are using and which version of Postgres you are using.

Cluster name

You will need to choose a name for your cluster. This is the name that will be used to identify the cluster in the PGD CLI and in the database. It will be referred to as <cluster-name> in the examples. If not specified, the default name is

pgd .

Group names

You will also need to choose a name for the group. This is the name that will be used to identify the group in the PGD CLI and in the database. It will be referred to as <group-name> in the examples.

The group name must be unique within the cluster.

Node names

EDB Postgres Distributed (PGD)

You will also need to choose a name for each node. This is the name that will be used to identify the node in the PGD CLI and in the database. It will be referred to as <node-name> in the examples. This is separate from the host name, which

is the name of the machine on which the node is running.

The node name must be unique within the group and within the cluster.

Paths and users

The paths and users used in the examples will vary according to which version of Postgres you are using and which platform you are using.

Select your Postgres version:

Then select your platform:

Postgres User enterprisedb
Postgres Port 5444

Postgres Executable

files /Jusr/1lib/edb-as/$PG_VERSION/bin/

Postgres Data Directory /var/lib/edb-as/$PG_VERSION/main/

sudo -iu enterprisedb

export PG_VERSION=<version>

export PATH=$PATH:/usr/lib/edb-as/$PG_VERSION/bin/
export PGDATA=/var/lib/edb-as/$PG_VERSION/main/
export PGPORT=5444

Postgres User enterprisedb
Postgres Port 5444

Postgres Executable

R} /usr/edb/as$PG_VERSION/bin/
files

Postgres Data Directory /var/lib/edb/as$PG_VERSION/data/

sudo -iu enterprisedb

export PG_VERSION=<version>

export PATH=$PATH:/usr/edb/as$PG_VERSION/bin/
export PGDATA=/var/lib/edb/as$PG_VERSION/data/
export PGPORT=5444

Then select your platform:

Postgres User postgres
Postgres Port 5432

Postgres Executable

files Jusr/lib/edb-pge/$PG_VERSION/bin/

Postgres Data Directory /var/lib/edb-pge/$PG_VERSION/main/

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

67

EDB Postgres Distributed (PGD)

sudo -iu postgres

export PG_VERSION=<version>

export PATH=$PATH:/usr/lib/edb-pge/$PG_VERSION/bin/
export PGDATA=/var/lib/edb-pge/$PG_VERSION/main/
export PGPORT=5432

Postgres User postgres
Postgres Port 5432

Postgres Executable

files /usr/edb/pge$PG_VERSION/bin/

Postgres Data Directory /var/lib/edb-pge/$PG_VERSION/data/

sudo -iu postgres

export PG_VERSION=<version>

export PATH=$PATH:/usr/edb/pge$PG_VERSION/bin/
export PGDATA=/var/lib/edb-pge/$PG_VERSION/data/
export PGPORT=5432

Then select your platform:

Postgres User postgres
Postgres Port 5432

Postgres Executable

files /usr/lib/postgresql/$PG_VERSION/bin/

Postgres Data Directory /var/lib/postgresql/$PG_VERSION/main/

sudo -iu postgres

export PG_VERSION=<version>

export PATH=$PATH:/usr/lib/postgresql/$PG_VERSION/bin/
export PGDATA=/var/lib/postgresql/$PG_VERSION/main/
export PGPORT=5432

Postgres User postgres
Postgres Port 5432

Postgres Executable

files Jusr/pgsql-$PG_VERSION/bin/

Postgres Data Directory /var/lib/pgsql/$PG_VERSION/data/

sudo -iu postgres

export PG_VERSION=<version>

export PATH=$PATH:/usr/pgsql-$PG_VERSION/bin/
export PGDATA=/var/1lib/pgsql/$PG_VERSION/data/
export PGPORT=5432

On each host

Run the commands from the script/settings above to set the environment variables and paths for the Postgres user on each host. This will ensure that the pgd command can find the Postgres executable files and data directory.

1. Using the appropriate user, log in as the database user.

sudo ~iu <db-user>

1. Set the Postgres version environment variable. Don't forget to replace <version> with the actual version number you are using, suchas 17 .

export PG_VERSION=<version>

1. Add the Postgres executable files to your path.

export PATH=$PATH:<executable-path>

1. Set the Postgres data directory environment variable.

export PGDATA=<data-directory>

1. Set the Postgres password environment variable. Don't forget to replace <db-password> with the actual password you want for the database user.

export PGPASSWORD=<db-password>

On the first host

The first host in the cluster is also the first node and will be where we begin the cluster creation. On the first host, run the following command to create the cluster:
pgd node <first-node-name> setup --dsn "host=<first-host> user=<db-user> port=<db-port> dbname=<dbname>" --group-name <group-name>

This command will create the data directory and initialize the database, then will create the cluster and the group on the first node.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

68

EDB Postgres Distributed (PGD)

On the second host

On the second host, run the following command to create the cluster:

pgd node <second-node-name> setup --dsn "host=<second-host> user=<db-user> port=<db-port> dbname=<db-name>" cluster-dsn "host=<first-host> user=<db-user> port=<db-
port> dbname=<db-name>"

This command will create the node on the second host, and then join the cluster using the cluster-dsn setting to connect to the first host.

On the third host

On the third host, run the following command to create the cluster:

pgd node <third-node-name> setup dsn "host=<third-host> user=<db-user> port=<db-port> dbname=<db-name>" cluster-dsn "host=<first-host> user=<db-user> port=<db-port>
dbname=<db-name>"

This command will create the node on the third host, and then join the cluster using the cluster-dsn setting to connect to the first host.

Worked example
In this example, we will configure the PGD Essential cluster with EDB Postgres Extended Server 17 on a CentOS/RHEL system that weconfigured and installed in the previous steps.

We will now create a cluster called pgd with three nodes called node-1, node-2,and node-3.

The group name will be group-1 .The hostsare host-1, host-2,and host-3.
The Postgres version is 17.

The database useris postgres.

The database port is 5432.

The database name is pgddb .

The Postgres executable files arein /usr/edb/pgel7/bin/ .

The Postgres data directoryisin /var/1lib/edb-pge/17/main/ .

The Postgres password is secret .

(Note that we assume the Postgres version environment variable PG_VERSION is setto 17 from the previous step, and that we are preserving the environment variable when switching users.)

On the first host

sudo —iu

postgres

export PG_VERSION=17

export PATH=$PATH: /usr/edb/pge$PG_VERSION/bin/

export PGDATA=/var/lib/edb-pge/$PG_VERSION/data/

export PGPASSWORD=secret

pgd node node-1 setup --dsn "host=host-1 user=postgres port=5432 dbname=pgddb" sroup-name group-
1

On the second host

sudo -iu

postgres

export PG_VERSION=17

export PATH=$PATH: /usr/edb/pge$PG_VERSION/bin/

export PGDATA=/var/1lib/edb-pge/$PG_VERSION/data/

export PGPASSWORD=secret

pgd node node-2 setup --dsn "host=host-2 user=postgres port=5432 dbname=pgddb" --cluster-dsn "host=host-1 user=postgres port=5432 dbname=pgddb"

On the third host

sudo ~iu

postgres

export PG_VERSION=17

export PATH=$PATH: /usr/edb/pge$PG_VERSION/bin/

export PGDATA=/var/lib/edb-pge/$PG_VERSION/data/

export PGPASSWORD=secret

pgd node node-3 setup --dsn "host=host-3 user=postgres port=5432 dbname=pgddb" cluster-dsn "host=host-1 user=postgres port=5432 dbname=pgddb"

The next step is to check the cluster.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 69

EDB Postgres Distributed (PGD)

5.5 Checking the cluster

Checking the cluster

With the cluster up and running, it's worthwhile to run some basic checks to see how effectively it's replicating.

The following example shows one quick way to do this, but you must ensure that any testing you perform is appropriate for your use case.

On any of the installed and configured nodes, log in and run psql to connect to the database. If you are using EDB Postgres Advanced Server, use the enterprisedb user, otherwise use postgres :

sudo postgres psql
pgddb

This command connects you directlyto the database on host-1/node-1.

Quick test

e Preparation

o Ensure the cluster is ready:
m Login to the database on host-1/node-1.
m Run select bdr.wait_slot_confirm_lsn(NULL, NULL); .
= When the query returns, the cluster is ready.

o Create data The simplest way to test that the cluster is replicating is to log in to one node, create a table, and populate it.

o Onnode-1, create a table:

CREATE TABLE quicktest (id SERIAL PRIMARY KEY, value INT);

o On node-1, populate the table:

INSERT INTO quicktest (value) SELECT random()*10000 FROM
generate_series(1,10000);

o On node-1, monitor performance:

select * from bdr.node_replication_rates;

o On node-1, get a sum of the value column (for checking):

select COUNT(*),SUM(value) from quicktest;

e Check data

o

Log in to node-2. Log in to the database on host-2/node-2.
On node-2, get a sum of the value column (for checking):

o

select COUNT(*),SUM(value) from quicktest;

o

Compare with the result from node-1.
Log in to node-3. Log in to the database on host-3/node-3.
On node-3, get a sum of the value column (for checking):

o

o

select COUNT(*),SUM(value) from quicktest;

o

Compare with the result from node-1 and node-2.

Worked example

Preparation

Log in to host-1's Postgres server.

ssh adminghost-1
sudo -iu postgres psql "host=host-1 port=5432 username=postgres dbname=pgddb"

This is your connection to PGD's node-1.

Ensure the cluster is ready

To ensure that the cluster is ready to go, run:

select bdr.wait_slot_confirm_lsn(NULL,
NULL)

This query blocks while the cluster is busy initializing and returns when the cluster is ready.

In another window, log in to host-2's Postgres server:

ssh admin@host-2
sudo -iu postgres psql "host=host-2 port=5432 username=postgres dbname=pgddb"

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 70

EDB Postgres Distributed (PGD)

Create data

On node-1, create a table

Run:

CREATE TABLE quicktest (id SERIAL PRIMARY KEY, value INT);

On node-1, populate the table

INSERT INTO quicktest (value) SELECT random()*10000 FROM
generate_series(1,10000);

This command generates a table of 10000 rows of random values.

On node-1, monitor performance

As soon as possible, run:
select * from bdr.node_replication_rates;
The command shows statistics about how quickly that data was replicated to the other two nodes:

pgddb=# select * from bdr.node_replication_rates;

output

peer_node_id | target_name | sent_lsn | replay_lsn | replay_lag | replay_lag_bytes | replay_lag_size | apply_rate | catchup_interv

1954860017 | node-3 | ©/DDAA908 | ©/DDAA908 | 00:00:00 13682 | 00:00:00
2299992455 | node-2 | ©/DDAA908 | ©/DDAA9G8 | 00:00:00 13763 | 00:00:00
(2 rows)

And it's already replicated.

On node-1 get a checksum

Run:

select COUNT(*),SUM(value) from quicktest;

This command gets some values from the generated data:

pgddb=# select COUNT(*),SUM(value) from quicktest;

output

100000 | 498884606
(1 row)

Check data

Log in to host-2's Postgres server

ssh admin@host-2
sudo -iu postgres psql "host=host-2 port=5432 username=postgres dbname=pgddb"

This is your connection to PGD's node-2.

On node-2, get a checksum

Run:

select COUNT(*),SUM(value) from quicktest;

This command gets node-2's values for the generated data:

pgddb=# select COUNT(*),SUM(value) from quicktest;

output

count
,,,,,,,, S

100000 | 498884606
(1 row)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 71

EDB Postgres Distributed (PGD)

Compare with the result from node-one

The values are identical.

You can repeat the process with node-3 or generate new data on any node and see it replicate to the other nodes.

Log in to host-3's Postgres server

ssh adminghost-3
sudo -iu enterprisedb psql pgddb

This is your connection to PGD's node-3.

On node-3, get a checksum

Run:
select COUNT(*),SUM(value) from quicktest;
This command gets node-3's values for the generated data:

pgddb=# select COUNT(*),SUM(value) from quicktest;

output

count

,,,,,,,, e

100000 | 498884606
(1 row)

Compare with the result from node-one and node-two

The values are identical.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 72

EDB Postgres Distributed (PGD)

5.6 Connecting to your PGD cluster

EDB Postgres Distributed (PGD) uses the same connection methods as Postgres. The difference is that most of your connections to the cluster go through the connection manager that's built into every data node in the cluster.
Although you can connect directly to the data nodes, we don't recommend it for anything other than maintenance when you want to work on a particular node's database instance.

In general, you must connect to the cluster through the connection manager. PGD is designed to be simple to deploy and manage, and that means the cluster has a write leader node that handles all the writes to the cluster. The connection
manager is then responsible for directing your read-write connections to the write leader. All your client or application needs to do is to use the connection manager's port and the connection manager will handle the rest.

The connection manager is responsible for directing your writes to the write leader and ensuring that your reads are directed to the correct node in the cluster. If you connect directly to a data node, you may not be able to take advantage of
these features. For applications that only need to read data, the connection manager can direct your reads to a node that isn't the write leader. This can help to balance the load on the cluster and improve performance.

Connecting through the connection manager

Postgres is very flexible for configuring ports and connections, so for simplicity, this example uses the default port settings for Postgres and the connection manager. The default port for Postgres is 5432, and the default port for the connection
manager is 6432.

You can use that port in your connection strings to connect to the cluster. So, for example, if you're using the psql command line tool, you can connect to the cluster like this:

psql host-1 6432 pgdadmin
pgddb

Where host-1 is the hostname of the node you're connecting to. The connection manager will then direct your connection to the write leader node in the cluster.

Connecting directly to a data node

You can connect directly to a data node in the cluster, but we don't recommend it. However, if you need to connect directly to a data node, you can use the following command:

psql host-1 5432 pgdadmin
pgddb

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 73

EDB Postgres Distributed (PGD)

6 Node types and capabilities

A PGD cluster can contain several different types of node, each with its own role. This section describes the different types of node that can be configured in a PGD cluster.
e Overview is an overview the kinds of node that can exist in PGD clusters and their associated roles.
e Witness nodes looks at the witness node, a special class of PGD node, dedicated to establishing consensus in a group.
e Logical standby nodes shows how to efficiently keep a node on standby synchronized and ready to step in as a primary in the case of failure.

® Subscriber-only nodes and groups looks at how subscriber-only nodes work with subscriber-only groups, how they boost read scalability and the different options for configuring them.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 74

https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/overview
https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/witness_nodes
https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/logical_standby_nodes
https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/subscriber_only

EDB Postgres Distributed (PGD)

6.1 An overview of PGD Node types

Data nodes

A data node in PGD is a node that runs a Postgres instance. It replicates data to all other data nodes. It also participates in the cluster-wide Raft decision-making around locking and leadership. It can be a member of one or more groups and is,
by default, a member of the "top level" group that spans all data nodes in the cluster.

The data node is also the foundation on which the other three nodes are built.

Witness nodes

A witness node behaves like a data node in that it participates in the cluster-wide Raft decision-making around locking and leadership. It doesn't replicate or store data, though. The purpose of a witness node is to be available to ensure that the
cluster can achieve a majority it seeks a consensus. Witness nodes has more details.

Logical standby nodes

Logical standby nodes are nodes that receive the logical data changes from another node and replicate them locally. PGD can use a logical standby node to replace the node it's replicating if that node becomes unavailable, with some caveats.
See Logical standby nodes for more details.

Subscriber-only nodes

A subscriber-only node is a data node that, as the name suggests, only subscribes to changes in the cluster but doesn't replicate changes to other nodes. You can use subscriber-only nodes as read-only nodes for applications. You create
subscriber-only nodes by specifying a data node is subscriber-only when you create the node and then adding it to a subscriber-only group. SeeSubscriber-only nodes and groups for more details.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 75

EDB Postgres Distributed (PGD)

6.2 Witness nodes

Awitness node is a lightweight node that functions as a data node but that doesn't store or replicate data. Use a witness node to allow a PGD cluster that uses Raft consensus to have an odd number of voting nodes and therefore be able to
achieve a majority when making decisions.

Witness nodes within PGD groups or regions

One typical use of witness nodes is when a PGD group has two data nodes but resources aren't available for the recommended three data nodes. In this case, you can add a witness node to the PGD group to provide a third voting node to local
Raft decision-making. These decisions are primarily about who will be electing a write leader for the proxies to use. With only two nodes, it's possible to have no consensus over which data node is write leader. With two data nodes and a
witness, there are two candidates (the data nodes) and three voters (the data nodes and the witness). When a data node is down, then, there are still two voters that can select a write leader.

Witness node outside regions

At a higher level, you can use witness nodes when multiple PGD groups are mapped to different regions. For example, with three data nodes per region in two regions, while running normally, all six data nodes can participate in Raft decisions
and obtain DDL and DML global locks. Even when a data node is down, there are sufficient data nodes to obtain a consensus. But if a network partition occurs and connectivity with the other region is lost, then now only three nodes out of six

are available, which isn't enough for a consensus. To avoid this scenario, you can deploy a witness node in a third region as part of the PGD cluster. This witness node will allow a consensus to be achieved for most operational requirements of
the PGD cluster while a region is unavailable.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 76

EDB Postgres Distributed (PGD)

6.3 Logical standby nodes

PGD allows you to create a logical standby node, also known as an offload node, a read-only node, receive-only node, or logical-read replicas. A master node can have zero, one, or more logical standby nodes.
Note
Logical standby nodes can be used in environments where network traffic between data centers is a concern. Otherwise, having more data nodes per location is always preferred.

Logical standby nodes are nodes that are held in a state of continual recovery, constantly updating until they're required. This behavior is similar to how Postgres physical standbys operate, while using logical replication for better
performance. Logical standby nodes receive changes but don't send changes made locally to other nodes.

Alogical standby is created by specifying the node_kind as standby when creating the node with bdr.create_node .
Later, if you want, use bdr.promote_node to move the logical standby into a full, normal send/receive node.
A logical standby is sent data by one source node, defined by the DSN in bdr.join_node_group . Changes from all other nodes are received from this one source node, minimizing bandwidth between multiple sites.

For high availability, if the source node dies, one logical standby can be promoted to a full node and replace the source in a failover operation similar to single-master operation. If there are multiple logical standby nodes, the other nodes can't
follow the new master, so the effectiveness of this technique is limited to one logical standby.

In case a new standby is created from an existing PGD node, the needed replication slots for operation aren't synced to the new standby until at least 16 MB of LSN has elapsed since the group slot was last advanced. In extreme cases, this
might require a full 16 MB before slots are synced or created on the streaming replica. If a failover or switchover occurs during this interval, the streaming standby can't be promoted to replace its PGD node, as the group slot and other
dependent slots don't exist yet.

The slot sync-up process on the standby solves this by invoking a function on the upstream. This function moves the group slot in the entire EDB Postgres Distributed cluster by performing WAL switches and requesting all PGD peer nodes to
replay their progress updates. This behavior causes the group slot to move ahead in a short time span. This reduces the time required by the standby for the initial slot's sync-up, allowing for faster failover to it, if required.

On PostgreSQL, it's important to ensure that the slot's sync-up completes on the standby before promoting it. You can run the following query on the standby in the target database to monitor and ensure that the slots synced up with the
upstream. The promotion can go ahead when this query returns true .

SELECT true FROM pg_catalog.pg_replication_slots
WHERE

slot_type = 'logical' AND confirmed_flush_lsn IS NOT
NULL;

You can also nudge the slot sync-up process in the entire PGD cluster by manually performing WAL switches and by requesting all PGD peer nodes to replay their progress updates. This activity causes the group slot to move ahead in a short
time and also hastens the slot sync-up activity on the standby. You can run the following queries on any PGD peer node in the target database for this:

SELECT bdr.run_on_all_nodes('SELECT
pg_catalog.pg_switch_wal()');

SELECT bdr.run_on_all_nodes('SELECT
bdr.request_replay_progress_update()');

Use the monitoring query on the standby to check that these queries do help in faster slot sync-up on that standby.

A logical standby does allow write transactions. You can use this to great benefit, since it allows the logical standby to have additional indexes, longer retention periods for data, intermediate work tables, LISTEN/NOTIFY, temp tables,
materialized views, and other differences.

Any changes made locally to logical standbys that commit before the promotion aren't sent to other nodes. All transactions that commit after promotion are sent onwards. If you perform writes to a logical standby, take care to quiesce the
database before promotion.

You might make DDL changes to logical standby nodes, but they aren't replicated and they don't attempt to take global DDL locks. PGD functions that act similarly to DDL also aren't replicated. See DDL replication. If you made incompatible
DDL changes to a logical standby, then the database is a divergent node. Promotion of a divergent node currently results in replication failing. As a result, plan to either ensure that a logical standby node is kept free of divergent changes if you
intend to use it as a standby, or ensure that divergent nodes are never promoted.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 77

EDB Postgres Distributed (PGD)

6.4 Subscriber-only nodes and groups

Subscriber-only nodes and groups offer a powerful way to build read scaling into your PGD cluster.
® The Overview introduces how subscriber-only nodes and groups work in PGD.
e Creating a subscriber-only group explains how to create a subscriber-only group and node.
e Joining a node to a subscriber-only group explains how to join a node to an existing subscriber-only group which has members.

e Optimizing subscriber-only groups provides details on how to configure the PGD subscriber-only optimized topology feature which uses a group leader for more efficient replication.
P 9 y groups pi g y op’ pology group P!

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 78

EDB Postgres Distributed (PGD)

6.4.1 An overview of Subscriber-only nodes

Overview

While many use cases rely on accessing a database node which can handle queries and updates, there are also use cases which only require access to a node that can handle read-only database queries. Read scaling like this, by moving the
read-only traffic away from active database nodes in the cluster, can improve the performance of the core cluster, whilst making database access more widely available.

Subscriber-only nodes

The basic idea of subscriber-only nodes is to provide a read-only node that you can use to offload read-only queries from the main cluster. The default topology of a PGD cluster is what's called a full mesh topology, where every node connects
to every other node. This is the most robust and fault-tolerant way to connect nodes, but it can be inefficient for some use cases.

Subscriber-only nodes can be a member of a subscriber-only group or, with PGD 6 and later, they can be part of a data group.

Subscriber-only groups
Subscriber-only groups in PGD gather together subscriber-only nodes. Each group can address different regions or different application demands.
Unlike data groups, a subscriber-only group has no raft consensus mechanism of its own. This also means that a subscriber-only group can have as many subscriber-only nodes as your need.

Previous to PGD 6, the existence of a subscriber-only group didn't change the replication topology. All nodes in the subscriber-only group, by default, independently receive replicated changes from all other nodes in the cluster.

Optimizing subscriber-only groups
In PGD 6 and later, you can optionally optimize the topology of subscriber-only groups.
For clusters using proxies and raft-enabled groups for their data nodes, subscriber-only groups can use a more efficient model for receiving replicated changes.

The optimized topology option creates a group leader in each subscriber-only group, similar to a write leader in PGD Proxies. The group leader receives all the changes from the cluster and then replicates them to the other nodes in its group.
See Optimizing subscriber-only groups for more information on this feature.

Subscriber-only nodes and DDL

Subscriber-only nodes can execute locally issued DDL commands but they don't replicate those changes to other nodes in the cluster and will not attempt to acquire locks on the cluster.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 79

EDB Postgres Distributed (PGD)

6.4.2 Creating Subscriber-only groups and nodes

The process of creating a Subscriber-only node or nodes starts with creating a Subscriber-only group to contain the node or nodes. Perform this step on an existing fully joined node in the PGD cluster.

Creating a Subscriber-only group manually

To create a Subscriber-only group, you must specify the node_group_type as subscriber-only when creating the group. For example, here we are logged into the node "node-one" running on "host-one". It's a member of it's own data
group and as for all nodes, a member of the top-level group, here called topgroup . Log into this node directly to create a new Subscriber-only group named sogroup with the following SQL command:

select bdr.create_node_group('sogroup', 'topgroup', false, 'subscriber-only');
or more explicitly with parameter names:

select

bdr.create_node_group(node_group_name:="'sogroup',
parent_group_name:="'topgroup',
join_node_group alse,
node_group_type:='subscriber-only');

This creates a Subscriber-only group named sogroup whichis a child of the topgroup group. The false parameter for join_node_group indicates that the node executing this command shouldn't join to the newly created group.
Automatically joining the group is the default behavior, which in this case needs to be supressed.

Adding a node to a new Subscriber-only group manually
You can now initialize a new data node and then add it to the Subscriber-only group. Create a data node and configure the bdr extension on it as you would for any other data node.

You now have to create this new node asa subscriber-only node. To do this, log into the new node and run the following SQL command:

select bdr.create_node('so-node-1', 'host=so-host-1 dbname=pgddb port=5444', 'subscriber-
only");

Then, log into that new node and add it to the sogroup group with the following SQL command:
select bdr.join_node_group('host=host-one dbname=pgddb port=5444','sogroup');
or more explicitly with parameter names:

select bdr.join_node_group(dsn:="host=host-one dbname=pgddb port=5444"',
node_group_name:="'sogroup');

This instructs the new node to join the sogroup group. As it has no knowledge of the cluster topology, it will connect to the node specified in the DSN to receive the necessary information to join the group. In this example, this happens to be
the same node as we used to create the subscriber-only group, but it could be any node that's fully joined to the cluster.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 80

EDB Postgres Distributed (PGD)

6.4.3 Joining nodes to a Subscriber-only group

If you have no subscriber-only groups in your PGD cluster, you must create the groups following the process inCreating Subscriber-only groups and nodes. After you have created a subscriber-only group, you can join subscriber-only nodes to
it.

Joining a node to an existing subscriber-only group

Unlike joining a node to a new subscriber-only group, joining a node to an existing subscriber-only group is a simpler process.
First create the new node as a subscriber-only node. Run the following SQL command on the new node:

select bdr.create_node('so-node-2', 'host=so-host-2 dbname=pgddb port=5444', 'subscriber-
only');

or more explicitly with parameter names:

select bdr.create_node(node_name:='so-node-2"',
dsn:="'host=so-host-2 dbname=pgddb
port=5444",
node_type:="'subscriber-only');

This command creates a new node named so-node-2 onhost so-host-2 and configures it as a subscriber-only node. The node won't be able to join the cluster until joins a group.

In creating a new subscriber-only group, you created a group named sogroup and added a subscriber-only node called so-node-1 onahost shost-1.Itused a node in an existing data group to facilitate that join. But you can't use this
new subscriber-only node to add another subscriber-only node. You must use any active data node that's fully joined to the cluster. In the creating examples, they use host-one in the cluster's data group for this task. You can use the
following SQL command on shost-2 tojoinittothe sogroup group:

select bdr.join_node_group('host=host-one dbname=pgddb port=5444','sogroup');
or more explicitly with parameter names:

select bdr.join_node_group(dsn:='host=host-one dbname=pgddb port=5444"',
node_group_name:="'sogroup');

This command instructs the new node to join the sogroup group. As it has no knowledge of the cluster topology, it connects to the node specified in the DSN to receive the necessary information to join the group. That node must be fully
joined to the cluster as it acts as the source of the request for the new node to join the group.

Once the new node has joined the group, it starts by first synchronizing and then begins to receive replication changes from the other nodes in the cluster.
Note

Unless, the group is using the optimized topology, in which case it replicates changes from a subscriber-only group leader in the subscriber-only group it has joined.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 81

EDB Postgres Distributed (PGD)

6.4.4 Optimizing subscriber-only groups

With PGD 6 and later, it's possible to optimize the topology of subscriber-only groups.

In this optimized topology, a small number of fully active nodes—the write leaders of the data groups—replicate changes to the group leaders of subscriber-only groups. These group leaders then replicate changes to the other members of its
subscriber-only group.

Requirements for the optimized topology
You can't enable this model if a cluster has any of the following:

e Data nodes that are directly members of the top-level group
® No data-node subgroups
o No data-node subgroups with proxy routing enabled

If any of these are the case, the nodes in subscriber-only groups revert to the full mesh topology.

To get the benefit of the new SO group and node replication, you must have your data nodes in subgroups, with proxy routing enabled on the subgroups.

How the optimized topology works
For clusters using groups for their data nodes, subscriber-only groups can use a more efficient model. This model uses subscriber-only group leaders, similar to write leaders in PGD proxies.
Each subscriber-only group uses that group leader to replicate changes to other subscriber-only nodes in its group. The group leader acts as a replication proxy for incoming changes.

The write leader nodes in data groups replicate changes to the group leaders of the subscriber-only groups. Other nodes in the data groups only replicate with nodes in their data group and with data nodes in other data groups. They do not
directly replicate their changes to the subscriber-only groups.

Subscriber-only group leaders

With PGD 6 and later, each subscriber-only group gets assigned a group leader of its own. This is because subscriber-only groups don't have a group Raft consensus mechanism of their own. Instead, the cluster’s top-level group uses its Raft
consensus mechanism to handle selecting each subscriber-only group’s group leader. This group leader selection is on by default in PGD 6, regardless of the topology optimization settings.

Group leaders in subscriber-only groups are regularly tested for connectivity and, if unavailable, the voting nodes of top-level group select a new subscriber-only node from the subscriber-only group to become group leader. The new group
leader is then selected.

With optimized technology turned off, this election has no effect on the replication topology. Without the optimized topology, all data nodes replicate changes to all other nodes in the cluster.

Group leaders in the optimized topology

With the optimized topology enabled, only the subscriber-only group's group leader receives changes from other data groups' write leaders in the cluster. The group leader takes on the responsibility of replicating those changes to the other
nodes in the subscriber-only group.

The other voting nodes choose the group leader from a subscriber-only group's nodes. Once the group leader is selected, the whole cluster becomes aware of the change, and any data group's write leaders then replicate data only to this newly
selected group leader node. Other data nodes in the data groups don't replicate data to the subscriber-only group's nodes.

This approach avoids the explosion of active connections that can happen when there are large numbers of SO nodes and reduces the amount of replication traffic.

The subscriber-only node and group form the building block for PGD tree topologies.

Enabling the optimized model

By default, PGD 6 forces the full mesh topology. This means the optimization described here is off. To enable the optimized topology, you must have your data nodes in subgroups, with proxy routing enabled on the subgroups. You can then set
the GUC bdr. force_full_mesh to off toallow the optimization to be activated.

Note
This GUC needs to be set in the postgresql.conf file on each data node and each node restarted for the change to take effect.

If any requirements of the optimized topology aren't met, the nodes in a subscriber-only group revert to the full mesh topology. When this happens, you'll find in the logs of the nodes in the cluster messages why the optimization wasn't
possible, such as:

When a data node is part of the top-level node group:
node: <nodename> 1is part of top-level nodegroup: <toplevelgroupname>: changing to full mesh".
When a data group doesn't have proxy routing enabled:

node: <nodename> 1is in nodegroup: <nodegroupname> that does not have proxy routing: changing to full mesh.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 82

EDB Postgres Distributed (PGD)

7 Node management

All data nodes in a PGD cluster are members of one or more groups. By default, all data nodes are members of the top-level group, which spans all data nodes in the PGD cluster. Nodes can also belong to subgroups that can be configured to
reflect logical or geographical organization of the PGD cluster.

You can manage nodes and groups using the various options available with nodes and subgroups.

e Creating nodes covers the steps needed to create a new node in a PGD cluster.

Groups and subgroups goes into more detail on how groups and subgroups work in PGD.

Creating and joining groups looks at how new PGD groups can be created and how to join PGD nodes to them.

Viewing topology details commands and SQL queries that can show the structure of a PGD cluster's nodes and groups.

Removing nodes and groups shows the process to follow to safely remove a node from a group or a group from a cluster.

Connection DSNs introduces the DSNs or connection strings needed to connect directly to a node in a PGD cluster. It also covers how to use SSL/TLS certificates to provide authentication and encryption between servers and between
clients.

Node recovery details the steps needed to bring a node back into service after a failure or scheduled downtime and the impact it has on the cluster as it returns.

Automatic Sync looks at how the automatic sync feature works in PGD and how it can be used to keep nodes in sync with each other.

Node UUIDs explains how the UUIDs of nodes are used in PGD and how they are generated.

Replication slots examines how the Postgres replication slots are consumed when PGD is operating.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 83

EDB Postgres Distributed (PGD)

71 Creating PGD nodes

It's just Postgres
A PGD node is just a Postgres instance with the BDR extension installed. The BDR extension enables bidirectional replication between nodes and is the foundation of PGD.

That means, in the most general terms, you can create a PGD node by installing Postgres and the BDR extension, and then configuring the node to connect to the other nodes in the PGD group. But there are some specifics to consider.

Which Postgres version?

PGD is built on top of Postgres, so the distribution and version of Postgres you use for your PGD nodes is important. The version of Postgres you use must be compatible with the version of PGD you are using. You can find the compatibility
matrix in the release notes. Features and functionality in PGD may depend on the distribution of Postgres you are using. TheEDB Postgres Advanced Serveris the recommended distribution for PGD. PGD also supports EDB Postgres Extended
Server and Community Postgres.

Installing Postgres

You must install your selected Postgres distribution on each node you are configuring. You can find installation instructions for each distribution in theEDB Postgres Advanced Server documentation, EDB Postgres Extended Server
documentation, and the Postgres installation documentation. You can also refer to the PGD manual installation guide which covers the installation of Postgres.

Installing the BDR extension

The BDR extension is the key to PGD's distributed architecture. You need to install the BDR extension on each node in your PGD cluster. The BDR extension is available from the EDB Postgres Distributed repository. You need to add the
postgres_distributed repository to your package management system on Linux and then install the edb-bdr package. You can find the repository configuration instructions in the PGD manual installation guide.

Once the repository is configured, you can install the BDR package with your package manager. The package name is edb-pgd6-<postgresversion> where <postgresversion> is the version of Postgres you are using. For

example, if you are using Postgres 14, the package nameis edb-pgd6-14 .

Configuring the database for PGD

This process is specific to PGD and involves configuring the Postgres instance to work with the BDR extension and adjusting various settings to work with the PGD cluster. The steps are as follows:
e Add the BDR extension $1libdir/bdr atthe startofthe shared_preload_libraries settingin postgresql.conf .
e Setthe wal_level GUCvariableto logical in postgresql.conf.
® Turn on commit timestamp tracking by setting track_commit_timestamp to 'on' in postgresql.conf.

® Increase the maximum worker processes to 16 or higher by setting max_worker_processes to '16' in postgresql.conf.

The max_worker_processes value

The max_worker_processes value is derived from the topology of the cluster, the number of peers, number of databases, and other factors. To calculate the needed value, see Postgres configuration/settings. The value
of 16 was calculated for the size of cluster being deployed in this example. It must be increased for larger clusters.

Set a password on the EnterprisedDB/Postgres user.

Add rulesto pg_hba.conf toallow nodes to connect to each other.

o Ensure that these lines are presentin pg_hba.conf:

host all all all md5
host replication all all md5

Adda .pgpass file to allow nodes to authenticate each other.

o Configure a user with sufficient privileges to log in to the other nodes.
o See The Password File in the Postgres documentation for more on the . pgpass file.

Once these steps are complete, restart the Postgres instance to apply the changes.

Initializing a PGD node

Log into the database instance you have configured and set up the BDR extension. You can do this by running the CREATE EXTENSION bdr; command as super user in the database. This command creates the BDR extension.

You also need to create a database within Postgres to use as PGD's replicated database. You can do this with the CREATE DATABASE command. The created database should be the name of the database that other nodes in the PGD cluster
replicate. The convention is to name the database pgddb .

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 84

https://www.enterprisedb.com/docs/epas/latest/
https://www.enterprisedb.com/docs/pge/latest/
https://www.postgresql.org/
https://www.enterprisedb.com/docs/epas/latest/installing/
https://www.enterprisedb.com/docs/pge/latest/installing/
https://www.enterprisedb.com/docs/supported-open-source/postgresql/installing/
https://www.enterprisedb.com/docs/pgd/latest/essential-how-to/install/03-installing-database-and-pgd
https://www.enterprisedb.com/docs/pgd/latest/essential-how-to/install/02-configure-repositories
https://www.enterprisedb.com/docs/pgd/latest/reference/postgres-configuration/#postgres-settings
https://www.postgresql.org/docs/current/libpq-pgpass.html

EDB Postgres Distributed (PGD)

Next steps

The node is now configured and ready to be join a group, or start a group, in the PGD cluster. You can find instructions for joining a node to a group in theJoining a node to a group section.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 85

https://www.enterprisedb.com/docs/pgd/latest/reference/node_management/creating_and_joining

EDB Postgres Distributed (PGD)

7.2 Groups and subgroups

Groups

APGD cluster's nodes are gathered in groups. A "top level" group always exists and is the group to which all data nodes belong to automatically. The "top level" group can also be the direct parent of sub-groups.

Sub-groups

A group can also contain zero or more subgroups. Subgroups can be used to represent data centers or locations allowing commit scopes to refer to nodes in a particular region as a whole. Connection Manager can also make use of subgroups to
delineate nodes available to be write leader.

The node_group_type value specifies the type when the subgroup is created. Some sub-group types change the behavior of the nodes within the group. For example, asubscriber-only sub-group will make all the nodes within the group
into subscriber-only nodes.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 86

EDB Postgres Distributed (PGD)

7.3 Creating and joining PGD groups

Creating and joining PGD groups

For PGD, every node must connect to every other node. To make configuration easy, when a new node joins, it configures all existing nodes to connect to it. For this reason, every node, including the first PGD node created, must know the
PostgreSQL connection string that other nodes can use to connect to it. This connection string is sometimes referred to as a data source name (DSN).

Both formats of connection string are supported. So you can use either key-value format, like host=myhost port=5432 dbname=mydb , or URI format, like postgresql://myhost:5432/mydb .

The SQL function bdr.create_node_group() creates the PGD group from the local node. Doing so activates PGD on that node and allows other nodes to join the PGD group, which consists of only one node at that point. At the time of
creation, you must specify the connection string for other nodes to use to connect to this node.

When the first PGD node group is created, a default replication set is also created, and all existing tables are added into the set. After that, all tables will have the bdr.default_replica_identity value configured as the REPLICA
IDENTITY forthe table.

Once the node group is created, further nodes can join the PGD group using the bdr.join_node_group() function.

Alternatively, use the command line utility bdr_init_physical to create a new node, using pg_basebackup . If using pg_basebackup , the bdr_init_physical utility can optionally specify the base backup of only the target database. The
earlier behavior was to back up the entire database cluster. With this utility, the activity completes faster and also uses less space because it excludes unwanted databases. If you specify only the target database, then the excluded databases
get cleaned up and removed on the new node.

When a new PGD node is joined to an existing PGD group or a node subscribes to an upstream peer, before replication can begin the system must copy the existing data from the peer nodes to the local node. This copy must be carefully
coordinated so that the local and remote data starts out identical. It's not enough to use pg_dump yourself. The BDR extension provides built-in facilities for making this initial copy.

During the join process, the BDR extension synchronizes existing data using the provided source node as the basis and creates all metadata information needed for establishing itself in the mesh topology in the PGD group. If the connection
between the source and the new node disconnects during this initial copy, restart the join process from the beginning.

The node that's joining the cluster must not contain any schema or data that already exists on databases in the PGD group. We recommend that the newly joining database be empty except for the BDR extension. However, it's important that all
required database users and roles are created. Also, if a non-superuser is performing the joining operation, extensions that require superuser permission must be created manually. For more details, see Connections and roles.

Optionally, you can skip the schema synchronization using the synchronize_structure parameterofthe bdr.join_node_group function. In this case, the schema must already exist on the newly joining node.
We recommend that you select the source node that has the best connection (logically close, ideally with low latency and high bandwidth) as the source node for joining. Doing so lowers the time needed for the join to finish.
Coordinate the join procedure using the Raft consensus algorithm, which requires most existing nodes to be online and reachable.

The logical join procedure (which uses the bdr.join_node_group function) performs data sync doing COPY operations and uses multiple writers (parallel apply) if those are enabled.

Node join can execute concurrently with other node joins for the majority of the time taken to join. However, only one regular node at a time can be in either of the states PROMOTE or PROMOTING. These states are typically fairly short if all
other nodes are up and running. Otherwise the join is serialized at this stage. The subscriber-only nodes are an exception to this rule, and they can be concurrently in PROMOTE and PROMOTING states as well, so their join process is fully
concurrent.

The join process uses only one node as the source, so it can be executed when nodes are down if a majority of nodes are available. This approach can cause a complexity when running logical join. During logical join, the commit timestamp of
rows copied from the source node is set to the latest commit timestamp on the source node. Committed changes on nodes that have a commit timestamp earlier than this (because nodes are down or have significant lag) can conflict with
changes from other nodes. In this case, the newly joined node can be resolved differently to other nodes, causing a divergence. As a result, we recommend not running a node join when significant replication lag exists between nodes. If this is
necessary, run LiveCompare on the newly joined node to correct any data divergence once all nodes are available and caught up.

pg_dump can fail when there's concurrent DDL activity on the source node because of cache-lookup failures. Since bdr.join_node_group uses pg_dump internally, it might fail if there's concurrent DDL activity on the source node.
Retrying the join works in that case.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 87

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

7.4 Viewing PGD topology

Listing PGD groups

Using pgd-cli

Use the pgd-cli groups 1ist command to list all groups in the PGD cluster:

pgd groups list

Group Name Parent Group Name Group Type

bdrgroup bdrgroup
group_a bdrgroup
group_b bdrgroup
group_c bdrgroup
group_so bdrgroup

global

data

data

data
subscriber-only

P BA DO

Using SQL

The following simple query lists all the PGD node groups of which the current node is a member. It currently returns only one row from bdr. local_node_summary .

SELECT node_group_name

FROM bdr.local_node_summary;

You can display the configuration of each node group using a more complex query:

SELECT g.node_group_name

B
ns.pub_repsets

’
ns.sub_repsets

, g.node_group_default_repset AS

default_repset

, node_group_check_constraints

FROM bdr.local_node_summary ns
JOIN bdr.node_group g USING

(node_group_name) ;

Listing nodes in a PGD group

Using pgd-cli

AS check_constraints

Use the nodes 1ist command to list all nodes in the PGD cluster:

pgd nodes list

Node Name Group Name Node Kind Join State Node Status
bdr-al group_a data ACTIVE Up
bdr-a2 group_a data ACTIVE Up
logical-standby-al group_a standby ACTIVE Up
witness-a group_a witness ACTIVE Up
bdr-b1 group_b data ACTIVE Up
bdr-b2 group_b data ACTIVE Up
logical-standby-bl group_b standby ACTIVE Up
witness-b group_b witness ACTIVE Up
witness-c group_c witness ACTIVE Up
subscriber-only-cl group_so subscriber-only ACTIVE Up

Use grep with the group name to filter the list to a specific group:

pgd nodes list | grep group_b

bdr-b1

bdr-b2
logical-standby-b1
witness-b

Using SQL

You can extract the list of all nodes in a given node group (such as mygroup) from the bdr.node_summary " view. For example:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

group_b data ACTIVE Up
group_b data ACTIVE Up
group_b standby ACTIVE Up
group_b witness ACTIVE Up

EDB Postgres Distributed (PGD)

88

EDB Postgres Distributed (PGD)

SELECT node_name AS name

, node_seq_id AS

ord

, peer_state_name AS current_state
, peer_target_state_name AS target_state
, interface_connstr AS

dsn

FROM

bdr.node_summary
WHERE node_group_name = 'mygroup';

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 89

EDB Postgres Distributed (PGD)

7.5 Removing nodes and groups

Removing a node from a PGD group

Since PGD is designed to recover from extended node outages, you must explicitly tell the system if you're removing a node permanently. If you permanently shut down a node and don't tell the other nodes, then performance suffers and
eventually the whole system stops working.

Node removal, also called parting, is done using the bdr.part_node() function.You must specify the node name (as passed during node creation) to remove a node. You can call the bdr.part_node () function from any active node in
the PGD group, including the node that you're removing.

Just like the join procedure, parting is done using Raft consensus and requires a majority of nodes to be online to work.

The parting process affects all nodes. The Raft leader manages a vote between nodes to see which node has the most recent data from the parting node. Then all remaining nodes make a secondary, temporary connection to the most recent
node to allow them to catch up any missing data.

A parted node still is known to PGD but doesn't consume resources. A node might be added again under the same name as a parted node. In rare cases, you might want to clear all metadata of a parted node by using the function
bdr.drop_node() .

Removing a whole PGD group

PGD groups usually map to locations. When a location is no longer being deployed, it's likely that the PGD group for the location also needs to be removed.

The PGD group that's being removed must be empty. Before you can remove the group, you must part all the nodes in the group.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 90

EDB Postgres Distributed (PGD)

7.6 Connection DSNs and SSL (TLS)

Because nodes connect using 1ibpq , the DSN of a nodeisa 1ibpq connection string. As such, the connection string can contain any permitted 1ibpq connection parameter, including those for SSL. The DSN must work as the
connection string from the client connecting to the node in which it's specified. An example of such a set of parameters using a client certificate is:

sslmode=verify-full sslcert=bdr_client.crt
sslkey=bdr_client.key
sslrootcert=root.crt

With this setup, the files bdr_client.crt, bdr_client.key,and root.crt mustbe presentin the data directory on each node, with the appropriate permissions. For verify-full mode, the server's SSL certificate is checked to
ensure that it's directly or indirectly signed with the root.crt certificate authority and that the host name or address used in the connection matches the contents of the certificate. In the case of a name, this can match a subject's
alternative name or, if there are no such names in the certificate, the subject's common name (CN) field. Postgres doesn't currently support subject alternative names for IP addresses, so if the connection is made by address rather than name,
it must match the CN field.

The CN of the client certificate must be the name of the user making the PGD connection, which is usually the user postgres. Each node requires matching lines permitting the connection in the pg_hba. conf file. For example:

hostssl all postgres 10.1.2.3/24
cert

hostssl replication postgres 10.1.2.3/24
cert

Another setup might be to use SCRAM-SHA-256 passwords instead of client certificates and not verify the server identity as long as the certificate is properly signed. Here the DSN parameters might be:
sslmode=verify-ca sslrootcert=root.crt

The corresponding pg_hba.conf lines are:

hostssl all postgres 10.1.2.3/24 scram-sha-
256
hostssl replication postgres 10.1.2.3/24 scram-sha-
256

In such a scenario, the postgres user needsa .pgpass file containing the correct password.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 91

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNECT-SSLMODE
https://www.postgresql.org/docs/current/libpq-pgpass.html

EDB Postgres Distributed (PGD)

7.7 Node restart and down node recovery

PGD is designed to recover from node restart or node disconnection. The disconnected node rejoins the group by reconnecting to each peer node and then replicating any missing data from that node.

When a node starts up, each connection begins showing upin bdr.node_slots with bdr.node_slots.state = catchup and begins replicating missing data. Catching up continues for a period of time that depends on the amount
of missing data from each peer node and will likely increase over time, depending on the server workload.

If the amount of write activity on each node isn't uniform, the catchup period from nodes with more data can take significantly longer than other nodes. Eventually, the slot state changes to bdr.node_slots.state = streaming.
Nodes that are offline for longer periods, such as hours or days, can begin to cause resource issues for various reasons. Don't plan on extended outages without understanding the following issues.

Each node retains change information (using one replication slot for each peer node) so it can later replay changes to a temporarily unreachable node. If a peer node remains offline indefinitely, this accumulated change information eventually
causes the node to run out of storage space for PostgreSQL transaction logs (WAL in pg_wal), and likely causes the database server to shut down with an error similar to this:

PANIC: could not write to file "pg_wal/xlogtemp.559": No space left on device

Or, it might report other out-of-disk related symptoms.
In addition, slots for offline nodes also hold back the catalog xmin, preventing vacuuming of catalog tables.
On EDB Postgres Extended Server and EDB Postgres Advanced Server, offline nodes also hold back freezing of data to prevent losing conflict-resolution data (seeOrigin conflict detection).

Administrators must monitor for node outages (see Monitoring) and make sure nodes have enough free disk space. If the workload is predictable, you might be able to calculate how much space is used over time, allowing a prediction of the
maximum time a node can be down before critical issues arise.

Don't manually remove replication slots created by PGD. If you do, the cluster becomes damaged and the node that was using the slot must be parted from the cluster, as described iReplication slots created by PGD.
While a node is offline, the other nodes might not yet have received the same set of data from the offline node, so this might appear as a slight divergence across nodes. The parting process corrects this imbalance across nodes.

During a phase of parting called part catchup, a node is selected that is furthest ahead from all other nodes with respect to the offline node. If other nodes are not equally caught up with respect to this furthest node, a sync is started with the
furthest-ahead node as source, offline node as origin and each of the nodes that are not equally caught up as targets. A sync is essentially a subscription on the target node to the source node (furthest ahead node), which forwards changes
from the offline node (origin) to the target node.

Depending on how far behind other nodes are, this sync may take some time during parting. Once the sync is complete and all nodes equally caught up, parting moves on to part the node. Without this sync, if a forced part is done, the state of
the cluster may not be consistent. This means data can diverge. The automatic sync feature ensures that when a node goes offline, this is detected and all nodes are equally caught up with respect to this offline node by a sync process. This
ensures that we do not have to wait until node parting to ensure data consistency.

When a node is down for an extended period or lost permanently, the recommended strategy is to part the failing node and rejoin a new one in its place. The new node can use the same name as the original.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 92

https://www.postgresql.org/docs/current/logicaldecoding-explanation.html
https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts
https://www.enterprisedb.com/docs/pgd/latest/reference/monitoring/

EDB Postgres Distributed (PGD)

7.8 Automatic synchronization

Auto-triggering the Sync
The BDR manager process does the auto-triggering of sync requests. When there are no updates from a node for an interval of time greater than 3 times bdr.replay_progress_frequency, itis considered to be down.

Nodes are checked for their closeness to each other. If all nodes are equally caught up, no sync is needed. If not, the node that is furthest ahead from the "down" node is chosen as a source. Once a source is determined, for each target - nodes
other than the origin and source - a sync request is set up. Witness and standby nodes do not need to be targets in the sync.

Theview bdr.sync_node_requests_summary tracks the sync requests.

® Origin :origin node is the down node.

e Source :source node is the node furthest ahead from origin.

e Target :each of the other nodes that’s behind the source with respect to the origin.

® Sync_start_lsn:Highest LSN received by the target from origin when sync started.
e Sync_end_lsn : Target LSN of the target node from the origin when the sync ended.
e Sync_status :status of the sync.

e Sync_start_ts : Time when sync started.

Once a sync request is entered in the catalog, it is carried forward to completion.

Cancellation

If the source node chosen is found to be down, the manager will cancel the sync operation. This is because some other node can be up which if not furthest, is at least further ahead than some targets. And it may be used to sync the nodes.
Therefore the manager will cancel all sync operations which have the down node as source, and will choose another node that is not down as the source for sync. The state machine is described below for a successful sync as well as a
cancelled sync.

The sync cancellation API, bdr.sync_node_cancel() is meantonly to be used manually and only if the sync request gets stuck for any reason and is blocking normal functioning of the cluster.
select bdr.sync_node_cancel(origin, source)

This cancels all sync node requests for all targets that have the given origin and source. This can be invoked only from a write lead.

Sync Request Life Cycle

Asingle sync request has an origin, source, target and a sync_end_lsn to reach. The sync request goes through various states and each state executes on a different node.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 93

EDB Postgres Distributed (PGD)

The states are as follows:

setup: Executes on the write lead. It sets up the fields of the sync, except sync_end_Tsn .

setup_source: Executes on the source. It populates sync_end_1sn and creates a slot for the sync subscription.

setup_target: This executes on the target node. In this state, the original subscription to the origin is disabled. A sync subscription is set up on the target which forwards the origin’s changes from the source node to the target.
start: This executes on the target. It monitors the progress of the target to see if sync_end_1sn is reached and if reached moves to synced state.

synced: subscription has synced to sync_end_1sn . In this state the slot is dropped.

complete: This state executes on the target. In this state, sync subscription is dropped on the target and original subscription is enabled. It then moves to to done state.

done: This means sync is successful.

cancel start: This executes on the target node. In this state, the sync subscription is disabled, in preparation for a drop later, and the original subscription to the origin is re-enabled.
cancel continue: This executes on the target node. In this state, the sync subscription is dropped.

cancel done: This executes on the source node. In this state, the slot is dropped.

failed: A sync ends-up in this state if a cancellation happens and all cleanup is done. This means the sync could not happen and needs to be retried.

A cancellation of sync can also happen automatically if the chosen source node is found to be down. During cancellation the subscription and slot needs to be cleaned up, and the original subscription enabled. A sync request can be stalled if
the source or target nodes are down.

GUC

The GUC that controls automatic syncis bdr.enable_auto_sync_reconcile anditis set to true by default. To turn it off, it needs to be set to false on all nodes and the server restarted.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 9%

EDB Postgres Distributed (PGD)

7.9 Node UUIDs

In PGD 6, each node now has a UUID that is used to identify the node in the cluster. This UUID is generated when the node is created and is unique to that node. The UUID can be found in various places in PGD, including:

® The bdr.node table, which contains information about each node in the cluster.

® The bdr.node_summary view, which provides a human-readable view of the nodes in the cluster.
e The bdr.local_node table, which contains information about the local node.

® The uuid values also appear in the naming of the replication slots that are created for each node.

Although used throughour PGD's node management, the use of UUIDs doesn't affect any existing functionality or features in PGD. The UUIDs are used internally to identify nodes and groups and don't change the way that users interact with
PGD.

Why UUIDs?
UUIDs are used in PGD to provide a unique identifier for each node in the cluster. Previous versions of PGD used the node name as an identifier, which could lead to conflicts if two nodes had the same name. By using UUIDs, PGD can ensure

that each node has a unique identifier that will not change over time. This is especially important in a distributed system like PGD where nodes may be added or removed from the cluster frequently. The UUID ensures that although a new node
may have the same name as an existing node, it has a different UUID and doesn't conflict with the existing node.

How are UUIDs generated?

When a new node is created, a UUID is generated for that node. This UUID is created using the kernel's strong random number generator and guaranteed to be uniformly random. This guarantee ensures that the UUID is unique and can't be
easily guessed. The generated UUID is then stored in the bdr.node table and is used to identify the node in the cluster.

What t ifanodeis d and a repl added?

If a node is removed from the cluster and a replacement node is added, the replacement node is assigned a new UUID. This ensures that the replacement node is treated as a separate entity in the cluster and doesn't conflict with the existing
nodes. But PGD requires that the old node be fully parted from the cluster before it accepts the new node. The UUID of the replacement node is then used in the same way as the UUIDs of the other nodes in the cluster.

UUID-related changes in PGD 6

e The generation fieldinthe bdr.node table, which was previously used to differentiate between nodes, is no longer used. It remains at 0 for all nodes.
e The node_uuid fieldinthe bdr.node table is never nullin PGD 6. It may be null in the future with a mixed version cluster.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 95

EDB Postgres Distributed (PGD)

7.10 Replication slots created by PGD

In previous versions of PGD, replication slots had human-readable names. PGD 6 has switched over to using UUIDs for nodes and groups to ensure better identification.

Replication slots are used by PostgreSQL to track the progress of replication. They're used to ensure that the data being replicated isn't lost and that the replication process is consistent. In PGD, replication slots are used to track the progress
of replication from that node. There is one slot per downstream node. There's also a special replication slot used for tracking replication progress from a given node globally across all downstream nodes:

® One group slot, named bdr_<topgroupuuid>_<dbhash>

® N-1node slots named bdr_node_<targetnodeuuid>_<dbhash>, where N is the total number of nodes in the cluster, including direct logical standbys, if any
Where topgroupuuid is the string representation of the top level-group's UUID (less the — characters) and dbhash is a hash of the database name. You can obtain the UUID of the top-level group using:

select node_group_uuid from bdr.node_group where
node_group_parent_id=0;

And dbhash is a hash of the database name. You can obtain the hash using:

select
to_hex (hashtext('pgddb'));

And the targetnodeuusid is the string representation of the target node's UUID (less the — characters). You can obtain the UUID of the target node using:

select node_uuid from bdr.node where
node_name="'<target_node_name>"';

The complete group slot name is returned by the function bdr.local_group_slot_name() .
Warning
Don't drop those slots. PGD creates and manages them and drops them when or if necessary.

® Avoid touching slots prefixed with bdr_ slots directly.
e Don't start slot names with the prefix bdr_ .

Group slot
The group slot is used to track the progress of replication of the nodes in a PGD cluster that are replicating from the node. Each node in a PGD cluster has its own group slot, which is used to track the progress of replication from that node.

The group slot is used to:

® Join new nodes to the PGD group without having all existing nodes up and running (although the majority of nodes should be up). This process doesn't incur data loss in case the node that was down during join starts replicating again.
e Part nodes from the cluster consistently, even if some nodes haven't caught up fully with the parted node.
e Hold back the freeze point to avoid missing some conflicts.

The group slot is usually inactive and is fast forwarded only periodically in response to Raft progress messages from other nodes.

Warning

Don't drop the group slot. Although usually inactive, it's still vital to the proper operation of the EDB Postgres Distributed cluster. If you drop it, then some or all of PGD's features can stop working or have incorrect outcomes.

Other slot names

Other functionality within PGD makes use of replication slots.

For example, when a node is added to a group, a slot is created for that node to track its progress in the replication process.
This slot is named bdr_node_<targetnodeuuid>_<dbhash>_tmp .

There are also slots created for the analytics and decoding features of PGD. These slots have the following names.

Slot type Slot name

Forwarding slot, leader-to-leader slot bdr_node_<targetnodeuuid>_<originidhex>_<dbhash>

Analytics slot bdr_analytics_<groupuuid>_<dbhash>

Decoding slot bdr_decoder_<topgroupuuid>_<dbhash>

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 96

EDB Postgres Distributed (PGD)

8 Connection Manager

PGD 6.0 introduces a new Connection Manager which replaces the PGD 5's proxy solution with a tightly integrated approach using a background worker to expose read-write, read-only and http-status network interfaces in PGD.

Overview covers the new features and benefits of the Connection Manager.
Authentication covers how authentication works with the Connection Manager.
Configuration details the configuration options available and how to set them.
Load Balancing how to use load balancing with the Connection Manager.
Monitoring covers the tables and HTTP endpoints available for monitoring.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 97

EDB Postgres Distributed (PGD)

8.1 Connection Manager overview

About Connection Manager

Connection Manager is a new background worker for EDB Postgres Distributed (PGD) 6.0 that simplifies the process of connection to PGD clusters by providing a single point of entry for client applications. It replaces the PGD 5.x proxy
solution with a tightly integrated approach that exposes read-write, read-only, and HTTP status network interfaces in PGD.

Connection Manager is fully integrated into PGD and is designed to work seamlessly with the existing PGD architecture. Every PGD data node has a Connection Manager instance that listens for incoming connections and routes them to the
appropriate node in the cluster, specifically the current write leader in the cluster. It also provides a read-only interface for applications that only need to read data from the cluster.

Using Connection Manager

Connection Manager follows the Postgres server's configuration by default. There are three ports, the read-write port, the read-only port, and the HTTP port. The read-write port is used for write operations, while the read-only port is used for
read operations. The HTTP port is used for monitoring and management purposes.

The read-write port is, by default, set to the Postgres port + 1000 (usually 6432). The read-only port is set to the Postgres port + 1001 (usually 6433). The HTTP port is set to the Postgres port + 1002 (usually 6434).

To use Connection Manager, you need to configure your client applications to connect to the read-write or read-only port of the Connection Manager instance running on the data node. The Connection Manager will then route the connection
to the appropriate node in the cluster.

Note that the Connection Manager is not a replacement for a load balancer. It is designed to work in conjunction with a load balancer to provide a complete solution for managing connections to PGD clusters. The Connection Manager
provides a simple and efficient way to manage connections to PGD clusters, while the load balancer provides additional features such as load balancing and failover. See Load Balancing for more information.

Read-Only connections

Connecting a client to the read-only port provided by connection manager restricts that connection to read-only operations in a similar way to using SET TRANSACTION READ ONLY would, except that it's not possible to change it to read-
write. The transaction_read_only GUC correctly reports on in these connections.

TLS and Authentication

The Connection Manager performs TLS termination and pre-authentication. The configuration for these is taken directly from Postgres - pg_hba.conf and server key configuration are used transparently. Seeauthentication for more
information.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 98

https://www.postgresql.org/docs/current/sql-set-transaction.html
https://www.postgresql.org/docs/17/runtime-config-client.html#GUC-TRANSACTION-READ-ONLY

EDB Postgres Distributed (PGD)

8.2 Connection Manager Authentication

Connection Manager's authentication is configured through Postgres's own pg_hba.conf file. Connection Manager uses the same authentication methods as Postgres.

Connection Manager connection types

Connection Manager supports the following connection types in pg_hba.conf :

e host -TCP/IP connections
® hostss’l -TCP/IP connections with SSL
e hostnossl -TCP/IP connections without SSL

Connection Manager authentication methods

Connection Manager supports the following authentication methods in pg_hba.conf :

e trust - Noauthentication

e reject -Reject the connection

e md5 - MD5 password authentication

e scram-sha-256 - SCRAM-SHA-256 password authentication
e cert -SSL certificate authentication

e ldap - Authenticate using an LDAP server

Note

Connection Manager needs to be able to authenticate to the PGD nodes as the client user. Configure the pg_hba. conf file on each PGD node to accept connections originating from other PGD nodes for replication and internal
communications.

When using a certificate authentication method, the Connection Manager presents its server key. You must configure the PGD node to accept this certificate from the Connection Manager address.

Connection Manager authentication options

Connection Manager also supports regular expression matching for the user and database fieldsin pg_hba.conf . This allows you to specify a pattern for matching user and database names, making it easier to manage authentication

for multiple users and databases.

Group membership checks are also supported. This allows you to specify a group of users that can connect to the database, rather than specifying each user individually.

Unsupported pg_hba.conf rules

Where a rule is not supported by Connection Manager, it will be logged as a warning and ignored.

LDAP authentication notes and constraints
Connection Manager supports the same LDAP authentication features as PostgreSQL, with the following key constraints:

e Connection Manager does not use the OpenLDAP library for communication with the LDAP server. As a result, standard OpenLDAP configuration files (such as ldap.conf or .ldaprc)and environment variables are ignored.
e Connection Manager validates LDAP server certificates by default when using LDAPS or LDAP StartTLS. The necessary CA certificate for the LDAP server's SSL certificate must be in the system trust-store.
e Suppress validation of the LDAP server's SSL certificate by setting LDAPTLS_REQCERT=never environment variable. Other values for this variable are ignored.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

99

https://www.postgresql.org/docs/current/auth-pg-hba-conf.html

8.3 Configuring Connection Manager

Configuring Connection Manager
Connection Manager takes its configuration from the PGD Group options for the group the node is a member of.
These can be configured using the pgd group set-option command.

The following options are available for configuring Connection Manager:

Option Default Description

Postgres's port + 1000

d_writ t
read_write_porf (usually 6432)

which port to listen on for read-write connections

read_write_port + 1

d_onl; t
reac_onty_por (usually 6433)

which port to listen on for read-only connections

read_write_port + 2

http_port which http port to listen for REST API calls (for integration purposes)

(usually 6434)
use_https whether http listener should use HTTPS, if enabled, the server certificate is used to TLS
read_write_max_client_connections max_connection maximum read-write client connections allowed, defaults to max_connections
read_write_max_server_connections max_connections maximum read-write connections that will be opened to server
read_only_max_client_connections max_connections maximum read-only client connections allowed
read_only_max_server_connections max_connections maximum read-only connections that will be opened to server
read_write_consensus_timeout 0 (immediate action) how long to wait on loss of consensus before read-write connections are no longer accepted
read_only_consensus_timeout 0 (immediate action) how long to wait on loss of consensus before read-only connections are no longer accepted.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

100

EDB Postgres Distributed (PGD)

8.4 Load Balancing with Connection Manager

You can use an external load balancer to distribute traffic across multiple Connection Manager instances. Treat the Connection Manager ports as you would with any other Postgres port, but use the read-write ports for write traffic and the
read-only ports for read traffic.

Depending on your load balancer, you have a number of options for how to configure it.

Connection Manager routing

If you want the Connection Manager to route traffic to the write leader, connect to the Connection Manager's read-write port. The Connection Manager routes the traffic to the write leader of the node group the node is a member of.

HAProxy example: Connection Manager routing

With HAProxy, you can use a configuration similar to the following example to load balance between three Connection Manager instances, each running on different hosts and ports. Read-write traffic to haproxy port 5010 is directed to
Connection Manager's read-write port (default 6432) on any one of the nodes. Read-only traffic to haproxy port 5011 is directed to Connection Manager's read-only port (default 6433). Port 5011 is used for read-only traffic, which is
distributed across the nodes in a round-robin fashion.

global
maxconn 100

defaults
log global
mode tcp
retries 2

timeout client 306m
timeout connect 4s
timeout server 30m
timeout check 5s

listen stats
mode http
bind 127.0.0.1:7000
stats enable
stats uri /

listen read-write
bind *:5010
option pgsql-check user postgres
default-server dinter 3s fall 3 rise 2 on-marked-down shutdown-sessions
server nodel hostl1:6432 maxconn 100 check port 6432
server node2 host2:6432 maxconn 100 check port 6432
server node3 host3:6432 maxconn 100 check port 6432

listen read-only
balance roundrobin
bind *:5011
option pgsql-check user postgres
default-server inter 3s fall 3 rise 2 on-marked-down shutdown-sessions
server nodel hostl:6433 maxconn 100 check port 6433
server node2 host2:6433 maxconn 100 check port 6433
server node3 host3:6433 maxconn 100 check port 6433

Direct routing

You may want to connect directly to the nodes in your cluster, bypassing Connection Manager. To leverage Connection Manager in this scenario, consult its HTTP endpoints for information about the nodes in your cluster, such as which node is
the write leader. Then connect directly to that node. You can use the /node/is-read-write endpoint to check if a node is the write leader and the /node/is-read-only endpoint to get information about the read-only pool.

The main reason to configure the load balancer like this is if you want a layer 4 tcp proxy that looks more like a traditional Postgres connection, where TLS termination and authentication happen on the server. Connection Manager provides a
layer 7 proxy, which handles TLS termination and authentication at the proxy level, that is, within Connection Manager.

The drawback to this approach is that you won't benefit from Connection Manager's features, especially its ability to enforce read-only connections to the read-only pool. Connections will be directed to the non-write-leader nodes rather than
the write leader.

See Monitoring Connection Manager for more information on the available endpoints.

HAProxy example: Direct routing

This example shows a configuration that uses HAProxy to route traffic directly to the nodes based on their health status. The configuration checks the health of the nodes by querying the /node/is-read-write and /node/is-read-
only endpoints and routes traffic accordingly. As in the previous example, this example routes read-write traffic on port 5010 to the node that's the write leader and read-only traffic on port 5011 to the nodes that are read-only.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 101

https://www.haproxy.org/
https://www.haproxy.org/

EDB Postgres Distributed (PGD)

global
maxconn 100

defaults
log global
mode tcp
retries 2
timeout client 306m
timeout connect 4s
timeout server 30m
timeout check 5s

listen stats
mode http
bind 127.0.0.1:7000
stats enable
stats uri /

listen read-write
bind *:5010
option httpchk GET /node/is-read-write
http-check expect string true
default-server inter 3s fall 3 rise 2 on-marked-down shutdown-sessions
server nodel host1:5432 maxconn 100 check port 6434
server node2 host2:5432 maxconn 100 check port 6434
server node3 host3:5432 maxconn 100 check port 6434

listen read-only
balance roundrobin
bind *:5011
option httpchk GET /node/is-read-only
http-check expect string true
default-server inter 3s fall 3 rise 2 on-marked-down shutdown-sessions
server nodel host1:5432 maxconn 100 check port 6434
server node2 host2:5432 maxconn 100 check port 6434
server node3 host3:5432 maxconn 100 check port 6434

This configuration checks the health of the nodes by querying the /node/is-read-write and /node/is-read-only endpoints. It routes traffic only to nodes that are healthy and available for read-write or read-only operations,
respectively.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 102

EDB Postgres Distributed (PGD)

8.5 Monitoring the Connection Manager

You can view the status of the Connection Manager and its connections through SQL queries and HTTP endpoints.

Available SQL tables and views
The Connection Manager provides a number of tables and views that can be used to monitor the status of the Connection Manager and its connections. These include:

e bdr.stat_activity — whichisinformationfrom pg_stat_activity enhanced with addition columns regarding the connection_manager_client_addr and connection_manager_client_port isthe
connection has come through the connection manager, and session_read_only ifit has connected through the read-only port.
bdr.stat_connection_manager — whichis aview that provides statistics about the Connection Manager's status.

bdr.stat_connection_manager_connections — which isaview that provides statistics about the Connection Manager's connections.

bdr.stat_connection_manager_node_stats — which isaview that provides statistics about the Connection Manager on each of the data nodes.
bdr.stat_connection_manager_hba_file_rules — whichis aview that shows which HBA file rules for the connection manager are being used on this node.

Available HTTP/HTTPS endpoints
The Connection Manager can be monitored through the HTTP API.
Endpoints returning true/false will also return a 200 status code for true and a 503 status code for false.

The following endpoints are available:

Endpoint Description
/connection/is-live Is the connection manager live (listening), always returns “true”, if the manager is not running, the client will simply fail to open the connection/url

/connection/is-

ready Is the connection manager is ready, returns true(200)/false(503)

/nf):ﬂe/ls-read- Is this PGD node, not the connection manager but the PGD node itself, a read-write node (is it write leader), returns true(200)/false(503)
write
/node/is-read-only Is this PGD node, not the connection manager but the PGD node itself, a read-only node (not the write leader), returns true(200)/false(503)node

/group/read-write- Returns information about the read-write pool on this instance of connection manager - a list of nodes in the pool in JSON format with node id, node name, node host, node port and node dbname. For the read-write
info pool, the pool only contains one entry.

/group/read-only-

info Returns information about the read-only pool on this instance of connection manager - a list of nodes in the pool in JSON format with node id, node name, node host, node port and node dbname.

Below is an example of a response body from the /group/read-write-info endpoint:

[
{
"id": 683485707,
"name": "node-1",
"host": "host-1",
"port": 5432,
"dbname": "pgddb"
}
]
Logging

All Connection Manager log messages are written to the PostgreSQL log.
The behavior of %r and %h escape sequences in log_line_prefix has been altered to log "proxy_address/client_address" and "proxy_port/client_port" respectively.

This is achieved by the proxy setting a GUC for the server connections it uses. As users can override this GUC, any security context derived from the client_address will need to be verified by referring to the full session logs.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 103

EDB Postgres Distributed (PGD)

9 Postgres configuration

Several Postgres configuration parameters affect PGD nodes. You can set these parameters differently on each node, although we don't generally recommend it.

For PGD's own settings, see the PGD settings reference.

Postgres settings
To run correctly, PGD requires these Postgres settings:
e wal_level — Mustbesetto logical,since PGD relies on logical decoding.
e shared_preload_libraries — Mustinclude bdr toenable the extension. Most other extensions can appear before or after the bdr entry in the comma-separated list. One exception to thatis pgaudit , which must appear

in the list before bdr . Also, don'tinclude pglogical in this list.
e track_commit_timestamp — Mustbesetto on for conflict resolution to retrieve the timestamp for each conflicting row.

PGD requires these PostgreSQL settings to be set to appropriate values, which vary according to the size and scale of the cluster:

e Tlogical_decoding_work_mem — Memory buffer size used by logical decoding. Transactions larger than this size overflow the buffer and are stored temporarily on local disk. Default is 64MB, but you can set it much higher.
max_worker_processes — PGD uses background workers for replication and maintenance tasks, so you need enough worker slots for it to work correctly. The formula for the correct minimal number of workers for each database

is to add together these values:

One per PostgreSQL instance

One per database on that instance

Four per PGD-enabled database

One per peer node in the PGD group

The number of peer nodes times the (number of writers (bdr.num_writers) plus one) You might need more worker processes temporarily when a node is being removed from a PGD group.

o 0 0 0 o0

max_wal_senders — Two needed for every peer node.

max_replication_slots — Two needed for every peer node.

max_active_replication_origins — Three needed for every peer node. Available for PostgreSQL 18 and later.

wal_sender_timeout and wal_receiver_timeout — The default of one minute is usually sufficient, but large transactions may require longer than this amount of time to process. Since the WAL sender must process the full
size of the transaction before transmitting it to a waiting replication connection, Postgres can see that as a timeout. If the problem is actually due to a large transaction, raising wal_sender_timeout to a higher value, like 3600s or
higher, and reloading the server could solve the problem. Additionally, this setting determines how quickly a node considers its CAMO partner as disconnected or reconnected. See CAMO failure scenarios for details.

In normal running for a group with N peer nodes, PGD requires N slots and WAL senders. During synchronization, PGD temporarily uses another N-1 slots and WAL senders, so be careful to set the parameters high enough for this occasional
peak demand.

With Parallel Apply turned on, the number of slots must be increased to N slots from the formula * writers. This is because max_replication_slots also sets the maximum number of replication origins, and some of the functionality of
Parallel Apply uses an extra origin per writer.

When the decoding worker is enabled, this process requires one extra replication slot per PGD group.
Changing the max_worker_processes, max_wal_senders ,and max_replication_slots parameters requires restarting the local node.
A legacy synchronous replication mode is supported using the following parameters. See Commit scopes for details and limitations.

e synchronous_commit and synchronous_standby_names — Affects the durability and performance of PGD replication. in a similar way tophysical replication.

Max prepared transactions

max_prepared_transactions

Needs to be set high enough to cope with the maximum number of concurrent prepared transactions across the cluster due to explicit two-phase commits, CAMO, or Eager transactions. Exceeding the limit prevents a node from running a local
two-phase commit or CAMO transaction and prevents all Eager transactions on the cluster. This parameter can be set only at Postgres server start.

Considerations for global configuration

While certain PostgreSQL configuration parameters are useful for standalone instances, they can negatively impact PGD cluster stability, background workers, and replication processes.
The following parameters should not be enabled globally in postgresql.conf , nor should they be included as options in PGD node data source names (DSNs):

e idle_session_timeout
e transaction_timeout

Set these parameters on a per-session basis instead to make sure that they do not interfere with system-level operations.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 104

https://www.postgresql.org/docs/11/runtime-config-wal.html#GUC-SYNCHRONOUS-COMMIT

10 Backup and recovery

PGD is designed to be a distributed, highly available system. If one or more nodes of a cluster are lost, the best way to replace them is to clone new nodes directly from the remaining nodes.

The role of backup and recovery in PGD is to provide for disaster recovery (DR), such as in the following situations:

® Loss of all nodes in the cluster
e Significant, uncorrectable data corruption across multiple nodes as a result of data corruption, application error, or security breach

Logical backup and restore

You can use pg_dump, sometimes referred to as logical backup, normally with PGD.

Temporary postgresql.conf settings

First, temporarily set the following settings in postgresql.conf :

Increase from the default of "1GB' to something large, but still a
fraction of your disk space since the non-WAL data must also fit.
This decreases the frequency of checkpoints.

max_wal_size = 100GB

Increase the amount of memory for building indexes. Default is
64MB. For example, 1GB assuming 128GB total RAM.
maintenance_work_mem = 1GB

Increase the receiver and sender timeout from 1 minute to 1lhr to
allow large transactions through.

wal_receiver_timeout = 1lh

wal_sender_timeout = 1h

Increase the number of writers to make better use of parallel

apply. Default is 2. Make sure this isn't overriden lower by the
node group config num_writers setting.
bdr.writers_per_subscription = 5

Increase Raft-related election timeouts with default values of 6s

and 3s.

bdr.raft_global_election_timeout = 20s
bdr.raft_group_election_timeout = 10s

Increase the size of the shared memory queue used by the receiver to

send data to the writer process from the default 1MB.
bdr.writer_input_queue_size = 32MB

Additionally:

® Make sure the default bdr.streaming_mode = ‘auto’ is not overridden so that transactions are streamed.
® Make sure any session or postgresql.conf settings listed above are not overriden by node group-level settings in general.

Now continue with pg_dump and pg_restore.

pg_dump / pg_restore

In order to reduce the risk of global lock timeouts, we recommend dumping pre-data, data, and post-data separately. For example:

pg_dump -h $PG_HOST -p $PG_PORT -U $PG_USER -d $PGD_DB -v --exclude-schema='"bdr"' --exclude-extension='"bdr"' --section=pre-data -Fc -f pgd-pre-data.dump
pg_dump —h $PG_HOST -p $PG_PORT -U $PG_USER -d $PGD_DB -v --exclude-schema='"bdr"' --exclude-extension=
pg_dump -h $PG_HOST -p $PG_PORT -U $PG_USER -d $PGD_DB -v --exclude-schema='"bdr"' --exclude-extension='"bdr"' --section=post-data -Fc -f pgd-post-data.dump

And restore by directly executing these SQL files on a node (do not run these on the connection manager port):

PGOPTIONS="-cbdr.commit_scope=local" pg_restore -h $PG_HOST -p $PG_PORT -U $PG_USER -d $PGD_DB --section=pre-data -f pgd-pre-data.dump
-cbdr.commit_scope=local" pg_restore -h $PG_HOST -p $PG_PORT -U $PG_USER -d $PGD_DB --section=data -f pgd-data.dump

psql -h $PG_HOST -p $PG_PORT -U $PG_USER -d $PGD_DB -c 'SELECT bdr.wait_slot_confirm_lsn(NULL, NULL)"'
PGOPTIONS="-cbhdr.commit_scope=local" pg_restore -h $PG_HOST -p $PG_PORT -U $PG_USER -d $PGD_DB --section=post-data -f pgd-post-data.dump
psql -h $PG_HOST -p $PG_PORT -U $PG_USER -d $PGD_DB -c 'SELECT bdr.wait_slot_confirm_lsn(NULL, NULL)"'

PGOPTIONS=

After which point the dump will be restored on all nodes in the cluster.

In contrast if you do not split sections out with a naive pg_dump and pg_restore, the restore will likely fail with a global lock timeout.

If you still get global lock timeouts with pg_restore, add -cbdr.dd1_locking=off to PGOPTIONS .

If you choose to run pg_restore with —j / ——jobs you will need to increase max_worker_processes and max_parallel_maintenance_workers by the same amount.

Prefer restoring to a single node cluster

"bdr"' --section=data -Fc -f pgd-data.dump

EDB Postgres Distributed (PGD)

Especially when initially setting up a cluster from a Postgres dump, we recommend you restore to a cluster with a single PGD node. Thenrun pgd node setup for each node you want in the cluster which will do a physical join that uses

bdr_init_physical underthe hood.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

105

EDB Postgres Distributed (PGD)

Sequences

pg_dump dumps both local and global sequences as if they were local sequences. This behavior is intentional, to allow a PGD schema to be dumped and ported to other PostgreSQL databases. This means that sequence-kind metadata is lost at
the time of dump, so a restore effectively resets all sequence kinds to the value of bdr.default_sequence_kind at time of restore.

To create a post-restore script to reset the precise sequence kind for each sequence, you might want to use a SQL script like this:

SELECT 'SELECT bdr.alter_sequence_set_kind(''"||
nspname||'."||relname||"'"","""||segkind||'"");"

FROM bdr.sequences

WHERE segkind != 'local';

If you run pg_dump using bdr.crdt_raw_value = on,then you can reload the dump only with bdr.crdt_raw_value = on.

Technical Support recommends the use of physical backup techniques for backup and recovery of PGD.

Physical backup and restore
You can take physical backups of a node in an EDB Postgres Distributed cluster using standard PostgreSQL software, such asBarman.
You can perform a physical backup of a PGD node using the same procedure that applies to any PostgreSQL node. A PGD node is just a PostgreSQL node running the BDR extension.
Consider these specific points when applying PostgreSQL backup techniques to PGD:
e PGD operates at the level of a single database, while a physical backup includes all the databases in the instance. Plan your databases to allow them to be easily backed up and restored.

e Backups make a copy of just one node. In the simplest case, every node has a copy of all data, so you need to back up only one node to capture all data. However, the goal of PGD isn't met if the site containing that single copy goes
down, so the minimum is at least one node backup per site (with many copies, and so on).

e However, each node might have unreplicated local data, or the definition of replication sets might be complex so that all nodes don't subscribe to all replication sets. In these cases, backup planning must also include plans for how to

back up any unreplicated local data and a backup of at least one node that subscribes to each replication set.

Restore

While you can take a physical backup with the same procedure as a standard PostgreSQL node, it's slightly more complex to restore the physical backup of a PGD node.

EDB Postgres Distributed cluster failure or seeding a new cluster from a backup

The most common use case for restoring a physical backup involves the failure or replacement of all the PGD nodes in a cluster, for instance in the event of a data center failure.
You might also want to perform this procedure to clone the current contents of a EDB Postgres Distributed cluster to seed a QA or development instance.

In that case, you can restore PGD capabilities based on a physical backup of a single PGD node, optionally plus WAL archives:

If you still have some PGD nodes live and running, fence off the host you restored the PGD node to, so it can't connect to any surviving PGD nodes. This practice ensures that the new node doesn't confuse the existing cluster.
Restore a single PostgreSQL node from a physical backup of one of the PGD nodes.

If you have WAL archives associated with the backup, create a suitable postgresql.conf , and start PostgreSQL in recovery to replay up to the latest state. You can specify an alternative recovery_target here if needed.
Start the restored node, or promote it to read/write if it was in standby recovery. Keep it fenced from any surviving nodes!

Clean up any leftover PGD metadata that was included in the physical backup.

Fully stop and restart the PostgreSQL instance.

Add further PGD nodes with the standard procedure based on the bdr.join_node_group() function call.

Cleanup of PGD metadata

To clean up leftover PGD metadata:

1. Drop the PGD node using bdr.drop_node .
2. Fully stop and restart PostgreSQL (important!).

Cleanup of replication origins

You must explicitly remove replication origins with a separate step because they're recorded persistently in a system catalog. They're therefore included in the backup and in the restored instance. They aren't removed automatically when
dropping the BDR extension because they aren't explicitly recorded as its dependencies.

To track progress of incoming replication in a crash-safe way, PGD creates one replication origin for each remote master node. Therefore, for each node in the previous cluster run this once:
SELECT pg_replication_origin_drop('bdr_dbname_grpname_nodename');

You can list replication origins as follows:

SELECT * FROM pg_replication_origin;

Those created by PGD are easily recognized by their name.

Cleanup of replication slots
If a physical backup was created with pg_basebackup , replication slots are omitted from the backup.

Some other backup methods might preserve replications slots, likely in outdated or invalid states. Once you restore the backup, use these commands to drop all replication slots:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 106

https://www.enterprisedb.com/docs/supported-open-source/barman/

EDB Postgres Distributed (PGD)

SELECT pg_drop_replication_slot(slot_name)
FROM pg_replication_slots;

If you have a reason to preserve some slots, you can add a WHERE slot_name LIKE 'bdr%' clause, but thisis rarely useful.

Warning

Never use these commands to drop replication slots on a live PGD node

Eventual consistency
The nodes in an EDB Postgres Distributed cluster are eventually consistentbut not entirely consistent. A physical backup of a given node provides point-in-time recovery capabilities limited to the states actually assumed by that node.
The following example shows how two nodes in the same EDB Postgres Distributed cluster might not (and usually don't) go through the same sequence of states.

Consider a cluster with two nodes, N1 and N2, that'sinitially in state S . If transaction W1 is applied to node N1 ,and at the same time a non-conflicting transaction W2 is applied to node N2 ,then node N1 goes through the following
states:

(NI) S -=> S+ WL --> S + WL + W2
Node N2 goes through the following states:
(N2) S —-=> S+ W2 --> S + WL + W2

Thatis, node N1 neverassumesstate S + W2 ,and node N2 likewise never assumes state S + W1 .However, both nodes end up in the same state S + W1 + W2 . Considering this situation might affect how you decide on your backup
strategy.

Point-in-time recovery (PITR)

The previous example showed that the changes are also inconsistent in time. W1 and W2 both occurattime T1, but the change W1 isn'tappliedto N2 until T2 .

PostgreSQL PITR is designed around the assumption of changes arriving from a single master in COMMIT order. Thus, PITR is possible by scanning through changes until one particular point in time (PIT) is reached. With this scheme, you can
restore one node to a single PIT from its viewpoint, for example, T1 .However, that state doesn't include other data from other nodes that committed near that time but had not yet arrived on the node. As a result, the recovery might be
considered to be partially inconsistent, or at least consistent for only one replication origin.

With PostgreSQL PITR, you can use the standard syntax:
recovery_target_time = T1
PGD allows for changes from multiple masters, all recorded in the WAL log for one node, separately identified using replication origin identifiers.
PGD allows PITR of all or some replication origins to a specific point in time, providing a fully consistent viewpoint across all subsets of nodes.
Thus for multi-origins, you can view the WAL stream as containing multiple streams all mixed up into one larger stream. There's still just one PIT, but that's reached as different points for each origin separately.
The WAL stream is read until requested origins have found their PIT. All changes are applied up until that point, except that any transaction records aren't marked as committed for an origin after the PIT on that origin is reached.
You end up with one LSN "stopping point" in WAL, but you also have one single timestamp applied consistently, just as you do with single-origin PITR.
Once you reach the defined PIT, a later one might also be set to allow the recovery to continue, as needed.

After the desired stopping point is reached, if the recovered server will be promoted, shut it down first. Move the LSN forward to an LSN value higher than used on any timeline on this server using pg_resetwa' . This approach ensures that
there are no duplicate LSNs produced by logical decoding.

In the specific example shown, N1 isrestoredto T1 .Italsoincludes changes from other nodes that were committed by T1 , even though they weren't applied on N1 until later.

To request multi-origin PITR, use the standard syntax in the postgresql.conf file:

recovery_target_time = T1
You need to specify the list of replication origins that are restored to T1 in one of two ways. You can use a separate multi_recovery.conf file by way of a new parameter, recovery_target_origins:
recovery_target_origins = 'x'
Or you can specify the origin subset as a listin recovery_target_origins:

recovery_target_origins = '1,3'

The local WAL activity recovery to the specified recovery_target_time isalways performed implicitly. For origins that aren't specified in recovery_target_origins, recovery can stop at any point, depending on when the target
for the list mentioned in recovery_target_origins isachieved.

In the absence of the multi_recovery.conf file, the recovery defaults to the original PostgreSQL PITR behavior that's designed around the assumption of changes arriving from a single master in COMMIT order.
Note

This feature is available only with EDB Postgres Extended. Barman doesn't create a multi_recovery.conf file.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 107

EDB Postgres Distributed (PGD)

Monitoring

Use the following queries to check on the progress of the restore process.
SELECT pg_size_pretty(pg_database_size('bdrdb'));

The above query shows the database size on the restoring node. The size should grow as the restore makes progress and approaches the size of the original node. However, due to bloat, logical restores are always a little smaller than the
original.

SELECT * FROM bdr.node_replication_rates;
The above query shows the rate of replication. However, the progress info can be misleading for big transactions; lag and progress will appear to stair-step.
SELECT
application_name,
state,
wait_event_type,
wait_event,
now() - state_change AS
state_change_ago
FROM
pg_stat_activity
WHERE

application_name LIKE
'%pg_restore%';

The above query shows information on what pg_restore is doing, if it's blocked/waiting (on what is waiting) or working, and changing its status continuously.
Check the following views to see issues with replication slots, accumulated lag, broken replication, etc.

® pg_catalog.pg_stat_replication_slots
® pg_catalog.pg_replication_slots
e bdr.node_slots

And use bdr.stat_subscription to see statistics for each subscription, for example to check on parallel apply or transaction stream.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 108

EDB Postgres Distributed (PGD)

11 Monitoring

Monitoring replication setups is important to ensure that your system:

e Performs optimally
e Doesn't run out of disk space
e Doesn't encounter other faults that might halt operations

It's important to have automated monitoring in place to ensure that the administrator is alerted and can take proactive action when issues occur. For example, the administrator can be alerted if replication slots start falling badly behind.
EDB provides Postgres Enterprise Manager (PEM), which supports PGD starting with version 8.1. See Monitoring EDB Postgres Distributed for more information.

Alternatively, tools or users can make their own calls into information views and functions provided by the BDR extension. See Monitoring through SQL for details.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 109

https://www.enterprisedb.com/docs/pem/latest/monitoring_BDR_nodes/

EDB Postgres Distributed (PGD)

1114 Monitoring through SQL

EDB Postgres Distributed provides several monitoring and statistics views that are specific to its distributed nature. The standard Postgres monitoring is also useful for monitoring EDB Postgres Distributed.

Monitoring overview
A PGD group consists of multiple servers, often referred to as nodes. Monitor all of the nodes to ensure the health of the whole group.
The bdr_monitor role can execute the bdr.monitor functions to provide an assessment of PGD health using one of three levels:

e 0K — Often shown as green.

® WARNING — Oftenshown as yellow.

e CRITICAL — Oftenshown as red.

® UNKNOWN — For unrecognized situations, often shown as red.

PGD also provides dynamic catalog views that show the instantaneous state of various internal metrics. It also provides metadata catalogs that store the configuration defaults and configuration changes the user requests. Some of those views
and tables are accessible by bdr_monitor or bdr_read_all_stats, but some contain user or internal information that has higher security requirements.

PGD allows you to monitor each of the nodes individually or to monitor the whole group by access to a single node. If you want to monitor each node individually, connect to each node and issue monitoring requests. If you want to monitor the
group from a single node, then use the views starting with bdr.group since these requests make calls to other nodes to assemble a group-level information set.

If you were granted access to the bdr.run_on_all_nodes () function by bdr_superuser, then you can make your own calls to all nodes.

Monitoring node join and removal

By default, the node management functions wait for the join or part operation to complete. You can turn waiting off using the respective wait_for_completion function argument. If waiting is turned off, then to see when a join or part
operation finishes, check the node state indirectly using bdr.node_summary and bdr.event_summary .

When called, the helper function bdr.wait_for_join_completion() causes a PostgreSQL session to pause until all outstanding node join operations area complete.
This example shows the output ofa SELECT query from bdr.node_summary . It indicates that two nodes are active and another one is joining.

SELECT node_name, interface_connstr, peer_state_name,

node_seq_id, node_local_dbname
FROM bdr.node_summary;

~[RECORD 1]

node_name nodel

interface_connstr

|

| host=localhost dbname=postgres port=7432
peer_state_name | ACTIVE

|

I

node_seq_id 1

node_local_dbname postgres

-[RECORD 2]

node_name | node2

interface_connstr | host=localhost dbname=postgres port=7433
peer_state_name | ACTIVE

node_seq_id | 2

node_local_dbname | postgres

-[RECORD 3]

node_name node3

|
interface_connstr | host=localhost dbname=postgres port=7434
peer_state_name | JOINING

node_seq_id | 3

node_local_dbname | postgres

Also, the table bdr.node_catchup_info gives information on the catch-up state, which can be relevant to joining nodes or parting nodes.
When a node is parted, some nodes in the cluster might not receive all the data from that parting node. So parting a node creates a temporary slot from a node that already received that data and can forward it.

The catchup_state can be one of the following:

10 = setup
20 = start
30 = catchup
40 = done

Monitoring the manager worker
The manager worker is responsible for many background tasks, including the managing of all the other workers. As such it is important to know what it's doing, especially in cases where it might seem stuck.

Accordingly, the bdr.stat_worker view provides per worker statistics for PGD workers, including manager workers. With respect to ensuring manager workers do not get stuck, the current task they are executing would be reported in
their query field prefixed by "pgd manager:".

The worker_backend_state field for manager workers also reports whether the manager is idle or busy.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 110

EDB Postgres Distributed (PGD)

Monitoring Routing

Routing is a critical part of PGD for ensuring a seemless application experience and conflict avoidance. Routing changes should happen quickly, including the detections of failures. At the same time we want to have as few disruptions as
possible. We also want to ensure good load balancing for use-cases where it's supported.

Monitoring all of these is important for noticing issues, debugging issues, as well as informing more optimal configurations. Accoringly, there are two main views for monitoring statistics to do with routing:

e bdr.stat_routing_state for monitoring the state of the connection routing with Connection Manager uses to route the connections.
e bdr.stat_routing_candidate_state forinformation about routing candidate nodes from the point of view of the Raft leader (the view is empty on other nodes).

Monitoring Replication Peers
You use two main views for monitoring of replication activity:

e bdr.node_slots for monitoring outgoing replication
e bdr.subscription_summary for monitoring incoming replication

You can also obtain most of the information provided by bdr.node_slots by querying the standard PostgreSQL replication monitoring views pg_catalog.pg_stat_replication and pg_catalog.pg_replication_slots.

Each node has one PGD group slot that must never have a connection to it and is very rarely be marked as active. This is normal and doesn't imply something is down or disconnected. SeeReplication slots in Node Management.

Monitoring outgoing replication

You can use another view for monitoring of outgoing replication activity:
e bdr.node_replication_rates for monitoring outgoing replication

The bdr.node_replication_rates view gives an overall picture of the outgoing replication activity along with the catchup estimates for peer nodes, specifically.

SELECT * FROM bdr.node_replication_rates;
~[RECORD 1 J---—#---==-===—=

peer_node_id | 112898766
target_name | nodel
sent_lsn | ©/28AF99C8
replay_lsn | ©/28AF99C8
replay_lag | 00:00:00
replay_lag_bytes | 0
replay_lag_size | 0 bytes
apply_rate | 822
catchup_interval | 00:00:00
-[RECORD 2 J---—#-——=—-—-———
peer_node_id | 312494765
target_name | node3
sent_1lsn | ©/28AF99C8
replay_1sn | ©/28AF99C8
replay_lag | 00:00:00
replay_lag_bytes | 0
replay_lag_size | 0 bytes
apply_rate | 853
catchup_interval | 00:00:00

The apply_rate refers to the rate in bytes per second. It's the rate at which the peer is consuming data from the local node. The replay_lag when a node reconnects to the cluster is immediately set to zero. This information will be fixed
in a future release. As a workaround, we recommend using the catchup_interval column that refers to the time required for the peer node to catch up to the local node data. The other fields are also available from the
bdr.node_slots view.

Administrators can query bdr.node_slots for outgoing replication from the local node. It shows information about replication status of all other nodes in the group that are known to the current node as well as any additional replication
slots created by PGD on the current node.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 111

https://www.postgresql.org/docs/current/static/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/current/view-pg-replication-slots.html
https://www.enterprisedb.com/docs/pgd/latest/reference/node_management/replication_slots

EDB Postgres Distributed (PGD)

SELECT node_group_name, target_dbname, target_name, slot_name, active_pid,

catalog_xmin, client_addr, sent_lsn, replay_lsn, replay_lag,
replay_lag_bytes, replay_lag_size

FROM bdr.node_slots;

-[RECORD 1]

node_group_name | bdrgroup

target_dbname | postgres

target_name | node3

slot_name | bdr_postgres_bdrgroup_node3
active_pid | 15089

catalog_xmin | 691

client_addr | 127.0.0.1

sent_1sn | ©/23F7B70

replay_lsn | ©/23F7B70

replay_lag | [NULL]

replay_lag_bytes| 120

replay_lag_size | 120 bytes

-[RECORD 2]

node_group_name | bdrgroup

target_dbname | postgres

target_name | node2

slot_name | bdr_postgres_bdrgroup_node2
active_pid | 15031

catalog_xmin | 691

client_addr | 127.0.0.1

sent_lsn | ©/23F7B70

replay_lsn | 0/23F7B70

replay_lag | [NULL]

replay_lag_bytes| 84211

replay_lag_size | 82 kB

Because PGD is a mesh network, to get the full view of lag in the cluster, you must execute this query on all nodes participating.

replay_lag_bytes reports the difference in WAL positions between the local server's current WAL write position and replay_1sn, the last position confirmed replayed by the peer node. replay_lag_size isahuman-readable
form of the same. It's important to understand that WAL usually contains a lot of writes that aren't replicated but still countin replay_lag_bytes,including, for example:

® VACUUM activity

® Index changes

® Writes associated with other databases on the same node
® Writes for tables that are not part of a replication set

So the lag in bytes reported here isn't the amount of data that must be replicated on the wire to bring the peer node up to date, only the amount of server-side WAL that must be processed.

Similarly, replay_Tlag isn'ta measure of how long the peer node takes to catch up or how long it takes to replay from its current position to the write position at the time bdr .node_slots was queried. It measures the delay between
when the peer confirmed the most recent commit and the current wall-clock time. We suggest that you monitor replay_lag_bytes and replay_lag_size or catchup_interval in bdr.node_replication_rates,as this
column is set to zero immediately after the node reconnects.

The lag in both bytes and time doesn't advance while logical replication is streaming a transaction. It changes only when a commit is replicated. So the lag tends to "sawtooth," rising as a transaction is streamed and then falling again as the
peer node commits it, flushes it, and sends confirmation. The reported LSN positions "stair-step" instead of advancing smoothly, for similar reasons.

When replication is disconnected (active = 'f'),the active_pid columnis NULL ,asis client_addr and the other fields that make sense only with an active connection. The state fieldis 'disconnected'.The _lsn
fields are the same as the confirmed_flush_1lsn, since that's the last position that the client is known for certain to have replayed to and saved. The _lag fields show the elapsed time between the most recent confirmed flush on the
client and the current time. The _lag_size and _lag_bytes fields report the distance between confirmed_flush_1lsn and the local server's current WAL insert position.

Note

It's normal for restart_1lsn to be behind the other 1sn columns. This doesn't indicate a problem with replication or a peer node lagging. The restart_lsn is the position that PostgreSQL's internal logical decoding must be
reading WAL at if interrupted. It generally reflects the position of the oldest transaction that's not yet replicated and flushed. Avery old restart_lsn can make replication slow to restart after disconnection and force retention of
more WAL than is desirable, but it's otherwise harmless. If you're concerned, look for very long-running transactions and forgotten prepared transactions.

Monitoring incoming replication

You can monitor incoming replication (also called subscriptions) at a high level by querying the bdr.subscription_summary view. This query shows the list of known subscriptions to other nodes in the EDB Postgres Distributed cluster
and the state of the replication worker:

SELECT node_group_name, origin_name, sub_enabled, sub_slot_name,
subscription_status

FROM bdr.subscription_summary;

~[RECORD 1]
node_group_name

| bdrgroup

origin_name | node2

sub_enabled | t

sub_slot_name | bdr_postgres_bdrgroup_nodel
|

subscription_status replicating
-[RECORD 2]

node_group_name bdrgroup
origin_name node3

sub_slot_name bdr_postgres_bdrgroup_nodel

|

|
sub_enabled | t

|
subscription_status | replicating

You can further monitor subscriptions by monitoring subscription summary statistics through bdr.stat_subscription,and by monitoring the subscription replication receivers and subscription replication writers, using
bdr.stat_receiver and bdr.stat_writer,respectively.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 112

EDB Postgres Distributed (PGD)

Monitoring WAL senders using LCR

If the decoding worker is enabled, you can monitor information about the current logical change record (LCR) file for each WAL sender using the function bdr .wal_sender_stats() . For example:

postgres=# SELECT * FROM bdr.wal_sender_stats();

pid | is_using_lcr | decoder_slot_name | lcr_file_name
2059904 | f | |
2059909 | t | bdr_postgres_bdrgroup_decoder | 14
2059916 | t | bdr_postgres_bdrgroup_decoder | 14
(3 rows)

If is_using_lcr is FALSE, decoder_slot_name / lcr_file_name is NULL .This is the case if the decoding worker isn't enabled or the WAL sender is serving alogical standby.

Also, you can monitor information about the decoding worker using the function bdr . get_decoding_worker_stat() . For example:

postgres=# SELECT * FROM bdr.get_decoding_worker_stat();

pid | decoded_upto_lsn | waiting | waiting_for_lsn
1153091 | O/1E5EEE8 | t | 0/1E5EF00
(1 row)

Monitoring PGD replication workers
AlL PGD workers show up in the system view bdr.stat_activity , which hasthe same columns and information content as pg_stat_activity. So this view offers these insights into the state of a PGD system:

e The wait_event column has enhanced information, if the reason for waiting is related to PGD.
® The query columnis blank in PGD workers, except when a writer process is executing DDL, or for when a manager worker is active (in which case the entry in the query column will be prefixed with " pgd manager: ").

The bdr.workers view shows PGD worker-specific details that aren't available from bdr.stat_activity.

Theview bdr.event_summary shows the last error (if any) reported by any worker that has a problem continuing the work. This information is persistent, so it's important to note the time of the error and not just its existence. Most errors
are transient, and PGD workers will retry the failed operation.

Monitoring PGD writers
Another system view, bdr.writers , monitors writer activities. This view shows only the current status of writer workers. It includes:

e sub_name toidentify the subscription that the writer belongs to

e pid of the writer process

e streaming_allowed toknow if the writer supports applying in-progress streaming transactions
e is_streaming toknow if the writer is currently applying a streaming transaction

e commit_queue_position tocheck the position of the writer in the commit queue

PGD honors commit ordering by following the same commit order as happened on the origin. In case of parallel writers, multiple writers might apply different transactions at the same time. The commit_queue_position shows the order
in which they will commit. Value © means that the writer is the first one to commit. Value —1 means that the commit position isn't yet known, which can happen for a streaming transaction or when the writer isn't currently applying any
transaction.

Monitoring commit scopes

Commit scopes are our durability and consistency configuration framework. As such, they affect the performance of transactions, so it is important to get statistics on them. Moreover, because in failure scenarios transactions might appear to
be stuck due to the commit scope configuration, we need insight into what commit scope is being used, what it's waiting on, and so on.

Accordingly, these two views show relevant statistics about commit scopes:

® bdr.stat_commit_scope for cumulative statistics for each commit scope, including degrade event counters (ndegrades , nconfig_degrades) and the timestamp of the last configuration state change
(last_state_change_time).

® bdr.stat_commit_scope_state for information about the current use of commit scopes by backend processes.

See Monitoring degrade events for more information about monitoring degrade events.

Monitoring global locks
The global lock, which is currently used only for DDL replication, is a heavyweight lock that exists across the whole PGD group.
There are currently two types of global locks:

® DDL lock, used for serializing all DDL operations on permanent (not temporary) objects (that is, tables) in the database
e DML relation lock, used for locking out writes to relations during DDL operations that change the relation definition

You can create either or both entry types for the same transaction, depending on the type of DDL operation and the value of the bdr.dd1_locking setting.

Global locks held on the local node are visible in the bdr.global_Tlocks view. This view shows the type of the lock. For relation locks, it shows the relation that's being locked, the PID holding the lock (if local), and whether the lock was
globally granted. In case of global advisory locks, lock_type columnshows GLOBAL_LOCK_ADVISORY ,and relation column shows the advisory keys on which the lock is acquired.

This example shows the output of bdr.global_locks while runningan ALTER TABLE statementwith bdr.dd1l_locking = 'all':

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 113

https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/logical_standby_nodes/
https://www.postgresql.org/docs/current/monitoring-stats.html#PG-STAT-ACTIVITY-VIEW
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/degrading/#monitoring-degrade-events

EDB Postgres Distributed (PGD)

SELECT lock_type, relation, pid FROM bdr.global_locks;
SR ECO R D I e

lock_type | GLOBAL_LOCK_DDL

relation | [NULL]

pid | 15534

-[RECORD 2]----=—=—=-—-—=

lock_type | GLOBAL_LOCK_DML

relation |

pid |

someschema.sometable
15534

See Catalogs for details on all fields, including lock timing information.

Monitoring conflicts

Replication conflicts can arise when multiple nodes make changes that affect the same rows in ways that can interact with each other. Monitor the PGD system to identify conflicts and, where possible, make application changes to eliminate
the conflicts or make them less frequent.

By default, all conflicts are logged to bdr.conflict_history .Since this log contains full details of conflicting data, the rows are protected by row-level security to ensure they're visible only by owners of replicated tables. Owners
should expect conflicts and analyze them to see which, if any, might be considered as problems to resolve.

For monitoring purposes, use bdr.conflict_history_summary , which doesn't contain user data. This example shows a query to count the number of conflicts seen in the current day using an efficient query plan:

SELECT count(*)
FROM bdr.conflict_history_summary
WHERE local_time > date_trunc('day',
current_timestamp)
AND local_time < date_trunc('day', current_timestamp + '1
day');

Apply statistics
PGD collects statistics about replication apply, both for each subscription and for each table.
Two monitoring views exist: bdr.stat_subscription for subscription statistics and bdr.stat_relation forrelation statistics. These views both provide:

Number of INSERTs/UPDATEs/DELETEs/TRUNCATES replicated
Block accesses and cache hit ratio

Total I/0 time for read/write

Number of in-progress transactions streamed to file

Number of in-progress transactions streamed to writers

Number of in-progress streamed transactions committed/aborted

For relations only, bdr.stat_relation alsoincludes:

® Total time spent processing replication for the relation
e Total lock wait time to acquire lock (if any) for the relation (only)

For subscriptions only, bdr.stat_subscription includes:

® Number of COMMITs/DDL replicated for the subscription
o Number of times this subscription has connected upstream

Tracking of these statistics is controlled by the PGD GUCs bdr.track_subscription_apply and bdr.track_relation_apply, respectively.

The following shows the example output from these:

SELECT sub_name, nconnect, ninsert, ncommit, nupdate, ndelete, ntruncate,
nddl

FROM bdr.stat_subscription;

—-[RECORD 1]

sub_name |
bdr_regression_bdrgroup_nodel_node2

nconnect |
8

ninsert |
10

ncommit |
5

nupdate |
[¢]

ndelete |
[¢]

ntruncate |
[}

nddl |
2

In this case, the subscription connected three times to the upstream, inserted 10 rows, and performed two DDL commands inside five transactions.
You can reset the stats counters for these views to zero using the functions bdr.reset_subscription_stats and bdr.reset_relation_stats.

PGD also monitors statistics regarding subscription replication receivers and subscription replication writers for each subscription, using bdr.stat_receiver and bdr.stat_writer ,respectively.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 114

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts

EDB Postgres Distributed (PGD)

Standard PostgreSQL statistics views

Statistics on table and index usage are normally updated by the downstream master. This is essential for the correct function ofautovacuum. If there are no local writes on the downstream master and statistics haven't been reset, these two

views show corresponding results between upstream and downstream:

e pg_stat_user_tables
e pg_statio_user_tables

Note

We don't necessarily expect the upstream table statistics to be similarto the downstream ones. We only expect them to change by the same amounts. Consider the example of a table whose statistics show 1M inserts and 1M updates.

When a new node joins the PGD group, the statistics for the same table in the new node show 1M inserts and zero updates. However, from that moment, the upstream and downstream table statistics change by the same amounts
because all changes on one side are replicated to the other side.

Since indexes are used to apply changes, the identifying indexes on the downstream side might appear more heavily used with workloads that perform UPDATE and DELETE than non-identifying indexes are.
The built-in index monitoring views are:

® pg_stat_user_indexes
e pg_statio_user_indexes

All these views are discussed in detail in the PostgreSQL documentation on the statistics views.

Monitoring PGD versions
PGD allows running different Postgres versions as well as different BDR extension versions across the nodes in the same cluster. This capability is useful for upgrading.
Theview bdr.group_versions_details usesthe function bdr.run_on_all_nodes() to retrieve Postgres and BDR extension versions from all nodes at the same time. For example:

pgddb=# SELECT node_name, postgres_version,
bdr_version
FROM bdr.group_versions_details;
node_name | postgres_version
bdr_version

nodel | 15.2.0 |
5.0.0

node2 | 15.2.0 |
5.0.0

The recommended setup is to try to have all nodes running the same (and latest) versions as soon as possible. We recommend that the cluster doesn't run different versions of the BDR extension for too long.
For monitoring purposes, we recommend the following alert levels:

status=UNKNOWN, message=This node is not part of any PGD group

status=0K, message=All nodes are running same PGD versions

status=WARNING, message=There is at least 1 node that is not accessible

status=WARNING, message=There are node(s) running different PGD versions when compared to other nodes

The described behavior is implemented in the function bdr.monitor_group_versions() , which uses PGD version information returned from the view bdr.group_version_details to provide a cluster-wide version check. For

example:

pgddb=# SELECT * FROM
bdr.monitor_group_versions();
status |

message

— - —— e

oK | ALl nodes are running same BDR
versions

Monitoring Raft consensus
Raft consensus must be working cluster-wide at all times. The impact of running an EDB Postgres Distributed cluster without Raft consensus working might be as follows:

The replication of PGD data changes might still work correctly.

Global DDL/DML locks doesn't work.

Galloc sequences eventually run out of chunks.

Eager Replication doesn't work.

Cluster maintenance operations (join node, part node, promote standby) are still allowed, but they might not finish (hanging instead).
Node statuses might not be correctly synced among the PGD nodes.

PGD group replication slot doesn't advance LSN and thus keeps WAL files on disk.

Theview bdr.group_raft_details uses the functions bdr.run_on_all_nodes() and bdr.get_raft_status() to retrieve Raft consensus status from all nodes at the same time. For example:

pgddb=# SELECT node_id, node_name, state,

leader_id
FROM bdr.group_raft_details;
node_id | node_name | node_group_name state
leader_id
________ - i . i __ . .
1148549230 | nodel | top_group | RAFT_LEADER |
1148549230
3367056606 | node2 | top_group | RAFT_FOLLOWER |
1148549230

Raft consensus is working correctly if all of these conditions are met:

e Avalid state (RAFT_LEADER or RAFT_FOLLOWER) is defined on all nodes.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

115

https://www.postgresql.org/docs/current/static/routine-vacuuming.html
http://www.postgresql.org/docs/current/static/monitoring-stats.html#MONITORING-STATS-VIEWS-TABLE

EDB Postgres Distributed (PGD)

® Only one of the nodes is the RAFT_LEADER .
e The leader_id isthe same on all rows and must match the node_1id of the row where state = RAFT_LEADER.

From time to time, Raft consensus starts a new election to define a new RAFT_LEADER . During an election, there might be an intermediary situation where there's no RAFT_LEADER , and some of the nodes consider themselves as
RAFT_CANDIDATE . The whole election can't take longer than bdr.raft_global_election_timeout (by defaultit's setto 6 seconds). If the query above returns an in-election situation, then wait for
bdr.raft_global_election_timeout ,and runthe query again. If after bdr.raft_global_election_timeout has passed and some the listed conditions are still not met, then Raft consensus isn't working.

Raft consensus might not be working correctly on only a single node. For example, one of the nodes doesn't recognize the current leader and considers itself as a RAFT_CANDIDATE . In this case, it's important to make sure that:

® AlLPGD nodes are accessible to each other through both regular and replication connections (check file pg_hba.conf).
® PGD versions are the same on all nodes.
e bdr.raft_global_election_timeout isthesame on all nodes.

In some cases, especially if nodes are geographically distant from each other or network latency is high, the default value of bdr.raft_global_election_timeout (6 seconds)might not be enough. If Raft consensus is still not
working even after making sure everything is correct, consider increasing bdr.raft_global_election_timeout to 30 seconds on all nodes.

Given how Raft consensus affects cluster operational tasks, and also as Raft consensus is directly responsible for advancing the group slot, monitoring alert levels are defined as follows:

status=UNKNOWN, message=This node is not part of any PGD group

status=0K, message=Raft Consensus is working correctly

status=WARNING, message=There is at least 1 node that is not accessible

status=WARNING, message=There are node(s) as RAFT_CANDIDATE, an election might be in progress
status=WARNING, message=There is no RAFT_LEADER, an election might be in progress

status=CRITICAL, message=There is a single node in Raft Consensus

status=CRITICAL, message=There are node(s) as RAFT_CANDIDATE while a RAFT_LEADER is defined
status=CRITICAL, message=There are node(s) following a leader different than the node set as RAFT_LEADER

The described behavior is implemented in the function bdr.monitor_group_raft() , which uses Raft consensus status information returned from the view bdr.group_raft_details to provide a cluster-wide Raft check. For
example:

pgddb=# SELECT * FROM bdr.monitor_group_raft();
node_group_name | status |
message

/
mygroup | oK | Raft Consensus is working
correctly

Two further views that can give a finer-grained look at the state of Raft consensus are bdr.stat_raft_state, which provides the state of the Raft consensus on the local node, and bdr.stat_raft_followers_state, which
provides a view when on the Raft leader (it is empty on other nodes) regarding the state of the followers of that Raft leader.

Monitoring replication slots
Each PGD node keeps:

® One replication slot per active PGD peer
® One group replication slot

For example:

pgddb=# SELECT slot_name, database, active,

confirmed_flush_lsn

FROM pg_replication_slots ORDER BY slot_name;
slot_name | database | active

confirmed_flush_lsn

bdr_pgddb_bdrgroup | pgddb | f |
0/3110A08
bdr_pgddb_bdrgroup_node2 | pgddb | t |
0/31F4670
bdr_pgddb_bdrgroup_node3 | pgddb | t |
0/31F4670
bdr_pgddb_bdrgroup_node4 | pgddb | t |
0/31F4670

Peer slot names follow the convention bdr_<DATABASE>_<GROUP>_<PEER> , while the PGD group slot name follows the convention bdr_<DATABASE>_<GROUP> . You can access the group slot using the function
bdr.local_group_slot_name() .

Peer replication slots must be active on all nodes at all times. If a peer replication slot isn't active, then it might mean either:

e The corresponding peer is shut down or not accessible.
® PGD replication is broken.

Grep the log file for ERROR or FATAL , and also check bdr.event_summary on all nodes. The root cause might be, for example, an incompatible DDL was executed with DDL replication disabled on one of the nodes.

The PGD group replication slot is, however, inactive most of the time. PGD maintains this slot and advances its LSN when all other peers already consumed the corresponding transactions. Consequently, it's not necessary to monitor the status
of the group slot.

The function bdr.monitor_local_replslots() providesasummary of whetherall PGD node replication slots are working as expected. This summary is also available on subscriber-only nodes that are operating as subscriber-only
group leaders in a PGD cluster when optimized topology is enabled. For example:

pgddb=# SELECT * FROM bdr.monitor_local_replslots();
status |
message

oK | ALl BDR replication slots are working
correctly

One of the following status summaries is returned:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 116

https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/subscriber_only/optimizing-so

Status
UNKNOWN
0K

OK
CRITICAL
CRITICAL

Message

This node is not part of any BDR group

AlL BDR replication slots are working correctly

This node is part of a subscriber-only group

There is at least 1 BDR replication slot which is inactive

There is at least 1 BDR replication slot which is missing

Monitoring transaction COMMITs

By default, PGD transactions are committed only to the local node. In that case, a transaction's COMMIT is processed quickly.

EDB Postgres Distributed (PGD)

PGD's Commit Scopes feature offers a range of synchronous transaction commit scopes that allow you to balance durability, consistency, and performance for your particular queries. You can monitor these transactions by examining the
bdr.stat_activity catalog. The processes report different wait_event states as a transaction is committed. This monitoring only covers transactions in progress and doesn't provide historical timing information.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

117

EDB Postgres Distributed (PGD)

12 AutoPartition in PGD

PGD AutoPartition allows you to split tables into several partitions, other tables, and creating and dropping partitions as needed. Autopartitioning is useful for managing large tables that grow over time as it allows you to separate the data into
manageable chunks. You can create new partitions regularly and then drop them when the data retention period expires.

This capability uses features of PGD, such as low-conflict locking of creating and dropping partitions.

You perform PGD management primarily by using functions that can be called by SQL. All functions in PGD are exposed in the bdr schema. Unless you put it into your search_path, you need to schema qualify the name of each function.

Auto creation of partitions
PGD AutoPartition uses the bdr.autopartition() function to create or alter the definition of automatic range partitioning for a table. If no definition exists, it's created. Otherwise, later executions will alter the definition.

PGD AutoPartition in PGD 5.5 and later leverages underlying Postgres features that allow a partition to be attached or detached/dropped without locking the rest of the table. Versions of PGD earlier than 5.5 don't support this feature and lock
the tables.

An error is raised if the table isn't RANGE partitioned or a multi-column partition key is used.

By default, AutoPartition manages partitions locally. Managing partitions locally is useful when the partitioned table isn't a replicated table. In that case, you might not need or want to have all partitions on all nodes. For example, the built-in
bdr.conflict_history tableisn'tareplicated table. It's managed by AutoPartition locally. Each node creates partitions for this table locally and drops them once they're old enough.

Also consider:
® Activities are performed only when the entry is marked enabled = on.

® We recommend that you don't manually create or drop partitions for tables managed by AutoPartition. Doing so can make the AutoPartition metadata inconsistent and might cause it to fail.

AutoPartition examples

Daily partitions, keep data for one month:

CREATE TABLE measurement

logdate date not null,

peaktemp int,

unitsales int

) PARTITION BY RANGE (logdate);

bdr.autopartition('measurement', '1 day', data_retention_period := '30
days');

Create five advance partitions when there are only two more partitions remaining. Each partition can hold 1 billion orders.

bdr.autopartition('Orders', '1000000000',
partition_initial_lowerbound := '0',
minimum_advance_partitions :=

maximum_advance_partitions :=

RANGE-partitioned tables

PGD autopartitioning supports range partitioning using the RANGE keyword. Range partitioning allows you to partition a table based on the ranges of values in a column. For example, you can partition a table by date, where each partition
contains data for a specific date range. This is useful for managing large tables that grow over time, as it allows you to separate the data into manageable chunks.

A new partition is added for every partition_increment range of values. Lower and upper bound are partition_increment apart. For tables with a partition key of type timestamp or date ,the partition_increment
must be a valid constant of type interval . Forexample, specifying 1 Day causes a new partition to be added each day, with partition bounds that are one day apart.

If the partition column is connected to a snowflakeid, timeshard,or ksuuid sequence, you must specify the partition_increment astype interval.Otherwise, if the partition key is integer or numeric, then the
partition_increment must be avalid constant of the same datatype. For example, specifying 1000000 causes new partitions to be added every 1 million values.

If the table has no existing partition, then the specified partition_initial_lowerbound is used as the lower bound for the first partition. If you don't specify partition_initial_lowerbound , then the system tries to derive its
value from the partition column type and the specified partition_increment . Forexample,if partition_increment isspecifiedas 1 Day ,then partition_initial_lowerbound issetto CURRENT DATE. If
partition_increment isspecifiedas 1 Hour ,then partition_initial_lowerbound isset to the current hour of the current date. The bounds for the subsequent partitions are set using the partition_increment value.

The system always tries to have a certain minimum number of advance partitions. To decide whether to create new partitions, it uses the specified partition_autocreate_expression . This can be an expression that can be evaluated
by SQL that's evaluated every time a check is performed. For example, for a partitioned table on column type date , suppose partition_autocreate_expression isspecifiedas DATE_TRUNC('day',CURRENT_DATE) ,
partition_increment isspecifiedas 1 Day,and minimum_advance_partitions isspecifiedas 2 .New partitions are then created until the upper bound of the last partition is less than DATE_TRUNC ('day "',
CURRENT_DATE) + '2 Days'::interval.

The expression is evaluated each time the system checks for new partitions.

For a partitioned table on column type integer , you can specify the partition_autocreate_expression as SELECT max(partcol) FROM schema.partitioned_table . The system then regularly checks if the maximum
value of the partitioned column is within the distance of minimum_advance_partitions * partition_increment of the last partition's upper bound. Create an index on the partcol so that the query runs efficiently. If you don't
specify the partition_autocreate_expression fora partition table on column type integer, smallint,or bigint,then the systemsetsitto max (partcol) .

Ifthe data_retention_period is set, partitions are dropped after this period. To minimize locking, partitions are dropped at the same time as new partitions are added. If you don't set this value, you must drop the partitions manually.

The data_retention_period parameter is supported only for timestamp-based (and related) partitions. The period is calculated by considering the upper bound of the partition. The partition is dropped if the given period expires, relative
to the upper bound.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 118

EDB Postgres Distributed (PGD)

Stopping automatic creation of partitions

Use bdr.drop_autopartition() todrop the autopartitioning rule for the given relation. All pending work items for the relation are deleted, and no new work items are created.

Waiting for partition creation

Partition creation is an asynchronous process. AutoPartition provides a set of functions to wait for the partition to be created, locally or on all nodes.

Use bdr.autopartition_wait_for_partitions() towaitforthe creation of partitions on the local node. The function takes the partitioned table name and a partition key column value and waits until the partition that holds that
value is created.

The function waits only for the partitions to be created locally. It doesn't guarantee that the partitions also exist on the remote nodes.

To wait for the partition to be created on all PGD nodes, use the bdr.autopartition_wait_for_partitions_on_all_nodes() function. This function internally checks local as well as all remote nodes and waits until the partition
is created everywhere.

Finding a partition

Use the bdr.autopartition_find_partition() function to find the partition for the given partition key value. If a partition to hold that value doesn't exist, then the function returns NULL. Otherwise it returns the Oid of the partition.

Enabling or disabling autopartitioning

Use bdr.autopartition_enable() toenable autopartitioning on the given table. If autopartitioning is already enabled, then no action occurs. Similarly, use bdr.autopartition_disable() to disable autopartitioning on the
given table.

Dropping or detaching a partition

By default, partitions of tables managed by autopartition() are detached and dropped once the data_retention_period expires.The drop_after_retention_period parameter can control this behavior so you can
choose to keep those partitions. When setto false, the partitions are only detached from the parent table, but not dropped. This allows users to potentially re-attach the partition to some other table or process them before finally dropping.
The default value of the parameteris true soin any existing or new autopartitioned tables, the partitions are dropped after data_retention_period expires.

To handle partitions that are detached but not dropped, manually re-attach those partitions to some other table or drop them.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 119

EDB Postgres Distributed (PGD)

13 Commit Scopes

Fully managable and configurable commit scopes are a feature of PGD Expanded.

PGD Expanded offers a range of synchronous modes to complement its default asynchronous replication. You use commit scopes to configure these synchronous modes. Commit scopes are rules that define how PGD handles synchronous
operations and when the system considers a transaction committed.

PGD Essential offers a limited set of commit scopes that are pre-defined and cannot be changed.

Introducing

e Overview introduces the concepts and some of the essential terminology that's used when discussing synchronous commits.

Durability terminology lists terms used around PGD's durability options, including how to refer to nodes in replication.

Commit scopes is a more in-depth look at the structure of commit scopes and how to define them for your needs.

Predefined commit scopes lists the pre-defined commit scopes that are available in PGD Essential.

Origin groups introduces the notion of an origin group, and how to leverage these when defining commit scopes rules.

Commit scope rules looks at the syntax of and how to formulate a commit scope rule.

Comparing durability options compares how commit scope options behave with regard to durability.

Degrading commit scope rules shows how to set up a commit scope rule that can gracefully degrade to a lower setting in case of timeouts with a stricter setting.

Commit scope kinds
® Synchronous Commit is a commit scope mechanism that works in a similar fashion to legacy synchronous replication, but from within the commit scope framework.
® Group Commit focuses on the Group Commit option, where you can define a transaction as done when a group of nodes agrees it's done.
® CAMO focuses on the Commit At Most Once option, in which applications take responsibility for verifying that a transaction has been committed before retrying. This ensures that their commits only happen at most once.

® Lag Control looks at the commit scope mechanism which dynamically throttle nodes according to the slowest node and regulates how far out of sync nodes may go when a database node goes out of service.

Working with commit scopes
e Administering addresses how to manage a PGD cluster with Group Commit in use.
® Legacy synchronous replication shows how you can still access traditional Postgres synchronous operations under PGD.

e Internal timing of operations compares legacy replication with PGD's async and synchronous operations, especially the difference in the order by which transactions are flushed to disk or made visible.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 120

https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/overview
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/durabilityterminology
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/commit-scopes
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/predefined-commit-scopes
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/origin_groups
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/commit-scope-rules
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/comparing
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/degrading
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/synchronous_commit
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/group-commit
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/camo
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/lag-control
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/administering
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/legacy-sync
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/timing

EDB Postgres Distributed (PGD)

131 Overview of durability options

Overview
EDB Postgres Distributed (PGD) allows you to choose from several replication configurations based on your durability, consistency, availability, and performance needs using commit scopes.
In its basic configuration, PGD uses asynchronous replication. However, commit scopes can change both the default and the per-transaction behavior.

It's also possible to configure the legacy Postgres synchronous replication using standard synchronous_standby_names in the same way as the built-in physical or logical replication. However, commit scopes provide much more
flexibility and control over the replication behavior.

The different synchronization settings affect three properties of interest to applications that are related but can all be implemented individually:
® Durability: Writing to multiple nodes increases crash resilience and allows you to recover the data after a crash and restart.
e Visibility: With the commit confirmation to the client, the database guarantees immediate visibility of the committed transaction on some sets of nodes.

e Conflict handling: Conflicts can be handled optimistically postcommit, with conflicts resolved when the transaction is replicated based on commit timestamps. Or, they can be handled pessimistically precommit. The client can rely on
the transaction to eventually be applied on all nodes without further conflicts or get an abort, directly informing the client of an error.

Commit scopes allow four kinds of controlling durability of the transaction:
e Synchronous Commit: This kind of commit scope allows for a behavior where the origin node awaits a majority of nodes to confirm and behaves more like a native Postgres synchronous commit.

® Group Commit: This kind of commit scope controls which and how many nodes have to reach a consensus before the transaction is considered to be committable and at what stage of replication it can be considered committed. This
option also allows you to control the visibility ordering of the transaction.

® CAMO: This kind of commit scope is a variant of Group Commit, in which the client takes on the responsibility for verifying that a transaction was committed before retrying.
® Lag Control: This kind of commit scope controls how far behind nodes can be in terms of replication before allowing commit to proceed.

Synchronous commit, group commit, and CAMO each support degrading commit scope rules, for even further control of durability.
Legacy synchronization availability

For backward compatibility, PGD still supports configuring synchronous replication with synchronous_commit and synchronous_standby_names . See Legacy synchronous replication for more on this option. We
recommend that you use PGD Synchronous Commit instead.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 121

EDB Postgres Distributed (PGD)

13.2 Durability terminology

Durability terminology

This page covers terms and definitions directly related to PGD's durability options. For other terms, seeTerminology.

Nodes

PGD nodes take different roles during the replication of a transaction. These are implicitly assigned per transaction and are unrelated even for concurrent transactions.
e The originis the node that receives the transaction from the client or application. It's the node processing the transaction first, initiating replication to other PGD nodes and responding back to the client with a confirmation or an error.
® The origin node groupis a PGD group which includes the origin.
e A partnernode is a PGD node expected to confirm transactions according to Group Commit requirements.

® A commit groupis the group of all PGD nodes involved in the commit, that is, the origin and all of its partner nodes, which can be just a few or all peer nodes.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 122

https://www.enterprisedb.com/docs/pgd/latest/terminology

EDB Postgres Distributed (PGD)

13.3 Commit scopes

Commit scopes give applications granular control about durability and consistency of EDB Postgres Distributed.

A commit scope is a set of rules that describes the behavior of the system as transactions are committed. The actual behavior depends on which a kind of commit scope a commit scope's rule usesSynchronous Commit, Group Commit, Commit
At Most Once, Lag Control, or combination of these.

While most commit scope kinds control the processing of the transaction, Lag Control is the exception as it dynamically regulates the performance of the system in response to replication operations being slow or queued up. It is typically
used, though, in combination with other commit scope kinds

Commit scope structure

Every commit scope has a name (a commit_scope_name).

Each commit scope has one or more rules.

Each rule within the commit scope hasan origin_node_group which together uniquely identify the commit scope rule.

The origin_node_group isa PGD group and it defines the nodes which will apply this rule when they are the originators of a transaction.
Finally there is the rule which defines what kind of commit scope or combination of commit scope kinds should be applied to those transactions.

So if a commit scope has a rule that reads:

origin_node_group := 'example_bdr_group',
rule := 'MAJORITY (example_bdr_group) GROUP COMMIT',

Then, the rule is applied when any node in the example_bdr_group issues a transaction.

The rule itself specifies how many nodes of a specified group will need to confirm the change - MAJORITY (example_bdr_group) -followed by the commit scope kind itself - GROUP COMMIT . This translates to requiring that any two
nodesin example_bdr_group must confirm the change before the change can be considered as comitted.

How a commit scope is selected
When any change takes place, PGD looks up which commit scope should be used for the transaction or node.
If a transaction specifies a commit scope, that scope will be used.

If not specified, the system will search for a default commit scope. Default commit scopes are a group level setting. The system consults the group tree. Starting at the bottom of the group tree with the node's group and working up, it searches
for any group which has a default_commit_scope setting defined. This commit scope will then be used.

If no default_commit_scope is found then the node's GUC, bdr.commit_scope is used. And if that isn't set oris set to Local then no commit scope applies and PGD's async replication is used.

A commit scope will not be used if it is not local and the node where the commit is being run on is not directly or indirectly related to the origin_node_group.

Creating a Commit Scope

Use bdr.create_commit_scope toadd ourexample rule to a commit scope. For example:

SELECT

bdr.create_commit_scope(
commit_scope_name := 'example_scope',
origin_node_group := 'example_bdr_group',

rule := 'MAJORITY (example_bdr_group) GROUP
COMMIT',

wait_for_ready :=
true

)3
This will add the rule MAJORITY (example_bdr_group) GROUP COMMIT forany transaction originating from the example_bdr_group to ascope called example_scope.
If no rules previously existed in example_scope , then adding this rule would make the scope exist.
When a rule is added, the origin_node_group must already exist. If it does not, the whole add operation will be discarded with an error.
The rule will then be evaluated. If the rule mentions groups that don't exist or the settings on the group are incompatible with other configuration setting on the group's nodes, a warning will be emitted, but the rule will be added.
Once the rule is added, the commit scope will be available for use.

The wait_for_ready controls whether the bdr.create_commit_scope() call blocks until the rule has been added to the relevant nodes. The setting defaults to true and can be omitted.

Using a commit scope

To use our example scope, we can set bdr.commit_scope within a transaction

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 123

EDB Postgres Distributed (PGD)

BEGIN;
SET LOCAL bdr.commit_scope =
'example_scope';

COMMIT;
You must set the commit scope before the transaction writes any data.

You can set a commit scope as a default for a group or subgroup using bdr.alter_node_group_option :

SELECT bdr.alter_node_group_option(

node_group_name := 'example_bdr_group',
config_key := 'default_commit_scope',
config_value := 'example_scope'

)3
To completely clear the default for a group or subgroup, set the default_commit_scope valueto local:

SELECT bdr.alter_node_group_option(

node_group_name := 'example_bdr_group',
config_key := 'default_commit_scope',
config_value := 'local!'

)3

You can also make this change using PGD CLI:

pgd set-group-options example-bdr-group --option default_commit_scope=example_scope
And you can clear the default using PGD CLI by setting the value to local :

pgd set-group-options example-bdr-group --option default_commit_scope=local

Finally, you can set the default commit_scope for a node using:

SET bdr.commit_scope =
'example_scope';

Set bdr.commit_scope to local to use the PGD default async replication.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 124

EDB Postgres Distributed (PGD)

13.4 Predefined commit scopes

EDB Postgres Distributed (PGD) provides the following predefined commit scopes available for use:

local protect

lag protect
majority protect
adaptive protect

local protect
ASYNCHRONOUS COMMIT

The local protect commitscope is the default commit scope for PGD Essential. It provides asynchronous commit with no durability guarantees. This means that transactions are considered committed as soon as they are written to the
local node's WAL, without waiting for any confirmation from other nodes in the cluster.

This commit scope is suitable for scenarios where high availability and low latency are more important than data durability. However, it does not provide any guarantees against data loss in case of node failures or network issues.

lag protect
MAJORITY ORIGIN GROUP LAG CONTROL (max_lag_time = 30s, max_commit_delay = 10s)

The lag protect commitscope provides a durability guarantee based on the lag time of the majority origin group. It ensures that transactions are considered committed only when the lag time is within a specified limit (30 seconds in this
case) and the commit delay is also within a specified limit (10 seconds in this case). This helps to prevent data loss in case of network issues or node failures.

This commit scope is useful in scenarios where data consistency and durability are important, but some latency is acceptable. It allows for a balance between performance and data safety by ensuring that transactions are not considered
committed until they have been confirmed by the majority of nodes in the origin group within the specified lag and commit delay limits.

majority protect
MAJORITY ORIGIN GROUP SYNCHRONOUS COMMIT

The majority protect commitscope provides a durability guarantee based on the majority origin group. It ensures that transactions are considered committed only when they are confirmed by the majority of nodes in the origin group.
This helps to ensure data consistency and durability in case of node failures or network issues.

This commit scope is suitable for scenarios where data consistency and durability are critical, and it provides a higher level of protection against data loss compared to the local protect commit scope. However, it may introduce some
latency due to the need for confirmation from multiple nodes before considering a transaction as committed.

adaptive protect
MAJORITY ORIGIN GROUP SYNCHRONOUS COMMIT DEGRADE ON (timeout = 10s, require_write_lead = true) TO ASYNCHRONOUS COMMIT

The adaptive protect commitscope provides a more flexible durability guarantee. It allows transactions to be considered committed based on the majority origin group synchronous commit, but it can degrade to asynchronous commit if
the transaction cannot be confirmed within a specified timeout (10 seconds in this case). This is useful in scenarios where network latency or node failures may cause delays in confirming transactions.

This commit scope is suitable for scenarios where data consistency and durability are important, but some flexibility is needed to handle potential delays. It provides a balance between performance and data safety by allowing transactions to
be considered committed even if they cannot be confirmed by the majority of nodes within the specified timeout, while still providing a higher level of protection compared to the local protect commitscope.

Examples

e Setthe lag protect commitscope fora transaction using the SET LOCAL command:

BEGIN;
SET LOCAL bdr.commit_scope = 'lag
protect';

—-= Your transaction statements
here

COMMIT;

This ensures that the transaction is committed with the specified commit scope, providing the desired level of durability and availability.

Setthe majority protect commitscope for the entire session using the SET command:

SET bdr.commit_scope = 'majority
protect';

This ensures that all transactions executed in the session will use the specified commit scope, providing the desired level of durability and availability.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 125

EDB Postgres Distributed (PGD)

e Setthe adaptive protect commitscope fora PGD group using the bdr.alter_node_group_option() function:

SELECT bdr.alter_node_group_option(
node_group_name:="'mygroup',
config_key:="'default_commit_scope',
config_value:='adaptive

protect');

This ensures that all transactions executed in the specified PGD group will use the specified commit scope, providing the desired level of durability and availability, unless overridden by a session or transaction-level setting.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 126

13.5 Origin groups

EDB Postgres Distributed (PGD)

Rules for commit scopes can depend on the node the transaction is committed on, that is, the node that acts as the origin for the transaction. The bottom group of the group tree to which that node belongs is the transaction'sorigin group. To

make this transparent for the application, PGD allows a commit scope to define different rules depending on the transaction's origin group.

For example, consider an EDB Postgres Distributed cluster with nodes spread across two data centers: a left (left_dc) and a right one (right_dc). Assume the top-level PGD node group is called top_group . You can use the following

commands to set up subgroups and create a commit scope requiring all nodes in the local data center to confirm the transaction but only one node from the remote one:

-- create sub-

groups

SELECT bdr.create_node_group(
node_group_name := 'left_dc',
parent_group_name := 'top_group',
join_node_group := false

)3

SELECT bdr.create_node_group(
node_group_name := 'right_dc',
parent_group_name := 'top_group',
join_node_group := false

)5

-- create a commit scope with individual

rules

-- for each sub-

group

SELECT
bdr.create_commit_scope(

commit_scope_name := 'example_scope',

origin_node_group := 'left_dc',

rule := 'ALL (left_dc) GROUP COMMIT (commit_decision=raft) AND ANY 1 (right_dc) GROUP

COMMIT',

wait_for_ready :=
true
)3
SELECT
bdr.create_commit_scope(

commit_scope_name := 'example_scope',

origin_node_group := 'right_dc',

rule := 'ANY 1 (left_dc) GROUP COMMIT AND ALL (right_dc) GROUP COMMIT

(commit_decision=raft)"',
wait_for_ready :=
true

)3

Now, using the example_scope onany node that's part of left_dc uses the first scope. Using the same scope on a node that's part of right_dc uses the second scope. By combining the left_dc and right_dc originrules
under one commit scope name, an application can simply use example_scope on either data center and get the appropriate behavior for that data center.

Each group can also have a default commit scope specified using the bdr.alter_node_group_option admin interface.

Making the above scopes the default ones for all transactions originating on nodes in those groups looks like this:

SELECT bdr.alter_node_group_option(
node_group_name := 'left_dc',

config_key := 'default_commit_scope',

config_value := 'example_scope'
)5
SELECT bdr.alter_node_group_option(
node_group_name := 'right_dc',

config_key := 'default_commit_scope',

config_value := 'example_scope'

)5

ORIGIN_GROUP

You can also refer to the origin group of a transaction dynamically when creating a commit scope rule by using ORIGIN_GROUP .

This can make certain commit scopes rules like those above in example_scope , even easier to specify in that you can simply specify one rule instead of two.

For example, again suppose that for transactions originating from nodes in right_dc youwantall nodesin right_dc toconfirmandany 1 from left_dc to confirm before the transaction is committed. Also, again suppose that for
transactions originatingin left_dc youwantall nodesin left_dc andany1in right_dc to confirm before the transaction is commited. Above we used these two rules for this when defining example_scope :

SELECT
bdr.create_commit_scope(

commit_scope_name := 'example_scope',

origin_node_group := 'left_dc',

rule := 'ALL (left_dc) GROUP COMMIT (commit_decision=raft) AND ANY 1 (right_dc) GROUP

COMMIT',
wait_for_ready :=
true
)3
SELECT
bdr.create_commit_scope(
commit_scope_name
origin_node_group := 'right_dc',

rule := 'ANY 1 (left_dc) GROUP COMMIT AND ALL (right_dc) GROUP COMMIT

(commit_decision=raft)"',
wait_for_ready :=
true

)s

However, with ORIGIN_GROUP , just adding and using the following single-rule commit scope, example_scope_2 , will have the same effect as the two individual rules we used above in example_scope :

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

:= 'example_scope',

127

EDB Postgres Distributed (PGD)

SELECT
bdr.create_commit_scope(

commit_scope_name := 'example_scope_2',

origin_node_group := 'top_group',
rule := 'ALL ORIGIN_GROUP GROUP COMMIT (commit_decision=raft) AND ANY 1 NOT ORIGIN_GROUP GROUP

COMMIT';
wait_for_ready :=
true

)3

Under example_scope_2 ,when a transaction originates from left_dc, ORIGIN_GROUP mapsto left_dc and NOT ORIGIN_GROUP mapsto right_dc . Likewise, when atransaction originates from right_dc,
ORIGIN_GROUP mapsto right_dc and NOT ORIGIN_GROUP mapsto left_dc .So by only specifying one rule, you get the effect of two.

Note that if you added more subgroups, for instance a third child of top_group, middle_dc , thenaccordingto example_scope_2 above, for transactions originating from left_dc , all the nodesin left_dc mustplusany1in
right_dc andany1in middle_dc must confirm before the transaction is committed. Of course then for transactions originating in right_dc all the nodesin right_dc plusany 1 nodein left_dc andany 1 nodein
middle_dc must confirm before the transaction is committed. Lastly, because middle_dc isa child of top_group, example_scope_2 also means that for transactions originating in middle_dc , all the nodesin middle_dc

plusany 1 nodein left_dc andany 1 nodein right_dc must confirm before the transaction is committed.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 128

EDB Postgres Distributed (PGD)

13.6 Commit scope rules

Commit scope rules are at the core of the commit scope mechanism. They define what the commit scope enforces.
Commit scope rules are composed of one or more operations that work in combination. Use an AND between rules.

Each operation is made up of two or three parts: the commit scope group, an optional confirmation level, and the kind of commit scope, which can have its own parameters.
commit_scope_group [confirmation_level] commit_scope_kind

A full formal syntax diagram is available in the Commit scopes reference.

A typical commit scope rule, suchas ANY 2 (group) GROUP COMMIT,can be broken down into its components. ANY 2 (group) isthe commit scope group specifying, for the rule, which nodes need to respond and confirm they
processed the transaction. In this example, any two nodes from the named group must confirm.

No confirmation level is specified, which means that the default is used. You can think of the rule in full, then, as:
ANY 2 (group) ON visible GROUP COMMIT

The visible setting means the nodes can confirm once all the transaction's changes are flushed to disk and visible to other transactions.

The last part of this operation is the commit scope kind, which in this example is GROUP COMMIT . GROUP COMMIT isa synchronous two-phase commit that's confirmed when any two nodes in the named group confirm they've flushed the
transactions changes and made them visible.

The commit scope group

There are three kinds of commit scope groups: ANY , ALL ,and MAJORITY . They're all followed by a list of one or more groups in parentheses. This list of groups combines to make a pool of nodes this operation applies to. This list can be
preceded by NOT , which inverts the pool to be all other groups that aren't in the list.

e ANY n isfollowed by an integer value, n.Ittranslates toany n nodesin the listed groups' nodes.

e ALL isfollowed by the groups and translates to all nodes in the listed groups' nodes.

e MAJORITY isfollowed by the groups and translates to requiring a half, plus one, of the listed groups' nodes to confirm, to give a majority.

e ANY n NOT is followed by an integer value, n . It translates to any n nodes that aren'tin the listed groups' nodes.

e ALL NOT isfollowed by the groups and translates to all nodes that aren't in the listed groups' nodes.

e MAJORITY NOT is followed by the groups and translates to requiring a half, plus one, of the nodes that aren't in the listed groups' nodes to confirm, to give a majority.

All of the above expressions only consider data nodes in the groups in their evaluation. Witness nodes and other non-data nodes are ignored.

The confirmation level

PGD nodes can send confirmations for a transaction at different times. In increasing levels of protection, from the perspective of the confirming node, these are:
e received — Aremote PGD node confirms the transaction immediately after receiving it, prior to starting the local application.
e replicated — Confirms after applying changes of the transaction but before flushing them to disk.

e durable — Confirms the transaction after all of its changes are flushed to disk.
e visible (default) — Confirms the transaction after all of its changes are flushed to disk and it's visible to concurrent transactions.

In rules for commit scopes, you can append these confirmation levels to the node group definition in parentheses with ON , as follows:

® ANY 2 (right_dc) ON replicated
e ALL (left_dc) ON visible (default)
® ALL (left_dc) ON received AND ANY 1 (right_dc) ON durable

Note

If you're familiar with PostgreSQL's synchronous_standby_names feature, be aware that while the grammar for synchronous_standby_names and commit scopes can look similar, there's a subtle difference. The former
doesn't account for the origin node, but the latter does. For example, synchronous_standby_names = 'ANY 1 (..)' isequivalenttoacommitscopeof ANY 2 (...) .This difference makes reasoning about majority
easier and reflects that the origin node also contributes to the durability and visibility of the transaction.

The commit scope kinds

Currently, there are four commit scope kinds. The following is a summary, with links to more details.

SYNCHRONOUS COMMIT

Synchronous Commit is a commit scope option that's designed to behave like the native Postgres synchronous_commit option, but is usable from within the commit scope environment. Unlike GROUP COMMIT , it's a synchronous non-
two-phase commit operation. Like GROUP COMMIT , it supports an optional DEGRADE ON clause. The commit scope group that comes before this option controls the groups and confirmation requirements the SYNCHRONOUS COMMIT

uses.

For more details, see SYNCHRONOUS COMMIT .

GROUP COMMIT

Group Commit is a synchronous, two-phase commit that's confirmed according to the requirements of the commit scope group. GROUP COMMIT has options that control:

® Whether to track transactions over interruptions (Boolean, defaults to off)
® How to resolve conflicts (async or eager ,defaultsto async)
® How to obtain a consensus (group , partner or raft,defaultsto group)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 129

EDB Postgres Distributed (PGD)

For more details, see GROUP COMMIT .

CAMO

Commit At Most Once, or CAMO, allows the client/application, origin node, and partner node to ensure that a transaction is committed to the database at most once. Because the client is involved in the process, an application will require
modifications to participate in the CAMO process.

For more details, see CAMO .

LAG CONTROL

With Lag Control, when the system's replication performance exceeds specified limits, a commit delay can be automatically injected into client interaction with the database, providing a back pressure on clients. Lag Control has parameters to
set the maximum commit delay that can be exerted. It also has limits in terms of time to process or queue size that trigger increases in that commit delay.

For more details, see LAG CONTROL .

Combining rules

Commit scope rules are composed of one or more operations that work in combination. Use an AND to form a single rule. For example:
MAJORITY (Region_A) SYNCHRONOUS COMMIT AND ANY 1 (Region_A) LAG CONTROL (MAX_LAG_SIZE = '50MB')

The first operation sets up a synchronous commit against a majority of Region_A . The second operation adds lag control that starts pushing the commit delay up when any one of the nodes in Region_A has more than 50MB of lag. This
combination of operations allows the lag control to operate when any node is lagging.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 130

EDB Postgres Distributed (PGD)

13.7 Comparing durability options

Comparison
Most options for synchronous replication available to PGD allow for different levels of synchronization, offering different tradeoffs between performance and protection against node or network outages.

The following list of confirmation levels explains what a user should expect to see when that confirmation level is in effect and how that can affect performance, durability, and consistency.

ON RECEIVED

Expect: The peer node has received the changes. Nothing has been updated in the peer nodes tuple store or written to storage.

Confirmation on reception means that the peer operating normally can eventually, apply the transaction without requiring any further communication, even in the face of a full or partial network outage. A crash of a peer node might still
require retransmission of the transaction, as this confirmation doesn't involve persistent storage.

For: The origin node in the transaction only has to wait for the reception of the transaction. Where transactions are large, it may improve the TPS performance of the system.

Against: An increased likelihood of stale reads. Overall, ON RECEIVED is not robust because data can be lost when either a Postgres server or operating system crash occurs.

ON REPLICATED

Expect: The peer node has received the changes and applied them to the tuple store. The changes have been written to storage, but the storage has not been flushed to disk.
Confirmation on replication means the peer has received and applied the changes. Those changes have been written to storage, but will still be in operating system caches and buffers. The system has yet to persist them to disk.
For: This checkpoint is further down the timeline of transaction processing. The origin node only waits for the transaction to be applied, but not persisted.

Against: There's a slightly lower chance of stale reads over ON RECEIVED. Also, with ON REPLICATED data can survive a Postgres crash but will still not survive an operating system crash.

ON DURABLE

Expect: The peer node has received the changes, applied them to the tuple store and persisted the changes to storage. It has yet to make the changes available to other sessions.

Durable confirmation means that the transaction has been written and flushed to the peer node's storage. This protects against loss of data after a crash and recovery of the peer node. But, if a session commits a transaction with an ON
DURABLE rule before disconnecting and reconnecting, the transaction's changes are not guaranteed to be visible to the reconnected session.

When used with the Group Commit commit scope kind, this also means the changes are visible.
For: More robust, able to recover without retransmission in the event of a crash.

Against: Doesn't guarantee consistency in cases of failover.

ON VISIBLE

Expect: The peer node has received and applied the changes, persisted and flushed those changes to storage.

Confirmation of visibility means that the transaction was fully applied remotely. If a session commits a transaction with an ON VISIBLE rule before disconnecting and reconnecting, the transaction's changes are guaranteed to be visible to the
reconnected session.

For: Robust and consistent.

Against: Lower performance.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 131

EDB Postgres Distributed (PGD)

13.8 Degrading commit scope rules

SYNCHRONOUS COMMIT and CAMO each have the optional capability of degrading the requirements for transactions when particular performance thresholds are crossed. GROUP COMMIT cannot degrade, but can abort on timing out.
When a node is applying a transaction and that transaction times out, it can be useful to trigger a process of degrading the requirements of the transaction to be completed, rather than just rolling back.
DEGRADE ON offers a route for gracefully degrading the commit scope rule of a transaction. At its simplest, DEGRADE ON takes a timeout and a second set of commit scope operations that the commit scope can gracefully degrade to.

For instance, after 20ms or 30ms timeout, the requirements for satisfying a commit scope could degrade from ALL (node_group_name) SYNCHRONOUS COMMIT to MAJORITY (node_group_name) SYNCHRONOUS COMMIT,
making the transactions apply more steadily.

You can also require that the write leader be the originator of a transaction in order for the degrade clause to be triggered. This can be helpful in "split brain scenarios" where you have, say, 2 data nodes and a witness node. Supposing there is a
network split between the two data nodes and you have connections to both of the data nodes, only one of them will be allowed to degrade, because only one of them will be elected leader through the raft election with the witness node.

Behavior
There are two parts to how the generalized DEGRADE clause behaves as it is applied to transactions.

Once during the commit, while the commit being processed is waiting for responses that satisfy the commit scope rule, PGD checks for a timeout and, if the timeout has expired, the commit being processed is reconfigured to wait for the
commit scope rule in the DEGRADE clause. In fact, by this point, the commit scope rule in the DEGRADE clause might already be satisfied.

This mechanism alone is insufficient for the intended behavior, as this alone would mean that every transaction—even those that were certain to degrade due to connectivity issues—must wait for the timeout to expire before degraded mode
kicks in, which would severely affect performance in such degrading-cluster scenarios.

To avoid this, the PGD manager process also periodically (every 5s) checks the connectivity and apply rate (the one in bdr.node_replication_rates) and if there are commit scopes that would degrade at that point based on the current state of
replication, they will be automatically degraded—such that any transaction using that commit scope when processing after that uses the degraded rule instead of waiting for timeout—until the manager process detects that replication is
moving swiftly enough again.

SYNCHRONOUS COMMIT and GROUP COMMIT

Both SYNCHRONOUS COMMIT and GROUP COMMIT have timeout and require_write_lead parameters, with defaults of © and false respectively. You should probably always set the timeout , as the default of © causes
an instant degrade. You can also require that the write leader be the originator of the transaction in order to switch to degraded mode (again, defaultis false).For SYNCHRONOUS COMMIT the timeout and require_write_lead
apply to degrade, and for GROUP COMMIT these parameters apply to abort. A GROUP COMMIT commit scope cannot degrade anda SYNCHRONOUS COMMIT commit scope cannot abort, since it is already committed on the primary prior
to waiting for confirmations from other nodes.

SYNCHRONOUS COMMIT also has options regarding which rule you can degrade to—which depends on which rule you are degrading from.
First of all, you can degrade to asynchronous operation:

ALL (left_dc) SYNCHRONOUS COMMIT DEGRADE ON (timeout=20s) TO
ASYNC

You can also degrade to a less restrictive commit group with the same commit scope kind (again as long as the kind is either SYNCHRONOUS_COMMIT or GROUP COMMIT). For instance, you can degrade as follows:

ALL (left_dc) SYNCHRONOUS COMMIT DEGRADE ON (timeout=20s) TO MAJORITY (left_dc) SYNCHRONOUS
COMMIT

or as follows:

ANY 3 (left_dc) SYNCHRONOUS COMMIT DEGRADE ON (timeout=20s) TO ANY 2 (left_dc) SYNCHRONOUS
COMMIT

But you cannot degrade from SYNCHRONOUS COMMIT to GROUP COMMIT .

CAMO

While CAMO supports both the same timeout and require_write_lead parameters (with the same defaults, © and false respectively), the options are simpler in that you can only degrade to asynchronous operation.

ALL (left_dc) CAMO DEGRADE ON (timeout=20ms, require_write_lead=true) TO
ASYNC

Again, you should set the timeout parameter, as the defaultis © .

Monitoring degrade events
Use the bdr.stat_commit_scope to track degrade events. Three key metrics provide visibility into the degrade behavior:

e ndegrades tracks per-transaction degrade events. It increments each time a backend hits the degrade timeout during commit and successfully degrades that specific transaction. This metric shows the total number of individual
transactions that have experienced degradation.

e nconfig_degrades tracks configuration-level state changes to the degraded mode. It increments when the background worker (manager process) switches the commit scope's shared state to degraded, based on node availability
checks. This indicates how many times the commit scope configuration itself entered the degraded state, affecting all subsequent transactions until recovered.

e last_state_change_time records the timestamp of the last configuration-level state change (either entering or recovering from the degraded state). Use this metric to identify precisely when the commit scope last transitioned
between normal and degraded operation, adding correlation with other system events or outages.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 132

EDB Postgres Distributed (PGD)

Example monitoring query

View commit scope statistics including degrade events and the latest configuration-level state change:

SELECT
commit_scope_name,
ndegrades,
nconfig_degrades,
last_state_change_time,
CASE
WHEN last_state_change_time IS NULL THEN 'never degraded'

WHEN age(now(), last_state_change_time) < interval '5 seconds' THEN 'recently
changed'

ELSE 'stable for ' || age(now(),
last_state_change_time)::text

END AS state_change_info

FROM
bdr.stat_commit_scope
WHERE ndegrades > 0 OR nconfig_degrades >
[¢]

ORDER BY last_state_change_time DESC NULLS LAST;

These metrics together provide complete visibility into both immediate per-transaction fallback and longer-term state management degrade behavior, along with temporal context for troubleshooting.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 133

EDB Postgres Distributed (PGD)

13.9 Synchronous Commit

Commit scope kind: SYNCHRONOUS COMMIT

Overview

PGD's SYNCHRONOUS COMMIT isacommitscope kind that works in a way that's more like PostgreSQL's synchronous_commit option in its underlying operation. Unlike the PostgreSQL option, though, it's configured as a commit scope
and is easier to configure and interact with in PGD.

Unlike other commit scope kinds, such as GROUP COMMIT and CAMO , the transactionsina SYNCHRONOUS COMMIT operation aren't transformed into a two-phase commit (2PC) transaction. They work more like a Postgres
synchronous_commit .

Example

In this example, when this commit scope is in use, any node in the left_dc group uses SYNCHRONOUS COMMIT to replicate changes to the other nodes in the left_dc group. It looks for a majority of nodes in the left_dc groupto
confirm that they committed the transaction.

SELECT bdr.create_commit_scope(
commit_scope_name := 'example_sc_scope',
origin_node_group := 'left_dc',
rule := 'MAJORITY (left_dc) SYNCHRONOUS COMMIT',
wait_for_ready := true

Configuration

SYNCHRONOUS COMMIT supports the optional DEGRADE ON clause. See the SYNCHRONOUS COMMIT commit scope reference for specific configuration parameters or see this section regarding Degrade on options.

Confirmation

Confirmation level PGD Synchronous Commit handling

received Aremote PGD node confirms the transaction once it's been fully received and is in the in-memory write queue.
replicated Same behavioras received .
durable Confirms the transaction after all of its changes are flushed to disk. Analogous to synchronous_commit = on in legacy synchronous replication.

Confirms the transaction after all of its changes are flushed to disk and it's visible to concurrent transactions. Analogous to synchronous_commit = remote_apply in legacy synchronous

visible (default) -
replication.

Details
Currently SYNCHRONOUS COMMIT doesn't use the confirmation levels of the commit scope rule syntax.

In commit scope rules, the original keyword SYNCHRONOUS_COMMIT is now aliased to SYNCHRONOUS COMMIT .The use of a space instead of an underscore helps distinguish it from Postgres's native SYNCHRONOUS_COMMIT .

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 134

https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-SYNCHRONOUS-COMMIT

EDB Postgres Distributed (PGD)

13.10 Group Commit

Commit scope kind: GROUP COMMIT

Overview

The goal of Group Commit is to protect against data loss in case of single node failures or temporary outages. You achieve this by requiring more than one PGD node to successfully confirm a transaction at COMMIT time. Confirmation can be
sent at a number of points in the transaction processing but defaults to "visible" when the transaction has been flushed to disk and is visible to all other transactions.

Warning

Group commit is currently offered as an experimental feature intended for preview and evaluation purposes. While it provides valuable capabilities, it has known limitations and challenges that make it unsuitable for production
environments. We recommend that customers avoid using this feature in production scenarios until these limitations are addressed in future releases.

Example

SELECT
bdr.create_commit_scope(

commit_scope_name := 'example_scope',

origin_node_group := 'left_dc',

rule := 'ALL (left_dc) GROUP COMMIT (commit_decision=raft) AND ANY 1 (right_dc) GROUP
COMMIT',

wait_for_ready :=
true

)3

This example creates a commit scope where all the nodes in the left_dc group and any one of the nodes in the right_dc group must receive and successfully confirm a committed transaction.

Requirements

During normal operation, Group Commit is transparent to the application. Transactions that were in progress during failover need the reconciliation phase triggered or consolidated by either the application or a proxy in between. This activity
currently happens only when either the origin node recovers or when it's parted from the cluster. This behavior is the same as with Postgres legacy built-in synchronous replication.

Transactions committed with Group Commit use two-phase commit underneath. Therefore, configure max_prepared_transactions high enough to handle all such transactions originating per node.

Limitations

See the Group Commit section of Known Issues and Limitations.

Configuration

GROUP_COMMIT supports optional GROUP COMMIT parameters, as wellas ABORT ON and DEGRADE ON clauses. For a full description of configuration parameters, see the GROUP_COMMIT commit scope reference or for more
regarding DEGRADE ON options in general, see the Degrade options section.

Confirmation
Confirmation level Group Commit handling

received A remote PGD node confirms the transaction immediately after receiving it, prior to starting the local application.
replicated Confirms after applying changes of the transaction but before flushing them to disk.

durable Confirms the transaction after all of its changes are flushed to disk.

visible (default) Confirms the transaction after all of its changes are flushed to disk and it's visible to concurrent transactions.

Behavior

The behavior of Group Commit depends on the configuration applied by the commit scope.

Commit decisions

You can configure Group Commit to decide commits in three different ways: group , partner ,and raft.

The group decision is the default. It specifies that the commit is confirmed by the origin node upon receiving as many confirmations as required by the commit scope group. The difference is that the commit decision is made based on
PREPARE replication while the durability checks COMMIT (PREPARED) replication.

The partner decision is what Commit At Most Once (CAMO) uses. This approach works only when there are two data nodes in the node group. These two nodes are partners of each other, and the replica rather than origin decides whether to
commit something. This approach requires application changes to use the CAMO transaction protocol to work correctly, as the application is in some way part of the consensus. For more on this approach, see CAMO.

The raft decision uses PGDs built-in Raft consensus for commit decisions. Use of the raft decision can reduce performance. It's currently required only when using GROUP COMMIT with an ALL commit scope group.

Using an ALL commit scope group requires that the commit decision must be set to raft to avoid reconciliation issues.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 135

https://www.enterprisedb.com/docs/pgd/latest/terminology/#two-phase-commit-2pc
https://www.enterprisedb.com/docs/pgd/latest/known_issues/#group-commit

EDB Postgres Distributed (PGD)

Conflict resolution

Conflict resolution can be async or eager .

Async means that PGD does optimistic conflict resolution during replication using the row-level resolution as configured for a given node. This happens regardless of whether the origin transaction committed or is still in progress. See
Conflicts for details about how the asynchronous conflict resolution works.

Eager means that conflicts are resolved eagerly (as part of agreement on COMMIT), and conflicting transactions get aborted with a serialization error. This approach provides greater isolation than the asynchronous resolution at the price of
performance.

Using an ALL commit scope group requires that the commit decision must be set to raft to avoid reconciliation issues.

For details about how Eager conflict resolution works, see Eager conflict resolution.

Aborts

To prevent a transaction that can't get consensus on the COMMIT from hanging forever, the ABORT ON clause allows specifying timeout. After the timeout, the transaction abort is requested. If the transaction is already decided to be
committed at the time the abort request is sent, the transaction does eventually COMMIT even though the client might receive an abort message.

See also Limitations.

Transaction reconciliation

A Group Commit transaction's commit on the origin node is implicitly converted into a two-phase commit.

In the first phase (prepare), the transaction is prepared locally and made ready to commit. The data is made durable but is uncomitted at this stage, so other transactions can't see the changes made by this transaction. This prepared
transaction gets copied to all remaining nodes through normal logical replication.

The origin node seeks confirmations from other nodes, as per rules in the Group Commit grammar. If it gets confirmations from the minimum required nodes in the cluster, it decides to commit this transaction moving onto the second phase
(commit). In the commit phase, it also sends this decision by way of replication to other nodes. Those nodes will also eventually commit on getting this message.

There's a possibility of failure at various stages. For example, the origin node may crash after preparing the transaction. Or the origin and one or more replicas may crash.

This leaves the prepared transactions in the system. The pg_prepared_xacts view in Postgres can show prepared transactions on a system. The prepared transactions might be holding locks and other resources. To release those locks and
resources, either abort or commit the transaction. That decision must be made with a consensus of nodes.

When commit_decision is raft,then, Raft acts as the reconciliator, and these transactions are eventually reconciled automatically.

When the commit_decision is group,then, transactions don't use Raft. Instead the write lead in the cluster performs the role of reconciliator. This is because it's the node that's most ahead with respect to changes in its subgroup. It
detects when a node is down and initiates reconciliation for such a node by looking for prepared transactions it has with the down node as the origin.

For all such transactions, it sees if the nodes as per the rules of the commit scope have the prepared transaction, it takes a decision. This decision is conveyed over Raft and needs the majority of the nodes to be up to do reconciliation.

This process happens in the background. There's no command for you to use to control or issue this.

Eager conflict resolution
Eager conflict resolution (also known as Eager Replication) prevents conflicts by aborting transactions that conflict with each other with serializable errors during the COMMIT decision process.

You configure it using commit scopes as one of the conflict resolution options for Group Commit.

Usage

To enable Eager conflict resolution, the client needs to switch to a commit scope, which uses it at session level or for individual transactions as shown here:

BEGIN;

SET LOCAL bdr.commit_scope =
'eager_scope';

other commands
possible...

The client can continue to issue a COMMIT at the end of the transaction and let PGD manage the two phases:
COMMIT;
In this case, the eager_scope commit scope is defined something like this:

SELECT
bdr.create_commit_scope(
commit_scope_name := 'eager_scope',
origin_node_group := 'top_group',
rule := 'ALL (top_group) GROUP COMMIT (conflict_resolution = eager, commit_decision = raft) ABORT ON (timeout =
60s) ',
wait_for_ready :=
true

)3

The commit scope group for the Eager conflict resolution rule can only be ALL or MAJORITY . Where ALL is used, the commit_decision setting mustalso besetto raft .

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 136

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts
https://www.enterprisedb.com/docs/pgd/latest/known_issues/#general-durability-limitations

EDB Postgres Distributed (PGD)

Error handling

Given that PGD manages the transaction, the client needs to check only the result of the COMMIT . This is advisable in any case, including single-node Postgres.
In case of an origin node failure, the remaining nodes eventually (after at least ABORT ON timeout) decide to roll back the globally prepared transaction. Raft prevents inconsistent commit versus rollback decisions. However, this requires

a majority of connected nodes. Disconnected nodes keep the transactions prepared to eventually commit them (or roll back) as needed to reconcile with the majority of nodes that might have decided and made further progress.

Effects of Eager Replication in general

Increased abort rate

With single-node Postgres, or even with PGD in its default asynchronous replication mode, errors at COMMIT time are rare. The added synchronization step due to the use of a commit scope using eager for conflict resolution also adds a
source of errors. Applications need to be prepared to properly handle such errors, usually by applying a retry loop.

The rate of aborts depends solely on the workload. Large transactions changing many rows are much more likely to conflict with other concurrent transactions.

Effects of MAJORITY and ALL node replication in general

Increased commit latency

Adding a synchronization step due to the use of a commit scope means more communication between the nodes, resulting in more latency at commit time. When ALL is used in the commit scope, this also means that the availability of the
system is reduced, since any node going down causes transactions to fail.

If one or more nodes are lagging behind, the round-trip delay in getting confirmations can be large, causing high latencies. ALL or MAJORITY node replication adds roughly two network round trips (to the furthest peer node in the worst case).
Logical standby nodes and nodes still in the process of joining or catching up aren't included but eventually receive changes.

Before a peer node can confirm its local preparation of the transaction, it also needs to apply it locally. This further adds to the commit latency, depending on the size of the transaction. This setting is independent of the
synchronous_commit setting.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 137

EDB Postgres Distributed (PGD)

13.11 Commit At Most Once

Commit scope kind: CAMO

Overview
The objective of the Commit At Most Once (CAMO) feature is to prevent the application from committing more than once.
Without CAMO, when a client loses connection aftera COMMIT is submitted, the application might not receive a reply from the server and is therefore unsure whether the transaction committed.
The application can't easily decide between the two options of:
® Retrying the transaction with the same data, since this can in some cases cause the data to be entered twice
o Not retrying the transaction and risk that the data doesn't get processed at all
Either of those is a critical error with high-value data.

One way to avoid this situation is to make sure that the transaction includes at least one INSERT into a table with a unique index. However, that depends on the application design and requires application-specific error-handling logic, so it
isn't effective in all cases.

The CAMO feature in PGD offers a more general solution and doesn't require an INSERT . When activated by bdr.commit_scope, the application receives a message containing the transaction identifier, if already assigned. Otherwise,
the first write statement in a transaction sends that information to the client.

If the application sends an explicit COMMIT , the protocol ensures that the application receives the notification of the transaction identifier before the COMMIT is sent. If the server doesn't reply to the COMMIT , the application can handle
this error by using the transaction identifier to request the final status of the transaction from another PGD node. If the prior transaction status is known, then the application can safely decide whether to retry the transaction.

CAMO works by creating a pair of partner nodes that are two PGD nodes from the same PGD group. In this operation mode, each node in the pair knows the outcome of any recent transaction executed on the other peer and especially (for our
need) knows the outcome of any transaction disconnected during COMMIT . The node that receives the transactions from the application might be referred to as "origin" and the node that confirms these transactions as "partner." However,
there's no difference in the CAMO configuration for the nodes in the CAMO pair. The pair is symmetric.

Warning
CAMO requires changes to the user's application to take advantage of the advanced error handling. Enabling a parameter isn't enough to gain protection. Reference client implementations are provided to customers on request.
Note

The CAMO commit scope kind is mostly an alias for GROUP COMMIT (transaction_tracking = true, commit_decision = partner) withanadditional DEGRADE ON clause.

Requirements

To use CAMO, an application must issue an explicit COMMIT message as a separate request, not as part of a multi-statement request. CAMO can't provide status for transactions issued from procedures or from single-statement transactions
that use implicit commits.

Configuration

See the CAMO commit scope reference for configuration parameters.

Confirmation

Confirmation Level CAMO handling

received Not applicable, only uses the default, VISIBLE .
replicated Not applicable, only uses the default, VISIBLE .
durable Not applicable, only uses the default, VISIBLE .

visible (default) Confirms the transaction after all of its changes are flushed to disk and it's visible to concurrent transactions.

Limitations

See the CAMO section of Limitations.

Failure scenarios

Different failure scenarios occur in different configurations.

Data persistence at receiver side

By default, a PGL writer operatesin bdr.synchronous_commit = off mode when applying transactions from remote nodes. This holds true for CAMO as well, meaning that transactions are confirmed to the origin node possibly before
reaching the disk of the CAMO partner. In case of a crash or hardware failure, a confirmed transaction might be unrecoverable on the CAMO partner by itself. This isn't an issue as long as the CAMO origin node remains operational, as it
redistributes the transaction once the CAMO partner node recovers.

This in turn means CAMO can protect against a single-node failure, which is correct for local mode as well as or even in combination with remote write.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 138

https://www.enterprisedb.com/docs/pgd/latest/known_issues/#camo

EDB Postgres Distributed (PGD)

To cover an outage of both nodes of a CAMO pair, you can use bdr.synchronous_commit = local to enforce a flush prior to the pre-commit confirmation. This doesn't work with either remote write or local mode and has a
performance impact due to I/0 requirements on the CAMO partner in the latency sensitive commit path.

Asynchronous mode

When the DEGRADE ON ... TO ASYNC clause is used in the commit scope, a node detects whether its CAMO partner is ready. If not, it temporarily switches to asynchronous (local) mode. When in this mode, a node commits transactions
locally until switching back to CAMO mode.

This doesn't allow COMMIT status to be retrieved, but it does let you choose availability over consistency. This mode can tolerate a single-node failure. In case both nodes of a CAMO pair fail, they might choose incongruent commit decisions to
maintain availability, leading to data inconsistencies.

For a CAMO partner to switch to ready, it needs to be connected, and the estimated catchup interval needs to drop below the timeout value of TO ASYNC .You can check the current readiness status of a CAMO partner with
bdr.is_camo_partner_ready() ,while bdr.node_replication_rates provides the current estimate of the catchup time.

The switch from CAMO-protected to asynchronous mode is only ever triggered by an actual CAMO transaction. This is true either because the commit exceeds the timeout value of TO ASYNC or, in case the CAMO partner is already
known, disconnected at the time of commit. This switch is independent of the estimated catchup interval. If the CAMO pair is configured to require the current node to be the write lead of a group as configured through the enable_routing
node group option. See Commit scopes for syntax. This can prevent a split brain situation due to an isolated node from switching to asynchronous mode. If enable_routing isn't set for the CAMO group, the origin node switches to
asynchronous mode immediately.

The switch from asynchronous mode to CAMO mode depends on the CAMO partner node, which initiates the connection. The CAMO partner tries to reconnect at least every 30 seconds. After connectivity is reestablished, it might therefore take
up to 30 seconds until the CAMO partner connects back to its origin node. Any lag that accumulated on the CAMO partner further delays the switch back to CAMO protected mode.

Unlike during normal CAMO operation, in asynchronous mode there's no added commit overhead. This can be problematic, as it allows the node to continuously process more transactions than the CAMO pair can normally process. Even if the
CAMO partner eventually reconnects and applies transactions, its lag only ever increases in such a situation, preventing reestablishing the CAMO protection. To artificially throttle transactional throughput, PGD provides the

bdr.camo_local_mode_delay setting, which allows you to delaya COMMIT in local mode by an arbitrary amount of time. We recommend measuring commit times in normal CAMO mode during expected workloads and configuring this
delay accordingly. The default is 5 ms, which reflects a asynchronous network and a relatively quick CAMO partner response.

Consider the choice of whether to allow asynchronous mode in view of the architecture and the availability requirements. The following examples provide some detail.

Example

This example considers a setup with two PGD nodes that are the CAMO partner of each other:

-- create a CAMO commit scope for a group

over

-- a definite pair of

nodes

SELECT

bdr.create_commit_scope(
commit_scope_name := 'example_scope',

origin_node_group := 'camo_dc',
rule := 'ALL (left_dc) CAMO DEGRADE ON (timeout=500ms) TO
ASYNC'

)s

For this CAMO commit scope to be legal, the number of nodes in the group must equal exactly 2. Using ALL or ANY 2 on a group consisting of several nodes is an error because the unquantified group expression doesn't resolve to a definite pair
of nodes.

With asynchronous mode

If asynchronous mode is allowed, there's no single point of failure. When one node fails:

® The other node can determine the status of all transactions that were disconnected during COMMIT on the failed node.
® New write transactions are allowed. If the second node also fails, then the outcome of those transactions that were being committed at that time is unknown.

Without asynchronous mode

If asynchronous mode isn't allowed, then each node requires the other node for committing transactions, that is, each node is a single point of failure. When one node fails:

e The other node can determine the status of all transactions that were disconnected during COMMIT on the failed node.
e New write transactions are prevented until the node recovers.

Application use
Overview and requirements
CAMO relies on a retry loop and specific error handling on the client side. There are three aspects to it:

® The result of a transaction's COMMIT needs to be checked and, in case of a temporary error, the client must retry the transaction.
e Priorto COMMIT, the client must retrieve a global identifier for the transaction, consisting of a node id and a transaction id (both 32-bit integers).
e [f the current server fails while attempting a COMMIT of a transaction, the application must connect to its CAMO partner, retrieve the status of that transaction, and retry depending on the response.

The application must store the global transaction identifier only for the purpose of verifying the transaction status in case of disconnection during COMMIT . In particular, the application doesn't need another persistence layer. If the
application fails, it needs only the information in the database to restart.

To illustrate this, this example shows a retry loop in a CAMO-aware client application, written in a C-like pseudo-code. It expects two DSNs, origin_dsn and partner_dsn, providing connection information. These usually are the same
DSNs as used for the initial call to bdr.create_node and can be looked upin bdr.node_summary , column interface_connstr .

PGconn *conn = PQconnectdb(origin_dsn);

The process starts connecting to the origin node. Now enter the loop:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 139

EDB Postgres Distributed (PGD)

Tloop {
PQexec(conn, "BEGIN");

Next, start the transaction and begin populating it with changes:

PQexec(conn, "INSERT INTO ...");

Once you're done, you need to make a record of the local node id and the transaction id. Both are available as parameters.

node_id = PQparameterStatus(conn, "bdr.local_node_id");
xid = PQparameterStatus(conn, "transaction_id");

Now it's ready to try to commit.

PQexec(conn, "COMMIT");
if (PQresultStatus(res) == PGRES_COMMAND_OK)
return SUCCESS;

If the result is PGRES_COMMAND_OK , that's good, and you can move on. But if it isn't, you need to use CAMO to track the transaction to completion. The first question to ask is, "Was the connection bad?"

else if (PQstatus(res)
{

CONNECTION_BAD)

If it was a bad connection, then you can check on the CAMO partner node to see if the transaction made it there.

conn = PQconnectdb(partner_dsn);
if (!connectionEstablished())

panic();
If you can't connect to the partner node, there's not a lot you can do. In this case, panic, or take similar actions.
But if you can connect, you can use bdr.logical_transaction_status() to find out how the transaction did. The code recorded the required values, node_id and xid (the transaction id), just before committing the transaction.

sql = "SELECT bdr.logical_transaction_status($node_id, $xid)";
txn_status = PQexec(conn, sql);
if (txn_status == "committed")
return SUCCESS;
else
continue; // to retry the transaction on the partner

If the transaction reports it's been committed, then you can call this transaction a success. No more action is required. If, on the other hand, it doesn't report it's been committed, continue in the loop so the transaction can be retried on the
partner node.

else
{
if (isPermanentError())
return FAILURE;
else

{

sleep(increasing_retry_delay);

continue;

If status of the transaction wasn't success or bad connection, check if the problem was a permanent error. If so, report a failure of the transaction. If not, you can still retry it. Have the code sleep for a period of time that increases with each
retry, and then retry the transaction.

Working with the CAMO partner

Permissions required

A number of the following CAMO functions require permission. Any user wanting to use CAMO must have at least the bdr_application role assigned to them.
The function bdr.is_camo_partner_connected() allows checking the connection status of a CAMO partner node configured in pair mode. There currently is no equivalent for CAMO used with Eager Replication.
To check that the CAMO partner is ready, use the function bdr.is_camo_partner_ready . Underneath, this triggers the switch to and from local mode.
To find out more about the configured CAMO partner, use bdr.get_configured_camo_partner () .This function returns the local node's CAMO partner.

You can wait on the CAMO partner to process the queue with the function bdr.wait_for_camo_partner_queue() . This functionis a wrapper of bdr.wait_for_apply_queue . The difference is that
bdr.wait_for_camo_partner_queue() defaultsto querying the CAMO partner node. It returns an error if the local node isn't part of a CAMO pair.

To check the status of a transaction that was being committed when the node failed, the application must use the function bdr. logical_transaction_status() .

You pass this function the the node_id and transaction_id of the transaction you want to check on. With CAMO used in pair mode, you can use this function only on a node that's part of a CAMO pair. Along with Eager Replication, you can use it
on all nodes.

In all cases, you must call the function within 15 minutes after of issuing the commit. The CAMO partner must regularly purge such meta-information and therefore can't provide correct answers for older transactions.

Before querying the status of a transaction, this function waits for the receive queue to be consumed and fully applied. This mechanism prevents early negative answers for transactions that were received but not yet applied.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 140

EDB Postgres Distributed (PGD)

Despite its name, it's not always a read-only operation. If the status is unknown, the CAMO partner decides whether to commit or abort the transaction, storing that decision locally to ensure consistency going forward.

The client must not call this function before attempting to commit on the origin. Otherwise the transaction might be forced to roll back.

Connection pools and proxies

Consider the effect of connection pools and proxies when designing a CAMO cluster. A proxy might freely distribute transactions to all nodes in the commit group, that is, to both nodes of a CAMO pair or to all PGD nodes in case of Eager All-
Node Replication.

Take care to ensure that the application fetches the proper node id. When using session pooling, the client remains connected to the same node, so the node id remains constant for the lifetime of the client session. However, with finer-grained
transaction pooling, the client needs to fetch the node id for every transaction, as in the example that follows.

Aclient that isn't directly connected to the PGD nodes might not even notice a failover or switchover. But it can always use the bdr. local_node_1id parameter to determine the node it's currently connected to. In the crucial situation of a
disconnect during COMMIT, the proxy must properly forward that disconnect as an error to the client applying the CAMO protocol.

For CAMO in received mode, a proxy that potentially switches between the CAMO pairs must use the bdr.wait_for_camo_partner_queue function to prevent stale reads.

CAMO limitations

CAMO limitations are covered in Known Issues and Limitations.

Performance implications

CAMO extends the Postgres replication protocol by adding a message roundtrip at commit. Applications have a higher commit latency than with asynchronous replication, mostly determined by the round-trip time between involved nodes.
Increasing the number of concurrent sessions can help to increase parallelism to obtain reasonable transaction throughput.

The CAMO partner confirming transactions must store transaction states. Compared to non-CAMO operation, this might require an added seek for each transaction applied from the origin.

Client application testing

Proper use of CAMO on the client side isn't trivial. We strongly recommend testing the application behavior with the PGD cluster against failure scenarios, such as node crashes or network outages.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 141

https://www.enterprisedb.com/docs/pgd/latest/known_issues#camo

EDB Postgres Distributed (PGD)

13.12 Lag Control

Commit scope kind: LAG CONTROL

Overview

Lag Control provides a mechanism where, if replication is running outside of limits set, a delay is injected into the origin node's client connections after processing transactions that make replicable updates. This delay is designed to slow the
incoming transactions and bring replication back within the defined limits.

Background
The data throughput of database applications on a PGD origin node can exceed the rate at which committed data can replicate to downstream peer nodes.
If this imbalance persists, it can put satisfying organizational objectives, such as RPO, RCO, and GEO, at risk.

® Recovery point objective (RPO) specifies the maximum-tolerated amount of data that can be lost due to unplanned events, usually expressed as an amount of time. In PGD, RPO determines the acceptable amount of committed data that
hasn't been applied to one or more peer nodes.

® Resource constraint objective (RCO) acknowledges that finite storage is available. In PGD, the demands on these storage resources increase as lag increases.
© Group elasticity objective (GEO) ensures that any node isn't originating new data at a rate that can't be saved to its peer nodes.

To allow organizations to achieve their objectives, PGD offers Lag Control. This feature provides a means to precisely regulate the potential imbalance without intruding on applications. It does so by transparently introducing a delay to READ
WRITE transactions that modify data. This delay, the PGD commit delay, starts at Oms.

Using the LAG CONTROL commit scope kind, you can set a maximum time that commits can be delayed between nodes in a group, maximum lag time, or maximum lag size (based on the size of the WAL).

If the nodes can process transactions within the specified maximums on enough nodes, the PGD commit delay will stay at 0ms or be reduced toward Oms. If the maximums are exceeded on enough nodes, though, the PGD commit delay on the
originating node is increased. It will continue increasing until the Lag Control constraints are met on enough nodes again.

The PGD commit delay happens after a transaction has completed and released all its locks and resources. This timing of the delay allows concurrent active transactions to carry on observing and modifying the delayed transactions values and
acquiring its resources.

Strictly speaking, the PGD commit delay isn't a per-transaction delay. It's the mean value of commit delays over a stream of transactions for a particular client connection. This technique allows the commit delay and fine-grained adjustments

of the value to escape the coarse granularity of OS schedulers, clock interrupts, and variation due to system load. It also allows the PGD runtime commit delay to settle within microseconds of the lowest duration possible to maintain a lag
measure threshold.

PGD commit delay != Postgres commit delay

Don't conflate the PGD commit delay with the Postgres commit delay. They are unrelated and perform different functions. Don't substitute one for the other.

Requirements

To get started using Lag Control:
e Determine the maximum acceptable commit delay time max_commit_delay that all database applications can tolerate.
e Decide on the lag measure to use. Choose either lag size max_lag_size orlagtime max_lag_time .

e Decide on the groups or subgroups involved and the minimum number of nodes in each collection required to satisfy confirmation. This information forms the basis for the definition of a commit scope rule.

Configuration

You specify Lag Control in a commit scope, which allows consistent and coordinated parameter settings across the nodes spanned by the commit scope rule. You can include a Lag Control specification in the default commit scope of a top
group or as part of an origin group commit scope.

As in example, take a configuration with two datacenters, left_dc and right_dc, represented as subgroups:

SELECT bdr.create_node_group(
node_group_name := 'left_dc',
parent_group_name := 'top_group',
join_node_group := false

)5

SELECT bdr.create_node_group(
node_group_name := 'right_dc',
parent_group_name := 'top_group',
join_node_group := false

)5

The following code adds Lag Control rules for those two data centers, using individual rules for each subgroup:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 142

https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-COMMIT-DELAY

EDB Postgres Distributed (PGD)

SELECT
bdr.create_commit_scope(
commit_scope_name := 'example_scope',
origin_node_group := 'left_dc',
rule := 'ALL (left_dc) LAG CONTROL (max_commit_delay=500ms, max_lag_time=30s) AND ANY 1 (right_dc) LAG CONTROL (max_commit_delay=500ms,
max_lag_time=30s)',
wait_for_ready :=
true

)5
SELECT
bdr.create_commit_scope(
commit_scope_name := 'example_scope',
origin_node_group := 'right_dc',
rule := 'ANY 1 (left_dc) LAG CONTROL (max_commit_delay=0.250ms, max_lag_size=100MB) AND ALL (right_dc) LAG CONTROL (max_commit_delay=0.250ms,
max_lag_size=1060MB) ',
wait_for_ready :=
true

)3
You can add a Lag Control commit scope rule to existing commit scope rules that also include Group Commit and CAMO rule specifications.
The max_commit_delay is an interval, typically specified in milliseconds (1ms). Using fractional values for sub-millisecond precision is supported.
The max_lag_size isaninteger that specifies the maximum allowed lag in terms of WAL bytes.
The max_lag_time isan interval, typically specified in seconds, that specifies the maximum allowed lag in terms of time.
The maximum commit delay (max_commit_delay) is a ceiling value representing a hard limit, which means that a commit delay never exceeds the configured value.

The maximum lag size and time (max_lag_size and max_lag_time)are soft limits that can be exceeded. When the maximum commit delay is reached, there's no additional back pressure on the lag measures to prevent their continued
increase.

Confirmation

Confirmation level Lag Control handling

received Not applicable, only uses the default, VISIBLE .
replicated Not applicable, only uses the default, VISIBLE .
durable Not applicable, only uses the default, VISIBLE .

visible (default) Notapplicable, only uses the default, VISIBLE .

Transaction application

The PGD commit delay is applied to all READ WRITE transactions that modify data for user applications. This behavior implies that any transaction that doesn't modify data, including declared READ WRITE transactions, is exempt from the
commit delay.

Asynchronous transaction commit also executes a PGD commit delay. This might appear counterintuitive, but asynchronous commit, by virtue of its performance, can be one of the greatest sources of replication lag.

Postgres and PGD auxillary processes don't delay at transaction commit. Most notably, PGD writers don't execute a commit delay when applying remote transactions on the local node. This is by design, as PGD writers contribute nothing to
outgoing replication lag and can reduce incoming replication lag the most by not having their transaction commits throttled by a delay.

Limitations

The maximum commit delay is a ceiling value representing a hard limit, which means that a commit delay never exceeds the configured value. Conversely, the maximum lag measures both by size and time and are soft limits that can be
exceeded. When the maximum commit delay is reached, there's no additional back pressure on the lag measures to prevent their continued increase.

There's no way to exempt origin transactions that don't modify PGD replication sets from the commit delay. For these transactions, it can be useful to SET LOCAL the maximum transaction delay to 0.

Caveats

Application TPS is one of many factors that can affect replication lag. Other factors include the average size of transactions for which PGD commit delay can be less effective. In particular, bulk load operations can cause replication lag to rise,
which can trigger a concomitant rise in the PGD runtime commit delay beyond the level reasonably expected by normal applications, although still under the maximum allowed delay.

Similarly, an application with a very high OLTP requirement and modest data changes can be unduly restrained by the acceptable PGD commit delay setting.

In these cases, it can be useful to use the SET [SESSION|LOCAL] command to custom configure Lag Control settings for those applications or modify those applications. For example, bulk load operations are sometimes split into multiple
smaller transactions to limit transaction snapshot duration and WAL retention size or establish a restart point if the bulk load fails. In deference to Lag Control, those transaction commits can also schedule very long PGD commit delays to
allow digestion of the lag contributed by the prior partial bulk load.

Meeting organizational objectives
In the example objectives listed earlier:

® RPO can be met by setting an appropriate maximum lag time.
® RCO can be met by setting an appropriate maximum lag size.
® GEO can be met by monitoring the PGD runtime commit delay and the PGD runtime lag measures,

As mentioned, when the maximum PGD runtime commit delay is pegged at the PGD-configured commit-delay limit, and the lag measures consistently exceed their PGD-configured maximum levels, this scenario can be a marker for PGD group
expansion.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 143

EDB Postgres Distributed (PGD)

Lag Control and extensions
The PGD commit delay is a post-commit delay. It occurs after the transaction has committed and after all Postgres resources locked or acquired by the transaction are released. Therefore, the delay doesn't prevent concurrent active

transactions from observing or modifying its values or acquiring its resources. The same guarantee can't be made for external resources managed by Postgres extensions. Regardless of extension dependencies, the same guarantee can be
made if the PGD extension is listed before extension-based resource managers in postgresql.conf.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 144

EDB Postgres Distributed (PGD)

13.13 Administering

When running a PGD cluster with Group Commit, you need to be aware of some things when administering the system, such as how to safely shut down and restart nodes.

Planned shutdown and restarts

When using Group Commit with receive confirmations, take care with planned shutdown or restart. By default, the apply queue is processed prior to shutting down. However, in the immediate shutdown mode, the queue is discarded at
shutdown, leading to the stopped node "forgetting” transactions in the queue. A concurrent failure of the origin node can lead to loss of data, as if both nodes failed.

To ensure the apply queue gets flushed to disk, use either smart or fast shutdown for maintenance tasks. This approach maintains the required synchronization level and prevents loss of data.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 145

https://www.postgresql.org/docs/current/server-shutdown.html

EDB Postgres Distributed (PGD)

13.14 Legacy synchronous replication using PGD

Important
We highly recommend PGD Synchronous Commit instead of legacy synchronous replication.
Postgres provides physical streaming replication (PSR), which is unidirectional but offers a synchronous variant.
For backward compatibility, PGD still supports configuring synchronous replication with synchronous_commit and synchronous_standby_names . Consider using Group Commit or Synchronous Commit instead.

Unlike PGD replication options, PSR sync persists first, replicating after the WAL flush of commit record.

Usage

To enable synchronous replication using PGD, you need to add the application name of the relevant PGD peer nodes to synchronous_standby_names . The use of FIRST x or ANY x offers some flexibility if this doesn't conflict with
the requirements of non-PGD standby nodes.

Once you've added it, you can configure the level of synchronization per transaction using synchronous_commit , which defaults to on . This setting means that adding the application name to synchronous_standby_names already
enables synchronous replication. Setting synchronous_commit to local or off turns off synchronous replication.

Due to PGD applying the transaction before persisting it, the values on and remote_apply are equivalent for logical replication.

Comparison

The following table summarizes what a client can expect from a peer node replicated to after receiving a COMMIT confirmation from the origin node the transaction was issued to. The Mode column takes on different meaning depending on the
variant. For PSR and legacy synchronous replication with PGD, it refers to the synchronous_commit setting.

Variant Mode Received Visible Durable
PSR Async off (default) no no no

PSR Sync remote_write (2) yes no no (3)
PSR Sync on (2) yes no yes

PSR Sync remote_apply (2) yes yes yes
PGD Legacy Sync (1) remote_write (2) yes no no

PGD Legacy Sync (1) on(2) yes yes yes
PGD Legacy Sync (1) remote_apply (2) yes yes yes

(1) Consider using Group Commit instead.

2) Unless switched to local mode (if allowe setting synchronous_replication_availability to async', otherwise the values for the asynchronous lefault a .
Unle itched to local mode (if allowed) by setting synch, 17 i ilability ync ', otherwise the values for the asynch PGD default apply.

(3) Written to the OS, durable if the OS remains running and only Postgres crashes.

Postgres configuration parameters

The following table provides an overview of the configuration settings that you must set to a non-default value (req) and those that are optional (opt) but affect a specific variant.

Setting (GUC) Group Commit Lag Control PSR Legacy Sync
synchronous_standby_names n/a n/a req req
synchronous_commit n/a n/a opt opt
synchronous_replication_availability n/a n/a opt opt

Migration to commit scopes

You configure the Group Commit feature of PGD independent of synchronous_commit and synchronous_standby_names . Instead, the bdr.commit_scope GUC allows you to select the scope per transaction. And instead of
configuring synchronous_standby_names on each node individually, Group Commit uses globally synchronized commit scopes.

Note

While the grammar for synchronous_standby_names and commit scopes looks similar, the former doesn't account for the origin node, but the latter does. Therefore, for example, synchronous_standby_names = 'ANY
1 (..)"' isequivalenttoacommitscopeof ANY 2 (...) .Thischoice makes reasoning about majority easier and reflects that the origin node also contributes to the durability and visibility of the transaction.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 146

https://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION
https://www.postgresql.org/docs/current/warm-standby.html#SYNCHRONOUS-REPLICATION

EDB Postgres Distributed (PGD)

13.15 Internal timing of operations

For a better understanding of how the different modes work, it's helpful to know that legacy physical streaming replication (PSR) and PGD apply transactions in different ways.
With Legacy PSR, the order of operations is:

. Origin flushes a commit record to WAL, making the transaction visible locally.
. Peer node receives changes and issues a write.

. Peer flushes the received changes to disk.

. Peer applies changes, making the transaction visible on the peer.

NI RN

Note that the change is written to the disk before applying the changes.

With PGD, by default and with Lag Control, the order of operations is different. In these cases, the change becomes visible on the peer before the transaction is flushed to the peer's disk:

. Origin flushes a commit record to WAL, making the transaction visible locally.
. Peer node receives changes into its apply queue in memory.

. Peer applies changes, making the transaction visible on the peer.

. Peer persists the transaction by flushing to disk.

TR NIN

For PGD's Group Commit and CAMO, the origin node waits for a certain number of confirmations prior to making the transaction visible locally. The order of operations is:

. Origin flushes a prepare or precommit record to WAL.

. Peer node receives changes into its apply queue in memory.

. Peer applies changes, making the transaction visible on the peer.
. Peer persists the transaction by flushing to disk.

. Origin commits and makes the transaction visible locally.

SRS NN

The following table summarizes the differences.

Variant Order of afpply vs Replication beft?re or after
persist commit

PSR persist first after WAL flush of commit record

PGD Async apply first after WAL flush of commit record

PGD Lag Control apply first after WAL flush of commit record

PGD Group Commit apply first before COMMIT on origin

PGD CAMO apply first before COMMIT on origin

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 147

EDB Postgres Distributed (PGD)

14 Conflict Management

EDB Postgres Distributed is an active/active or multi-master DBMS. If used asynchronously, writes to the same or related rows from multiple different nodes can result in dataconflicts when using standard data types.

Conflicts aren't errors. In most cases, they're events that PGD can detect and resolve as they occur. Resolution depends on the nature of the application and the meaning of the data, so it's important that PGD provides the application a range of
choices as to how to resolve them.

By default, conflicts are resolved at the row level. When changes from two nodes conflict, either the local or remote tuple is picked and the other is discarded. For example, the commit timestamps might be compared for the two conflicting
changes and the newer one kept. This approach ensures that all nodes converge to the same result and establishes commit-order-like semantics on the whole cluster.

Column-level conflict detection and resolution is available with PGD, described in CLCD.

If you want to avoid conflicts, you can useGroup Commit with Eager conflict resolution or conflict-free data types (CRDTs), described inCRDT. You can also use Connection Manager to route all writes to one write-leader, eliminating the chance
for inter-nodal conflicts.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 148

https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/group-commit/
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/group-commit/#eager-conflict-resolution

EDB Postgres Distributed (PGD)

14.1 Conflicts

EDB Postgres Distributed is an active/active or multi-master DBMS. If used asynchronously, writes to the same or related rows from multiple different nodes can result in data conflicts when using standard data types.
Conflicts aren't errors. In most cases, they are events that PGD can detect and resolve as they occur. This section introduces the PGD functionality that allows you to manage that detection and resolution.

e Overview introduces the idea of conflicts in PGD and explains how they can happen.

Types of conflicts lists and discusses the various sorts of conflicts you might run across in PGD.

Conflict detection introduces the mechanisms PGD provides for conflict detection.

Conflict resolution explains how PGD resolves conflicts and how you can change the default behavior.

Conflict logging points out where PGD keeps conflict logs and explains how you can perform conflict reporting.

Data verification with LiveCompare explains how LiveCompare can help keep data consistent by pointing out conflicts as they arise.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 149

EDB Postgres Distributed (PGD)

14.1.1 Overview

EDB Postgres Distributed is an active/active or multi-master DBMS. If used asynchronously, writes to the same or related rows from multiple different nodes can result in data conflicts when using standard data types.

Conflicts aren't errors. In most cases, they are events that PGD can detect and resolve as they occur. Resolving them depends on the nature of the application and the meaning of the data, so it's important for PGD to provide the application
with a range of choices for how to resolve conflicts.

By default, conflicts are resolved at the row level. When changes from two nodes conflict, PGD picks either the local or remote tuple and the discards the other. For example, the commit timestamps might be compared for the two conflicting
changes and the newer one kept. This approach ensures that all nodes converge to the same result and establishes commit-order-like semantics on the whole cluster.

Conflict handling is configurable, as described in Conflict resolution. PGD can detect conflicts and handle them differently for each table using conflict triggers, described inStream triggers.
Column-level conflict detection and resolution is available with PGD, as described in CLCD.

By default, all conflicts are logged to bdr.conflict_history .If conflicts are possible, then table owners must monitor for them and analyze how to avoid them or make plans to handle them regularly as an application task. The
LiveCompare tool is also available to scan regularly for divergence.

Some clustering systems use distributed lock mechanisms to prevent concurrent access to data. These can perform reasonably when servers are very close to each other but can't support geographically distributed applications where very low
latency is critical for acceptable performance.

Distributed locking is essentially a pessimistic approach. PGD advocates an optimistic approach, which is to avoid conflicts where possible but allow some types of conflicts to occur and resolve them when they arise.

How conflicts happen

Inter-node conflicts arise as a result of sequences of events that can't happen if all the involved transactions happen concurrently on the same node. Because the nodes exchange changes only after the transactions commit, each transaction is
individually valid on the node it committed on. It isn't valid if applied on another node that did other conflicting work at the same time.

Since PGD replication essentially replays the transaction on the other nodes, the replay operation can fail if there's a conflict between a transaction being applied and a transaction that was committed on the receiving node.

Most conflicts can't happen when all transactions run on a single node because Postgres has inter-transaction communication mechanisms to prevent it. Examples of these mechanisms are UNIQUE indexes, SEQUENCE operations, row and
relation locking, and SERTALIZABLE dependency tracking. All of these mechanisms are ways to communicate between ongoing transactions to prevent undesirable concurrency issues.

PGD doesn't have a distributed transaction manager or lock manager. That's part of why it performs well with latency and network partitions. As a result, transactions on different nodes execute entirely independently from each other when
using the default, which is lazy replication. Less independence between nodes can avoid conflicts altogether, which is why PGD also offers Eager Replication for when this is important.

Avoiding or tolerating conflicts
In most cases, you can design the application to avoid or tolerate conflicts.
Conflicts can happen only if things are happening at the same time on multiple nodes. The simplest way to avoid conflicts is to only ever write to one node or to only ever write to a specific row in a specific way from one specific node at a time.

This avoidance happens naturally in many applications. For example, many consumer applications allow only the owning user to change data, such as changing the default billing address on an account. Such data changes seldom have update
conflicts.

You might make a change just before a node goes down, so the change seems to be lost. You might then make the same change again, leading to two updates on different nodes. When the down node comes back up, it tries to send the older
change to other nodes. It's rejected because the last update of the data is kept.

For INSERT / INSERT conflicts, use global sequences to prevent this type of conflict.

For applications that assign relationships between objects, such as a room-booking application, applying update_1if_newer might not give an acceptable business outcome. That is, it isn't useful to confirm to two people separately that
they have booked the same room. The simplest resolution is to use Eager Replication to ensure that only one booking succeeds. More complex ways might be possible depending on the application. For example, you can assign 100 seats to
each node and allow those to be booked by a writer on that node. But if none are available locally, use a distributed locking scheme or Eager Replication after most seats are reserved.

Another technique for ensuring certain types of updates occur only from one specific node is to route different types of transactions through different nodes. For example:

® Receiving parcels on one node but delivering parcels using another node
e Aservice application where orders are input on one node and work is prepared on a second node and then served back to customers on another

Frequently, the best course is to allow conflicts to occur and design the application to work with PGD's conflict resolution mechanisms to cope with the conflict.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 150

https://www.enterprisedb.com/docs/livecompare/latest
https://www.enterprisedb.com/docs/pgd/latest/reference/sequences#pgd-global-sequences

EDB Postgres Distributed (PGD)

14.1.2 Types of Conflict

PRIMARY KEY or UNIQUE conflicts
The most common conflicts are row conflicts, where two operations affect a row with the same key in ways they can't on a single node. PGD can detect most of those and applies the update_1if_newer conflict resolver.
Row conflicts include:

® INSERT versus INSERT
® UPDATE versus UPDATE
® UPDATE versus DELETE
® INSERT versus UPDATE
® INSERT versus DELETE
® DELETE versus DELETE

The view bdr.node_conflict_resolvers providesinformation on how conflict resolution is currently configured for all known conflict types.

INSERT/INSERT conflicts

The most common conflict, INSERT / INSERT , arises where INSERT operations on two different nodes create a tuple with the same PRIMARY KEY values (orif no PRIMARY KEY exists, the same values for a single UNIQUE
constraint).

PGD handles this situation by retaining the most recently inserted tuple of the two according to the originating node's timestamps. (A user-defined conflict handler can override this behavior.)

This conflict generates the insert_exists conflict type, which is by default resolved by choosing the newer row, based on commit time, and keeping only that one (update_if_newer resolver). You can configure other resolvers. See
Conflict resolution for details.

To resolve this conflict type, you can also use column-level conflict resolution and user-defined conflict triggers.

You can effectively eliminate this type of conflict by using global sequences.

INSERT operations that violate UNIQUE or EXCLUDE constraints

An INSERT / INSERT conflict can violate more than one UNIQUE constraint, one of which might be the PRIMARY KEY , or violate one or more EXCLUDE constraints.

In either of the following cases, applying the replication change producesa multiple_unique_conflicts conflict. Both of these cases result in a conflict against more than one other row.
o If a new row violates more than one UNIQUE constraint and that results in a conflict against more than one other row.
e If a new row violates more than one EXCLUDE constraint or a single EXCLUDE constraint.

In case of such a conflict, for replication to continue, you must remove some rows. Depending on the resolver setting for multiple_unique_conflicts, the apply process either exits with an error, skips the incoming row, or deletes
some of the rows. The deletion tries to preserve the row with the correct PRIMARY KEY and delete the others.

Warning
In case of multiple rows conflicting this way, if the result of conflict resolution is to proceed with the insert operation, some of the data is always deleted.

You can also define a different behavior using aconflict trigger.

UPDATE/UPDATE conflicts

Where two concurrent UPDATE operations on different nodes change the same tuple but not its PRIMARY KEY ,an UPDATE / UPDATE conflict can occur on replay.

These can generate different conflict kinds based on the configuration and situation. If the table is configured with row version conflict detection, then the original (key) row is compared with the local row. If they're different, the
update_differing conflictis generated. When using origin conflict detection, the origin of the row is checked. (The origin is the node that the current local row came from.) If that changed, the update_origin_change conflictis
generated. In all other cases, the UPDATE is normally applied without generating a conflict.

Both of these conflicts are resolved the same way as insert_exists, described in INSERT/INSERT conflicts.

UPDATE conflicts on the PRIMARY KEY

PGD can't currently perform conflict resolution where the PRIMARY KEY is changed by an UPDATE operation. You can update the primary key, but you must ensure that no conflict with existing values is possible.
Conflicts on the update of the primary key are divergent conflicts and require manual intervention.

Updating a primary key is possible in Postgres, but there are issues in both Postgres and PGD.

A simple schema provides an example that explains:

CREATE TABLE pktest (pk integer primary key, val
integer);

INSERT INTO pktest VALUES

(1,1);

Updating the Primary Key column is possible, so this SQL succeeds:

UPDATE pktest SET pk=2 WHERE
pk=1;

However, suppose the table has multiple rows:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 151

https://www.enterprisedb.com/docs/pgd/latest/reference/sequences#pgd-global-sequences
https://www.enterprisedb.com/docs/pgd/latest/reference/stream-triggers/#conflict-triggers

INSERT INTO pktest VALUES
(3,3);

Some UPDATE operations succeed:

UPDATE pktest SET pk=4 WHERE
pk=3;

SELECT * FROM pktest;

pk |
val

(2 rows)

Other UPDATE operations fail with constraint errors:

UPDATE pktest SET pk=4 WHERE
pk=2;

ERROR: duplicate key value violates unique constraint

"pktest_pkey"
DETAIL: Key (pk)=(4) already exists

So for Postgres applications that update primary keys, be careful to avoid runtime errors, even without PGD.

With PGD, the situation becomes more complex if UPDATE operations are allowed from multiple locations at same time.

Executing these two changes concurrently works:

nodel: UPDATE pktest SET pk=pk+1l WHERE pk

2;

node2: UPDATE pktest SET pk=pk+1l WHERE pk

45
SELECT * FROM pktest;

pk |
val

(2 rows)

Executing these next two changes concurrently causes a divergent error, since both changes are accepted. But applying the changes on the other node results in update_missing conflicts.

nodel: UPDATE pktest SET pk=1 WHERE pk
3;
node2: UPDATE pktest SET pk=2 WHERE pk
3;

This scenario leaves the data different on each node:

nodel:

SELECT * FROM pktest;
pk |

val

(2 rows)

node2:
SELECT * FROM pktest;

pk |
val

(2 rows)

You can identify and resolve this situation using LiveCompare.

Concurrent conflicts present problems. Executing these two changes concurrently isn't easy to resolve:

nodel: UPDATE pktest SET pk=6, val=8 WHERE pk

EH

node2: UPDATE pktest SET pk=6, val=9 WHERE pk

EH

Both changes are applied locally, causing a divergence between the nodes. But the apply on the target fails on both nodes with a duplicate key-value violation error. This error causes the replication to halt and requires manual resolution.

EDB Postgres Distributed (PGD)

You can avoid this duplicate key violation error, and replication doesn't break, if you set the conflict_type update_pkey_exists to skip, update,or update_if_newer .This approach can still lead to divergence depending on the

nature of the update.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

152

https://www.enterprisedb.com/docs/livecompare/latest

EDB Postgres Distributed (PGD)

You can avoid divergence in cases where the same old key is being updated by the same new key concurrently by setting update_pkey_exists to update_if_newer . However, in certain situations, divergence occurs even with
update_if_newer , namely when two different rows both are updated concurrently to the same new primary key.

As a result, we recommend strongly against allowing primary key UPDATE operations in your applications, especially with PGD. If parts of your application change primary keys, then to avoid concurrent changes, make those changes using
Eager Replication.

Warning

In case the conflict resolution of update_pkey_exists conflict results in update, one of the rows is always deleted.

UPDATE operations that violate UNIQUE or EXCLUDE constraints

Like INSERT operations that violate multiple UNIQUE/EXCLUDE constraints, when an incoming UPDATE violates more than one UNIQUE / EXCLUDE index (including the PRIMARY KEY) orviolates a single EXCLUDE index such that
more than one row is in conflict, PGD raises a multiple_unique_conflicts conflict.

PGD supports deferred unique constraints. If a transaction can commit on the source, then it applies cleanly on target, unless it sees conflicts. However, you can't use a deferred primary key as a REPLICA IDENTITY, so the use cases are already

limited by that and the warning about using multiple unique constraints.

UPDATE/DELETE conflicts

One node can update a row that another node deletes at the same time. In this case an UPDATE / DELETE conflict can occur on replay.

If the deleted row is still detectable (the deleted row wasn't removed by VACUUM), the update_recently_deleted conflictis generated. By default, the UPDATE is skipped, but you can configure the resolution for this. See Conflict
resolution for details.

The database can clean up the deleted row by the time the UPDATE is received in case the local node is lagging behind in replication. In this case, PGD can't differentiate between UPDATE / DELETE conflicts and INSERT/UPDATE conflicts.
It generates the update_missing conflict.

Another type of conflicting DELETE and UPDATE isa DELETE that comes after the row was updated locally. In this situation, the outcome depends on the type of conflict detection used. When using the default, origin conflict detection,
no conflict is detected, leading to the DELETE being applied and the row removed. If you enablerow version conflict detection,a delete_recently_updated conflictis generated. The default resolution for a
delete_recently_updated conflictisto skip the deletion. However, you can configure the resolution or a conflict trigger can be configured to handle it.

INSERT/UPDATE conflicts

When using the default asynchronous mode of operation, a node might receive an UPDATE of a row before the original INSERT was received. This can happen only when three or more nodes are active (seeConflicts with three or more
nodes).

When this happens, the update_missing conflict is generated. The default conflict resolveris insert_or_skip,thoughyoucanuse insert_or_error or skip instead. Resolvers that do insert-or-action first try to INSERT a
new row based on data from the UPDATE when possible (when the whole row was received). For reconstructing the row to be possible, the table either needs to have REPLICA IDENTITY FULL or the row must not contain any toasted
data.

See TOAST support details for more info about toasted data.

INSERT/DELETE conflicts

Similar to the INSERT / UPDATE conflict, the node might also receive a DELETE operation on a row for which it didn't yet receive an INSERT . This is again possible only with three or more nodes set up (see Conflicts with three or more
nodes).

PGD can't currently detect this conflict type. The INSERT operation doesn't generate any conflict type, and the INSERT is applied.

The DELETE operation always generates a delete_missing conflict, which is by default resolved by skipping the operation.

DELETE/DELETE conflicts

A DELETE / DELETE conflict arises when two different nodes concurrently delete the same tuple.
This scenario always generatesa delete_missing conflict, which is by default resolved by skipping the operation.

This conflict is harmless since both DELETE operations have the same effect. You can safely ignroe one of them.

Conflicts with three or more nodes

If one node inserts a row that's then replayed to a second node and updated there, a third node can receive the UPDATE from the second node before it receives the INSERT from the first node. This scenarioisan INSERT / UPDATE
conflict.

These conflicts are handled by discarding the UPDATE , which can lead to different data on different nodes. These are divergent conflicts.
This conflict type can happen only with three or more masters. At least two masters must be actively writing.
Also, the replication lag from node 1 to node 3 must be high enough to allow the following sequence of actions:

. node 2 receives INSERT from node 1
. node 2 performs UPDATE

. node 3 receives UPDATE from node 2
. node 3 receives INSERT from node 1

ENRT IR

Using insert_or_error (orinsome casesthe insert_or_skip conflict resolver for the update_missing conflict type) is a viable mitigation strategy for these conflicts. However, enabling this option opens the door for
INSERT / DELETE conflicts:

. node 1 performs UPDATE

. node 2 performs DELETE

. node 3 receives DELETE from node 2

. node 3 receives UPDATE from node 1, turning it into an INSERT

ENRT IR

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 153

EDB Postgres Distributed (PGD)

If these are problems, we recommend tuning freezing settings for a table or database so that they're correctly detected as update_recently_deleted.
Another alternative is to use Eager Replication to prevent these conflicts.
INSERT / DELETE conflicts can also occur with three or more nodes. Such a conflict is identical to INSERT / UPDATE except with the UPDATE replaced bya DELETE . This canresultina delete_missing conflict.
PGD could choose to make each INSERT into a check-for-recently deleted, as occurs with an update_missing conflict. However, the cost of doing this penalizes the majority of users, so at this time it instead logs delete_missing.

Future releases will automatically resolve INSERT / DELETE anomalies by way of rechecks using LiveCompare when delete_missing conflicts occur. Applications can perform these manually by checking the
bdr.conflict_history_summary view.

These conflicts can occur in two main problem use cases:

e INSERT followed rapidly bya DELETE, as can be used in queuing applications
® Any case where the primary key identifier of a table is reused

Neither of these cases is common. We recommend not replicating the affected tables if these problem use cases occur.

PGD has problems with the latter case because PGD relies on the uniqueness of identifiers to make replication work correctly.

Applications that insert, delete, and then later reuse the same unique identifiers can cause difficulties. This is known as theABA problem. PGD has no way of knowing whether the rows are the current row, the last row, or much older rows.
Unique identifier reuse is also a business problem, since it prevents unique identification over time, which prevents auditing, traceability, and sensible data quality. Applications don't need to reuse unique identifiers.

Any identifier reuse that occurs in the time interval it takes for changes to pass across the system causes difficulties. Although that time might be short in normal operation, down nodes can extend that interval to hours or days.

We recommend that applications don't reuse unique identifiers. If they do, take steps to avoid reuse in less than a year.

This problem doesn't occur in applications that use sequences or UUIDs.

Foreign key constraint conflicts
Conflicts between a remote transaction being applied and existing local data can also occur for FOREIGN KEY (FK) constraints.

PGD applies changes with session_replication_role = 'replica',soforeign keys aren't rechecked when applying changes. In an active/active environment, this situation can result in FK violations if deletes occur to the
referenced table at the same time as inserts into the referencing table. This scenario is similar toan INSERT / DELETE conflict.

In single-master Postgres, any INSERT / UPDATE that refers to a value in the referenced table must wait for DELETE operations to finish before they can gain a row-level lock. If a DELETE removes a referenced value, then the
INSERT / UPDATE fails the FK check.

In multi-master PGD. there are no inter-node row-level locks. An INSERT on the referencing table doesn't wait behind a DELETE on the referenced table, so both actions can occur concurrently. Thus an INSERT / UPDATE on one node on
the referencing table can use a value at the same time asa DELETE on the referenced table on another node. The result, then, is a value in the referencing table that's no longer present in the referenced table.

In practice, this situation occurs if the DELETE operations occur on referenced tables in separate transactions from DELETE operations on referencing tables, which isn't a common operation.

In a parent-child relationship such as Orders -> Orderltems, it isn't typical to do this. It's more likely to mark an Orderltem as canceled than to remove it completely. For reference/lookup data, it's unusual to completely remove entries at the
same time as using those same values for new fact data.

While dangling FKs are possible, the risk of this in general is very low. Thus PGD doesn't impose a generic solution to cover this case. Once you understand the situation in which this occurs, two solutions are possible.

The first solution is to restrict the use of FKs to closely related entities that are generally modified from only one node at a time, are infrequently modified, or where the modification's concurrency is application mediated. This approach avoids
any FK violations at the application level.

The second solution is to add triggers to protect against this case using the PGD-provided functions bdr.ri_fkey_trigger () and bdr.ri_fkey_on_del_trigger () .When called as BEFORE triggers, these functions use
FOREIGN KEY information to avoid FK anomalies by setting referencing columns to NULL, much as if you had a SET NULL constraint. This approach rechecks all FKs in one trigger, so you need to add only one trigger per table to prevent FK
violation.

As an example, suppose you have two tables: Fact and RefData. Fact has an FK that references RefData. Fact is the referencing table, and RefData is the referenced table. You need to add one trigger to each table.
Add a trigger that sets columns to NULL in Fact if the referenced row in RefData was already deleted:

CREATE TRIGGER
bdr_replica_fk_iu_trg
BEFORE INSERT OR UPDATE ON fact
FOR EACH ROW
EXECUTE PROCEDURE bdr.ri_fkey_trigger();

ALTER TABLE fact
ENABLE REPLICA TRIGGER bdr_replica_fk_iu_trg;

Add a trigger that sets columns to NULL in Fact at the time a DELETE occurs on the RefData table:

CREATE TRIGGER bdr_replica_fk_d_trg
BEFORE DELETE ON refdata
FOR EACH ROW
EXECUTE PROCEDURE
bdr.ri_fkey_on_del_trigger();

ALTER TABLE refdata
ENABLE REPLICA TRIGGER
bdr_replica_fk_d_trg;

Adding both triggers avoids dangling foreign keys.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 154

https://www.enterprisedb.com/docs/livecompare/latest/
https://en.wikipedia.org/wiki/ABA_problem

EDB Postgres Distributed (PGD)

TRUNCATE conflicts

TRUNCATE behaves similarly toa DELETE of all rows but performs this action by physically removing the table data rather than row-by-row deletion. As a result, row-level conflict handling isn't available, so TRUNCATE commands don't
generate conflicts with other DML actions, even when there's a clear conflict.

As a result, the ordering of replay can cause divergent changes if another DML is executed concurrently on other nodes to the TRUNCATE .
You can take one of the following actions:
e Ensure TRUNCATE isn't executed alongside other concurrent DML. Rely on LiveCompare to highlight any such inconsistency.
® Replace TRUNCATE witha DELETE statement with no WHERE clause. This approach is likely to have poor performance on larger tables.

® Set bdr.truncate_locking = 'on' tosetthe TRUNCATE command’s locking behavior. This setting determines whether TRUNCATE obeys the bdr.dd1_locking setting. Thisisn't the default behavior for TRUNCATE
since it requires all nodes to be up. This configuration might not be possible or wanted in all cases.

Data conflicts for roles and tablespace differences
Conflicts can also arise where nodes have global (Postgres-system-wide) data, like roles, that differ. This conflict can result in operations—mainly DDL —that can run successfully and commit on one node but then fail to apply to other nodes.

For example, node1 might have a user named fred, and that user wasn't created on node2. If fred on node1 creates a table, the table is replicated with its owner set to fred. When the DDL command is applied to node2, the DDL fails because
there's no user named fred. This failure generates an error in the Postgres logs.

Administrator intervention is required to resolve this conflict by creating the user fred in the database where PGD is running. You can set bdr.role_replication = on toresolve thisin future.

Lock conflicts and deadlock aborts

Because PGD writer processes operate much like normal user sessions, they're subject to the usual rules around row and table locking. This can sometimes lead to PGD writer processes waiting on locks held by user transactions or even by
each other.

Relevant locking includes:

o Explicit table-level locking (LOCK TABLE ...) by user sessions
o Explicit row-level locking (SELECT ... FOR UPDATE/FOR SHARE) by user sessions
e Implicit locking because of row UPDATE, INSERT,or DELETE operations, either from local activity or from replication from other nodes

A PGD writer process can deadlock with a user transaction, where the user transaction is waiting on a lock held by the writer process and vice versa. Two writer processes can also deadlock with each other. Postgres's deadlock detector steps in
and terminates one of the problem transactions. If the PGD writer process is terminated, it retries and generally succeeds.

All these issues are transient and generally require no administrator action. If a writer process is stuck for a long time behind a lock on an idle user session, the administrator can terminate the user session to get replication flowing again.
However, this is no different from a user holding a long lock that impacts another user session.

Use of the log_lock_waits facility in Postgres can help identify locking related replay stalls.

Divergent conflicts
Divergent conflicts arise when data that should be the same on different nodes differs unexpectedly. Divergent conflicts shouldn't occur, but not all such conflicts can be reliably prevented at the time of writing.
Changing the PRIMARY KEY of a row can lead to a divergent conflict if another node changes the key of the same row before all nodes have replayed the change. Avoid changing primary keys, or change them only on one designated node.

Divergent conflicts involving row data generally require administrator action to manually adjust the data on one of the nodes to be consistent with the other one. Such conflicts don't arise so long as you use PGD as documented and avoid
settings or functions marked as unsafe.

The administrator must manually resolve such conflicts. You might need to use the advanced options such as bdr.dd1l_replication and bdr.ddl_locking depending on the nature of the conflict. However, careless use of these
options can make things much worse and create a conflict that generic instructions can't address.

TOAST support details
Postgres uses out-of-line storage for larger columns called TOAST.
The TOAST values handling in logical decoding (which PGD is built on top of) and logical replication is different from inline data stored as part of the main row in the table.

The TOAST value is logged into the transaction log (WAL) only if the value changed. This can cause problems, especially when handling UPDATE conflicts, because an UPDATE statement that didn't change a value of a toasted column
produces a row without that column. As mentioned in INSERT/UPDATE conflicts, PGD reports an errorifan update_missing conflictis resolved using insert_or_error and there are missing TOAST columns.

However, more subtle issues than this one occur in case of concurrent workloads with asynchronous replication. (Eager transactions aren't affected.) Imagine, for example, the following workload on an EDB Postgres Distributed cluster with
three nodes called A, B, and C:

. On node A: txn A1 does an UPDATE SET col1 = 'toast data...' and commits first.

. On node B: txn B1 does UPDATE SET other_column = 'anything else'; and commits after A1.

On node C: the connection to node A lags behind.

On node C: txn B1 is applied first, it misses the TOASTed column in col1, but gets applied without conflict.
. On node C: txn A1 conflicts (on update_origin_change) and is skipped.

. Node C misses the toasted data from A1 forever.

DGR WN e

This scenario isn't usually a problem when using PGD. (It is when using either built-in logical replication or plain pglogical for multi-master.) PGD adds its own logging of TOAST columns when it detects a local UPDATE to a row that recently
replicated a TOAST column modification and the local UPDATE isn't modifying the TOAST. Thus PGD prevents any inconsistency for toasted data across different nodes. This situation causes increased WAL logging when updates occur on
multiple nodes, that is, when origin changes for a tuple. Additional WAL overhead is zero if all updates are made from a single node, as is normally the case with PGD AlwaysOn architecture.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 155

https://www.enterprisedb.com/docs/livecompare/latest
https://www.postgresql.org/docs/current/runtime-config-logging.html#GUC-LOG-LOCK-WAITS
https://www.postgresql.org/docs/current/storage-toast.html

EDB Postgres Distributed (PGD)

Note

Running VACUUM FULL or CLUSTER on just the TOAST table without doing same on the main table removes metadata needed for the extra logging to work. This means that, for a short period after such a statement, the
protection against these concurrency issues isn't present.

Warning

The additional WAL logging of TOAST is done using the BEFORE UPDATE trigger on standard Postgres. This trigger must be sorted alphabetically last based on trigger name among all BEFORE UPDATE triggers on the table. It's
prefixed with zzzz_bdr_ to make this easier, but make sure you don't create any trigger with a name that sorts after it. Otherwise you won't have the protection against the concurrency issues.

Forthe insert_or_error conflict resolution, the use of REPLICA IDENTITY FULL is still required.

None of these problems associated with toasted columns affect tables with REPLICA IDENTITY FULL . This setting always logs a toasted value as part of the key since the whole row is considered to be part of the key. PGD can reconstruct
the new row, filling the missing data from the key row. As a result, using REPLICA IDENTITY FULL canincrease WAL size significantly.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 156

EDB Postgres Distributed (PGD)

14.1.3 Conflict detection

PGD provides these mechanisms for conflict detection:

e Origin conflict detection (default)
® Row version conflict detection
e Column-level conflict detection

Origin conflict detection

Origin conflict detection uses and relies on commit timestamps as recorded on the node the transaction originates from. This requires clocks to be in sync to work correctly or to be within a tolerance of the fastest message between two nodes.
If this isn't the case, conflict resolution tends to favor the node that's further ahead. You can manage clock skew between nodes using the parameters bdr.maximum_clock_skew and bdr.maximum_clock_skew_action.

Row origins are available only if track_commit_timestamp = on.
Conflicts are first detected based on whether the replication origin changed, so conflict triggers are called in situations that might not turn out to be conflicts. Hence, this mechanism isn't precise, since it can generate false-positive conflicts.

Origin info is available only up to the point where a row is frozen. Updates arriving for a row after it was frozen don't raise a conflict so are applied in all cases. This is the normal case when adding a new node by bdr_init_physical,so
raising conflicts causes many false-positive results in that case.

A node that was offline that reconnects and begins sending data changes can cause divergent errors if the newly arrived updates are older than the frozen rows that they update. Inserts and deletes aren't affected by this situation.
We suggest that you don't leave down nodes for extended outages, as discussed in Node restart and down node recovery.

On EDB Postgres Extended Server and EDB Postgres Advanced Server, PGD holds back the freezing of rows while a node is down. This mechanism handles this situation gracefully so you don't need to change parameter settings.
On other variants of Postgres, you might need to manage this situation with some care.

Freezing normally occurs when a row being vacuumed is older than vacuum_freeze_min_age xids from the current xid, which means that you need to configure suitably high values for these parameters:

e vacuum_freeze_min_age
e vacuum_freeze_table_age

e autovacuum_freeze_max_age

Choose values based on the transaction rate, giving a grace period of downtime before removing any conflict data from the database node. For example, when vacuum_freeze_min_age is set to 500 million, a node performing 1000 TPS
can be down for just over 5.5 days before conflict data is removed. The CommitTS data structure takes on-disk space of 5 GB with that setting, so lower transaction rate systems can benefit from lower settings.

Initially, recommended settings are:

1 billion = 10GB
autovacuum_freeze_max_age = 1000000000

vacuum_freeze_min_age = 500000000

90% of autovacuum_freeze_max_age
vacuum_freeze_table_age = 900000000

Note that:

® Youcanset autovacuum_freeze_max_age only at node start.

® Youcanset vacuum_freeze_min_age, so using a low value freezes rows early and can result in conflicts being ignored. You can also set autovacuum_freeze_min_age and toast.autovacuum_freeze_min_age for
individual tables.
e Running the CLUSTER or VACUUM FREEZE commands also freezes rows early and can result in conflicts being ignored.

Row version conflict detection

PGD provides the option to use row versioning and make conflict detection independent of the nodes' system clock.

Row version conflict detection requires that you enable three things. If any of these steps aren't performed correctly thenorigin conflict detection is used.
e Enable REPLICA IDENTITY FULL onall tables that use row version conflict detection.

e Enable row version tracking on the table by using bdr.alter_table_conflict_detection.This function adds a column with a name you specify and an UPDATE trigger that manages the new column value. The column is
created as INTEGER type.

Although the counter is incremented only on UPDATE , this technique allows conflict detection for both UPDATE and DELETE .
This approach resembles Lamport timestamps and fully prevents the ABA problem for conflict detection.
Note

The row-level conflict resolution is still handled based on the conflict resolution configuration even with row versioning. The way the row version is generated is useful only for detecting conflicts. Don't rely on it as authoritative
information about which version of row is newer.

To determine the current conflict detection strategy used for a specific table, refer to the column conflict_detection oftheview bdr.tables .

To change the current conflict detection strategy, use bdr.alter_table_conflict_detection.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 157

EDB Postgres Distributed (PGD)

14.1.4 Conflict resolution

Most conflicts can be resolved automatically. PGD defaults to a last-update-wins mechanism or, more accurately, the update_1if_newer conflict resolver. This mechanism retains the most recently inserted or changed row of the two
conflicting ones based on the same commit timestamps used for conflict detection. The behavior in certain corner-case scenarios depends on the settings used for bdr.create_node_group and alternatively for
bdr.alter_node_group .

PGD lets you override the default behavior of conflict resolution by using bdr.alter_node_set_conflict_resolver.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 158

EDB Postgres Distributed (PGD)

14.1.5 Conflict logging

Starting with PGD 6.0, conflict-logging is not enabled by default. You can enable conflict logging on a per-node basis. This allows you to log conflicts that occur on a specific node, which can be useful for debugging and monitoring purposes.

Run this command on the named node to enable logging of all conflicts on that particular node. If you want to enable logging on all nodes, run this command on each node in the PGD group.

SELECT bdr.alter_node_set_log_config(' nodename", false, true, NULL, NULL);

The other parameters after the nodename control, respectively, specify whether to log conflicts into the PGD logfile, and whether to log conflicts into the bdr.conflict_history table. The last two parameters take arrays of strings which
specify the conflict types and conflict resolutions to log. See Conflicts in the reference section for a full list of both. If you set these parameters to NULL , PGD will log all conflict types and resolutions.

PGD logs every conflict into the bdr.conflict_history table. You can change this behavior with more granularity using bdr.alter_node_set_log_config.

Conflict reporting
You can summarize conflicts logged to tables in reports. Reports allow application owners to identify, understand, and resolve conflicts and introduce application changes to prevent them.

SELECT nspname,
relname

, date_trunc('day', local_time) :: date AS
date

, count(x)
FROM bdr.conflict_history

WHERE local_time > date_trunc('day',
current_timestamp)

GROUP BY 1,2,3
ORDER BY 1,2;

nspname | relname | date
count

my_app | test | 2019-04-05 |
1

(1 row)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 159

EDB Postgres Distributed (PGD)

14.1.6 Data verification with LiveCompare

LiveCompare is a utility program designed to compare any two databases to verify that they are identical.

LiveCompare is included as part of the PGD stack and can be aimed at any pair of PGD nodes. By default, it compares all replicated tables and reports differences. LiveCompare also works with non-PGD data sources such as Postgres and
Oracle.

You can also use LiveCompare to continuously monitor incoming rows. You can stop and start it without losing context information, so you can run it at convenient times.

LiveCompare allows concurrent checking of multiple tables. You can configure it to allow checking of a few tables or just a section of rows in a table. Checks are performed by first comparing whole row hashes. If different, LiveCompare then
compares whole rows. LiveCompare avoids overheads by comparing rows in useful-sized batches.

If differences are found, they can be rechecked over time, allowing for the delays of eventual consistency.

See the LiveCompare documentation for further details.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 160

https://www.enterprisedb.com/docs/livecompare/latest/

EDB Postgres Distributed (PGD)

14.2 Column-Llevel conflict detection

By default, conflicts are resolved at row level. When changes from two nodes conflict, either the local or remote tuple is selected and the other is discarded. For example, commit timestamps for the two conflicting changes might be compared
and the newer one kept. This approach ensures that all nodes converge to the same result and establishes commit-order-like semantics on the whole cluster.

However, it might sometimes be appropriate to resolve conflicts at the column level rather than the row level, at least in some cases.
e Overview introduces column-level conflict resolution in contrast to row-level conflict resolution, suggesting where it might be a better fit than row-level conflict resolution.
e Enabling and disabling provides an example of enabling column-level conflict resolution and explains how to list tables with column-level conflict resolution enabled.

e Timestamps explicates the difference between using column_modify_timestamp and column_commit_timestamp and shows how the timestamps associated with column-level conflict resolution can be selected and
inspected.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 161

EDB Postgres Distributed (PGD)

14.2.1 Overview

By default, conflicts are resolved at row level. When changes from two nodes conflict, either the local or remote tuple is selected and the other is discarded. For example, commit timestamps for the two conflicting changes might be compared
and the newer one kept. This approach ensures that all nodes converge to the same result and establishes commit-order-like semantics on the whole cluster.

However, it might sometimes be appropriate to resolve conflicts at the column level rather than the row level, at least in some cases.

When to resolve at the column level

Consider a simple example in which table t has two integer columns, a and b, and a single row (1,1) . On one node execute:

UPDATE t SET a =
100

On another node, before receiving the preceding UPDATE , concurrently execute:

UPDATE t SET b =
100

Note

The attributes modified by an UPDATE are determined by comparing the old and new row in a trigger. This means that if the attribute doesn't change a value, it isn't detected as modified even if it's explicitly set. For example,
UPDATE t SET a = a doesn'tmark a as modified for any row. Similarly, UPDATE t SET a = 1 doesn'tmark a as modified for rows that are already setto 1.

This sequence results inan UPDATE-UPDATE conflict. With the update_1if_newer conflict resolution, the commit timestamps are compared, and the new row version is kept. Assuming the second node committed last, the result is
(1,100) , which effectively discards the change to column a.

For many use cases, this behavior is desired and expected. However, for some use cases, this might be an issue. Consider, for example, a multi-node cluster where each part of the application is connected to a different node, updating a
dedicated subset of columns in a shared table. In that case, the different components might conflict and overwrite changes.

For such use cases, it might be more appropriate to resolve conflicts on a given table at the column level. To achieve that, PGD tracks the timestamp of the last change for each column separately and uses that to pick the most recent value,
essentially performing update_if_newer .

Applied to the previous example, the resultis (100,100) on both nodes, despite neither of the nodes ever seeing such a row.

When thinking about column-level conflict resolution, it can be useful to see tables as vertically partitioned, so that each update affects data in only one slice. This approach eliminates conflicts between changes to different subsets of
columns. In fact, vertical partitioning can even be a practical alternative to column-level conflict resolution.

Column-level conflict resolution requires the table to have REPLICA IDENTITY FULL .Thebdr.alter_table_conflict_detection() function checks that and fails with an error if this setting is missing.

Special problems for column-level conflict resolution

By treating the columns independently, it's easy to violate constraints in a way that isn't possible when all changes happen on the same node. Consider, for example, a table like this:

CREATE TABLE t (id INT PRIMARY KEY, a INT, b INT, CHECK (a >
b));

INSERT INTO t VALUES (1, 1000,

1);

Assume one node does:

UPDATE t SET a =
100;

Another node concurrently does:

UPDATE t SET b =
500;

Each of those updates is valid when executed on the initial row and so passes on each node. But when replicating to the other node, the resulting row violates the CHECK (a > b) constraint, and the replication stops until the issue is

resolved manually.

Handling column-level conflicts using CRDT data types

By default, column-level conflict resolution picks the value with a higher timestamp and discards the other one. You can, however, reconcile the conflict in different, more elaborate ways. For example, you can useCRDT types that allow
merging the conflicting values without discarding any information.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 162

EDB Postgres Distributed (PGD)

14.2.2 Enabling and disabling column-level conflict resolution
Permissions required

Column-level conflict detection uses the column_timestamps type. This type requires any user needing to detect column-level conflicts to have at least the bdr_application role assigned.

The bdr.alter_table_conflict_detection() function manages column-level conflict resolution.

Using bdr.alter_table_conflict_detection to enable column-level conflict resolution

The bdr.alter_table_conflict_detection function takes a table name and column name as its arguments. The column is added to the table as a column_mod1ify_timestamp column. The function also adds two triggers (BEFORE INSERT and
BEFORE UPDATE) that are responsible for maintaining timestamps in the new column before each change.

db=# CREATE TABLE my_app.test_table (id SERIAL PRIMARY KEY, val
INT);

CREATE TABLE

db=# ALTER TABLE my_app.test_table REPLICA IDENTITY
FULL;

ALTER TABLE

db=# SELECT bdr.alter_table_conflict_detection(

db(# 'my_app.test_table'::regclass,

db(# 'column_modify_timestamp', 'cts');
alter_table_conflict_detection

db=# \d my_app.test_table
Table "my_app.test_table"

Column | Type | Collation | Nullable |
Default

id | dinteger | | not null |
nextval('my_app.test_table_id_seq'::regclass)

val | dinteger | |

I

cts | bdr.column_timestamps | | not null | 's 1 775297963454602 0
0'::bdr.column_timestamps

Indexes:

"test_table_pkey" PRIMARY KEY, btree

(id)
Triggers:

bdr_clcd_before_insert BEFORE INSERT ON my_app.test_table FOR EACH ROW EXECUTE FUNCTION bdr.column_timestamps_current_insert()
bdr_clcd_before_update BEFORE UPDATE ON my_app.test_table FOR EACH ROW EXECUTE FUNCTION bdr.column_timestamps_current_update()

The new column specifies NOT NULL with a default value, which means that ALTER TABLE ... ADD COLUMN doesn't perform a table rewrite.

Note

Avoid using columns with the bdr.column_timestamps data type for other purposes, as doing so can have negative effects. For example, it switches the table to column-level conflict resolution, which doesn't work correctly
without the triggers.

Listing tables with column-level conflict resolution

You can list tables having column-level conflict resolution enabled with the following query.

SELECT nc.nspname,
c.relname

FROM pg_attribute
a

JOIN (pg_class c JOIN pg_namespace nc ON c.relnamespace =
nc.oid)

ON a.attrelid = c.oid

JOIN (pg_type t JOIN pg_namespace nt ON t.typnamespace =
nt.oid)

ON a.atttypid = t.oid

WHERE NOT pg_tis_other_temp_schema(nc.oid)
AND nt.nspname = 'bdr'
AND t.typname = 'column_timestamps'

AND NOT
a.attisdropped

AND c.relkind IN ('r', 'v', 'f',
P

This query detects the presence of a column of type bdr.column_timestamp .

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 163

EDB Postgres Distributed (PGD)

14.2.3 Timestamps in column-level conflict resolution

Column-level conflict resolution depends on a timestamp column being included in the table.

Comparing column_modify_timestamp and column_commit_timestamp

When you select one of the two column-level conflict detection methods, a column is added to the table that contains a mapping of modified columns and timestamps.

The column that stores timestamp mapping is managed automatically. Don't specify or override the value in your queries, as the results can be unpredictable. When possible, user attempts to override the value are ignored.

When enabling or disabling column timestamps on a table, the code uses DDL locking to ensure that there are no pending changes from before the switch. This approach ensures only conflicts with timestamps in both tuples or in neither of
them are seen. Otherwise, the code might unexpectedly see timestamps in the local tuple and NULL in the remote one. It also ensures that the changes are resolved the same way (column-level or row-level) on all nodes.
column_mod1ify_timestamp

When column_modify_timestamp is selected as the conflict detection method, the timestamp assigned to the modified columns is the current timestamp, similar to the value you might get running select_clock_timestamp() .

This approach is simple and, for many cases, it's correct, for example, when the conflicting rows modify non-overlapping subsets of columns. Its simplicity can, though, lead to unexpected effects.

For example, ifan UPDATE affects multiple rows, the clock continues ticking while the UPDATE runs. So each row gets a slightly different timestamp, even if they're being modified concurrently by the one UPDATE . This behavior, in turn,
means that the effects of concurrent changes might get "mixed" in various ways, depending on how the changes performed on different nodes interleaves.

Another possible issue is clock skew. When the clocks on different nodes drift, the timestamps generated by those nodes also drift. This clock skew can induce unexpected behavior such as newer changes being discarded because the
timestamps are apparently switched around. However, you can manage clock skew between nodes using the parameters bdr.maximum_clock_skew and bdr.maximum_clock_skew_action.

As the current timestamp is unrelated to the commit timestamp, using it to resolve conflicts means that the result isn't equivalent to the commit order, which means it probably can't be serialized.

When using current timestamps to order changes or commits, the conflicting changes might have exactly the same timestamp because two or more nodes happened to generate the same timestamp. This risk isn't unique to column-level
conflict resolution, as it can happen even for regular row-level conflict resolution. The node id is used as the tiebreaker in this situation. The higher node id wins. This approach ensures that the same changes are applied on all nodes.
column_commit_timestamp

You can also use the actual commit timestamp specified with column_commit_timestamp as the conflict detection method. This approach has the advantage of using the commit time, which is the same for all changes made in an
UPDATE .

Note

Statement transactions might be added in the future, which will address issues with mixing effects of concurrent statements or transactions. Still, neither of these options can ever produce results equivalent to commit order.

Inspecting column timestamps
The column storing timestamps for modified columns is maintained by triggers. Don't modify it directly. It can be useful to inspect the current timestamp's value, for example, while investigating how a conflict was resolved.
Note

The timestamp mapping is maintained by triggers, and the order in which triggers execute matters. If your custom triggers modify tuples and are executed after the pgl_cled_ triggers, the modified columns aren't detected correctly.
This can lead to incorrect conflict resolution. If you need to modify tuples in your triggers, make sure they're executed before the pgl_cled_ triggers.

The following functions are useful for inspecting timestamps.

bdr.column_timestamps_to_text(bdr.column_timestamps)

This function returns a human-readable representation of the timestamp mapping and is used when casting the value to text:

db=# select cts::text from
test_table;

cts

{source: current, default: 2018-09-23 19:24:52.118583+02, map: [2 : 2018-09-23
19:25:02.590677+02]}

(1 row)

bdr.column_timestamps_to_jsonb(bdr.column_timestamps)

This function turns a JSONB representation of the timestamps mapping and is used when casting the value to jsonb:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 164

db=# select jsonb_pretty(cts::jsonb) from

test_table;
jsonb_pretty
{
+
"map": {
+
"2": "2018-09-23T19:24:52.118583+02:00" +
1, >
"source": "current", +
"default": "2018-09-23T19:24:52.118583+02:00"+
}
(1 row)

bdr.column_timestamps_resolve(bdr.column_timestamps, xid)

EDB Postgres Distributed (PGD)

This function updates the mapping with the commit timestamp for the attributes modified by the most recent transaction if it already committed. This matters only when using the commit timestamp. For example, in this case, the last

transaction updated the second attribute (with attnum = 2):

test=# select cts::jsonb from
test_table;

{"map": {"2": "2018-09-23T19:29:55.581823+02:00"}, "source": "commit", "default"

[21}

(1 row)

db=# select bdr.column_timestamps_resolve(cts, xmin)::jsonb from
test_table;

column_timestamps_resolve

'2018-09-23T19:29:55.581823+02:00", "modified":

{"map": {"2": "2018-09-23T19:29:55.581823+02:00"}, "source": "commit", "default"

23T19:29:55.581823+02:00"}
(1 row)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

"2018-09-

165

EDB Postgres Distributed (PGD)

14.3 Conflict-free replicated data types

Conflict-free replicated data types (CRDTs) support merging values from concurrently modified rows instead of discarding one of the rows as the traditional resolution does.

e Overview provides an introduction to CRDTs, including how to use CRDTs in tables, configuration options, and examples of CRDTs.

Using CRDTs investigates how to use CRDTSs in tables, reviews some configuration options, and reviews some examples of CRDTs and how they work.

Operation-based and state-based CRDTs reviews the differences between operation-based and state-based CRDTs.

Disk-space requirements covers disk-size considerations for CRDTs, especially state-based CRDTs.

CRDTs vs conflict handling/reporting explains how conflict handling and reporting works with CRDTs.

Resetting CRDT values discusses the challenges of resetting CRDT values and provides some guidance on doing so successfully.

Implemented CRDTSs details each of the 6 available CRDTs available in PGD, with implementation examples.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 166

EDB Postgres Distributed (PGD)

14.3.1 CRDTSs Overview

Introduction to CRDTs

Conflict-free replicated data types (CRDTs) support merging values from concurrently modified rows instead of discarding one of the rows as the traditional resolution does.
Each CRDT type is implemented as a separate PostgreSQL data type with an extra callback added to the bdr.crdt_handlers catalog. The merge process happens inside the PGD writer on the apply side without any user action needed.

CRDTs require the table to have column-level conflict resolution enabled, as described inColumn-level conflict resolution.

CRDTs in PostgreSQL

The CRDTs are installed as part of bdr intothe bdr schema. For convenience, the basic operators (+, # and !)and a number of common aggregate functions (min, max, sum,and avg)are createdin pg_catalog . Thus they are
available without having to tweak search_path .

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 167

14.3.2 Using CRDTs

Using CRDTs in tables

Permissions required

PGD CRDTSs requires usage access to CRDT types. Therefore, any user needing to access CRDT types must have at least thebdr_application role assigned to them.

To use CRDTs, you need to use a particular data type in CREATE/ALTER TABLE rather than standard built-in data types such as integer . For example, consider the following table with one regular integer counter and a single row:

Non-CRDT example

CREATE TABLE non_crdt_example

(
id integer PRIMARY KEY,
counter integer NOT NULL DEFAULT ©

)3

INSERT INTO non_crdt_example (id) VALUES
1)

Suppose you issue the following SQL on two different nodes at same time:

UPDATE
non_crdt_example
SET counter = counter + 1 -= "reflexive”
update
WHERE id = 1;

After both updates are applied, you can see the resulting values using this query:

SELECT * FROM non_crdt_example WHERE id =
13

id |
counter

This code shows that you lost one of the increments due to the update_if_newer conflict resolver.

CRDT example

To use a CRDT counter data type instead, you would follow these steps:

Create the table but with a CRDT (bdr.crdt_gcounter) as the counters data type.

CREATE TABLE crdt_example
(
id integer PRIMARY KEY,
counter bdr.crdt_gcounter NOT NULL DEFAULT 0
)5

Configure the table for column-level conflict resolution:

ALTER TABLE crdt_example REPLICA IDENTITY
FULL;

SELECT bdr.alter_table_conflict_detection('crdt_example',
'column_modify_timestamp', 'cts');

And then insert a row with a value for this example.

INSERT INTO crdt_example (id) VALUES (1);

If you now issue, as before, the same SQL on two nodes at same time.

UPDATE crdt_example

SET counter = counter + 1 -- "reflexive"
update
WHERE id = 1;

Once the changes are applied, you find that the counter has managed to concurrenct updates.

SELECT 1id, counter FROM crdt_example WHERE id = 1;
id |
counter
,,,,, P,
1]
2
(1 row)

This example shows that the CRDT correctly allows the accumulator columns to work, even in the face of asynchronous concurrent updates that otherwise conflict.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

168

Configuration options

The bdr.crdt_raw_value configuration option determines whether queries return the current value or the full internal state of the CRDT type. By default, only the current numeric value is returned. When set to true , queries return

EDB Postgres Distributed (PGD)

representation of the full state. You can use the special hash operator (#) to request only the current numeric value without using the special operator (the default behavior). If the full state is dumped using bdr.crdt_raw_value = on,

then the value can reload only with bdr.crdt_raw_value = on.

Note

The bdr.crdt_raw_value applies formatting only of data returned to clients, that is, simple column references in the select list. Any column references in other parts of the query (such as WHERE clause or even expressions in

the select list) might still require use of the # operator.

Different types of CRDTs

The crdt_gcounter typeis an example of state-based CRDT types that work only with reflexive UPDATE SQL, suchas x = x + 1 ,as the example shows.

Another class of CRDTs are delta CRDTtypes. These are a special subclass of operation-based CRDT.

With delta CRDTSs, any update to a value is compared to the previous value on the same node. Then a change is applied as a delta on all other nodes.

CREATE TABLE crdt_delta_example
(
id integer PRIMARY KEY,
counter bdr.crdt_delta_counter NOT NULL DEFAULT O

)5

ALTER TABLE crdt_delta_example REPLICA IDENTITY
FULL;

SELECT bdr.alter_table_conflict_detection('crdt_delta_example',

'column_modify_timestamp', 'cts');

INSERT INTO crdt_delta_example (id) VALUES
13

Suppose you issue the following SQL on two nodes at same time:

UPDATE crdt_delta_example
SET counter = 2 -- notice NOT counter = counter +
2

WHERE id = 1;
After both updates are applied, you can see the resulting values using this query:

SELECT 1id, counter FROM crdt_delta_example WHERE id = 1;
id |
counter

With aregular integer column, the resultis 2 .But when you update the row with a delta CRDT counter, you start with the OLD row version, make a NEW row version, and send both to the remote node. There, compare them with the version

found there (e.g., the LOCAL version). Standard CRDTs merge the NEW and the LOCAL version, while delta CRDTs compare the OLD and NEW versions and apply the delta to the LOCAL version.

Query planning and optimization

An important question is how query planning and optimization works with these new data types. CRDT types are handled transparently. Both ANALYZE and the optimizer work, so estimation and query planning works fine without having to

do anything else.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

169

EDB Postgres Distributed (PGD)

14.3.3 Operation-based and state-based CRDTs

Operation-based CRDT types (CmCRDT)
The implementation of operation-based types is trivial because the operation isn't transferred explicitly but computed from the old and new row received from the remote node.
Currently, these operation-based CRDTs are implemented:

e crdt_delta_counter — bigint counter (increments/decrements)
e crdt_delta_sum — numeric sum (increments/decrements)

These types leverage existing data types with a little bit of code to compute the delta. For example, crdt_delta_counter isadomainona bigint.

This approach is possible only for types for which the method for computing the delta is known, but the result is simple and cheap (both in terms of space and CPU) and has a couple of added benefits. For example, it can leverage
operators/syntax for the underlying data type.

The main disadvantage is that you can't reset this value reliably in an asynchronous and concurrent environment.
Note

Implementing more complicated operation-based types by creating custom data types is possible, storing the state and the last operation. (Every change is decoded and transferred, so multiple operations aren't needed). But at that
point, the main benefits (simplicity, reuse of existing data types) are lost without gaining any advantage compared to state-based types (for example, still no capability to reset) except for the space requirements. (A per-node state
isn't needed.)

State-based CRDT types (CvCRDT)
State-based types require a more complex internal state and so can't use the regular data types directly the way operation-based types do.
Currently, four state-based CRDTs are implemented:

e crdt_gcounter — bigint counter (increment-only)
e crdt_gsum — numeric sum/counter (increment-only)
® crdt_pncounter — bigint counter (increments/decrements)
® crdt_pnsum — numeric sum/counter (increments/decrements)

The internal state typically includes per-node information, increasing the on-disk size but allowing added benefits. The need to implement custom data types implies more code (in/out functions and operators).

The advantage is the ability to reliably reset the values, a somewhat self-healing nature in the presence of lost changes (which doesn't happen in a cluster that operates properly), and the ability to receive changes from other than source
nodes.

Consider, for example, that a value is modified on node A, and the change gets replicated to B but not C due to network issue between A and C. If B modifies the value and this change gets replicated to C, it includes even the original change
from A. With operation-based CRDTs, node C doesn't receive the change until the A-C network connection starts working again.

The main disadvantages of CvCRDTs are higher costs in terms of disk space and CPU usage. A bit of information for each node is needed, including nodes that were already removed from the cluster. The complex nature of the state (serialized
into varlena types) means increased CPU use.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 170

EDB Postgres Distributed (PGD)

14.3.4 CRDT Disk-space requirements

An important consideration is the overhead associated with CRDT types, particularly the on-disk size.

Operation-based CRDT disk-space reqs

For operation-based types, this is trivial because the types are merely domains on top of other types. They have the same disk space requirements no matter how many nodes are there:

e crdt_delta_counter —Sameas bigint (8 bytes)
e crdt_delta_sum —Sameas numeric (variable, depending on precision and scale)

There's no dependency on the number of nodes because operation-based CRDT types don't store any per-node information.

State-based CRDT disk-space reqs
For state-based types, the situation is more complicated. All the types are variable length (stored essentially as a bytea column) and consist of a header and a certain amount of per-node information for each node that modified the value.
Forthe bigint variants, formulas computing approximate size are:
e crdt_gcounter — 32B (header) + N * 12B (per-node)
® crdt_pncounter -—48B (header) + N x 20B (per-node)
N denotes the number of nodes that modified this value.
For the numeric variants, there's no exact formula because both the header and per-node parts include numeric variable-length values. To give you an idea of how many such values you need to keep:

e crdt_gsum
o fixed: 20B (header) + N x 4B (per-node)
o variable: (2 + N) numeric values

e crdt_pnsum
o fixed: 20B (header) + N * 4B (per-node)
o variable: (4 + 2 * N) numeric values

Note
It doesn't matter how many nodes are in the cluster if the values are never updated on multiple nodes. It also doesn't matter whether the updates were concurrent (causing a conflict).

In addition, it doesn't matter how many of those nodes were already removed from the cluster. There's no way to compact the state yet.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 171

EDB Postgres Distributed (PGD)

14.3.5 CRDTs vs conflict handling/reporting

CRDT types versus conflicts handling

As tables can contain both CRDT and non-CRDT columns (most columns are expected to be non-CRDT), you need to do both the regular conflict resolution and CRDT merge.

The conflict resolution happens first and is responsible for deciding the tuple to keep (applytuple) and the one to discard. The merge phase happens next, merging data for CRDT columns from the discarded tuple into the applytuple.
Note

This handling makes CRDT types somewhat more expensive compared to plain conflict resolution because the merge needs to happen every time. This is the case even when the conflict resolution can use one of the fast paths (such
as those modified in the current transaction).

CRDT types versus conflict reporting

By default, detected conflicts are individually reported. Without CRDT types, this makes sense because the conflict resolution essentially throws away half of the available information (local or remote row, depending on configuration). This
presents a data loss.

CRDT types allow both parts of the information to be combined without throwing anything away, eliminating the data loss issue. This approach makes the conflict reporting unnecessary.
For this reason, conflict reporting is skipped when the conflict can be fully resolved by CRDT merge. Each column must meet at least one of these two conditions:

® The values in local and remote tuple are the same (NULL or equal).
® |tusesa CRDT data type and so can be merged.

Note

Conflict reporting is also skipped when there are no CRDT columns but all values in local/remote tuples are equal.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 172

EDB Postgres Distributed (PGD)

14.3.6 Resetting CRDT values

Resetting CRDT values is possible but requires special handling. The asynchronous nature of the cluster means that different nodes might see the reset operation at different places in the change stream no matter how it's implemented.
Different nodes might also initiate a reset concurrently, that is, before observing the reset from the other node.

In other words, to make the reset operation behave correctly, it needs to be commutative with respect to the regular operations. Many naive ways to reset a value that might work well on a single-node fail for this reason.

Challenges when resetting CRDT values
For example, the simplest approach to resetting a value might be:
UPDATE crdt_table SET cnt = © WHERE id = 1;

With state-based CRDTs this doesn't work. It throws away the state for the other nodes but only locally. It's added back by merge functions on remote nodes, causing diverging values and eventually receiving it back due to changes on the
other nodes.

With operation-based CRDTs, this might seem to work because the update is interpreted as a subtraction of ~cnt . But it works only in the absence of concurrent resets. Once two nodes attempt to do a reset at the same time, the delta is
applied twice, getting a negative value (which isn't expected from a reset).

It might also seem that you canuse DELETE + INSERT as a reset, but this approach has a couple of weaknesses, too. If the row is reinserted with the same key, it's not guaranteed that all nodes see it at the same position in the stream of
operations with respect to changes from other nodes. PGD specifically discourages reusing the same primary key value since it can lead to data anomalies in concurrent cases.

How to reliably handle resetting CRDT values

State-based CRDT types can reliably handle resets using a special ! operator like this:
UPDATE tab SET counter = !counter WHERE ...;

"Reliably" means the values don't have the two issues of multiple concurrent resets and divergence.

Operation-based CRDT types can be reset reliably only usingEager Replication, since this avoids multiple concurrent resets. You can also use Eager Replication to set either kind of CRDT to a specific value.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 173

14.3.7 Implemented CRDTs

Currently, six CRDT data types are implemented:

e Grow-only counter and sum
® Positive-negative counter and sum
® Delta counter and sum

The counters and sums behave mostly the same, except that the counter types are integer based 1 bigint), while the sum types are decimal-based (numeric).
You can list the currently implemented CRDT data types with the following query:

SELECT n.nspname, t.typname
FROM bdr.crdt_handlers
@

JOIN (pg_type t JOIN pg_namespace n ON t.typnamespace =
n.oid)

ON t.oid = c.crdt_type_id;

Grow-only counter (crdt_gcounter)
® Supports only increments with nonnegative values (value + int and counter + bigint operators).

® You can obtain the current value of the counter either using # operator or by castingitto bigint.

e Isn't compatible with simple assignments like counter = value (whichis common pattern when the new value is computed somewhere in the application).

® Allows simple reset of the counter using the ! operator (counter = !counter).

® You can inspect the internal state using crdt_gcounter_to_text .

CREATE TABLE crdt_test

(
id INT PRIMARY KEY,
cnt bdr.crdt_gcounter NOT NULL DEFAULT
[¢]
)3
INSERT INTO crdt_test VALUES (1, 0); -- initialized to
o
INSERT INTO crdt_test VALUES (2, 129824); -- initialized to
129824
INSERT INTO crdt_test VALUES (3, -4531); -- error: negative
value
-- enable CLCD on the
table
ALTER TABLE crdt_test REPLICA IDENTITY
FULL;

SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

—-- increment

counters

UPDATE crdt_test SET cnt = cnt + 1 WHERE 1id =
13

UPDATE crdt_test SET cnt = cnt + 120 WHERE 1id =
2;

—-- error: minus operator not

defined

UPDATE crdt_test SET cnt = cnt - 1 WHERE 1id =
13

-— error: increment has to be non-

negative

UPDATE crdt_test SET cnt = cnt + (-1) WHERE 1id =
13

-= reset counter
UPDATE crdt_test SET cnt = !cnt WHERE id =

13

-- get current counter

value

SELECT 1id, cnt::bigint, cnt FROM
crdt_test;

-- show internal structure of
counters

SELECT 1d, bdr.crdt_gcounter_to_text(cnt) FROM crdt_test;

Grow-only sum (crdt_gsum)
® Supports only increments with nonnegative values (sum + numeric).
® You can obtain the current value of the sum either by using the # operator or by casting it to numeric .
e |sn't compatible with simple assignments like sum = value , which is the common pattern when the new value is computed somewhere in the application.

® Allows simple reset of the sum using the ! operator (sum = !sum).

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

174

EDB Postgres Distributed (PGD)

e Caninspect internal state using crdt_gsum_to_text.

CREATE TABLE crdt_test

id INT PRIMARY KEY,
gsum bdr.crdt_gsum NOT NULL DEFAULT 0.0
)3

INSERT INTO crdt_test VALUES (1, 0.0); -- initialized to
o

INSERT INTO crdt_test VALUES (2, 1298.24); -- initialized to
1298.24

INSERT INTO crdt_test VALUES (3, -45.31); -- error: negative
value

-- enable CLCD on the
table

ALTER TABLE crdt_test REPLICA IDENTITY
FULL;
SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

—-- increment
sum

UPDATE crdt_test SET gsum = gsum + 11.5 WHERE id = 1;
UPDATE crdt_test SET gsum = gsum + 120.33 WHERE 1id = 2;

—-- error: minus operator not

defined

UPDATE crdt_test SET gsum = gsum - 15.2 WHERE id = 1;
-- error: increment has to be non-

negative

UPDATE crdt_test SET gsum = gsum + (-1.56) WHERE id =
13

-- reset

sum

UPDATE crdt_test SET gsum = !gsum WHERE id = 1;

-- get current sum

value

SELECT 1id, gsum::numeric, gsum FROM crdt_test;

-- show internal structure of

sums
SELECT id, bdr.crdt_gsum_to_text(gsum) FROM crdt_test;

Positive-negative counter (crdt_pncounter)
® Supports increments with both positive and negative values (through counter + int and counter + bigint operators).
® You can obtain the current value of the counter either by using the # operator or by castingto bigint.
e Isn't compatible with simple assignments like counter = value,which is the common pattern when the new value is computed somewhere in the application.
® Allows simple reset of the counter using the ! operator (counter = !counter).

® You can inspect the internal state using crdt_pncounter_to_text.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 175

CREATE TABLE crdt_test

(
id INT PRIMARY KEY,
cnt bdr.crdt_pncounter NOT NULL DEFAULT
[¢]
)5
INSERT INTO crdt_test VALUES (1, 0); -- initialized to
o
INSERT INTO crdt_test VALUES (2, 129824); -- initialized to
129824
INSERT INTO crdt_test VALUES (3, -4531); -- 7nitialized to -
4531
-— enable CLCD on the
table
ALTER TABLE crdt_test REPLICA IDENTITY
FULL;

SELECT bdr.alter_table_conflict_detection('crdt_test', 'column_modify_timestamp', 'cts');

-- increment

counters

UPDATE crdt_test SET cnt = cnt + 1 WHERE 1id =
13

UPDATE crdt_test SET cnt = cnt + 120 WHERE id =
23

UPDATE crdt_test SET cnt = cnt + (-244) WHERE id =
33

-— decrement

counters

UPDATE crdt_test SET cnt = cnt - 73 WHERE 1id =
13

UPDATE crdt_test SET cnt = cnt - 19283 WHERE id =
2;

UPDATE crdt_test SET cnt = cnt - (-12) WHERE 1id =
33

-- get current counter

value

SELECT id, cnt::bigint, cnt FROM

crdt_test;

—-- show internal structure of

counters

SELECT 1id, bdr.crdt_pncounter_to_text(cnt) FROM
crdt_test;

-- reset counter
UPDATE crdt_test SET cnt = !cnt WHERE id =

13

-- get current counter value after the
reset

SELECT 1id, cnt::bigint, cnt FROM
crdt_test;

Positive-negative sum (crdt_pnsum)
e Supports increments with both positive and negative values through sum + numeric.

® You can obtain the current value of the sum either by using then # operator or by casting to numeric .

® |sn't compatible with simple assignments like sum = value , which is the common pattern when the new value is computed somewhere in the application.

® Allows simple reset of the sum using the ! operator (sum = !sum).

® You can inspect the internal state using crdt_pnsum_to_text.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

176

CREATE TABLE crdt_test

(

id INT PRIMARY KEY,

pnsum bdr.crdt_pnsum NOT NULL DEFAULT
[¢]
)3

INSERT INTO crdt_test VALUES (1, 0);
o

INSERT INTO crdt_test VALUES (2, 1298.24); -- initialized to
1298.24

INSERT INTO crdt_test VALUES (3, -45.31); -- 7nitialized to -
45.31

—-- enable CLCD on the

table

ALTER TABLE crdt_test REPLICA IDENTITY
FULL;

SELECT bdr.alter_table_conflict_detection('crdt_test',

--= increment sums

UPDATE crdt_test SET pnsum = pnsum + 1.44
UPDATE crdt_test SET pnsum = pnsum + 12.20
UPDATE crdt_test SET pnsum = pnsum + (-24.34)
33

—-- decrement sums

UPDATE crdt_test SET pnsum = pnsum - 7.3
UPDATE crdt_test SET pnsum = pnsum - 192.83
UPDATE crdt_test SET pnsum = pnsum - (-12.22)
33

-- get current sum

value

SELECT id, pnsum::numeric, pnsum FROM
crdt_test;

—-- show internal structure of

sum

SELECT 1id, bdr.crdt_pnsum_to_text(pnsum) FROM
crdt_test;

-- reset

sum

UPDATE crdt_test SET pnsum = !pnsum WHERE 1id =
13

-- get current sum value after the
reset

SELECT 1id, pnsum::numeric, pnsum FROM
crdt_test;

Delta counter (crdt_delta_counter)

e Isdefineda bigint domain, so works exactly likea bigint column.

WHERE
WHERE
WHERE

WHERE
WHERE
WHERE

e Supports increments with both positive and negative values.

e |s compatible with simple assignments like counter = value, whichis common when the new value is computed somewhere in the application.

e There's no simple way to reset the value reliably.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

id
id

'column_modify_timestamp',

id =

id
id
id

-- initialized to

EDB Postgres Distributed (PGD)

177

CREATE TABLE crdt_test

(

id INT PRIMARY KEY,

cnt bdr.crdt_delta_counter NOT NULL DEFAULT
[¢]
)3
INSERT INTO crdt_test VALUES (1, 0); -- initialized to
o
INSERT INTO crdt_test VALUES (2, 129824); -- initialized to
129824
INSERT INTO crdt_test VALUES (3, -4531); -- 7nitialized to -
4531

—-- enable CLCD on the

table

ALTER TABLE crdt_test REPLICA IDENTITY

FULL;

SELECT bdr.alter_table_conflict_detection('crdt_test',

-- increment
counters

UPDATE crdt_test
13

UPDATE crdt_test
23

UPDATE crdt_test
33

-— decrement
counters

UPDATE crdt_test
13

UPDATE crdt_test
2;

UPDATE crdt_test
33

cnt

cnt

cnt

cnt

cnt

cnt

-- get current counter

value

SELECT 1id, cnt FROM

crdt_test;

Deltasum (crdt_delta_sum)

cnt +

cnt +

cnt +

cnt -

1 WHERE id =

120 WHERE id

(-244) WHERE 1id

73 WHERE id
19283 WHERE -id

(-12) WHERE id

'column_modify_timestamp',

® |sdefinedasa numeric domain so works exactly like a numeric column.

e Supports increments with both positive and negative values.

® |s compatible with simple assignments like sum = value , which is common when the new value is computed somewhere in the application.

e There's no simple way to reset the value reliably.

CREATE TABLE crdt_test

(

id INT PRIMARY KEY,

dsum bdr.crdt_delta_sum NOT NULL DEFAULT 0

)3

INSERT INTO crdt_test VALUES (1,

o

INSERT INTO crdt_test VALUES (2,

129824

INSERT INTO crdt_test VALUES (3,

4531

-- enable CLCD on the

table

0); -- 7nitialized to
129.824); -- initialized to
-4.531); -- initialized to -

ALTER TABLE crdt_test REPLICA IDENTITY

FULL;

SELECT bdr.alter_table_conflict_detection('crdt_test',

-- increment
counters

UPDATE crdt_test
UPDATE crdt_test

UPDATE crdt_test
3;

-- decrement
counters

UPDATE crdt_test
UPDATE crdt_test
UPDATE crdt_test
3;

dsum
dsum
dsum

dsum =

dsum
dsum

-- get current counter

value

SELECT 1id, cnt FROM

crdt_test;

dsum
dsum
dsum

dsum
dsum
dsum

+1.32 WHERE
+ 12.01 WHERE
+ (-2.4) WHERE

- 7.33 WHERE

- 19.83 WHERE id =

id
id
id

id

- (-1.2) WHERE -id

'column_modify_timestamp',

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

'cts');

'cts');

EDB Postgres Distributed (PGD)

178

EDB Postgres Distributed (PGD)

15 Testing and tuning PGD clusters

You can test PGD applications using the following approaches:

pgd_bench

The Postgres benchmarking application pgbench was extended in the form of a new application: pgd_bench.

pgd_bench is a regular command-line utility that's added to the PostgreSQL bin directory. The utility is based on the PostgreSQL pgbench tool but supports benchmarking CAMO transactions and PGD-specific workloads.
Functionality of pgd_bench is a superset of pgbench functionality but requires the BDR extension to be installed to work properly.

Key differences include:

® Adjustments to the initialization (-1 flag) with the standard pgbench scenario to prevent global lock timeouts in certain cases.
e VACUUM command in the standard scenario is executed on all nodes.
e pgd_bench releases are tied to the releases of the BDR extension and are built against the corresponding Postgres distribution. This information is reflected in the output of the -——version flag.

The current version allows you to run failover tests while using CAMO or regular PGD deployments.

The following options were added:

-m, --mode=regular|camo|failover
mode in which pgbench should run (default: regular)

® Use -m camo or -m failover to specify the mode for pgd_bench. You can use the -m failover specification to test failover in regular PGD deployments.

--retry
retry transactions on failover

® Use —-retry tospecify whether to retry transactions when failover happens with -m failover mode. This option is enabled by default for -m camo mode.
In addition to these options, you must specify the connection information about the peer node for failover inDSN form.

Here's an example in a CAMO environment:

pgd_bench -m camo -p $nodel_port -h $nodel_host bdrdemo \
"host=$node2_host user=postgres port=$node2_port dbname=bdrdemo"

This command runs in CAMO mode. It connects to node1 and runs the tests. If the connection to node1 is lost, then pgd_bench connects to node2. It queries node2 to get the status of in-flight transactions. Aborted and in-flight transactions
are retried in CAMO mode.

In failover mode, if you specify —-retry , then in-flight transactions are retried. In this scenario, there's no way to find the status of in-flight transactions.

Notes on pgd_bench usage

e When using custom init-scripts, it's important to understand implications behind the DDL commands. We generally recommend waiting for the secondary nodes to catch up on the data-load steps before proceeding with DDL operations
suchas CREATE INDEX .The latter acquire global locks that can't be acquired until the data load is complete and thus might time out.

® No extra steps are taken to suppress client messages, such as NOTICE and WARNING messages emitted by PostgreSQL and or any possible extensions, including the BDR extension. It's your responsibility to suppress them by setting
appropriate variables, suchas client_min_messages, bdr.camo_enable_client_warnings,andsoon.

e pgd_bench doesn't initiate SQL transactions for custom scripts. Scripts that are intended to run in an SQL transaction need to include the transaction start and end commands. If pgd_bench is executed with the -m / —-mode option
setto camo , any custom scripts provided must wrap the SQL commands in a transaction, otherwise CAMO functionality will not work as expected.

Performance testing and tuning
PGD allows you to issue write transactions onto multiple nodes. Bringing those writes back together onto each node has a performance cost.

First, replaying changes from another node has a CPU cost and an 1/0 cost, and it generates WAL records. The resource use is usually less than in the original transaction since CPU overhead is lower as a result of not needing to reexecute SQL.
In the case of UPDATE and DELETE transactions, there might be 1/0 costs on replay if data isn't cached.

Second, replaying changes holds table-level and row-level locks that can produce contention against local workloads. The conflict-free replicated data types (CRDT) and column-level conflict detection (CLCD) features ensure you get the
correct answers even for concurrent updates, but they don't remove the normal locking overheads. If you get locking contention, try to avoid conflicting updates, or keep transactions as short as possible. A heavily updated row in a larger
transaction causes a bottleneck on performance for that transaction. Complex applications require some thought to maintain scalability.

If you think you're having performance problems, develop performance tests using the benchmarking tools. pgd_bench allows you to write custom test scripts specific to your use case so you can understand the overhead of your SQL and
measure the impact of concurrent execution.

If PGD is running slow, then we suggest the following:

. Write a custom test script for pgd_bench, as close as you can make it to the production system's problem case.

. Run the script on one node to give you a baseline figure.

. Run the script on as many nodes as occur in production, using the same number of sessions in total as you did on one node. This technique shows you the effect of moving to multiple nodes.
. Increase the number of sessions for these two tests so you can plot the effect of increased contention on your application.

. Make sure your tests are long enough to account for replication delays.

. Ensure that replication delay isn't growing during your tests.

[NS VRN NN

Use all of the normal Postgres tuning features to improve the speed of critical parts of your application.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 179

https://www.postgresql.org/docs/current/pgbench.html
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING

EDB Postgres Distributed (PGD)

16 Upgrading

While PGD and Postgres are closely related, they're separate products with separate upgrade paths. This section covers how to upgrade both PGD and Postgres.

Upgrading PGD

EDB Postgres Distributed is a flexible platform. This means that your upgrade path depends largely on how you installed PGD.
e Upgrading manually — If you manually installed and configured your PGD cluster, you can move a cluster between versions, both minor and major.
e Upgrade paths — Several supported upgrade paths are available.

® Compatibility changes — If you're upgrading from PGD 3.x or 4.x to PGD 5.x or later, you need to understand the compatibility changes between versions.

Upgrading Postgres or Postgres and PGD major versions
® In-place Postgres major version upgrades — How to use pgd node upgrade to manually upgrade the Postgres version or Postgres and PGD major version on one or more nodes.

® Rolling major version upgrades — How to perform a major version upgrade of Postgres on a cluster.

Other upgrades

o Application schema upgrades — A guide for safely upgrading your application's schema when running multiple distributed servers with PGD.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 180

EDB Postgres Distributed (PGD)

16.1 Upgrading PGD clusters manually

Because EDB Postgres Distributed consists of multiple software components, the upgrade strategy depends partially on the components that are being upgraded.

In general, you can upgrade the cluster with almost zero downtime by using an approach called rolling upgrade. Using this approach, nodes are upgraded one by one, and the application connections are switched over to already upgraded
nodes.

You can also stop all nodes, perform the upgrade on all nodes, and only then restart the entire cluster. This approach is the same as with a standard PostgreSQL setup. This strategy of upgrading all nodes at the same time avoids running with
mixed versions of software and therefore is the simplest. However, it incurs downtime and we don't recommend it unless you can't perform the rolling upgrade for some reason.

To upgrade an EDB Postgres Distributed cluster:

. Plan the upgrade.

. Prepare for the upgrade.

. Upgrade the server software.

. Check and validate the upgrade.

RS IN RN

Upgrade planning
There are broadly two ways to upgrade each node:

® Upgrade nodes in place to the newer software version. SeeRolling server software upgrades.
e Replace nodes with ones that have the newer version installed. See Rolling upgrade using node join.

You can use both of these approaches in a rolling manner.

Rolling upgrade considerations

While the cluster is going through a rolling upgrade, mixed versions of software are running in the cluster. For example, suppose nodeA has PGD 4.3.6, while nodeB and nodeC have 5.6.1. In this state, the replication and group management
uses the protocol and features from the oldest version (4.3.6 in this example), so any new features provided by the newer version that require changes in the protocol are disabled. Once all nodes are upgraded to the same version, the new
features are enabled.

Similarly, when a cluster with WAL-decoder-enabled nodes is going through a rolling upgrade, WAL decoder on a higher version of PGD node produces logical change records (LCRs) with a higher pglogical version. WAL decoder on a lower
version of PGD node produces LCRs with a lower pglogical version. As a result, WAL senders on a higher version of PGD nodes aren't expected to use LCRs due to a mismatch in protocol versions. On a lower version of PGD nodes, WAL senders
can continue to use LCRs. Once all the PGD nodes are on the same PGD version, WAL senders use LCRs.

Arolling upgrade starts with a cluster with all nodes at a prior release. It then proceeds by upgrading one node at a time to the newer release, until all nodes are at the newer release. There must be no more than two versions of the software
running at the same time. An upgrade must be completed, with all nodes fully upgraded, before starting another upgrade.

Where additional caution is required to reduce business risk, more time may be required to perform an upgrade. For maximum caution and to reduce the time required upgrading production systems, we suggest performing the upgrades in a
separate test environment first.

Don't run with mixed versions of the software for any longer than is absolutely necessary to complete the upgrade. You can check on the versions in the cluster using the pgd nodes list --versions command.

The longer you run with mixed versions, the more likely you are to encounter issues, the more difficult it is to diagnose and resolve them.
We recommend upgrading in off peak hours for your business, and over a short period of time.

While you can use a rolling upgrade for upgrading a major version of the software, we don't support mixing PostgreSQL, EDB Postgres Extended, and EDB Postgres Advanced Server in one cluster. So you can't use this approach to change the
Postgres variant.

Warning

Downgrades of EDB Postgres Distributed aren't supported. They require that you manually rebuild the cluster.

Rolling server software upgrades

Arolling upgrade is where the server software upgrade is upgraded sequentially on each node in a cluster without stopping the cluster. Each node is temporarily stopped from participating in the cluster and its server software is upgraded.
Once updated, it's returned to the cluster, and it then catches up with the cluster's activity during its absence.

The actual procedure depends on whether the Postgres component is being upgraded to a new major version.

During the upgrade process, you can switch the application over to a node that's currently not being upgraded to provide continuous availability of the database for applications.

Rolling upgrade using node join

The other method to upgrade the server software is to join a new node to the cluster and later drop one of the existing nodes running the older version of the software.
For this approach, the procedure is always the same. However, because it includes node join, a potentially large data transfer is required.

Take care not to use features that are available only in the newer Postgres version until all nodes are upgraded to the newer and same release of Postgres. This is especially true for any new DDL syntax that was added to a newer release of
Postgres.

Note

bdr_init_physical makes a byte-by-byte copy of the source node so you can't use it while upgrading from one major Postgres version to another. In fact, currently bdr_init_physical requires that even the PGD version
of the source and the joining node be exactly the same. You can't use it for rolling upgrades by way of joining a new node method. Instead, use a logical join.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 181

https://www.enterprisedb.com/docs/pgd/latest/reference/decoding_worker/#enabling
https://www.enterprisedb.com/docs/pgd/5.8/cli/command_ref/nodes/list/

EDB Postgres Distributed (PGD)

Upgrading a CAMO-enabled cluster

Upgrading a CAMO-enabled cluster requires upgrading CAMO groups one by one while disabling the CAMO protection for the group being upgraded and reconfiguring it using the new commit scope-based settings.

We recommended the following approach for upgrading two BDR nodes that constitute a CAMO pair to PGD 5.0:

N

transactions.
. For BDR 4., deconfigure CAMO by using bdr.remove_camo_pair touncouple the pair.
. Upgrade the two nodes to PGD 5.0.
. Create a dedicated node group for the two nodes and move them into that node group.
Create a commit scope for this node group and thus the pair of nodes to use CAMO.

~N o swN

. If necessary, allow clients to connect to the CAMO-protected nodes again.

Upgrade preparation

Each major release of the software contains several changes that might affect compatibility with previous releases. These might affect the Postgres configuration, deployment scripts, as well as applications using PGD. We recommend

considering these changes and making any needed adjustments in advance of the upgrade.

See individual changes mentioned in the release notes and any version-specific upgrade notes.

Server software upgrade

Upgrading EDB Postgres Distributed on individual nodes happens in place. You don't need to back up and restore when upgrading the BDR extension.

BDR extension upgrade

The BDR extension upgrade process consists of the following high-level steps:

Fence the node

To make sure the node being upgraded does not become a write leader until the upgrade is complete, you should fence the node before initiating the upgrade.

Stop Postgres

During the upgrade of binary packages, it's usually best to stop the running Postgres server first. Doing so ensures that mixed versions don't get loaded in case of an unexpected restart during the upgrade.

Upgrade packages

The first step in the upgrade is to install the new version of the BDR packages. This installation installs both the new binary and the extension SQL script. This step is specific to the operating system.

Start Postgres

Once packages are upgraded, you can start the Postgres instance. The BDR extension is upgraded upon start when the new binaries detect the older version of the extension.

Unfence the node
You can unfence the node after the node upgrade is completed.
Note
A PGD 4 cluster must be running PGD 4.4.1 before upgrading to PGD 6.2.
Upgrading from PGD 4.4.1 to PGD 6.2 requires additional steps to move from Harp proxy to Connection Manager. For more information, see the worked example: Upgrade PGD 4 to PGD 6.2.
A PGD 5 cluster must be running PGD 5.9 before upgrading to PGD 6.2.
Upgrading from PGD 5.9 to PGD 6.2 requires additional steps to move from PGD proxy to Connection Manager.

For more information, see the worked example: Upgrade PGD 5 to PGD 6.2.

Postgres upgrade

The process of in-place upgrade of Postgres depends on whether you're upgrading to a new minor version of Postgres or to a new major version of Postgres.

Minor version Postgres upgrade

Upgrading to a new minor version of Postgres is similar to upgrading the BDR extension. Stopping Postgres, upgrading packages, and starting Postgres again is typically all that's needed.

However, sometimes more steps, like reindexing, might be recommended for specific minor version upgrades. Refer to the release notes of the version of Postgres you're upgrading to.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

. Ensure bdr.enable_camo remains off fortransactions on any of the two nodes, or redirect clients away from the two nodes. Removing the CAMO pairing while attempting to use CAMO leads to errors and prevents further

. Reactivate CAMO protection again either by settinga default_commit_scope orby changing the clients to explicitly set bdr.commit_scope instead of bdr.enable_camo for their sessions or transactions.

182

https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/commit-scopes/
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/commit-scopes/

EDB Postgres Distributed (PGD)

Major version Postgres upgrade

Upgrading to a new major version of Postgres is more complicated than upgrading to a minor version.
EDB Postgres Distributed providesa pgd node upgrade command line utility, which you can use to doin-place Postgres major version upgrades.
Note

When upgrading to a new major version of any software, including Postgres, the BDR extension, and others, it's always important to ensure your application is compatible with the target version of the software you're upgrading.

Upgrade check and validation

After you upgrade your PGD node, you can verify the current version of the binary:
SELECT bdr.bdr_version();

Always check your monitoring after upgrading a node to confirm that the upgraded node is working as expected.

PGD 5 - Moving from PGD Proxy to Connection Manager
Use the following steps to move from PGD Proxy to Connection Manager:

1. From one of the PGD 5.9 nodes, run the following query to ensure that SCRAM hashes of all user passwords are the same across all nodes:

e DO $$
DECLARE

rec
RECORD;
command TEXT; password TEXT;
BEGIN
FOR rec IN SELECT rolname,rolpassword FROM pg_authid WHERE rolcanlogin = true AND rolpassword like 'SCRAM-
SHA%"
LOOP

password :=
rec.rolpassword;

command := 'ALTER ROLE ' || quote_ident(rec.rolname) || ' WITH ENCRYPTED PASSWORD ' |
quote_literal(password);
EXECUTE
command ;
END LOOP;
END;
$$5

SELECT wait_slot_confirm_lsn(NULL, NULL);

. Note

No new users should be added to 5.9 after executing this. If they are added, run the query again. The above block does not change the passwords, it just ensure SCRAM hashes are same across the cluster on all nodes.

. Fence a node in this cluster with pgd node <node-name> set-option route_fence true so thatitdoes not become the write leader.

. Enable the GUC bdr.enable_builtin_connection_manager to true.

. Restart the server.

. Stop PGD Proxy running on the server.

. Restart the server. It will start with the Connection Manager running on the default port. If the proxy read and write ports were different, the Connection Manager port read and write ports can be changed to be the same as proxy
by bdr.alter_node_group_option() .

. Unfence the node. This node can now accept connections from the user and route to the write leader via Connection Manager.

. Repeat this for each node in the cluster. This will ensure all nodes are now routing via Connection Manager.

. If you're also performing a major version upgrade from PGD 5 to PGD 6.2, proceed with the rolling upgrade steps.

o0 s W N

© ® ~

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 183

https://www.enterprisedb.com/docs/pgd/latest/reference/monitoring/

EDB Postgres Distributed (PGD)

16.2 Supported PGD upgrade paths

Upgrading to version 6.2

EDB Postgres Distributed uses semantic versioning. All changes within the same major version are backward compatible, lowering the risk when upgrading and allowing you to choose any later minor or patch release as the upgrade target.

The following upgrade paths are supported for PGD 6.2:

Source version Target version

4.4 6.2.0
5.9.0 6.2.0
6.0.2 6.2.0

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 184

https://semver.org/

EDB Postgres Distributed (PGD)

16.3 Compatibility changes

Summary

There are some changes in PGD 6.2 that are not compatible with 5.x and other previous versions. For users of 4.x, theversion 5.x compatibility changes still apply.

Connection Manager

PGD 6 introduces a new Connection Manager which replaces the PGD 5's proxy solution with a tightly integrated approach using a background worker to expose read-write, read-only and http-status network interfaces in PGD. This means that
all the old proxy functions were removed, as there are no longer separate PGD-Proxy instances to manage and the connection manager uses group configuration.

Moreover, bdr.proxy_conifg tableand bdr.proxy_config_summary view were removed. You should now use bdr.node_group_config_summary for the connection manager's configuration. This also includes all the other
group settings, including routing.

For more details see Connection Manager.

DDL Locking changes

There is a new global lock type, dd1_locking = leader that'sused by PGD 6.2 by default instead of the global DML lock. This lock ensures that a table is exclusively locked on all group leaders (as opposed to all nodes). For PGD
Essential this means that in practice the lock is engaged immediately as there is only one leader, which means the system exhibits the same behavior as a single node Postgres setup. LOCK TABLE and TRUNCATE TABLE now use this new
lock type by default (before the default behavior was to not lock outside of the origin node).

LOCK TABLE now uses DDL lock for ACCESS SHARE , ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE and DML lock for SHARE ROW EXCLUSIVE, EXCLUSIVE ,and ACCESS EXCLUSIVE .This means that
SHARE+ blocks DMLs, but lower levels don't (which is more closely aligned with how these levels work in Postgres). LOCK TABLE used to always use DML lock.

Join/part behavior
Function and node state changes
For bdr.part_node:

e wait_for_completion works on the local node
e the force optionis deprecated and has the same behavioras bdr.drop_node (force:=true)

For bdr.drop_node :

e the cascade option was removed
e force now always immediately drops the node locally and assumes previous cascade behavior as well

For bdr.join_node_group:

e the pause_in_standby option was removed
® now whether the node is in standby is determined by node_kind whenrunning bdr.create_node

Anew node state PART_CLEANUP was added, which waits for the group slot to move past any records relevant to the parting node and cleans up origin records related to the node.

Sequences conversion

When creating a PGD cluster, existing sequences are automatically converted to distributed ones.

Parting a node drops it

When a node is parted, it is eventually dropped and the node will not be seen in the PARTED state at the end of the parting. Therefore, scripts that wait for the node to reach PARTED state may need change. Parting can also take longer than
earlier versions since this operation waits till the group slot on all crosses of the last transaction from the parting node to ensure consistency.

Administration function changes
® The enable_proxy_routing node group optionis now enable_routing,although bdr.alter_node_group_option still supports the older syntax for backwards compatibility. The views only show the new name.
e The already deprecated bdr.alter_node_group_config() wasremoved. Use bdr.alter_node_group_option() instead.

e The managed_locally optionin bdr.autopartition() wasremoved. Only locally managed partitions are now supported. At the same time ap_is_local was removed from bdr.autopartition_rules catalogas
well.

Other
Replica identity

® Replica identity defaults to FULL now.
e This removes some edge cases in conflict detection between inserts, updates, and deletes across node crashes and recovery.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 185

https://www.enterprisedb.com/docs/pgd/5.8/upgrades/compatibility/
https://www.enterprisedb.com/docs/pgd/latest/reference/connection-manager/
https://www.enterprisedb.com/docs/pgd/latest/reference/sequences.mdx

EDB Postgres Distributed (PGD)

Run on (all) writes
® Run on (all) writes is now not replicated.
e The bdr.xact_replicate issetto off by default, reducing possible accidental issues with replication of commands sent via the run on (all) nodes command.

® Some log messages were reworded to be easier to understand.
e Some internal log messages' log levels were lowered from LOG to DEBUG so they may no longer appear in logs.

General Ul improvements

e Workers renamed to not contain 'pglogical'
e Previously deprecated configuration parameters (GUCs) now removed (this includes, for example, all the pglogical prefixed GUCs).
e Conflicts are logged neither to Postgres log or conflict_history table by default

Changes to defaults

Global lock timeout

bdr.global_lock_timeout is setto 1 minute by default.

Auto sync

bdr.enable_auto_sync_reconcile issetto ON by default. This feature is documented in Automatic synchronization. It enables changes from a down node to be synced to all other nodes.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 186

https://www.enterprisedb.com/docs/pgd/latest/reference/node_management/automatic_sync/

EDB Postgres Distributed (PGD)

16.4 Application schema upgrades

Similar to the upgrade of EDB Postgres Distributed, there are two approaches to upgrading the application schema. The simpler option is to stop all applications affected, preform the schema upgrade, and restart the application upgraded to
use the new schema variant. This approach imposes some downtime.

To eliminate this downtime, EDB Postgres Distributed offers useful tools to perform a rolling application schema upgrade.

The following recommendations and tips reduce the impact of the application schema upgrade on the cluster.

Rolling application schema upgrades

By default, DDL is automatically sent to all nodes. You can control this behavior manually, as described in DDL replication. You can use this approach to create differences between database schemas across nodes.

PGD is designed to allow replication to continue even with minor differences between nodes. These features are designed to allow application schema migration without downtime or to allow logical standby nodes for reporting or testing.
Careful scripting is required to make this work correctly on production clusters. We recommend extensive testing.

See Replicating between nodes with differences for details.

When one node runs DDL that adds a new table, nodes that haven't yet received the latest DDL need to handle the extra table. In view of this, the appropriate setting for rolling schema upgrades is to configure all nodes to apply the skip
resolverin case ofa target_table_missing conflict. Perform this configuration before adding tables to any node. This setting is intended to be permanent.

Execute the following queryseparately on each node. Replace nodel with the actual node name.

SELECT
bdr.alter_node_set_conflict_resolver('nodel’,

'target_table_missing', 'skip');

When one node runs DDL that adds a column to a table, nodes that haven't yet received the latest DDL need to handle the extra columns. In view of this, the appropriate setting for rolling schema upgrades is to configure all nodes to apply the
ignore resolverincaseofa target_column_missing conflict. Perform this before adding columns to one node. This setting is intended to be permanent.

Execute the following queryseparately on each node. Replace nodel with the actual node name.

SELECT
bdr.alter_node_set_conflict_resolver('nodel’,

'target_column_missing', 'ignore');

When one node runs DDL that removes a column from a table, nodes that haven't yet received the latest DDL need to handle the missing column. This situation causes a source_column_missing conflict, which uses the
use_default_value resolver. Thus, columns that don't accept NULLs and don't have a DEFAULT value require a two-step process:

1. Remove the NOT NULL constraint, or add a DEFAULT value for a column on all nodes.
2. Remove the column.
You can remove constraints in a rolling manner. There's currently no supported way for handling adding table constraints in a rolling manner, one node at a time.
When one node runs a DDL that changes the type of an existing column, depending on the existence of binary coercibility between the current type and the target type, the operation might not rewrite the underlying table data. In that case, it's

only a metadata update of the underlying column type. Rewriting a table is normally restricted. However, in controlled DBA environments, you can change the type of a column to an automatically castable one by adopting a rolling upgrade for
the type of this column in a non-replicated environment on all the nodes, one by one. See ALTER TABLE for more details.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 187

https://www.enterprisedb.com/docs/pgd/latest/reference/ddl/
https://www.enterprisedb.com/docs/pgd/latest/reference/appusage/
https://www.enterprisedb.com/docs/pgd/latest/reference/ddl/ddl-command-handling/#alter-table

EDB Postgres Distributed (PGD)

16.5 In-place Postgres or Postgres and PGD major version upgrades

You can upgrade a PGD node to a newer major version of Postgres or a major version of Postgres and PGD using the command-line utilitypgd node upgrade.
Note

In previous versions before 5.7.0, the command used for in-place major version upgrades was bdr_pg_upgrade . However, this command didn't have an option to upgrade both Postgres major versions and PGD versions
simultaneously, as pgd node upgrade does.

pgd node upgrade isawrapper around the standard pg_upgrade that adds PGD-specific logic to the process to ensure a smooth upgrade.

Terminology

This terminology is used when describing the upgrade process and components involved:

Postgres cluster — The database files, both executables and data, that make up a Postgres database instance on a system when run.
Old Postgres cluster— The existing Postgres cluster to upgrade, the one from which to migrate data.

New Postgres cluster— The new Postgres cluster that data is migrated to. This Postgres cluster must be one major version ahead of the old cluster.

Precautions

Standard Postgres major version upgrade precautions apply, including the fact both Postgres clusters must meet all the requirements for pg_upgrade.
Additionally, don'tuse pgd node upgrade if other tools are using replication slots and replication origins. Only PGD slots and origins are restored after the upgrade.

You must meet several prerequisites for pgd node upgrade:

Disconnect applications using the old Postgres cluster. You can, for example, redirect them to another node in the PGD cluster.
Configure peer authentication for both Postgres clusters. bdr_pg_upgrade requires peer authentication.

The same or newer version of PGD must be installed on the new cluster.

The PGD version must be 4.1.0 or later.

The new cluster must be in a shutdown state.

You must install PGD packages in the new cluster.

The new cluster must already be initialized and configured as needed to match the old cluster configuration.

Databases, tables, and other objects must not exist in the new cluster.

Note

When upgrading to PGD 5.7.0+, you don't need to have both clusters run the same PGD version. The new cluster must be running 5.7.0+. In that case pgd node upgrade will upgrade the PGD version to 5.7.x and upgrade the
Postgres major version.

We also recommend having the old Postgres cluster up prior to running pgd node upgrade . The CLI starts the old Postgres cluster if it's shut down.

Usage

To upgrade to a newer major version of Postgres or Postgres and PGD, you must first install the new version packages.

pgd node upgrade command-line

pgd node upgrade passes all parameters to pg_upgrade. Therefore, you can specify any parameters supported by pg_upgrade.

Synopsis

pgd node <NODE_NAME> upgrade [OPTION]

Options

In addition to the options for pg_upgrade, you can pass the following parameters to pgd node upgrade .

Required parameters

Specify these parameters either in the command line or, for all but the ——~database parameter, in their equivalent environment variable. They're used by pgd node upgrade.

e -b, ——old-bindir — Old Postgres cluster bin directory.
e -B, --new-bindir — New Postgres cluster bin directory.
e -d, -—-old-datadir — Old Postgres cluster data directory.
e -D, -—new-datadir — New Postgres cluster data directory.
e --database — PGD database name.

Optional parameters

These parameters are optional and are used by pgd node upgrade:

e -p, ——old-port — Old cluster port number.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 188

https://www.postgresql.org/docs/current/pgupgrade.html
https://www.postgresql.org/docs/current/pgupgrade.html#id-1.9.5.12.7.
https://www.postgresql.org/docs/current/pgupgrade.html#id-1.9.5.12.6

e -s, --socketdir — Directory to use for postmaster sockets during upgrade.
e -—-check — Specify to only perform checks and not modify clusters.

Other parameters

Any other parameter that's not one of the above is passed to pg_upgrade. pg_upgrade accepts the following parameters:

® -j, ——jobs — Number of simultaneous processes or threads to use.

e -k, —-link — Use hard links instead of copying files to the new cluster.

e -0, ——old-options — Option to pass to old postgres command. Multiple invocations are appended.
e -0, —-—new-options — Option to pass to new postgres command. Multiple invocations are appended.
e -N, --no-sync — Don'twait for all files in the upgraded cluster to be written to disk.

e -P, ——new-port — New cluster port number.

e -r, —-retain — Retain SQL and log files even after successful completion.

e -U, --username — Cluster'sinstall user name.

e -—-clone — Use efficient file cloning.

Environment variables

You can use these environment variables in place of command-line parameters:

e PGBINOLD — Old Postgres cluster bin directory.

® PGBINNEW — New Postgres cluster bin directory.

e PGDATAOLD — Old Postgres cluster data directory.

e PGDATANEW — New Postgres cluster data directory.

® PGPORTOLD — Old Postgres cluster port number.

® PGSOCKETDIR — Directory to use for postmaster sockets during upgrade.

Example

Given a scenario where:

Node name of the cluster you want to upgrade is kaolin.

Old Postgres cluster bin directoryis /usr/1lib/postgresql/16/bin.
New Postgres cluster bin directoryis /usr/lib/postgresql/17/bin.
Old Postgres cluster data directoryis /var/lib/postgresql/16/main .
New Postgres cluster data directoryis /var/lib/postgresql/17/main .

Database nameis bdrdb .

You can use the following command to upgrade the cluster:

pgd node kaolin upgrade \

--old-bindir /usr/lib/postgresql/16/bin \
--new-bindir /usr/lib/postgresql/17/bin \
--old-datadir /var/lib/postgresql/16/main \
--new-datadir /var/lib/postgresql/17/main \
--database bdrdb

Steps performed

These steps are performed when running pgd node upgrade.

Note

When --check is supplied as an argument to pgd node upgrade, the CLI skips steps that modify the database.

PGD Postgres checks

Steps —-check supplied
Collecting pre-upgrade new cluster control data run
Checking new cluster state is shutdown run
Checking PGD versions run
Starting old cluster (if shutdown) skip
Connecting to old cluster skip
Checking if bdr schema exists skip
Turning DDL replication off skip
Terminating connections to database skip
Waiting for all slots to be flushed skip
Disconnecting from old cluster skip
Stopping old cluster skip
Starting old cluster with PGD disabled skip
Connecting to old cluster skip
Collecting replication origins skip
Collecting replication slots skip
Disconnecting from old cluster skip
Stopping old cluster skip

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

189

pg_upgrade steps

Standard pg_upgrade steps are performed.

Note

If supplied, ——check is passed to pg_upgrade.

PGD post-upgrade steps

Steps

Collecting old cluster control data

Collecting new cluster control data

Advancing LSN of new cluster

Starting new cluster with PGD disabled

Connecting to new cluster

Creating replication origin, repeated for each origin

Advancing replication origin, repeated for each
origin
Creating replication slot, repeated for each slot

Stopping new cluster

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

—-check supplied
skip
skip
skip
skip
skip
skip

skip

skip

skip

EDB Postgres Distributed (PGD)

190

EDB Postgres Distributed (PGD)

16.6 Performing a Postgres major version rolling upgrade on a PGD cluster

Upgrading Postgres major versions

Upgrading a Postgres database's major version to access improved features, performance enhancements, and security updates is a common administration task. Doing the same for an EDB Postgres Distributed (PGD) cluster is essentially the
same process but performed as a rolling upgrade.

The rolling upgrade process allows updating individual cluster nodes to a new major Postgres version while maintaining cluster availability and operational continuity. This approach minimizes downtime and ensures data integrity by allowing
the rest of the cluster to remain operational as each node is upgraded sequentially.

The following overview of the general instructions and worked examples help to provide a smooth and controlled upgrade process.

Prepare the upgrade

To prepare for the upgrade, identify the subgroups and nodes you're trying to upgrade and note an initial upgrade order.

To do this, connect to one of the nodes using SSH and run the pgd nodes 1ist command:

sudo -u postgres pgd nodes
Tlist

The pgd nodes list command shows you all the nodes in your PGD cluster and the subgroup to which each node belongs. Then you want to find out which node is the write leader in each subgroup:

sudo -u postgres pgd group <group_name> show

summar

This command shows you information about the pgd group tokened by your <group_name> running in your cluster, including which node is the write leader. To maintain operational continuity, you need to switch write leaders over to
another node in their subgroup before you can upgrade them. To keep the number of planned switchovers to a minimum, when upgrading a subgroup of nodes, upgrade the writer leaders last.

To make sure the node being upgraded does not become a write leader until the upgrade is complete, you should fence the node before initiating the upgrade and then unfence the node after the node upgrade is completed.

Even though you verified which node is the current write leader for planning purposes, the write leader of a subgroup could change to another node at any moment for operational reasons before you upgrade that node. Therefore, you still need
to verify that a node isn't the write leader just before upgrading that node.

You now have enough information to determine your upgrade order, one subgroup at a time, aiming to upgrade the identified write leader node last in each subgroup.

Perform the upgrade on each node

Important
To help prevent data loss, before starting the upgrade process, ensure that your databases and configuration files are backed up.
Using the preliminary order, perform the following steps on each node while connected via SSH:
® Confirm the current Postgres version
o View versions from PGD:
sudo -u postgres pgd nodes list --versions.
o Ensure that the expected major version is running.
o Verify that the target node isn't the write leader
o Check whether the target node is the write leader for the group you're upgrading:
sudo -u postgres pgd group <group_name> show --summary
o |f the target node is the current write leader for the group/subgroup you're upgrading, perform a planned switchover to another node:
sudo -u postgres pgd group <group_name> set-leader <new_leader_node_name>
® Fence the node
o To make sure the node being upgraded does not become a write leader until the upgrade is complete, you should fence the node before initiating the upgrade.
e Stop Postgres on the target node
o Stop the Postgres service on the current node:
sudo systemctl stop postgres
The target node is no longer actively participating as a node in the cluster.
o Install PGD and utilities
o Install PGD and its utilities compatible with the Postgres version you're upgrading to:

sudo apt install edb-bdr6-pg<new_postgres_version_number>

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 191

EDB Postgres Distributed (PGD)

® |Initialize the new Postgres instance
o Create a directory to house the database files for the new version of PostgreSQL:

sudo mkdir -p /opt/postgres/datanew

o

Ensure that the user postgres has ownership permissions to the directory using chown .

o

Initialize a new PostgreSQL database cluster in the directory you just created. This step involves using the initdb command provided by the newly installed version of PostgreSQL. Include the ~~data-checksums flag to
ensure the cluster uses data checksums.

sudo -u postgres <path_to_postgres_bin>/initdb -D /opt/postgres/datanew --data-checksums
Replace <path_to_postgres_bin> withthe path to the bin directory of the newly installed PostgreSQL version.
You may need to run this command as the postgres user or another user with appropriate permissions.

® Migrate configuration to the new Postgres version

o Locate the following configuration files in your current PostgreSQL data directory:
m postgresql.conf — The main configuration file containing settings related to the database system.
m postgresql.auto.conf — Contains settings set by PostgreSQL, such as those modified by the ALTER SYSTEM command.
= pg_hba.conf — Manages client authentication, specifying which users can connect to which databases from which hosts.
= The entire conf.d directory (if present) — Allows for organizing configuration settings into separate files for better manageability.

o Copy these files and the conf.d directory to the new data directory you created for the upgraded version of PostgreSQL.
o Verify the Postgres service is inactive
o Before proceeding, it's important to ensure that no PostgreSQL processes are active for both the old and the new data directories. This verification step prevents any data corruption or conflicts during the upgrade process.
Use the sudo systemctl status postgres command to verify that Postgres was stopped. If it isn't stopped, run systemctl stop postgres and verify again that it was stopped.
e Swap PGDATA directories for version upgrade
o Rename /opt/postgres/data to /opt/postgres/dataold and /opt/postgres/datanew to /opt/postgres/data.
This step readies your system for the next crucial phase: running pgd node upgrade to finalize the PostgreSQL version transition.
o Verify upgrade feasibility
o The pgd node upgrade tooloffersa ——check option designed to perform a preliminary scan of your current setup, identifying any potential issues that could hinder the upgrade process.

You need to run this check from an upgrade directory with ownership given to user postgres, such as /home /upgrade/ , so that the upgrade log files created by pgd node upgrade can be stored. To initiate the safety
check, append the —-check option to your pgd node upgrade command.

This operation simulates the upgrade process without making any changes, providing insights into any compatibility issues, deprecated features, or configuration adjustments required for a successful upgrade.
o Address any warnings or errors indicated by this check to ensure an uneventful transition to the new version.
e Execute the Postgres major version upgrade

o Execute the upgrade process by running the pgd node <node_name> upgrade command without the ~-check option.
o It's essential to monitor the command output for any errors or warnings that require attention.
o The time the upgrade process take depends on the size of your database and the complexity of your setup.

® Update the Postgres service configuration
o Update the service configuration to reflect the new PostgreSQL version by updating the version number in the postgres.service file:
sudo sed -i -e 's/<old_version_number>/<new_version_number>/g' /etc/systemd/system/postgres.service
o Refresh the system's service manager to apply these changes:
sudo systemctl daemon-reload
® Restart Postgres
o Proceed to restart the PostgreSQL service:
systemctl start postgres
® Validate the new Postgres version
o Verify that your PostgreSQL instance is now upgraded:
sudo -u postgres pgd nodes list --versions
e Unfence the node

o You can unfence the node after validating the upgrade.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 192

® Clean up post-upgrade

EDB Postgres Distributed (PGD)

o Run vacuumdb withthe ANALYZE option immediately after the upgrade but before introducing a heavy production load. Running this command minimizes the immediate performance impact, preparing the database for more

accurate testing.
o Remove the old version's data directory, /opt/postgres/dataold.

Worked example: Upgrade PGD 4 to PGD 6

This worked example describes an in-place major version rolling upgrade from PGD 4 to PGD 6.2.

Overview

APGD 4 cluster using HARP Proxy based routing continues this routing method to all nodes until the entire cluster is upgraded to 6.2.0 or higher. HARP-proxy based routing functions the same within a mixed version cluster. HARP uses its own
mechanism to elect a leader since a 4.x cluster does not have a write leader. Once the entire cluster is upgraded to version 6.2.0 or higher, Connection Manager is already enabled and ready. Applications then can be pointed to the Connection

Manager port/node and it will start routing. Once confirmed to be working, proxy can be stopped.

Note

The worked example assumes Harp proxy is not co-located with a PGD node, as recommended in the PGD architecture. If you have a Harp proxy co-located with a PGD node, contact EDB Support for upgrade instructions.

Confirm the harp-proxy leader

Start the upgrade on a node that isn't the harp-proxy leader. Confirm which node is the harp-proxy leader:

test-pgdémajor-dl:~ $ harpctl get leader
a

Cluster Name Location Ready Fenced Allow Routing Routing Status Role

bdrgroup test-pgdémajor-d2 a true false true primary bdr

Fence the node

Type Lock Duration

Fence off the node to be upgraded from HARP and then verify it was fenced, so it does not become the leader during the middle of upgrade:

test-pgdémajor-dil:~ $ harpctl fence test-pgdémajor-
d1

INFO cmd/fence.go:42 fence node test-pgdémajor-dil

test-pgdémajor-dl:~ $ harpctl get

nodes

Cluster Name Location Ready Fenced Allow Routing Routing Status Role
bdrgroup test-pgdémajor-dl a false true true N/A primary bdr
bdrgroup test-pgdémajor-d2 a true false true ok primary bdr
6

Stop the Postgres service

On the fenced node, stop the Postgres service.

Stop HARP manager

On the fenced node, stop HARP manager.

Remove and install packages

On the fenced node, remove PGD 4.4 and the cli packages and install the PGD 6.2 packages.

Start the Postgres service

Type Lock Duration

On the fenced node, start Postgres service. This performs an in-place upgrade of the PGD local node to PGD 6.2 with Connection Manager enabled.

Start HARP manager

On the fenced node, start HARP manager.

Unfence the node

Unfence the upgraded node from HARP:

test-pgdémajor-dl:~ $ harpctl unfence test-pgdémajor-
d1

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

193

Repeat steps for all nodes

Repeat same steps on all other nodes.

Confirm cluster version

Confirm the updated cluster version is version 6001 by running bdr.group_raft_details.

Confirm SCRAM hashes

From any of the upgrades nodes, run the following query to ensure that SCRAM hashes are the same across all nodes for each user. This is required before applications switch to Connection Manager.

DO $%
DECLARE

rec
RECORD;

command TEXT;
BEGIN

FOR rec IN SELECT rolname,rolpassword FROM pg_authid WHERE rolcanlogin = true AND rolpassword like 'SCRAM-
SHA%'

LooP

command := 'ALTER ROLE ' || quote_ident(rec.rolname) || ' WITH ENCRYPTED PASSWORD ' || ''' || rec.rolpassword ||

RN
H

EXECUTE
command ;

END LOOP;
END;
$%3
SELECT wait_slot_confirm_lsn(NULL,NULL);

Enable routing

Enable node group routing as per your global or local routing requirement. For local routing enable it on subgroups, for global routing enable it on the top group.

bdrdb=# SELECT bdr.alter_node_group_option(node_group_name := 'bdrgroup',config_key := 'enable_routing', config_value := true

Output:

alter_node_group_option

(1 row)

Switch to Connection Manager

It should now be safe to switch your application to Connection Manager.

Stop harp manager and proxy services.

It should now be safe to stop any running harp manager and proxy services.

Note

This completes the worked example for an in-place major version rolling upgrade from PGD 4 to PGD 6.2.

Worked example: Upgrade PGD 5 to PGD 6

This worked example describes an in-place major version rolling upgrade (PGD & Postgres) of a 3-node PGD 5, EPAS 13 cluster to PGD 6.2, EPAS 17 cluster using the pgd node upgrade command.

Prerequisites

Ensure you have a 3-node PGD 5, EPAS 13 cluster up and running. This is a TPA-deployed cluster.

pgd-al:/home/rocky $ pgd nodes
Llist

Output:

Node Name Group Name Node Kind Join State Node Status

pgd-al group-a data ACTIVE Up
pgd-a2 group-a data ACTIVE Up
witness-al group-a witness ACTIVE Up

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

8 8TIM=XTY) 8

EDB Postgres Distributed (PGD)

194

EDB Postgres Distributed (PGD)

Install packages for the new server and PGD

Ensure that the packages for EPAS 17 and the corresponding PGD 6 packages are installed on all nodes in the cluster. To prevent binary conflicts, you must remove the PGD 5 packages, viz., edb-pgd5-cli and edb-bdr5-epas13, before installing
the PGD 6 packages. The commands below were used for the RHEL 8 platform. Use the appropriate commands for your specific platform.

dnf remove edb-pgd5-cli
dnf install edb-asl7-server edb-pgd6-essential-epasl?

Pre-upgrade steps

Version Check

Check the current version of the cluster (optional).

pgd-al:/home/rocky $ pgd nodes list

Output:

Node Name BDR Version Postgres Version

pgd-al 5,80 13.22.28
pgd-a2 5.9.0 13.22.28
witness-al 5.9.0 13.22.28

Move to Connection Manager

PGD 5 uses PGD Proxy for routing. In PGD 6, PGD Proxy has been replaced with Connection Manager. When you upgrade from PGD 5 to PGD 6, use the following steps to move to Connection Manager. See PGD 5 - Moving from PGD Proxy to
Connection Manager.

Write leader node verification

Ensure that the node you want to upgrade is not the write leader node.

pgd-al:/home/rocky $ pgd group group-a show

Output:

Group Property Value

Group Name group-a
Parent Group Name dc-1
Group Type data
Write Leader pgd-a2

Commit Scope

The current write leader is node pgd-a2, so we are good to upgrade node pgd-a1.

Switch the write leader to a different node if it is the node to be upgraded.

Use the pgd group set-leader command to switch the write leader if required:

witness-al:/home/rocky $ /usr/edb/asl7/bin/pgd group group-a set-leader pgd-
al

witness-al:/home/rocky $ /usr/edb/asl7/bin/pgd group group-a show

Commit Scope

Output:
Group Property | value
Group Name | group-a
Parent Group Name | dc-1
Group Type | data
Write Leader | pgd-al
|

Fence the node

Fence a node in this cluster with pgd node <node-name> set-option route_fence true so thatitdoes not become the write leader.

Initialize the new Postgres instance

Execute the initdb utility to initialize the new server. Ensure the -~—data-checksums option is set.

/usr/edb/as17/bin/initdb /var/lib/edb/asl17/data UTF8

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 195

Create the new data dir if you don't want to use the default one. This example uses the default for simplicity.

Migrate configuration to the new Postgres version

Copy the following files and directory (if present), to the new data directory you created for the upgraded version of PostgreSQL:

® postgresql.conf

® postgresql.auto.conf
e pg_hba.conf

e the conf.d directory

cp /opt/postgres/data/postgresql.conf
/var/lib/edb/as17/data/

cp /opt/postgres/data/postgresql.auto.conf
/var/lib/edb/asl17/data/

cp /opt/postgres/data/pg_hba.conf /var/lib/edb/as17/data/

If you have a TPA-deployed cluster, copy the conf.d directory as well:

cp /opt/postgres/data/conf.d /var/lib/edb/as17/data/

Unsupported configurations in PGD 6

Some configurations may not be supported in PGD 6. In such cases, you will need to find an equivalent setting or determine if the configuration can be safely ignored.

For instance, you may encounter the operator_precedence_warning GUC, which can be ignored in the new configuration.

Ensure both the old and new servers are shut down:

sudo systemctl stop
postgres

sudo systemctl status
postgres

Note

systemctl commands were used in this example because the PostgreSQL instance is configured as a service. You might need to use the pg_ct1 utility if your setup is different.

Dry run check

EDB Postgres Distributed (PGD)

Before running the actual upgrade, perform a dry run to check the compatibility and upgrade feasibility. The pgd node upgrade toolhasa --check option, which performs a dry run of some of the upgrade process. You can use this

option to ensure the upgrade goes smoothly. Run the upgrade command with the —-check option.

/usr/edb/as17/bin/pgd node pgd-al upgrade \
--database bdrdb Jusr/edb/as17/bin \
--socketdir /tmp \

--old-bindir /usr/edb/asl13/bin \
--old-datadir /opt/postgres/data \
--new-datadir /var/lib/edb/asl7/data \
--username enterprisedb \

--old-port 5444 \

-—new-port 5444 \

--check

A successful check should return output as shown:

Performing BDR Postgres Checks

Getting old PG instance shared directory

Getting new PG instance shared directory
Collecting pre-upgrade new PG instance control data
Checking new cluster state is shutdown

Checking BDR extension versions

Checking Postgres versions

Finished BDR pre-upgrade steps, calling pg_upgrade

Performing Consistency Checks

Checking cluster versions

Checking database user is the install user
Checking database connection settings

Checking for prepared transactions

Checking for contrib/isn with bigint-passing mismatch
Checking data type usage

Checking for user-defined encoding conversions
Checking for user-defined postfix operators
Checking for incompatible polymorphic functions
Checking for not-null constraint inconsistencies
Checking for presence of required libraries
Checking database user is the install user
Checking for prepared transactions

Checking for new cluster tablespace directories

*Clusters are compatiblex

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

ok
ok
ok
ok
ok
ok

ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok

196

EDB Postgres Distributed (PGD)

Execute the upgrade.

If the dry run check passed, you can execute the upgrade by running the command without the -—-check option

/usr/edb/as17/bin/pgd node pgd-al upgrade \
--database bdrdb /usr/edb/asl17/bin \
--socketdir /tmp \

--old-bindir /usr/edb/as13/bin \
--old-datadir /opt/postgres/data \
--new-datadir /var/lib/edb/as17/data \
--username enterprisedb \

--old-port 5444 \

—--new-port 5444

A successful upgrade should return output as shown:

Performing BDR Postgres Checks

Getting old PG instance shared directory ok
Getting new PG instance shared directory ok
Collecting pre-upgrade new PG instance control data ok
Checking new cluster state is shutdown ok
Checking BDR extension versions ok
Checking Postgres versions ok

Collecting Pre-Upgrade BDR Information

Collecting pre-upgrade old PG instance control data ok
Connecting to the old PG instance ok
Checking for BDR extension ok
Checking BDR node name ok
Terminating connections to database ok
Waiting for all slots to be flushed ok
Disconnecting from old cluster PG instance ok
Stopping old PG instance ok
Starting old PG qinstance with BDR disabled ok
Connecting to the old PG instance ok
Collecting replication origins ok
Collecting replication slots ok
Disconnecting from old cluster PG instance ok
Stopping old PG instance ok

Finished BDR pre-upgrade steps, calling pg_upgrade

Performing Consistency Checks

Checking cluster versions ok
Checking database user is the install user ok
Checking database connection settings ok
Checking for prepared transactions ok
Checking for contrib/isn with bigint-passing mismatch ok
Checking data type usage ok
Checking for user-defined encoding conversions ok
Checking for user-defined postfix operators ok
Checking for incompatible polymorphic functions ok
Checking for not-null constraint inconsistencies ok
Creating dump of global objects ok
Creating dump of database schemas

ok
Checking for presence of required libraries ok
Checking database user is the install user ok
Checking for prepared transactions ok
Checking for new cluster tablespace directories ok
If “pg_upgrade’ fails after this point, you must re-initdb
the new cluster before continuing.
Performing Upgrade
Setting locale and encoding for new cluster ok
Analyzing all rows in the new cluster ok
Freezing all rows in the new cluster ok
Deleting files from new pg_xact ok
Copying old pg_xact to new server ok
Setting oldest XID for new cluster ok
Setting next transaction ID and epoch for new cluster ok
Deleting files from new pg_multixact/offsets ok
Copying old pg_multixact/offsets to new server ok
Deleting files from new pg_multixact/members ok
Copying old pg_multixact/members to new server ok
Setting next multixact ID and offset for new cluster ok
Resetting WAL archives ok
Setting frozenxid and minmxid counters in new cluster ok
Restoring global objects in the new cluster ok
Restoring database schemas in the new cluster

ok
Copying user relation files

ok
Setting next 0ID for new cluster ok
Sync data directory to disk ok
Creating script to delete old cluster ok
Checking for extension updates notice

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 197

Your installation contains extensions that should be updated

with the ALTER EXTENSION command. The file
update_extensions.sql

when executed by psql by the database superuser will update

these extensions.

Upgrade Complete
Optimizer statistics are not transferred by pg_upgrade.
Once you start the new server, consider running:

/usr/edb/as17/bin/vacuumdb -U enterprisedb --all --analyze-in-stages

Running this script will delete the old cluster's data files:
./delete_old_cluster.sh

pg_upgrade complete, performing BDR post-upgrade steps

Collecting post-upgrade old PG instance control data
Collecting post-upgrade new PG instance control data
Checking LSN of the new PG instance

Starting new PG qinstance with BDR disabled

Connecting to the new PG instance

Creating replication origin bdr_bdrdb_dc_1_pgd_a2

Advancing replication origin bdr_bdrdb_dc_1_pgd_a2 to 0/3...
Creating replication origin bdr_bdrdb_dc_1_witness_al
Advancing replication origin bdr_bdrdb_dc_1_witness_al to...
Creating replication slot bdr_bdrdb_dc_1

Creating replication slot bdr_bdrdb_dc_1_witness_al
Creating replication slot bdr_bdrdb_dc_1_pgd_a2

Stopping new PG instance

Note

You can use the ——11ink option for a hard link. This option works if both the data dirs are on the same filesystem. For more information, see pg_upgrade in the PostgreSQL documentation.

Post-upgrade steps

Update the Postgres service file

Update the server version, data directory, and binary directories of the new server in the PostgreSQL service file, located at /etc/systemd/system/postgres.service.

An example of what the updated service file looks like:

[Unit]

Description=Postgres 17 (TPA)
After=syslog.target
After=network.target

[Service]

Type=simple

User=enterprisedb

Group=enterprisedb

00MScoreAdjust=-1000
Environment=PG_OOM_ADJUST_VALUE=0
Environment=PGDATA=/var/lib/edb/as17/data
StandardOutput=syslog

ExecStart=/usr/edb/as17/bin/edb-postgres -D ${PGDATA} -c config_file=/var/lib/edb/as17/data/postgresql.conf
ExecStartPost=+/bin/bash -c 'echo Oxff > /proc/$MAINPID/coredump_filter'

ExecReload=/bin/kill -HUP $MAINPID
KillMode=mixed

KillSignal=SIGINT

Restart=no

LimitCORE=infinity

[Install]
WantedBy=multi-user.target

Start the postgres service

Execute a daemon-reload and start the Postgres service:

systemctl daemon-reload
systemctl start
postgres

Note

If your server was not running as a service, you can skip the service file update and start the server using the pg_ctl utility.

Verify the upgraded cluster versions

Use the following command to verify the upgraded cluster versions:

pgd-al:/home/rocky $ /usr/edb/asl7/bin/pgd nodes list

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok
ok

EDB Postgres Distributed (PGD)

198

https://www.postgresql.org/docs/current/pgupgrade.html

witness-al

Output:
Node Name | BDR Version | Postgres Version
pgd-al | PGD 6.2.0 Essential | 17.6.0
pgd-a2 | 5.9.0 | 13.22.28
|

5.9.0 | 13.22.28

The BDR version for node pgd-a1 was upgraded to 6.2.0 and the Postgres version to 17.6.0.

Unfence the node

Unfence a node in this cluster with pgd node <node-name> set-option route_fence false so thatitdoes not become the write leader.

Verify the Connection Manager is working

Execute a query through the connection manager port (6444 by default) on the upgraded node:

pgd-al:/home/rocky $ psql "host=pgd-al port=6444 dbname=bdrdb user=enterprisedb " -c "select node_name from

bdr.local_node_summary;"

Output:

node_name

Clean up and vacuum analyze

As a best practice, run a vacuum over the database at this point. When the upgrade ran, you may have noticed the post-upgrade report included:

Upgrade Complete

Optimizer statistics are not transferred by pg_upgrade.

Once you start the new server, consider running:
J/usr/edb/as17/bin/vacuumdb -U enterprisedb --all --analyze-in-stages

Running this script will delete the old cluster's data files:
./delete_old_cluster.sh

You can run the vacuum now. On the target node, run:

/usr/edb/as17/bin/vacuumdb enterprisedb

If you're sure you don't need to revert this node, you can also clean up the old cluster's data files:

./delete_old_cluster.sh

Upgrade the remaining nodes

EDB Postgres Distributed (PGD)

You must perform these steps for every node in the cluster. The only difference will be the node name in the upgrade command. For quick reference, the commands for nodepgd-a2 and witness-a1 are provided:

Node pgd-a2

J/usr/edb/as17/bin/pgd node pgd-a2 upgrade \
--database bdrdb J/usr/edb/as17/bin \
--socketdir /tmp \

--old-bindir /usr/edb/asl13/bin \
--old-datadir /opt/postgres/data \
--new-datadir /var/lib/edb/asl17/data \
--username enterprisedb \

--old-port 5444 \

—-—new-port 5444

Node witness-a1

Jusr/edb/as17/bin/pgd node witness-al upgrade \
--database bdrdb J/usr/edb/as17/bin \
--socketdir /tmp \

--old-bindir /usr/edb/asl13/bin \

--old-datadir /opt/postgres/data \
--new-datadir /var/lib/edb/asl17/data \
--username enterprisedb \

--old-port 5444 \

—-—new-port 5444

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

199

Verify the final state of the cluster

Use the following command to verify the node versions:

pgd-a2:/home/rocky $ /usr/edb/asl7/bin/pgd nodes list

ersions

Output:
Node Name | BDR Version | Postgres Version
pgd-al | PGD 6.2.0 Essential | 17.6.0
pgd-a2 | PGD 6.2.0 Essential | 17.6.0
witness-al | PGD 6.2.0 Essential | 17.6.0

All nodes of the cluster have been upgraded to PGD 6.2.0 and EPAS 17.6.0.

Verify the Connection Manager

For every data node, use the following command to verify the Connection Manager:

pgd-a2:/home/rocky $ psql "host=pgd-a2 port=6444 dbname=bdrdb user=enterprisedb " -c "select node_name from

bdr.local_node_summary;"

Output:

node_name

pgd-a2:/home/rocky $ psql "host=pgd-a2 port=6445 dbname=bdrdb user=enterprisedb " -c "select node_name from

bdr.local_node_summary;"

Output:

node_name

Note

This completes the worked example of an in-place major version rolling upgrade (PGD & Postgres) of a 3-node PGD 5, EPAS 13 cluster to PGD 6, EPAS 17 cluster.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

200

EDB Postgres Distributed (PGD)

17 DDL replication

DDL stands for data definition language, the subset of the SQL language that creates, alters, and drops database objects.
PGD provides automatic DDL replication, which makes certain DDL changes easier. With automatic replication, you don't have to manually distribute the DDL change to all nodes and ensure that they're consistent.

This section looks at how DDL replication is handled in PGD.

Overview provides a general outline of what PGD's DDL replication is capable of.

Locking examines how DDL replication uses locks to safely replicate DDL.

Managing DDL with PGD replication gives best practice advice on why and how to limit the impact of DDL changes so they don't overly affect the smooth running of the cluster.

DDL role manipulation notes issues around manipulating roles over multiple databases in a cluster.

Workarounds gives a range of options for handling situations where DDL replication may present restrictions, such as altering columns, constraints, and types.

DDL-like PGD functions details the PGD functions that behave like DDL and therefore behave in a similar way and are subject to similar restrictions.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 201

EDB Postgres Distributed (PGD)

171 DDL overview

DDL stands for data definition language, the subset of the SQL language that creates, alters, and drops database objects.

Replicated DDL

For operational convenience and correctness, PGD replicates most DDL actions, with these exceptions:

Temporary relations

Certain DDL statements (mostly long running)

Locking commands (LOCK)

Table maintenance commands (VACUUM , ANALYZE , CLUSTER)
Actions of autovacuum

Operational commands (CHECKPOINT , ALTER SYSTEM)
Actions related to databases

Automatic DDL replication makes certain DDL changes easier without having to manually distribute the DDL change to all nodes and ensure that they're consistent.

In the default replication set, DDL is replicated to all nodes by default.

Differences from PostgreSQL
PGD is significantly different from standalone PostgreSQL when it comes to DDL replication. Treating it the same is the most common issue with PGD.

The main difference from table replication is that DDL replication doesn't replicate the result of the DDL. Instead, it replicates the statement. This works very well in most cases, although it introduces the requirement that the DDL must execute
similarly on all nodes. A more subtle point is that the DDL must be immutable with respect to all datatype-specific parameter settings, including any datatypes introduced by extensions (not built in). For example, the DDL statement must
execute correctly in the default encoding used on each node.

Executing DDL on PGD systems

A PGD group isn't the same as a standalone PostgreSQL server. It's based on asynchronous multi-master replication without central locking and without a transaction coordinator. This has important implications when executing DDL.
DDL that executes in parallel continues to do so with PGD. DDL execution respects the parameters that affect parallel operation on each node as it executes, so you might notice differences in the settings between nodes.

Prevent the execution of conflicting DDL, otherwise DDL replication causes errors and the replication stops.

PGD offers three levels of protection against those problems:

ddl_Tocking = 'all' isthe strictest option and is best when DDL might execute from any node concurrently and you want to ensure correctness. This is the default.

dd1l_locking = 'dml' isan option that is safe only when you execute DDL from one node at any time. Use this setting only if you can completely control where DDL is executed. Executing DDL from a single node ensures that there are
no inter-node conflicts. Intra-node conflicts are already handled by PostgreSQL.

dd1l_locking = 'off' isthe least strict option and is dangerous in general use. This option skips locks altogether, avoiding any performance overhead, which makes it a useful option when creating a new and empty database schema.
These options can be set only by the bdr_superuser, by the superuser, orin the postgres.conf configuration file.

When using the bdr.replicate_ddl_command ,you can set this parameter directly with the third argument, using the specified bdr.dd1_locking setting only for the DDL commands passed to that function.

DDL and mixed PostgreSQL versions

PGD does not support DDL replication between different major Postgres versions in a cluster. Most of the time, this is not an issue because clusters will be running the same major version of Postgres. This is not the case though when
performing a rolling upgrade of a cluster from one major version to another. In this case, DDL replication is not supported until all nodes have been upgraded to the same major version and should not be used.

Special care should be taken in the upgrade process when updating extensions as the scripts may trigger DDL replication. In this case, if the scripts must be run before upgrading is complete, bdr.dd1_replication setting should be set
to off while running the seript.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 202

EDB Postgres Distributed (PGD)

17.2 DDL replication options

The bdr.dd1l_replication parameter specifies replication behavior.
bdr.dd1_replication = on isthe default. This setting replicates DDL to the default replication set, which by default means all nodes. Non-default replication sets don't replicate DDL unless they have aDDL filter defined for them.

You can also replicate DDL to specific replication sets using the function bdr.replicate_ddl_command () . This function can be helpful if you want to run DDL commands when a node is down. It's also helpful if you want to have indexes
or partitions that exist on a subset of nodes or rep sets, for example, all nodes at site1.

SELECT bdr.replicate_ddl_command (
'CREATE INDEX CONCURRENTLY ON foo (col7);',
ARRAY['sitel'], -- the replication sets
tall'); -- ddl_locking to apply

While we don't recommend it, you can skip automatic DDL replication and execute it manually on each node using the bdr.dd1_replication configuration parameter.
SET bdr.dd1l_replication = off;

When set, it makes PGD skip both the global locking and the replication of executed DDL commands. You must then run the DDL manually on all nodes.
Warning
Executing DDL manually on each node without global locking can cause the whole PGD group to stop replicating if conflicting DDL or DML executes concurrently.

Only the bdr_superuser or superuser can set the bdr.dd1_replication parameter. It canalso be setinthe postgres.conf configuration file.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 203

EDB Postgres Distributed (PGD)

17.3 DDL locking details

Two kinds of locks enforce correctness of replicated DDL with PGD: the global DDL lock and the global DML lock.

The global DDL lock

Aglobal DDL lock is used only when dd1_Tlocking = 'all' .This kind of lock prevents any other DDL from executing on the cluster while each DDL statement runs. This behavior ensures full correctness in the general case but is too
strict for many simple cases. PGD acquires a global lock on DDL operations the first time in a transaction where schema changes are made. This effectively serializes the DDL-executing transactions in the cluster. In other words, while DDL is
running, no other connection on any node can run another DDL command, even if it affects different tables.

To acquire a lock on DDL operations, the PGD node executing DDL contacts the other nodes in a PGD group and asks them to grant it the exclusive right to execute DDL.

The lock request is sent by the regular replication stream, and the nodes respond by the replication stream as well. So it's important that nodes (or at least a majority of the nodes) run without much replication delay. Otherwise it might take a
long time for the node to acquire the DDL lock. Once the majority of nodes agree, the DDL execution is carried out.

The ordering of DDL locking is decided using the Raft protocol. DDL statements executed on one node are executed in the same sequence on all other nodes.

To ensure that the node running a DDL has seen effects of all prior DDLs run in the cluster, it waits until it catches up with the node that ran the previous DDL. If the node running the current DDL is lagging behind in replication with respect to
the node that ran the previous DDL, then it might take a long time to acquire the lock. Hence it's preferable to run DDLs from a single node or the nodes that have nearly caught up with replication changes originating at other nodes.

A global DDL lock must be granted by a majority of data and witness nodes, where a majority is N/2+1 of the eligible nodes. Subscriber-only nodes aren't eligible to participate.

The global DML lock

Known as a global DML lock or relation DML lock, this kind of lock is used when either dd1_Tlocking = all or dd1_locking = dml,and the DDL statement might cause in-flight DML statements to fail. These failures can occur when
you add or modify a constraint, such as a unique constraint, check constraint, or NOT NULL constraint. Relation DML locks affect only one relation at a time. These locks ensure that no DDL executes while changes are in the queue that might
cause replication to halt with an error.

To acquire the global DML lock on a table, the PGD node executing the DDL contacts all other nodes in a PGD group, asking them to lock the table against writes and waiting while all pending changes to that table are drained. Once all nodes
are fully caught up, the originator of the DML lock is free to perform schema changes to the table and replicate them to the other nodes.

The global DML lock holds an EXCLUSIVE LOCK on the table on each node, so it blocks DML, other DDL, VACUUM, and index commands against that table while it runs. This is true even if the global DML lock is held for a command that
normally doesn't take an EXCLUSIVE LOCK or higher.

Waiting for pending DML operations to drain can take a long time and even longer if replication is currently lagging. This means that, unlike with data changes, schema changes affecting row representation and constraints can be performed
only while all configured nodes can be reached and are keeping up reasonably well with the current write rate. If such DDL commands must be performed while a node is down, first remove the down node from the configuration.

All eligible data nodes must agree to grant a global DML lock before the lock is granted. Witness and subscriber-only nodes aren't eligible to participate.
If a DDL statement isn't replicated, no global locks are acquired.
Specify locking behavior with the bdr.dd1_locking parameter, as explained in Executing DDL on PGD systems:

e ddl_locking = all takes global DDL lock and, if needed, takes relation DML lock.
e ddl_locking = dml skipsglobal DDL lock and, if needed, takes relation DML lock.
e ddl_locking = leader enables leader-based global DML locking.

e ddl_locking = auto current behaves like dd1_locking = leader .

e ddl_locking = off skips both global DDL lock and relation DML lock.

Some PGD functions make DDL changes. For those functions, DDL locking behavior applies, which is noted in the documentation for each function.
Thus, dd1_locking = dml is safe only when you can guarantee that no conflicting DDL is executed from other nodes. With this setting, the statements that require only the global DDL lock don't use the global locking at all.

dd1l_locking = off issafe only when you can guarantee that there are no conflicting DDL and no conflicting DML operations on the database objects DDL executes on. If you turn locking off and then experience difficulties, you might
lose in-flight changes to data. The user application team needs to resolve any issues caused.

In some cases, concurrently executing DDL can properly be serialized. If these serialization failures occur, the DDL might reexecute.

DDL replication isn't active on logical standby nodes until they're promoted.

Some PGD management functions act like DDL, meaning that they attempt to take global locks, and their actions are replicated if DDL replication is active. The full list of replicated functions is listed in PGD functions that behave like DDL.
DDL executed on temporary tables never need global locks.

ALTER or DROP of an object created in the current transaction doesn't required global DML lock.

Monitoring of global DDL locks and global DML locks is shown in Monitoring.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 204

EDB Postgres Distributed (PGD)

17.4 Managing DDL with PGD replication

Minimizing the impact of DDL
Minimizing the impact of DDL is good operational advice for any database. These points become even more important with PGD:
® To minimize the impact of DDL, make transactions performing DDL short. Don't combine them with lots of row changes, and avoid long-running foreign key or other constraint rechecks.

® For ALTER TABLE,use ADD CONSTRAINT NOT VALID followed by another transaction with VALIDATE CONSTRAINT rather than using ADD CONSTRAINT alone. VALIDATE CONSTRAINT waits until replayed on all
nodes, which gives a noticeable delay to receive confirmations.

e Whenindexing, use the CONCURRENTLY option whenever possible.

An alternative way of executing long-running DDL is to disable DDL replication and then to execute the DDL statement separately on each node. You can still do this using a single SQL statement, as shown in the following example. Global
locking rules still apply, so be careful not to lock yourself out with this type of usage, which is more of a workaround.

SELECT
bdr.run_on_all_nodes ($dd1$
CREATE INDEX CONCURRENTLY index_a ON
table_a(i);
$dd1s);

We recommend using the bdr.run_on_all_nodes() technique with CREATE INDEX CONCURRENTLY, noting that DDL replication must be disabled for the whole session because CREATE INDEX CONCURRENTLY isa multi-
transaction command. Avoid CREATE INDEX on production systems since it prevents writes while it executes. Avoid using REINDEX because of the AccessExclusiveLocks it holds.

Instead, use REINDEX CONCURRENTLY (or reindexdb --concurrently).
You can disable DDL replication when using command-line utilities like this:

$ export PGOPTION
bdr.ddl_replication=off"
$ pg_restore --section=post-data

Multiple DDL statements might benefit from bunching into a single transaction rather than fired as individual statements, so take the DDL lock only once. This might not be desirable if the table-level locks interfere with normal operations.
If DDL is holding up the system for too long, you can safely cancel the DDL on the originating node withControl-C in psql or with pg_cancel_backend () . You can't cancel a DDL lock from any other node.

You can control how long the global lock takes with optional global locking timeout settings. bdr.global_lock_timeout limits how long the wait for acquiring the global lock can take before it's canceled.
bdr.global_lock_statement_timeout limits the runtime length of any statement in transaction that holds global locks, and bdr.global_Tlock_idle_timeout setsthe maximum allowed idle time (time between statements)
for a transaction holding any global locks. You can disable all of these timeouts by setting their values to zero.

Once the DDL operation has committed on the originating node, you can't cancel or abort it. The PGD group must wait for it to apply successfully on other nodes that confirmed the global lock and for them to acknowledge replay. For this
reason, keep DDL transactions short and fast.

Handling DDL with down nodes

If the node initiating the global DDL lock goes down after it acquired the global lock (either DDL or DML), the lock stays active. The global locks don't time out, even if timeouts were set. In case the node comes back up, it releases all the global
locks that it holds.

If it stays down for a long time or indefinitely, remove the node from the PGD group to release the global locks. This is one reason for executing emergency DDL using the SET command as the bdr_superuser to update the
bdr.dd1_locking value.

If one of the other nodes goes down after it confirmed the global lock but before the command acquiring it executed, the execution of that command requesting the lock continues as if the node were up.

As mentioned earlier, the global DDL lock requires only a majority of the nodes to respond, and so it works if part of the cluster is down, as long as a majority is running and reachable. But the DML lock can't be acquired unless the whole
cluster is available.

With global DDL or global DML lock, if another node goes down, the command continues normally, and the lock is released.

Statement-specific DDL replication concerns
Not all commands can be replicated automatically. Such commands are generally disallowed, unless DDL replication is turned off by turning bdr.dd1_replication off.
PGD prevents some DDL statements from running when it's active on a database. This protects the consistency of the system by disallowing statements that can't be replicated correctly or for which replication isn't yet supported.

If a statement isn't permitted under PGD, you can often find another way to do the same thing. For example, you can't doan ALTER TABLE , which adds a column with a volatile default value. But generally you can rephrase that as a series of
independent ALTER TABLE and UPDATE statements that work.

Generally, unsupported statements are prevented from executing, raisinga feature_not_supported (SQLSTATE 0AQ00) error.

Any DDL that references or relies on a temporary object can't be replicated by PGD and throws an error if executed with DDL replication enabled.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 205

17.5 DDL command handling matrix

The following table describes the utility or DDL commands that are allowed, the ones that are replicated, and the type of global lock they take when they're replicated.

For some more complex statements like ALTER TABLE , these can differ depending on the subcommands executed. Every such command has detailed explanation under the following table.

Command matrix

Command

ALTER AGGREGATE

ALTER CAST

ALTER COLLATION

ALTER CONVERSION
ALTER DATABASE

ALTER DATABASE LINK
ALTER DEFAULT PRIVILEGES
ALTER DIRECTORY

ALTER DOMAIN

ALTER EVENT TRIGGER
ALTER EXTENSION

ALTER FOREIGN DATA WRAPPER
ALTER FOREIGN TABLE
ALTER FUNCTION

ALTER INDEX

ALTER LANGUAGE

ALTER LARGE OBJECT
ALTER MATERIALIZED VIEW
ALTER OPERATOR

ALTER OPERATOR CLASS
ALTER OPERATOR FAMILY
ALTER PACKAGE

ALTER POLICY

ALTER PROCEDURE

ALTER PROFILE

ALTER PUBLICATION
ALTER QUEUE

ALTER QUEUE TABLE
ALTER REDACTION POLICY
ALTER RESOURCE GROUP
ALTER ROLE

ALTER ROUTINE

ALTER RULE

ALTER SCHEMA

ALTER SEQUENCE

ALTER SERVER

ALTER SESSION

ALTER STATISTICS

ALTER SUBSCRIPTION
ALTER SYNONYM

ALTER SYSTEM

ALTER TABLE

ALTER TABLESPACE

ALTER TEXT SEARCH CONFIGURATION
ALTER TEXT SEARCH DICTIONARY
ALTER TEXT SEARCH PARSER
ALTER TEXT SEARCH TEMPLATE
ALTER TRIGGER

ALTER TYPE

ALTER USER MAPPING
ALTER VIEW

ANALYZE

BEGIN

CHECKPOINT

CLOSE

CLOSE CURSOR

CLOSE CURSOR ALL
CLUSTER

COMMENT

COMMIT

COMMIT PREPARED

COPY

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

Allowed

<~ < < < < < < < < < < < < < < < < z < < < < < < < < < < < < < < =< =<

Details

< < < < =< =<

Details

<~ < < < < < < < < < < < < < < < < =< =< <

Replicated Lock
DDL
DDL
DDL
DDL
N
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL
N
DML
DDL
DDL
DDL
DDL
DDL
DDL
Details
DDL
DDL
DDL
DDL
N
DDL
DDL
DDL
DDL
DML
DDL
N
DDL
DDL
DDL
N
Details
DDL
DDL
DDL
DDL
DDL
DDL
DDL

zZ z z zZz zZ zZ zZ < < < < < < < < < < z < < < z < < < < < < z < < < < < < < < < < < < z < < < < < < < < < < < z =< =< =< =<
z z =z z z =z

DML
Details DDL
N N
N N
N N

EDB Postgres Distributed (PGD)

206

Command

COPY FROM

CREATE ACCESS METHOD
CREATE AGGREGATE
CREATE CAST

CREATE COLLATION
CREATE CONSTRAINT
CREATE CONVERSION
CREATE DATABASE
CREATE DATABASE LINK
CREATE DIRECTORY
CREATE DOMAIN

CREATE EVENT TRIGGER
CREATE EXTENSION
CREATE FOREIGN DATA WRAPPER
CREATE FOREIGN TABLE
CREATE FUNCTION
CREATE INDEX

CREATE LANGUAGE
CREATE MATERIALIZED VIEW
CREATE OPERATOR
CREATE OPERATOR CLASS
CREATE OPERATOR FAMILY
CREATE PACKAGE

CREATE PACKAGE BODY
CREATE POLICY

CREATE PROCEDURE
CREATE PROFILE

CREATE PUBLICATION
CREATE QUEUE

CREATE QUEUE TABLE
CREATE REDACTION POLICY
CREATE RESOURCE GROUP
CREATE ROLE

CREATE ROUTINE

CREATE RULE

CREATE SCHEMA

CREATE SEQUENCE
CREATE SERVER

CREATE STATISTICS
CREATE SUBSCRIPTION
CREATE SYNONYM

CREATE TABLE

CREATE TABLE AS

CREATE TABLESPACE
CREATE TEXT SEARCH CONFIGURATION
CREATE TEXT SEARCH DICTIONARY
CREATE TEXT SEARCH PARSER
CREATE TEXT SEARCH TEMPLATE
CREATE TRANSFORM
CREATE TRIGGER

CREATE TYPE

CREATE TYPE BODY
CREATE USER MAPPING
CREATE VIEW
DEALLOCATE

DEALLOCATE ALL
DECLARE CURSOR
DISCARD

DISCARD ALL

DISCARD PLANS

DISCARD SEQUENCES
DISCARD TEMP

DO

DROP ACCESS METHOD
DROP AGGREGATE

DROP CAST

DROP COLLATION

DROP CONSTRAINT

DROP CONVERSION

DROP DATABASE

DROP DATABASE LINK

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

Allowed Replicated

<~ < < <= <= < <= < < < < < < < < < < < < < < < < < < < < < < < < < < < =< =<

Details

< < < =< =<

Details

< z < < < < < < zZz zZ zZz zZz Z zZ zZ zZ Z < < < < < < < < < < < < < < < < < < < < < < z < < < < < < < < < < < < < < < < < < < < < < < z < < < =< =< =< =z

<~ <= < < < < < < < < <= < < < < < < < < < < < < < < =< =< =<

Lock
N
DDL
DDL
DDL
DDL
DDL
DDL
N
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DML
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DML
DDL
Details
DDL
DDL
DDL
DDL
N
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL
DDL

z =z =z =z =z=zzzzg
=

o
o
=4

DDL
DDL
DDL
DDL
DDL

DDL

EDB Postgres Distributed (PGD)

207

EDB Postgres Distributed (PGD)

Command Allowed Replicated Lock
DROP DIRECTORY Y A DDL
DROP DOMAIN Y Y DDL
DROP EVENT TRIGGER Y Y DDL
DROP EXTENSION Y Y DDL
DROP FOREIGN DATA WRAPPER Y A DDL
DROP FOREIGN TABLE Y Y DDL
DROP FUNCTION Y Y DDL
DROP INDEX Y Y DDL
DROP LANGUAGE Y A DDL
DROP MATERIALIZED VIEW Y Y DDL
DROP OPERATOR Y Y DDL
DROP OPERATOR CLASS Y Y DDL
DROP OPERATOR FAMILY Y A DDL
DROP OWNED Y Y DDL
DROP PACKAGE Y Y DDL
DROP PACKAGE BODY Y Y DDL
DROP POLICY Y A DDL
DROP PROCEDURE Y Y DDL
DROP PROFILE Y Y DDL
DROP PUBLICATION Y Y DDL
DROP QUEUE Y A DDL
DROP QUEUE TABLE Y Y DDL
DROP REDACTION POLICY Y Y DDL
DROP RESOURCE GROUP Y N N
DROP ROLE Y A DDL
DROP ROUTINE Y Y DDL
DROP RULE Y Y DDL
DROP SCHEMA Y Y DDL
DROP SEQUENCE Y A DDL
DROP SERVER Y Y DDL
DROP STATISTICS Y Y DDL
DROP SUBSCRIPTION Y Y DDL
DROP SYNONYM Y A DDL
DROP TABLE Y Y DML
DROP TABLESPACE Y Y DDL
DROP TEXT SEARCH CONFIGURATION Y Y DDL
DROP TEXT SEARCH DICTIONARY Y A DDL
DROP TEXT SEARCH PARSER Y Y DDL
DROP TEXT SEARCH TEMPLATE Y Y DDL
DROP TRANSFORM Y Y DDL
DROP TRIGGER Y A DDL
DROP TYPE Y Y DDL
DROP TYPE BODY Y Y DDL
DROP USER MAPPING Y Y DDL
DROP VIEW Y A DDL
EXECUTE Y N N
EXPLAIN Y Details Details
FETCH Y N N
GRANT Y Details DDL
GRANT ROLE Y Y DDL
IMPORT FOREIGN SCHEMA Y Y DDL
LISTEN Y N N
LOAD Y N N
LOAD ROW DATA Y Y DDL
LOCK TABLE Y N Details
MOVE Y N N
NOTIFY Y N N
PREPARE Y N N
PREPARE TRANSACTION Y N N
REASSIGN OWNED Y Y DDL
REFRESH MATERIALIZED VIEW Y A DML
REINDEX Y Y DDL
RELEASE Y N N
RESET Y N N
REVOKE Y Details DDL
REVOKE ROLE Y Y DDL
ROLLBACK Y N N
ROLLBACK PREPARED Y N N
SAVEPOINT Y N N
SECURITY LABEL Y Details DDL
SELECT INTO Details Y DDL

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 208

EDB Postgres Distributed (PGD)

Command Allowed Replicated Lock
SET Y N N

SET CONSTRAINTS Y N N
SHOW Y N N
START TRANSACTION Y N N
TRUNCATE TABLE Y Details Details
UNLISTEN Y N N
VACUUM Y N N
Command notes

ALTER SEQUENCE

ALTER SEQUENCE ... RENAME and ALTER SEQUENCE ... SET SCHEMA are only fully supported for galloc sequences if sequuid (UUID)is presentinthe bdr.sequence_kind catalog.

If the required UUID is missing for a galloc sequence, the rename operation may fail. This typically occurs in clusters that have been upgraded from PGD versions prior to 6.2.

ALTER TABLE

Generally, ALTER TABLE commands are allowed. However, several subcommands aren't supported.

ALTER TABLE disallowed commands

Some variants of ALTER TABLE currently aren't allowed on a PGD node:

e ALTER COLUMN ... SET STORAGE external —Isrejected if the column is one of the columns of the replica identity for the table. You can override this behavior using bdr . permit_unsafe_commands if you're sure the
command is safe.

e RENAME — Can'trename an Autopartitioned table.

® SET SCHEMA — Can't set the schema of an Autopartitioned table.

e ALTER TABLE ... ADD FOREIGN KEY —Isn't supported if current user doesn't have permission to read the referenced table or if the referenced table has RLS restrictions enabled that the current user can't bypass.

The following example fails because it tries to add a constant value of type timestamp onto a column of type timestamptz .The cast between timestamp and timestamptz relies on the time zone of the session and so isn't
immutable.

ALTER TABLE
foo

ADD expiry_date timestamptz DEFAULT timestamp '2100-01-01 00:00:00' NOT
NULL;

You can add certain types of constraints, such as CHECK and FOREIGN KEY constraints, without taking a DML lock. But this requires a two-step process of first creatinga NOT VALID constraint and then validating the constraintin a
separate transaction with the ALTER TABLE ... VALIDATE CONSTRAINT command.See Adding a CONSTRAINT for more details.

ALTER TABLE locking

The following variants of ALTER TABLE take only DDL lock and not a DML lock:

e ALTER TABLE ... ADD COLUMN ... (immutable) DEFAULT

® ALTER TABLE ... ALTER COLUMN ... SET DEFAULT expression

® ALTER TABLE ... ALTER COLUMN ... DROP DEFAULT

e ALTER TABLE ... ALTER COLUMN ... TYPE ifit doesn't require rewrite
® ALTER TABLE ... ALTER COLUMN ... SET STATISTICS

® ALTER TABLE ... VALIDATE CONSTRAINT

® ALTER TABLE ... ATTACH PARTITION

e ALTER TABLE ... DETACH PARTITION

e ALTER TABLE ... ENABLE TRIGGER (ENABLE REPLICA TRIGGER still takes a DML lock)
® ALTER TABLE ... CLUSTER ON

® ALTER TABLE ... SET WITHOUT CLUSTER

® ALTER TABLE ... SET (storage_parameter = value [, ...])
® ALTER TABLE ... RESET (storage_parameter = [, ...])

e ALTER TABLE ... OWNER TO

All other variants of ALTER TABLE take a DML lock on the table being modified. Some variants of ALTER TABLE have restrictions, noted below.

ALTER TABLE examples

Different types of ALTER TABLE ... ALTER COLUMN TYPE (ATCT) operations are possible. Some ATCT operations update only the metadata of the underlying column type and don't require a rewrite of the underlying table data. This is
typically the case when the existing column type and the target type are binary coercible.

CREATE TABLE foo (id BIGINT PRIMARY KEY, description
VARCHAR (20)) ;

ALTER TABLE foo ALTER COLUMN description TYPE
VARCHAR (128) ;

However, making this change to reverse the command that is changed from VARCHAR(128) to VARCHAR(20) isn't binary coercible and will result in table rewrite.

CREATE TABLE sample (coll BIGINT PRIMARY KEY, col2 VARCHAR(128), col3
INT);

ALTER TABLE sample ALTER COLUMN col2 TYPE VARCHAR(256);

You can also change the column type to VARCHAR or TEXT data types because of binary coercibility. Again, this is just a metadata update of the underlying column type.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 209

EDB Postgres Distributed (PGD)

ALTER TABLE sample ALTER COLUMN col2 TYPE VARCHAR;
ALTER TABLE sample ALTER COLUMN col2 TYPE TEXT;

TABLE REWRITE examples:

Users may want to change data types of columns, add columns with a non-null default, or run maintenance jobs. These operations are supported by DDL commands in PostgreSQL which could trigger a table rewrite. The table rewrite operation
involves creating a new version of the table on disk. DDL operations such as CLUSTER or VACUUM directly cause table rewriting without any change in table definition. DDL operations like ALTER TABLE..ALTER COLUMN TYPE might
change columns and trigger a table rewrite. It copies all the existing data from the old version to the new one, and once the new version is ready and consistent, it replaces the old table with the new one.

Examples of typical table rewrite ATCT operations:

Consider the following table:

CREATE TABLE foo(
cl int,
c2 1int,
c3 1int,
name text,
time_now
timestamptz,
dollar
numeric,
indian_currency int GENERATED ALWAYS AS (dollar * 90.50)
STORED

)5
Given that table, the following ALTER TABLE commands will result in triggering a table rewrite.
Change column data type:

ALTER TABLE foo ALTER cl1 TYPE
bigint;

Change column type to incompatible type with USING clause:

ALTER TABLE foo ALTER COLUMN name TYPE int USING
name: :integer;

Volatile column types:

ALTER TABLE foo ALTER COLUMN time_now TYPE
timestamp;

Add column with mutable default:

ALTER TABLE foo ADD COLUMN time_clock timestamptz NOT NULL DEFAULT
clock_timestamp() ;

Generated columns:

ALTER TABLE foo ALTER COLUMN <indian_currency TYPE
numeric;

Run multiple ALTER TABLE DDL operations in single transaction block:

BEGIN;
ALTER TABLE foo ALTER c2 TYPE
bigint;
ALTER TABLE foo ALTER c3 TYPE
bigint;
COMMIT;

In a PGD cluster this involves a rewrite, therefore, the rewrite activity takes the global leader lock of type DML and thus requires that all group leaders in cluster are available.
Note

The ALTER TABLE examples provided aren't an exhaustive list of possibly allowable ATCT operations.

ALTER TYPE

ALTER TYPE is replicated, but a global DML lock isn't applied to all tables that use that data type, since PostgreSQL doesn't record those dependencies. See Restricted DDL workarounds.

COMMENT ON

All variants of COMMENT ON are allowed, but COMMENT ON TABLESPACE/DATABASE/LARGE OBJECT isn't replicated.

CREATE PROFILE or ALTER PROFILE

The PASSWORD_VERIFY_FUNCTION associated with the profile should be IMMUTABLE if the functionis SECURITY DEFINER.Sucha CREATE PROFILE or ALTER PROFILE command will be replicated but subsequent CREATE
USER or ALTER USER commands using this profile will break the replication due to the writer worker throwing the error: cannot change current role within security-restricted operation.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 210

CREATE SEQUENCE

Generally CREATE SEQUENCE is supported, but when using global sequences, some options have no effect.

CREATE TABLE AS and SELECT INTO

CREATE TABLE AS and SELECT INTO are allowed only if all subcommands are also allowed.

EXPLAIN

Generally EXPLAIN isallowed, but because EXPLAIN ANALYZE can have side effects on the database, there are some restrictions on it.

EXPLAIN ANALYZE Replication

EXPLAIN ANALYZE follows replication rules of the analyzed statement.

EXPLAIN ANALYZE Locking

EXPLAIN ANALYZE follows locking rules of the analyzed statement.

GRANT and REVOKE

Generally GRANT and REVOKE statements are supported, however GRANT /REVOKE ON TABLESPACE/LARGE OBJECT aren't replicated.

LOCK TABLE

LOCK TABLE isn't replicated, but it might acquire the global DML lock when bdr.lock_table_locking isset on.

You can also use The bdr.global_lock_table() function to explicitly request a global DML lock.

SECURITY LABEL

All variants of SECURITY LABEL are allowed, but SECURITY LABEL ON TABLESPACE/DATABASE/LARGE OBJECT isn't replicated.

TRUNCATE Replication

TRUNCATE command is replicated as DML, not as a DDL statement. Whether the TRUNCATE on table is replicated depends on replication settings for each affected table.

TRUNCATE Locking

Even though TRUNCATE isn't replicated the same way as other DDL, it can acquire the global DML lock when bdr . truncate_locking issetto on.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

211

EDB Postgres Distributed (PGD)

17.6 DDL and role manipulation statements

Users are global objects in a PostgreSQL instance, which means they span multiple databases while PGD operates on an individual database level. Because of this behavior, role manipulation statement handling needs extra thought.
PGD requires that any roles that are referenced by any replicated DDL must exist on all nodes. The roles don't have to have the same grants, password, and so on, but they must exist.

PGD replicates role manipulation statements if bdr.role_replication isenabled (default) and role manipulation statements are run in a PGD-enabled database.

The role manipulation statements include the following:

e CREATE ROLE
e ALTER ROLE
e DROP ROLE

® GRANT ROLE
® CREATE USER
® ALTER USER
e DROP USER

® CREATE GROUP
® ALTER GROUP
e DROP GROUP

In general, either:

e Configure the system with bdr.role_replication = off,anddeploy all role changes (user and group) by external orchestration tools like Ansible, Puppet, and Chef or explicitly replicated by
bdr.replicate_ddl_command() .

® Configure the system so that exactly one PGD-enabled database on the PostgreSQL instance has bdr.role_replication = on,and runall role management DDL on that database.

We recommended that you run all role management commands in one database.

If role replication is turned off, then the administrator must ensure that any roles used by DDL on one node also exist on the other nodes. Otherwise PGD apply stalls with an error until the role is created on the other nodes.
PGD with non-PGD-enabled databases

PGD doesn't capture and replicate role management statements when they run on a non-PGD-enabled database in a PGD-enabled PostgreSQL instance. For example, suppose you have databases pgddb (bdr group member) and
postgres (baredb),and bdr.role_replication = on.A CREATE USER runin pgddb isreplicated, buta CREATE USER runin postgres isn't.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 212

EDB Postgres Distributed (PGD)

17.7 Workarounds for DDL restrictions

You can work around some of the limitations of PGD DDL operation handling. Often splitting the operation into smaller changes can produce the desired result that either isn't allowed as a single statement or requires excessive locking.

Adding a CONSTRAINT
Youcanadd CHECK and FOREIGN KEY constraints without requiring a DML lock. This involves a two-step process:

® ALTER TABLE ... ADD CONSTRAINT ... NOT VALID
® ALTER TABLE ... VALIDATE CONSTRAINT

Execute these steps in two different transactions. Both of these steps take DDL lock only on the table and hence can be run even when one or more nodes are down. But to validate a constraint, PGD must ensure that:

e All nodes in the cluster see the ADD CONSTRAINT command.
e The node validating the constraint applied replication changes from all other nodes prior to creating the NOT VALID constraint on those nodes.

So even though the new mechanism doesn't need all nodes to be up while validating the constraint, it still requires that all nodes applied the ALTER TABLE .. ADD CONSTRAINT ... NOT VALID command and made enough
progress. PGD waits for a consistent state to be reached before validating the constraint.

The new facility requires the cluster to run with Raft protocol version 24 and later. If the Raft protocol isn't yet upgraded, the old mechanism is used, resulting in a DML lock request.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 213

EDB Postgres Distributed (PGD)

17.8 PGD functions that behave like DDL

The following PGD management functions act like DDL. This means that, if DDL replication is active and DDL filter settings allow it, they attempt to take global locks, and their actions are replicated. For detailed information, see the
documentation for the individual functions.

Replication set management:

® bdr.create_replication_set

® bdr.alter_replication_set

® bdr.drop_replication_set

® bdr.replication_set_add_table

® bdr.replication_set_remove_table

® bdr.replication_set_add_ddl_filter

® bdr.replication_set_remove_ddl_filter

Conflict management:

® bdr.alter_table_conflict_detection
® bdr.column_timestamps_enable (deprecated;use bdr.alter_table_conflict_detection())
® bdr.column_timestamps_disable (deprecated;use bdr.alter_table_conflict_detection())

Sequence management:
® bdr.alter_sequence_set_kind
Stream triggers:

e bdr.create_conflict_trigger
e bdr.create_transform_trigger
e bdr.drop_trigger

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 214

EDB Postgres Distributed (PGD)

18 Decoding worker

PGD provides an option to enable a decoding worker process that performs decoding once, no matter how many nodes are sent data. This option introduces a new process, the WAL decoder, on each PGD node. One WAL sender process still
exists for each connection, but these processes now just perform the task of sending and receiving data. Taken together, these changes reduce the CPU overhead of larger PGD groups and also allow higher replication throughput since the
WAL sender process now spends more time on communication.

Enabling

enable_wal_decoder isan option for each PGD group, which is currently disabled by default. You can use bdr.alter_node_group_option() toenable ordisable the decoding worker for a PGD group.

When the decoding worker is enabled, PGD stores logical change record (LCR) files to allow buffering of changes between decoding and when all subscribing nodes received data. LCR files are stored under the pg_logical directory in each
local node's data directory. The number and size of the LCR files varies as replication lag increases, so this process also needs monitoring. The LCRs that aren't required by any of the PGD nodes are cleaned periodically. The interval between
two consecutive cleanups is controlled by bdr.lcr_cleanup_interval, which defaults to 3 minutes. The cleanup is disabled when bdr.lcr_cleanup_interval isO0.

Disabling
When disabled, logical decoding is performed by the WAL sender process for each node subscribing to each node. In this case, no LCR files are written.

Even though the decoding worker is enabled for a PGD group, following GUCs control the production and use of LCR per node. By default these are false . For production and use of LCRs, enable the decoding worker for the PGD group and
set these GUCs to true on each of the nodes in the PGD group.

e bdr.enable_wal_decoder —When false,all WAL senders using LCRs restart to use WAL directly. When true along with the PGD group config, a decoding worker process is started to produce LCR and WAL senders that use
LCR.
e bdr.receive_lcr —When true onthe subscribing node, it requests WAL sender on the publisher node to use LCRs if available.

Notes

As of now, a decoding worker decodes changes corresponding to the node where it's running. A logical standby is sent changes from all the nodes in the PGD group through a single source. Hence a WAL sender serving a logical
standby currently can't use LCRs.

A subscriber-only node receives changes from respective nodes directly. Hence a WAL sender serving a subscriber-only node can use LCRs.

Even though LCRs are produced, the corresponding WALs are still retained similar to the case when a decoding worker isn't enabled. In the future, it might be possible to remove WAL corresponding the LCRs, if they aren't otherwise
required.

LCR file names

For reference, the first 24 characters of an LCR file name are similar to those in a WAL file name. The first 8 characters of the name are currently all'0". In the future, they're expected to represent the TimeLineld similar to the first 8 characters
of a WAL segment file name. The following sequence of 16 characters of the name is similar to the WAL segment number, which is used to track LCR changes against the WAL stream.

However, logical changes are reordered according to the commit order of the transactions they belong to. Hence their placement in the LCR segments doesn't match the placement of corresponding WAL in the WAL segments.

The set of the last 16 characters represents the subsegment number in an LCR segment. Each LCR file corresponds to a subsegment. LCR files are binary and variable sized. You can control the maximum size of an LCR file by adjusting
bdr.max_lcr_segment_file_size,which defaults to 1 GB.

Using with transaction streaming

It's possible to enable transaction streaming and the decoding worker at the same time. Transaction streaming means that the WAL sender can send a partial transaction before it commits, reducing replication lag. The WAL decoder now
supports the decoding of partial transactions, so the decoding worker can decode the partial transaction and store it in an LCR file. The LCR file is then used to apply the transaction on the subscriber node. This in turn reduces CPU usage, by
reducing the lag, and reduces disk space usages, since ".spill" files are not generated.

The WAL decoder always streams the transactions to LCRs but based on downstream request the WAL sender either stream transaction or just mimics a normal BEGIN. .COMMIT scenario.

To support this feature, the system creates additional streaming files. These files have names in that begin with STR_TXN_<file-name-format> and CAS_TXN_<file-name-format> and each streamed transaction creates their
own pair.

To enable transaction streaming with the WAL decoder, set the PGD group's bdr.streaming_mode set to ‘default’ using bdr.alter_node_group_option .

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 215

EDB Postgres Distributed (PGD)

19 CDC Failover support

Background

Earlier versions of PGD have allowed the creation of logical replication slots on nodes that can provide a feed of the logical changes happening to the data in the database. These logical replication slots have been local to the node and not
replicated. Apart from only replicating changes on the particular node, this behavior has presented challenges when faced with node failover in the cluster. In that scenario, a consumer of the logical replication off a node that fails has no
replica of the slot on another node to continue consuming from.

While solutions to this can be engineered using a subscriber-only node as an intermediary, it significantly raises the cost of logical replication.

CDC Failover support
To address this need, PGD introduced CDC Failover support. This is an optionally enabled feature that activates automatic logical slot replication across the cluster. This, in turn, allows a consumer of a logical slot’s replication to receive

change data from any node when a failure occurs.

How CDC Failover works

When a logical slot is created on a node with CDC Failover support enabled, the slot is replicated across the cluster. This means that the slot is available for consumption on any node in the cluster. When a node fails, the slot can be consumed
from another node in the cluster. This allows for continuing the logical replication stream without interruption.

If, though, the consumer of the slot connects to a different node in the cluster, the previous connection the consumer had will be closed by PGD. This behavior is to ensure that the slot isn't being consumed from multiple nodes at the same
time. In the background, PGD is using its Raft consensus protocol to ensure that the slot is being consumed from only one node at a time. This means that the guarantee of only one slot being consumed at a time doesn't hold in split-brain
scenarios.

Currently CDC Failover support is a global option that's controlled by a top-group option. The failover_slot_scope top-group option can currently be set to (and defaults to) Local , which disables replication of logical slots, or
global.The global setting enables the replication of all non-temporary logical slots created in the PGD database.

Temporary logical slots aren't replicated, as they have a lifetime scoped to the session that created them and will go away when that session ends.

At-least-once delivery guarantees

CDC Failover support takes steps to ensure that the consumer receives all changes at least once. This is done by holding back slots until delivery has been confirmed, at which point the slot is then advanced on all nodes in an asynchronous
manner. In the case of a failure on the node where the slot was being consumed, the slot is held until the consumer connects to a node in the cluster. This then allows the slot to progress.

Important
If a consuming application disconnects and doesn’t reconnect, the slot will remain held back on every node in the cluster. As this consumes disk and memory, it's essential to avoid this situation. Applications that consume slots must

return to consuming as soon as possible.

Exactly-once delivery

Currently, there's no way to ensure exactly-once delivery, and we expect consuming applications to manage the discarding of previously completed transactions.

Enabling CDC Failover support

To enable CDC Failover support run the SQL command and call the bdr.alter_node_group_option function with the following parameters:

select bdr.alter_node_group_option(<top-level group name>,
'failover_slot_scope',
'global');

Replace <top-Tlevel group name> withthe name of your cluster’s top-level group. If you don't know the name, it's the group with a node_group_parent_id equal to 0in bdr.node_group .
If you do not know the name, it is the group with a node_group_parent_id equal to 0in bdr.node_group . You can also use:

SELECT bdr.alter_node_group_option(

node_group_name,
'failover_slot_scope',
'global')
from bdr.node_group
where node_group_parent_id=0;

This command ensures you're setting the correct top-level group’s option.

Once CDC Failover is enabled, to create a new globally replicated slot, you can use:

SELECT pg_create_logical_replication_slot('myslot',
'test_decoding');

Logical replication slots created before the option was setto globa'l aren't replicated. Only new slots are replicated.
Failover slots can also be created with the CREATE_REPLICATION_SLOT command on a replication connection.

The status of failover slots is tracked in the bdr. failover_replication_slots table.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 216

EDB Postgres Distributed (PGD)

CDC Failover support with Postgres 17+

For Postgres 17 and later, support for failover was added to allow standbys to be resumed. Use an optionin pg_create_logical_replication_slot named failover for this purpose. This new setting requires that, no matter what
the setting of failover_slot_scope,youmustalsoset failover to true.

SELECT pg_create_logical_replication_slot('myslot’,
'test_decoding',

failover=>true);

Obtaining Initial Consistent Snapshot

When a logical replication slot is created, a consistent snapshot is exported by Postgres. This snapshot can be used to obtain a consistent initial copy of the data. PGD’s failover slot mechanism also follows the same procedure. But the
consumer must obtain the snapshot from the same node where the slot was originally created. In addition, it must also start the initial replication from the same node. Once the consumer has received enough changes over the replication
stream, the failover slot is marked as failover_safe . Once the slotis marked as failover_safe, then the consumer can safely failover to some other node in the PGD cluster (other considerations apply though, see below).

To check if the slotis failover_safe ornot, the user can query the bdr. failover_replication_slots catalogand check for the value of failover_safe column of the given slot.

If the consumer connects to some other PGD node and attempts to start replication before the slot is marked failover_safe,anappropriate error will be raised by PGD.

Failing Over to Newly Joined Nodes

When a new node joins the PGD cluster, it may not be immediately ready to serve as a decoding target for a CDC failover slot. The newly joined node may not have all the WAL files to decode the changes that the consumer has not yet
consumed. Consuming from such a node may result in data loss. PGD detects and prevents such situations by internally tracking the replication progress and preventing a new node from being a failover target, until it's safe to do so. If the
consumer tries to connect to a node that is not yet ready to serve as a decoding target, an appropriate error will be raised.

Tracking Per-Origin Progress

Transactions can originate from any node in the PGD cluster. When a consumer connects to a PGD node and starts decoding transactions, it may receive changes for the transactions originated on that node as well as transactions replicated
from other nodes in the cluster. The consumer is expected to track replication progress across all such PGD nodes or origins and ensure that duplicate transactions are handled correctly. To facilitate this, the test_decoding pluginin
Postgres-Extended and EnterpriseDB Advance Server has been enhanced to include the origin information of the transactions. Consumers can opt to receive origin information by setting include-origin optionto on while starting the
logical replication.

Asample output of test_decoding plugin with the origin information is produced below.

BEGIN 1723654 (origin 2) (origin_name bdr_bdrdemo_bdrgroup_node2) (origin_lsn 0/1D948910)

table public.pgbench_accounts: UPDATE: old-key: aid[integer]:39958 bid[integer]:1 abalance[integer]:0 filler[character]:"'

' new-tuple: aid[integer]:39958 bid[integer]:1 abalance[integer]:-1783 filler[character]:'

table public.pgbench_tellers: UPDATE: old-key: tid[integer]:6 bid[integer]:1 tbalance[integer]:® new-tuple: tid[integer]:6 bid[integer]:1 tbalance[integer]:-1783
filler[character]:null

table public.pgbench_branches: UPDATE: old-key: bid[integer]:1 bbalance[integer]:0 new-tuple: bid[integer]:1 bbalance[integer]:-1783 filler[character]:null

table public.pgbench_history: INSERT: tid[integer]:6 bid[integer]:1 aid[integer]:39958 delta[integer]:-1783 mtime[timestamp without time zone]:'2025-01-31
16:51:21.511571"' filler[character]:null

COMMIT 1723654 (origin 2) (origin_name bdr_bdrdemo_bdrgroup_node2) (origin_lsn ©/1D948910)

Consumers can make use of this information to track per-origin progress.
PGD also records replication progress across all nodes in the bdr.logical_checkpoints catalogand the consumer can receive decoded changes for the catalog and use that information to know the replication progress.

BEGIN 65720

id[name] : '370098259-0-6056978"' origin_node[oid]:370098259 origin_lsn[pg_lsn]:'0/6056978"' local_node[oid]:370098259 local_lsn[pg_lsn]:'0/6056978"' peer_count[integer]:2
peer_nodes[oid[]]:'{2228531844,4052927809}"' peer_lsns[pg_lsn[]]:'{0/4836758,0/67FOAF8}"'

COMMIT 65720

In this example, the node 370098259 is reporting the replication progress. When the consumer receives this change record, it can be sure of having received everything up to 0/4836758 and 0/67F0AF8 respectively from nodes 2228531844
and 4052927809.

Important

Currently PGD reports node information as OIDs stored in bdr.node catalog. But this will change in the near future and the information will be replaced by UUID.

Limitations

The CDC Failover Slot support comes with certain limitations:

CDC Failover slot support requires the latest versions of EDB Postgres Distributed (PGD) 5.7+ and the latest minor releases of Postgres Extended or EDB Postgres Advanced Server (available Feb 2025).

CDC Failover support is a global option and can't be set on a per-slot basis. Because changing the enabled status of CDC Failover doesn't affect previously provisioned slots, it's possible to enable it (set to globa'l), create a replicated
slot, then disable it (set to loca'l) to create a singular replicated slot.

CDC Failover support isn't supported on temporary slots.

CDC Failover support isn't supported on slots created with the failover optionsetto false.

CDC Failover support works with EDB Postgres Advanced Server and EDB Postgres Extended Server only. It isn't supported on community Postgres installations.

Existing slots aren't converted into failover slots when the option is enabled.

While Postgres’s built-in functions such as pg_logical_slot_get_changes() can be used, they won’t ensure that the slot isn't being decoded anywhere else and can’t update replication progress accurately across the cluster.
Therefore, we recommend that you don't rely on the function to receive decoded changes.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 217

EDB Postgres Distributed (PGD)

20 Parallel Apply

What is Parallel Apply?

Parallel Apply is a feature of PGD that allows a PGD node to use multiple writers per subscription. This behavior generally increases the throughput of a subscription and improves replication performance.

Configuring Parallel Apply

Two variables control Parallel Apply in PGD: bdr.max_writers_per_subscription (defaultsto8)and bdr.writers_per_subscription (defaultsto 2).

bdr.max_writers_per_subscription = 8
bdr.writers_per_subscription = 2

This configuration gives each subscription two writers. However, in some circumstances, the system might allocate up to eight writers for a subscription.
Changing bdr.max_writers_per_subscription requires aserver restart to take effect.
You can change bdr.writers_per_subscription fora specific subscription without a restart by:

1. Halting the subscription using bdr.alter_subscription_disable.
2. Setting the new value.
3. Resuming the subscription using bdr.alter_subscription_enable.

First though, establish the name of the subscription using select * from bdr.subscription . For this example, the subscription nameis bdr_pgddb_bdrgroup_node2_nodel .

SELECT bdr.alter_subscription_disable
('bdr_pgddb_bdrgroup_node2_nodel');

UPDATE

bdr.subscription

SET num_writers =

4

WHERE sub_name =
'bdr_pgddb_bdrgroup_node2_nodel';

SELECT bdr.alter_subscription_enable
('bdr_pgddb_bdrgroup_node2_nodel');

When to use Parallel Apply

Parallel Apply is always on by default and, for most operations, we recommend leaving it on.

Monitoring Parallel Apply

To support Parallel Apply's deadlock mitigation, PGD adds columns to bdr.stat_subscription.The new columnsare nprovisional_waits, ntuple_waits,and ncommmit_waits . These are metrics that indicate how well
Parallel Apply is managing what previously would have been deadlocks. They don't reflect overall system performance.

The nprovisional_waits value reflects the number of operations on the same tuples being performed by concurrent apply transactions. These are provisional waits that aren't actually waiting yet but could start waiting.

If a tuple's write needs to wait until it can be safely applied, it's counted in ntuple_waits . Fully applied transactions that waited before being committed are counted in ncommit_waits .

Disabling Parallel Apply

To disable Parallel Apply, set bdr.writers_per_subscription to 1.

Deadlock mitigation

When Parallel Apply is operating, the transactional changes from the subscription are written by multiple writers. However, each writer ensures that the final commit of its transaction doesn't violate the commit order as executed on the origin
node. If there's a violation, an error is generated and the transaction can be rolled back.

This mechanism previously meant that when the following are all true, the resulting error could manifest as a deadlock:

® Atransaction is pending commit and modifies a row that another transaction needs to change.
o That other transaction executed on the origin node before the pending transaction did.
e The pending transaction took out a lock request.

Additionally, handling the error could increase replication lag due to a combination of the time taken:

® Todetect the deadlock

e For the client to roll back its transaction

e Forindirect garbage collection of the changes that were already applied
® Toredo the work

This is where Parallel Apply’s deadlock mitigation can help. For any transaction, Parallel Apply looks at transactions already scheduled for any row (tuple) that the current transaction wants to write. If it finds one, the row is marked as needing
to wait until the other transaction is committed before applying its change to the row. This approach ensures that rows are written in the correct order.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 218

EDB Postgres Distributed (PGD)

Parallel Apply support

In PGD 6, Parallel Apply works with CAMO. It isn't compatible with Group Commit or Eager Replication, so disable it if Group Commit or Eager Replication are in use.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 219

EDB Postgres Distributed (PGD)

21 Replication sets

Areplication set is a group of tables that a PGD node can subscribe to. You can use replication sets to create more complex replication topologies than regular symmetric multi-master topologies where each node is an exact copy of the other
nodes.

Every PGD group creates a replication set with the same name as the group. This replication set is the default replication set, which is used for all user tables and DDL replication. All nodes are subscribed to it. In other words, by default, all
user tables are replicated between all nodes.

Using replication sets

You can create replication sets using bdr.create_replication_set, specifying whether to include insert, update, delete, or truncate actions. One option lets you add existing tables to the set, and a second option defines whether to
add tables when they're created.

You can also manually define the tables to add or remove from a replication set.

Tables included in the replication set are maintained when the node joins the cluster and afterwards.

Once the node is joined, you can still remove tables from the replication set, but you must add new tables using a resync operation.

By default, a newly defined replication set doesn't replicate DDL or PGD administration function calls. Use bdr.replication_set_add_ddl_filter to define the commands to replicate.
PGD creates replication set definitions on all nodes. Each node can then be defined to publish or subscribe to each replication set using bdr.alter_node_replication_sets.

You can use functions to alter these definitions later or to drop the replication set.

Note

Don't use the default replication set for selective replication. Don't drop or modify the default replication set on any of the PGD nodes in the cluster, as it's also used by default for DDL replication and administration function calls.

Behavior of partitioned tables
PGD supports partitioned tables transparently, meaning that you can add a partitioned table to a replication set.
Changes that involve any of the partitions are replicated downstream.

Note

When partitions are replicated through a partitioned table, the statements executed directly on a partition are replicated as they were executed on the parent table. The exception is the TRUNCATE command, which always
replicates with the list of affected tables or partitions.

You can add individual partitions to the replication set, in which case they're replicated like regular tables, that is, to the table of the same name as the partition on the downstream. This behavior has some performance advantages if the
partitioning definition is the same on both provider and subscriber, as the partitioning logic doesn't have to be executed.

Note

If a root partitioned table is part of any replication set, memberships of individual partitions are ignored. Only the membership of that root table is taken into account.

Behavior with foreign keys

A foreign-key constraint ensures that each row in the referencing table matches a row in the referenced table. Therefore, if the referencing table is a member of a replication set, the referenced table must also be a member of the same
replication set.

The current version of PGD doesn't check for or enforce this condition. When adding a table to a replication set, the database administrator must make sure that all the tables referenced by foreign keys are also added.
You can use the following query to list all the foreign keys and replication sets that don't satisfy this requirement. The referencing table is a member of the replication set, while the referenced table isn't.

SELECT
tl.relname,

tl.nspname,
fk.conname,

tl.set_name
FROM bdr.tables AS t1

JOIN pg_catalog.pg_constraint AS
fk

ON fk.conrelid =
tl.relid

AND fk.contype = 'f'
WHERE NOT EXISTS

SELECT *
FROM bdr.tables AS t2
WHERE t2.relid =
fk.confrelid

AND t2.set_name =
tl.set_name

)5

The output of this query looks like this:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 220

relname | nspname conname
set_name

t2 | public | t2_x_fkey |
s2

(1 row)

This output means that table t2 is a member of replication set s2 , but the table referenced by the foreign key t2_x_fkey isn't.

The TRUNCATE CASCADE command takes into account the replication set membership before replicating the command. For example:

TRUNCATE tablel
CASCADE

This becomes a TRUNCATE without cascade on all the tables that are part of the replication set only:

TRUNCATE tablel, referencing_tablel, referencing_table2

Replication set membership

EDB Postgres Distributed (PGD)

You can add tables to or remove them from one or more replication sets. Doing so affects replication only of changes (DML) in those tables. Schema changes (DDL) are handled by DDL replication set filters (see DDL replication filtering).

The replication uses the table membership in replication sets with the node replication sets configuration to determine the actions to replicate and the node to replicate them to. The decision is done using the union of all the memberships and
replication set options. Suppose that a table is a member of replication set A that replicates only INSERT actions and replication set B that replicates only UPDATE actions. Both INSERT and UPDATE actions are replicated if the target node is

also subscribed to both replication set Aand B.

You can control membership using bdr.replication_set_add_table and bdr.replication_set_remove_table.

Listing replication sets

You can list existing replication sets with the following query:

SELECT

set_name

FROM
bdr.replication_sets;

You can use this query to list all the tables in a given replication set:

SELECT nspname,

relname

FROM bdr.tables

WHERE set_name =
'myrepset';

Behavior with foreign keys shows a query that lists all the foreign keys whose referenced table isn't included in the same replication set as the referencing table.

Use the following SQL to show those replication sets that the current node publishes and subscribes from:

SELECT
node_id,
node_name,
pub_repsets,

sub_repsets
FROM bdr.local_node_summary;

This code produces output like this:

node_id | node_name | pub_repsets
sub_repsets

1834550102 | s01dbol | {bdrglobal,bdrsei} |
{bdrglobal,bdrso1}
(1 row)

To execute the same query against all nodes in the cluster, you can use the following query. This approach gets the replication sets associated with all nodes at the same time.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

221

EDB Postgres Distributed (PGD)

WITH node_repsets AS
(
SELECT
jsonb_array_elements (
bdr.run_on_all_nodes($$
SELECT

node_id,
node_name,
pub_repsets,

sub_repsets
FROM bdr.local_node_summary;
$$)::jsonb
) AS
J
)
SELECT j->'response'->'command_tuples'->0->>'node_id' AS
node_1id,
j=>'response'->"'command_tuples'->0->>"'node_name' AS
node_name,
j=>'response'->"'command_tuples'->0->>"'pub_repsets' AS
pub_repsets,
j=>'response'->"'command_tuples'->0->>"'sub_repsets' AS
sub_repsets
FROM node_repsets;

This shows, for example:

node_id | node_name | pub_repsets
sub_repsets
———————— +

933864801 | s02dbol | {bdrglobal,bdrse2}

{bdrglobal,bdrse2} l
1834550102 | s01dbol | {bdrglobal,bdrsei} |
{bdrglobal,bdrso1}

3898940082 | s01dbe2 | {bdrglobal,bdrsei} |
{bdrglobal,bdrs01}

1102086297 | s02db02 | {bdrglobal,bdrse2} |
{bdrglobal,bdrs62}

(4 rows)

DDL replication filtering

By default, the replication of all supported DDL happens by way of the default PGD group replication set. This replication is achieved using a DDL filter with the same name as the PGD group. This filter is added to the default PGD group
replication set when the PGD group is created.

You can adjust this behavior by changing the DDL replication filters for all existing replication sets. These filters are independent of table membership in the replication sets. Just like data changes, each DDL statement is replicated only once,
even if it's matched by multiple filters on multiple replication sets.

You can list existing DDL filters with the following query, which shows, for each filter, the regular expression applied to the command tag and to the role name:
SELECT * FROM bdr.ddl_replication;

Youcanuse bdr.replication_set_add_ddl_filter and bdr.replication_set_remove_ddl_filter tomanipulate DDL filters. They're considered to be DDL and are therefore subject to DDL replication and global

locking.

Selective replication example

This example configures EDB Postgres Distributed to selectively replicate tables to particular groups of nodes.

Cluster configuration

This example assumes you have a cluster of six data nodes, data-al to data-a3 and data-bl to data-b3 intwo locations. The two locations they're members of are represented as region_a and region_b groups.

There's also, as we recommend, a witness node named witness in region-c thatisn't mentioned in this example. The cluster is called sere .

Application requirements

This example works with an application that records the opinions of people who attended performances of musical works. There's a table for attendees, a table for the works, and an opinion table. The opinion table records each work each
attendee saw, where and when they saw it, and how they scored the work. Because of data regulation, the example assumes that opinion data must stay only in the region where the opinion was recorded.

Creating tables

The first step is to create appropriate tables:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 222

EDB Postgres Distributed (PGD)

CREATE TABLE attendee

(
id bigserial PRIMARY KEY,
email text NOT NULL

)5

CREATE TABLE work

(
id int PRIMARY KEY,
title text NOT NULL,
author text NOT

NULL

)5
CREATE TABLE opinion

id bigserial PRIMARY KEY,

work_id int NOT NULL REFERENCES work(id),

attendee_id bigint NOT NULL REFERENCES
attendee(id),

country text NOT NULL,

day date NOT NULL,

score int NOT NULL

)3

Viewing groups and replication sets

By default, EDB Postgres Distributed is configured to replicate each table in its entirety to each and every node. This is managed through replication sets.
To view the initial configuration's default replication sets, run:

SELECT node_group_name, default_repset,
parent_group_name
FROM bdr.node_group_summary;

node_group_name

default_repset | parent_group_name

sere | sere |

region_a | region_a | sere
region_b | region_b | sere
region_c | region_c | sere

In the output, you can see there's the top-level group, sere , with a default replication set named sere . Each of the three subgroups has a replication set with the same name as the subgroup. The region_a group hasa region_a
default replication set.

By default, all existing tables and new tables become members of the replication set of the top-level group.

Adding tables to replication sets

The next step is to add tables to the replication sets belonging to the groups that represent the regions. As previously mentioned, all new tables are automatically added to the sere replication set. You can confirm that by running:

SELECT relname, set_name FROM bdr.tables ORDER BY relname,

set_name;

relname | set_name
__________ S
attendee | sere
opinion | sere
work | sere

(3 rows)

You want the opinion table to be replicated onlyin region_a and, separately, onlyin region_b .To do that, you add the table to the replica sets of each region:

SELECT bdr.replication_set_add_table('opinion', 'region_a');
SELECT bdr.replication_set_add_table('opinion', 'region_b');

But you're not done, because opinion isstilla member of the sere replication set. When a table is a member of multiple replication sets, it's replicated in each. This doesn't affect performance, though, as each row is replicated only once
on each target node. You don't want opinion replicated across all nodes, so you need to remove it from the top-level group's replication set:

SELECT bdr.replication_set_remove_table('opinion', 'sere');

You can now review these changes:

SELECT relname, set_name FROM bdr.tables ORDER BY relname,

set_name;

relname | set_name
attendee | sere
opinion | region_a
opinion | region_b
work | sere

(4 rows)

This process should provide the selective replication you wanted. To verify whether it did, use the next step to test it.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 223

EDB Postgres Distributed (PGD)

Testing selective replication

First create some test data: two works and an attendee. Connect directly to data-al to run this next code:

INSERT INTO work VALUES (1, 'Aida',
'Verdi');

INSERT INTO work VALUES (2, 'Lohengrin',
'Wagner');

INSERT INTO attendee (email) VALUES
('gv@example.com');

Now that there's some data in these tables, you can insert into the opinion table without violating foreign key constraints:

INSERT INTO opinion (work_id, attendee_id, country, day,

score)

SELECT work.id, attendee.id, 'Italy', '1871-11-19', 3
FROM work,

attendee

WHERE work.title = 'Lohengrin
AND attendee.email =

'gv@example.com';

Once you've done the insert, you can validate the contents of the database on the same node:

SELECT a.email
, o.country

, o.day

, w.title

;.author

, o.score

FROM opinion

o

JOIN work w ON w.id =
o.work_id

JOIN attendee a ON a.id =
o.attendee_id;

email | country | day | title | author | score
gv@example.com | Italy | 1871-11-19 | Lohengrin | Wagner | 3
(1 row)

If you now connect to nodes data-a2 and data-a3 and run the same query, you get the same result. The data is being replicated in region_a . If you connect to data-bl, data-b2,or data-b3, the query returns no rows. That's
because, although the attendee and work tables are populated, there's no opinion row to select. That, in turn, is because the replication of opinion on region_a happens only in that region.

Now connectto data-bl andinsertan opinion there:

INSERT INTO attendee (email) VALUES
(' fb@example.com');

INSERT INTO opinion (work_id, attendee_id, country, day,

score)

SELECT work.id, attendee.id, 'Germany', '1850-08-27', 9
FROM work,

attendee

WHERE work.title = 'Lohengrin'
AND attendee.email =

' fbeexample.com';

This opinion is replicated only on region_b.On data-bl, data-b2,and data-b3,youcanrun:

SELECT a.email
, o.country

, o.day

, w.title

&.author

, o.score

FROM opinion

o

JOIN work w ON w.id =
o.work_id

JOIN attendee a ON a.id =
o.attendee_id;

email | country | day | title | author | score
fb@example.com | Germany | 1850-08-27 | Lohengrin | Wagner | 9
(1 row)

You see the same result on each of the region_b data nodes. Run the query on region_a nodes, and you don't see this particular entry.

Finally, notice that the attendee table is shared identically across all nodes. On any node, run the query:

SELECT * FROM attendee;

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 224

EDB Postgres Distributed (PGD)

id | email

904252679641903104 | gv@example.com
904261037006536704 | fbEexample.com
(2 rows)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 225

EDB Postgres Distributed (PGD)

22 Security and roles

EDB Postgres Distributed allows a PGD cluster to be administered without giving access to the stored data by design. It achieves this through the use of roles and controlled access to system objects.
® Roles introduces the roles that PGD predefines for controlling access to PGD functionality.
® Role management discusses how roles are managed on multi-database nodes and new nodes.
e PGD predefined roles details the specific privileges of the PGD roles.
® Roles and replication explains how PGD replication interacts with roles and privileges.

e Access control explains how tables, functions, catalog objects and triggers interact with PGD roles and Postgres attributes.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 226

EDB Postgres Distributed (PGD)

22.1 Roles

Configuring and managing PGD doesn't require superuser access and we recommend that you don't use superuser access. Instead, the privileges required to administer PGD are split across the following predefined roles.

Role Description

bdr_superuser The highest-privileged role, having access to all PGD tables and functions.

bdr_read_all_stats The role having read-only access to the tables, views, and functions, sufficient to understand the state of PGD.
bdr_monitor Includes the privileges of bdr_read_all_stats, with some extra privileges for monitoring.

bdr_application The minimal privileges required by applications running PGD.

bdr_read_all_conflicts ~ Can view all conflictsin bdr.conflict_history .

These roles are named to be analogous to PostgreSQL's pg_ predefined roles.
The PGD bdr_ roles are created when the BDR extension is installed. See PGD predefined roles for more details of the privileges each role has.
Managing PGD doesn't require that administrators have access to user data.
Arrangements for securing information about conflicts are discussed in Logging conflicts to a table.
You can monitor conflicts using the bdr.conflict_history_summary view.
The BDR extension and superuser access

The one exception to the rule of not needing superuser access is in the management of PGD's underlying BDR extension. Only superusers can create the BDR extension. However, if you want, you can set up the pgextwlist
extension and configure it to allow a non-superuser to create a BDR extension.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

227

https://www.postgresql.org/docs/current/predefined-roles.html

EDB Postgres Distributed (PGD)

22.2 Role management

Users are global objects in a PostgreSQL instance. A CREATE ROLE command orits alias CREATE USER is replicated automatically if it's executed in a PGD replicated database. If a role or user is created in a non-PGD, unreplicated
database, the role exists only for that PostgreSQL instance. GRANT ROLE and DROP ROLE work the same way, replicating only if applied to a PGD-replicated database.

Note

Remember that a user in Postgres terms is simply a role with login privileges.

Role rule - No un-replicated roles

If you do create a role or user in a non-PGD, unreplicated database, it's especially important that you do not make an object in the PGD-replicated database rely on that role. It will break the replication process, as PGD cannot replicate a role
that is not in the PGD-replicated database.

You can disable this automatic replication behavior by turning off the bdr.role_replication setting, but we don't recommend that.

Roles for new nodes
New PGD nodes that are added using bdr_init_physical will automatically replicate the roles from other nodes of the PGD cluster.

Starting with PGD 6.0.1, when a PGD node is manually joined to a PGD group without using bdr_init_physical, existing roles are automatically copied to the newly joined node. This means that you no longer need to create roles
manually on the new node before joining it to the group.

When roles are copied to a new node, if there are existing roles (or tablespaces) with the same name, the new node's existing roles (or tablespaces) will be updated to share the same settings (including passwords) as the roles (or tablespaces)
on the source node in the join operation.

Connections and roles

When allocating a new PGD node, the user supplied in the DSN for the local_dsn argumentof bdr.create_node andthe join_target_dsn of bdr.join_node_group are used frequently to refer to, create, and manage
database objects.

PGD is carefully written to prevent privilege escalation attacks even when using a role with SUPERUSER rights in these DSNs.
To further reduce the attack surface, you can specify a more restricted user in these DSNs. At a minimum, such a user must be granted permissions on all nodes, such that following stipulations are satisfied:

e The user hasthe REPLICATION attribute.

® |t'sgranted the CREATE permission on the database.

e [tinherits the bdr_superuser role.

® |t owns all database objects to replicate, either directly or from permissions from the owner roles.

Also, if any non-default extensions (excluding the BDR extension) are present on the source node, and any of these can be installed only by a superuser, a superuser must create these extensions manually on the join target node. Otherwise the
join process will fail.

In PostgreSQL 13 and later, you can identify the extensions requiring superuser permission and that must be manually installed. On the source node, execute:

SELECT name, (trusted IS FALSE AND superuser) AS
superuser_only
FROM
pg_available_extension_versions

WHERE qinstalled AND name != 'bdr';

Once all nodes are joined, to continue to allow DML and DDL replication, you can further reduce the permissions to the following:

e Theuser hasthe REPLICATION attribute.
o [tinherits the bdr_superuser role.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 228

22.3 PGD predefined roles

EDB Postgres Distributed (PGD)

PGD predefined roles are created when the BDR extension is installed. After BDR extension is dropped from a database, the roles continue to exist. You need to drop them manually if dropping is required.

bdr_superuser

This role is for an admin user that can manage anything PGD related. It allows you to separate management of the database and table access. Using it allows you to have a user that can manage the PGD cluster without giving them PostgreSQL

superuser privileges.

Privileges

® ALL PRIVILEGES ON ALL TABLES IN SCHEMA BDR
e ALL PRIVILEGES ON ALL ROUTINES IN SCHEMA BDR

bdr_read_all_stats

This role provides read access to most of the tables, views, and functions that users or applications may need to observe the statistics and state of the PGD cluster.

Privileges

SELECT privilege on:

® bdr.autopartition_partitions
® bdr.autopartition_rules

® bdr.ddl_epoch

® bdr.ddl_replication

e bdr.global_consensus_journal_details
e bdr.global_lock

® bdr.global_locks

® bdr.group_camo_details

e bdr.local_consensus_state

® bdr.local_node_summary

e bdr.node

® bdr.node_catchup_info

® bdr.node_catchup_info_details
® bdr.node_conflict_resolvers
® bdr.node_group

e bdr.node_local_info

® bdr.node_peer_progress

® bdr.node_replication_rates

e bdr.node_slots

® bdr.node_summary

® bdr.replication_sets

® bdr.replication_status

® bdr.sequences

® bdr.stat_activity

e bdr.stat_relation

e bdr.stat_subscription deprecated
e bdr.state_journal_details

® bdr.subscription

® bdr.subscription_summary

e bdr.tables

® bdr.taskmgr_local_work_queue
e bdr.taskmgr_work_queue

e bdr.worker_errors deprecated

® bdr.workers

® bdr.writers

® bdr.xid_peer_progress

EXECUTE privilege on:

® bdr.bdr_edition deprecated

e bdr.bdr_version

e bdr.bdr_version_num

® bdr.decode_message_payload

® bdr.get_consensus_status

® bdr.get_decoding_worker_stat

e bdr.get_global_locks

® bdr.get_min_required_replication_slots
e bdr.get_min_required_worker_processes
® bdr.get_raft_status

® bdr.get_relation_stats

® bdr.get_slot_flush_timestamp

® bdr.get_sub_progress_timestamp
® bdr.get_subscription_stats

® bdr.lag_control

® bdr.lag_history

® bdr.node_catchup_state_name

e bdr.node_kind_name

e bdr.peer_state_name

® bdr.show_subscription_status

® bdr.show_workers

® bdr.show_writers

e bdr.stat_get_activity

e bdr.wal_sender_stats

® bdr.worker_role_id_name

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

229

EDB Postgres Distributed (PGD)

bdr_monitor

This role provides read access to any tables, views, and functions that users or applications may need to monitor the PGD cluster. It includes all the privileges of the bdr_read_all_stats role.

Privileges

All privileges from bdr_read_all_stats plus the following additional privileges:
SELECT privilege on:

® bdr.group_raft_details

® bdr.group_replslots_details

e bdr.group_subscription_summary
® bdr.group_versions_details

e bdr.raft_instances

EXECUTE privilege on:

e bdr.get_raft_instance_by_nodegroup

® bdr.monitor_camo_on_all_nodes

® bdr.monitor_group_raft

® bdr.monitor_group_versions

e bdr.monitor_local_replslots

® bdr.monitor_raft_details_on_all_nodes

® bdr.monitor_replslots_details_on_all_nodes

® bdr.monitor_subscription_details_on_all_nodes
e bdr.monitor_version_details_on_all_nodes

e bdr.node_group_member_info

bdr_application

This role is designed for applications that require access to PGD features, objects, and functions such as sequences, CRDT datatypes, CAMO status functions, or trigger management functions.

Privileges

EXECUTE privilege on:

All functions for column_timestamps datatypes
All functions for CRDT datatypes

® bdr.alter_sequence_set_kind

® bdr.create_conflict_trigger

® bdr.create_transform_trigger

® bdr.drop_trigger

e bdr.get_configured_camo_partner
e bdr.global_lock_table

® bdr.is_camo_partner_connected

® bdr.is_camo_partner_ready

® bdr.logical_transaction_status
® bdr.ri_fkey_trigger

e bdr.seq_nextval

® bdr.seq_currval

® bdr.seq_lastval

® bdr.trigger_get_committs

® bdr.trigger_get_conflict_type

e bdr.trigger_get_origin_node_id

® bdr.trigger_get_row

® bdr.trigger_get_type

® bdr.trigger_get_xid

® bdr.wait_for_camo_partner_queue
e bdr.wait_slot_confirm_lsn

e bdr.wait_node_confirm_lsn

Many of these functions require additional privileges before you can use them. For example, you must be the table owner to successfully execute bdr.alter_sequence_set_kind . These additional rules are described with each specific
function.

bdr_read_all_conflicts

PGD logs conflicts into the bdr.conflict_history table. Conflicts are visible only to table owners, so no extra privileges are required for the owners to read the conflict history.

However, if it's useful to have a user that can see conflicts for all tables, you can optionally grant the role bdr_read_all_conflicts to that user.

Privileges

An explicit policy is seton bdr.conflict_history thatallows this role to read the bdr.conflict_history table.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 230

EDB Postgres Distributed (PGD)

22.4 Roles and replication

DDL and DML replication and users
DDL changes executed by a user are applied as that same user on each node.
DML changes to tables are replicated as the table-owning user on the target node.

By default, PGD replicates new tables with the same owner across nodes.

Differing table ownership
We recommend for the same user to own the table on each node. That's the default behavior, but you can override it. If you do, there are some things to take into account.
Consider a situation where table A is owned by user X on node1 and owned by user Y on node2. If user Y has higher privileges than user X, this might be viewed as a privilege escalation.

Since nodes can have different use cases, we do allow this scenario. But we also warn against it. If tables have different owners on different nodes, we recommend that a security administrator help to plan and audit this configuration.

Replication and row-level security

On tables with row-level security policies enabled, changes are replicated without reenforcing policies on apply. This behavior is equivalent to the changes being applied as NO FORCE ROW LEVEL SECURITY ,evenif FORCE ROW
LEVEL SECURITY is specified. If this isn't what you want, specify a row_filter that avoids replicating all rows. We recommend that the row security policies on all nodes be identical or at least compatible, but we don't enforce this.

bdr_superuser role and replication

The user bdr_superuser controls replication for PGD and can add or remove any table from any replication set. bdr_superuser doesn't need any privileges over individual tables, nor do we recommend it. If you need to restrict access to
replication set functions, you can implement restricted versions of these functions as SECURITY DEFINER functions and grant them to the appropriate users.

Privilege restrictions

PGD enforces additional restrictions, effectively preventing the use of DDL that relies solely on TRIGGER or REFERENCES privileges.

GRANT ALL still grants both TRIGGER and REFERENCES privileges, so we recommend that you state privileges explicitly. For example, use GRANT SELECT, INSERT, UPDATE, DELETE, TRUNCATE instead of ALL .

Foreign key privileges
ALTER TABLE ... ADD FOREIGN KEY is supported only if the user has SELECT privilege on the referenced table or if the referenced table has RLS restrictions enabled that the current user can't bypass.

This means that the REFERENCES privilege alone isn't sufficient to allow creating a foreign key with PGD. Relying solely on the REFERENCES privilege isn't typically useful since it makes the validation check execute using triggers rather than
atable scan. It's typically too expensive to use successfully.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 231

EDB Postgres Distributed (PGD)

22.5 Access control

Catalog tables
System catalog and information schema tables are always excluded from replication by PGD.

In addition, tables owned by extensions are excluded from replication.

PGD functions and operators
AlL PGD functions are exposed in the bdr schema. Any calls to these functions must be schema qualified, rather than putting bdr in the search_path.

AlL PGD operators are available by way of the pg_catalog schema to allow users to exclude the public schema from the search_path without problems.

Granting privileges on catalog objects
Administrators must not grant explicit privileges on catalog objects such as tables, views, and functions. Manage access to those objects by granting one of the roles described inPGD default roles.
This requirement is a consequence of the flexibility that allows joining a node group even if the nodes on either side of the join don't have the exact same version of PGD and therefore of the PGD catalog.

More precisely, if privileges on individual catalog objects were explicitly granted, then the bdr.join_node_group () procedure might fail because the corresponding GRANT statements extracted from the node being joined might not
apply to the node that's joining.

Triggers

In PostgreSQL, both the owner of a table and anyone who was granted the TRIGGER privilege can create triggers. Triggers granted by the non-table owner execute as the table owner in PGD, which might cause a security issue. The TRIGGER
privilege is seldom used, and PostgreSQL Core Team has said, "The separate TRIGGER permission is something we consider obsolescent."

PGD mitigates this problem by using stricter rules on who can create a trigger on a table:

superuser: Can create trigggers.

bdr_superuser: Can create triggers.

Owner of the table: Can create triggers according to same rules as in PostgreSQL (must have EXECUTE privilege on the function used by the trigger).

Users who have TRIGGER privilege on the table: Can create a trigger only if they use a function that's owned by the same owner as the table and they satisfy standard PostgreSQL rules. Specifically, they must have EXECUTE privilege on
the function.

If both table and function have the same owner, and the owner decides to give a user both TRIGGER privilege on the table and EXECUTE privilege on thae function. It's assumed that it's okay for that user to create a trigger on that table
using this function.

Users who have TRIGGER privilege on the table: Can also create triggers using functions that are defined with the SECURITY DEFINER clause if they have EXECUTE privilege on them.

The SECURITY DEFINER clause makes the function always execute as the owner of the function both in standard PostgreSQL and PGD.
This logic is built on the fact that, in PostgreSQL, the owner of the trigger isn't the user who created it but the owner of the function used by that trigger.
The same rules apply to existing tables, and if the existing table has triggers that aren't owned by the owner of the table and don't use SECURITY DEFINER functions, you can't add it to a replication set.

When PGD replication applies changes it uses the system-level default search_path only. Replica triggers, stream triggers, and index expression functions that assume other search_path settings will then fail when they execute on apply. To
ensure this doesn't occur, resolve object references clearly using either the default search_path only, or set the search path for a function using ALTER FUNCTION ... SET search_path = ... forthe functions affected. When
using the default search_path, always use fully qualified references to objects, for example, schema.objectname.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 232

https://www.postgresql.org/docs/current/sql-createfunction.html#SQL-CREATEFUNCTION-SECURITY

EDB Postgres Distributed (PGD)

23 Sequences

Many applications require that unique surrogate ids be assigned to database entries. Often the database SEQUENCE object is used to produce these. In PostgreSQL, these can be either:

® Amanually created sequence using the CREATE SEQUENCE command and retrieved by calling the nextval() function
e serial and bigserial columnsor, alternatively, GENERATED BY DEFAULT AS IDENTITY columns

However, standard sequences in PostgreSQL aren't multi-node aware and produce values that are unique only on the local node. This is important because unique ids generated by such sequences cause conflict and data loss by means of
discarded INSERT actions in multi-master replication.

Permissions required

This means that any user who wants to use sequences must have at least the bdr_application role assigned to them.

PGD global sequences
For this reason, PGD provides an application-transparent way to generate unique ids using sequences on bigint or bigserial datatypes across the whole PGD group, called global sequences.
PGD global sequences provide an easy way for applications to use the database to generate unique synthetic keys in an asynchronous distributed system that works for most—but not necessarily all—cases.

Using PGD global sequences allows you to avoid the problems with insert conflicts. If you define a PRIMARY KEY or UNIQUE constraint on a column that's using a global sequence, no node can ever get the same value as any other node.
When PGD synchronizes inserts between the nodes, they can never conflict.

PGD global sequences extend PostgreSQL sequences, so they are crash-safe. To use them, you must be granted the bdr_application role.
There are various possible algorithms for global sequences:

* Snowflakeld sequences
® Globally allocated range sequences

Snowflakeld sequences generate values using an algorithm that doesn't require inter-node communication at any point. It's faster and more robust and has the useful property of recording the timestamp when the values were created.

Snowflakeld sequences have the restriction that they work only for 64-bit BIGINT datatypes and produce values up to 19 digits long. This might be too long for use in some host language datatypes, such as JavaScript Number types. Globally
allocated sequences allocate a local range of values that can be replenished as needed by inter-node consensus, making them suitable for either BIGINT or INTEGER sequences.

You can create a global sequence using the bdr.alter_sequence_set_kind() function. This function takes a standard PostgreSQL sequence and marks it as a PGD global sequence. It can also convert the sequence back to the
standard PostgreSQL sequence.

PGD also provides the configuration variable bdr.default_sequence_kind . This variable determines the kind of sequence to create when the CREATE SEQUENCE command is executed or whena serial, bigserial,or
GENERATED BY DEFAULT AS IDENTITY column is created. Valid settings are:

e Tlocal — Newly created sequences are the standard PostgreSQL (local) sequences.

e galloc — Always creates globally allocated range sequences.

e snowflakeid — Creates global sequences for BIGINT sequences that consist of time, nodeid, and counter components. You can't use it with INTEGER sequences (so you can use it for bigserial butnotfor serial).

e timeshard — The older version of Snowflakeld sequence. Provided for backward compatibility only. The Snowflakeld is preferred.

e distributed (default) — A special value that you can use only for bdr.default_sequence_kind .Itselects snowflakeid for int8 sequences (thatis, bigserial)and galloc sequencefor int4 (thatis,
serial)and int2 sequences.

The bdr.sequences view shows information about individual sequence kinds.

The currval() and lastval() functionswork correctly for all types of global sequences.

Automatic sequence conversion

In PGD 6.0 and later, the act of joining a node to a PGD group or creating a new grou also triggers a conversion of any local sequences into global sequences. Set bdr.default_sequence_kind to distributed . This setting then
selects the best kind of sequence to convert the local sequences into. If bdr.default_sequence_kind issetto local, the sequences are left as local sequences. Conversions to galloc are performed in a way that ensures that the
sequence doesn't conflict with any other sequences in the group.

If you decide to start with local sequences and later switch to galloc sequences, you can do so by setting bdr.default_sequence_kind to galloc and thenrunningthe bdr.alter_sequence_set_kind() functiononeach
sequence you want to convert. Be aware, though, that you need to manually set the starting values of the sequences to ensure that they don't conflict with any existing values in the table. See Converting a local sequence to a galloc sequence
for more information about this in general and specifically How to set a new start value for a sequence.

Snowflakeld sequences

The ids generated by Snowflakeld sequences are loosely time ordered so you can use them to get the approximate order of data insertion, like standard PostgreSQL sequences. Values generated within the same millisecond might be out of
order, even on one node. The property of loose time ordering means they're suitable for use as range-partition keys.

Snowflakeld sequences work on one or more nodes and don't require any inter-node communication after the node-join process completes. So you can continue to use them even if there's the risk of extended network partitions. They aren't
affected by replication lag or inter-node latency.

Snowflakeld sequences generate unique ids in a different way from standard sequences. The algorithm uses three components for a sequence number. The first component of the sequence is a timestamp at the time of sequence number
generation. The second component of the sequence number is the unique id assigned to each PGD node, which ensures that the ids from different nodes are always different. The third component is the number generated by the local
sequence.

While adding a unique node id to the sequence number is enough to ensure there are no conflicts, you also want to keep another useful property of sequences. The ordering of the sequence numbers roughly corresponds to the order in which
data was inserted into the table. Putting the timestamp first ensures this.

A few limitations and caveats apply to Snowflakeld sequences.

Snowflakeld sequences are 64 bits wide and need a bigint or bigserial . Values generated are up to 19 digits long. There's no practical 32-bit integer version, so you can't use it with serial sequences. Use globally allocated
range sequences instead.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 233

https://www.enterprisedb.com/docs/pgd/latest/reference/security/pgd-predefined-roles#bdr_application
https://www.enterprisedb.com/docs/pgd/latest/reference/sequences#converting-a-local-sequence-to-a-galloc-sequence
https://www.enterprisedb.com/docs/pgd/latest/reference/sequences#2-set-a-new-start-value-for-the-sequence

EDB Postgres Distributed (PGD)
For Snowflakeld, there's a limit of 4096 sequence values generated per millisecond on any given node (about 4 million sequence values per second). In case the sequence value generation wraps around within a given millisecond, the
Snowflakeld sequence waits until the next millisecond and gets a fresh value for that millisecond.

Since Snowflakeld sequences encode timestamps into the sequence value, you can generate new sequence values only within the given time frame (depending on the system clock). The oldest timestamp that you can use is 2016-10-07, which
is the epoch time for the Snowflakeld. The values wrap to negative values in the year 2086 and completely run out of numbers by 2156.

Since timestamp is an important part of a Snowflakeld sequence, there's additional protection from generating sequences with a timestamp older than the latest one used in the lifetime of a Postgres process (but not between Postgres
restarts).

The INCREMENT option on a sequence used as input for Snowflakeld sequences is effectively ignored. This might be relevant for applications that do sequence ID caching, like many object-relational mapper (ORM) tools, notably Hibernate.
Because the sequence is time based, this has little practical effect since the sequence advances to a new noncolliding value by the time the application can do anything with the cached values.

Similarly, you might change the START , MINVALUE , MAXVALUE ,and CACHE settings on the underlying sequence, but there's no benefit to doing so. The sequence's low 14 bits are used and the rest is discarded, so the value-range limits

don't affect the function's result. For the same reason, setval() isn't useful for Snowflakeld sequences.

Timeshard sequences

Timeshard sequences are provided for backward compatibility with existing installations but aren't recommended for new application use. We recommend using the Snowflakeld sequence instead.
Timeshard is very similar to Snowflakeld but has different limits, fewer protections, and slower performance.

The differences between timeshard and Snowflakeld are as follows:

Timeshard can generate up to 16384 per millisecond (about 16 million per second), which is more than Snowflakeld. However, there's no protection against wraparound within a given millisecond. Schemas using the timeshard sequence
must protect the use of the UNIQUE constraint when using timeshard values for a given column.

The timestamp component of timeshard sequence runs out of values in the year 2050 and, if used in combination with bigint, the values wrap to negative numbers in the year 2033. This means that sequences generated after 2033 have
negative values. This is a considerably shorter time span than Snowflakeld and is the main reason why Snowflakeld is preferred.

Timeshard sequences require occasional disk writes (similar to standard local sequences). Snowflakelds are calculated in memory so the Snowflakeld sequences are in general a little faster than timeshard sequences.

Unlogged sequences and PGD

Since Postgres 15, it has been possible to create unlogged sequences. These are related and similar to unlogged tables, which aren't written to the WAL and aren't replicated. In the context of PGD and unlogged sequences, it isn't a sensible
configuration to have an unlogged PGD sequence and it could cause unexpected problems in the event of a node failure. Therefore, we prevent the creation of unlogged PGD sequences or the conversion of a PGD sequence to an unlogged
sequence.

lobally all d range
The globally allocated range (or galloc) sequences allocate ranges (chunks) of values to each node. When the local range is used up, a new range is allocated globally by consensus among the other nodes. This behavior uses the key space
efficiently but requires that the local node be connected to a majority of the nodes in the cluster for the sequence generator to progress when the currently assigned local range is used up.

Unlike Snowflakeld sequences, galloc sequences support all sequence data types provided by PostgreSQL: smallint, integer ,and bigint.This means thatyoucanuse galloc sequencesin environments where 64-bit
sequences are problematic. Examples include using integers in JavaScript, since that supports only 53-bit values, or when the sequence is displayed on output with limited space.

The range assigned by each voting node is currently predetermined based on the datatype the sequence is using:

e smallint — 1 000 numbers
e integer — 1 000 000 numbers
® bigint — 1 000 000 000 numbers

Each node allocates two chunks of seq_chunk_size—one for the current use plus a reserved chunk for future use—so the values generated from any one node increase monotonically. However, viewed globally, the values generated aren't
ordered at all. This might cause a loss of performance due to the effects on b-tree indexes and typically means that generated values aren't useful as range-partition keys.

The main downside of the galloc sequences is that, once the assigned range is used up, the sequence generator has to ask for consensus about the next range for the local node that requires inter-node communication. This might lead to
delays or operational issues if the majority of the PGD group isn't accessible. (This might be avoided in later releases.)

The CACHE, START, MINVALUE,and MAXVALUE options work correctly with galloc sequences. However, you need to set them before transforming the sequence to the galloc kind. The INCREMENT BY option also works
correctly. However, you can't assign an increment value that's equal to or more than the above ranges assigned for each sequence datatype. setval() doesn't reset the global state for galloc sequences. Don't use it.

A few limitations apply to galloc sequences. PGD tracks galloc sequencesin a special PGD catalog bdr.sequence_alloc. This catalog is required to track the currently allocated chunks for the galloc sequences. The sequence name
and namespace is stored in this catalog. The sequence chunk allocation is managed by Raft, whereas any changes to the sequence name/namespace is managed by the replication stream. So PGD currently doesn't support renaming galloc
sequences or moving them to another r orr ing the namespace that containsa galloc sequence. Be mindful of this limitation while designing application schema.

Converting a local sequence to a galloc sequence

Before transforming a local sequence to galloc, you need to take care of several prerequisites.

1. Verify that sequence and column data type match

Check that the sequence's data type matches the datatype of the column with which it will be used. For example, you can create e bigint sequence and assignan integer column's default to the nextval() returned by that sequence.
With galloc sequences, which for bigint are allocated in blocks of 1 000 000 000, this quickly results in the values returned by nextval() exceedingthe int4 range if more than two nodes are in use.

This example shows what can happen:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 234

EDB Postgres Distributed (PGD)

CREATE SEQUENCE int8_seq;

SELECT sequencename, data_type FROM pg_sequences;
sequencename |
data_type

int8_seq
bigint
(1 row)

CREATE TABLE seqtest (id INT NOT NULL PRIMARY
KEY) ;

ALTER SEQUENCE int8_seq OWNED BY
seqtest.id;

SELECT bdr.alter_sequence_set_kind('public.int8_seq'::regclass, 'galloc', 1);
alter_sequence_set_kind

(1 row)

ALTER TABLE seqtest ALTER COLUMN +id SET DEFAULT
nextval('int8_seq'::regclass);

After executing INSERT INTO seqtest VALUES(DEFAULT) on two nodes, the table contains the following values:

SELECT * FROM

seqtest;
id
2
2000000002
(2 rows)

However, attempting the same operation on a third node fails with an integer out of range error, as the sequence generated the value 4000000002 .
Tip

You can retrieve the current data type of a sequence from the PostgreSQLpg_sequences view. You can modify the data type of a sequence with ALTER SEQUENCE ... AS ..., forexample, ALTER SEQUENCE
public.sequence AS integer,aslongasits current value doesn't exceed the maximum value of the new data type.

2. Seta new start value for the sequence

When the sequence kind is altered to galloc, it's rewritten and restarts from the defined start value of the local sequence. If this happens on an existing sequence in a production database, you need to query the current value and then set
the start value appropriately. To help with this use case, PGD lets you pass a starting value with the function bdr.alter_sequence_set_kind() .If you're already using offset and you have writes from multiple nodes, you need to check
what's the greatest used value and restart the sequence to at least the next value:

-- determine highest sequence value across all
nodes

SELECT max((x—>'response'->'command_tuples'->0->>"nextval')::bigint)
FROM
jsonb_array_elements(

bdr.run_on_all_nodes(
E'SELECT
nextval(\'public.sequence\');'

)::jsonb) AS x;
-- turn into a galloc

sequence
SELECT bdr.alter_sequence_set_kind('public.sequence'::regclass, 'galloc', $MAX + $MARGIN);

Since users can't lock a sequence, you must leave a $MARGIN value to allow operations to continue while the max () value is queried.

The bdr.sequence_alloc table gives information on the chunk size and the ranges allocated around the whole cluster.

In this example, the sequence starts at 333, and the cluster has two nodes. The number of allocation is 4, which is 2 per node, and the chunk size is 1000000, which is related to an integer sequence.

SELECT * FROM bdr.sequence_alloc
WHERE seqid = 'public.categories_category_seq'::regclass;
seqid | seq_chunk_size | seq_allocated_up_to | seq_nallocs
seq_last_alloc

categories_category_seq | 1000000 | 4000333 | 4 | 2020-05-21
20:02:15.957835+00

(1 row)

To see the ranges currently assigned to a given sequence on each node, execute the function bdr.galloc_chunk_info.

e Node Nodel isusingrange from 333 to 2000333 .

SELECT * FROM bdr.galloc_chunk_info('categories_category_seq');
chunk_start |
chunk_end

334 |
1000333

1000334 |
2000333

(2 rows)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 235

https://www.postgresql.org/docs/current/view-pg-sequences.html

EDB Postgres Distributed (PGD)

e Node Node2 isusingrange from 2000334 to 4000333 .

SELECT * FROM bdr.galloc_chunk_info('categories_category_seq');
chunk_start |
chunk_end

2000334 |
3000333

3000334 |
4000333

When a node finishes a chunk, it asks a consensus for a new one and gets the first available. In the example, it's from 4000334 to 5000333. This is the new reserved chunk and starts to consume the old reserved chunk.

UUIDs, KSUUIDs, and other approaches
You can generate globally unique ids in other ways without using the global sequences that can be used with PGD. For example:

e UUIDs and their PGD variant, KSUUIDs
e Local sequences with a different offset per node (i.e., manual)
® An externally coordinated natural key

PGD applications can't use other methods safely. Counter-table-based approaches relyingon SELECT ... FOR UPDATE, UPDATE ... RETURNING ... orsimilarfor sequence generation don't work correctly in PGD because PGD
doesn't take row locks between nodes. The same values are generated on more than one node. For the same reason, the usual strategies for "gapless" sequence generation don't work with PGD. In most cases, the application coordinates
generating sequences that must be gapless from some external source using two-phase commit. Or it generates them only on one node in the PGD group.

KSUUID v2 functions

PGD applications can't use other methods safely. Counter-table-based approaches relyingon SELECT ... FOR UPDATE, UPDATE ... RETURNING ... orsimilarfor sequence generation don't work correctly in PGD because PGD
doesn't take row locks between nodes. The same values are generated on more than one node. For the same reason, the usual strategies for "gapless" sequence generation don't work with PGD. In most cases, the application coordinates
generating sequences that must be gapless from some external source using two-phase commit. Or it generates them only on one node in the PGD group.

UuIDs

UUID keys instead avoid sequences entirely and use 128-bit universal unique identifiers. These are random or pseudorandom values that are so large that it's nearly impossible for the same value to be generated twice. There's no need for
nodes to have continuous communication when using UUID keys.

In the unlikely event of a collision, conflict detection chooses the newer of the two inserted records to retain. Conflict logging, if enabled, records such an event. However, it's exceptionally unlikely to ever occur, since collisions become
practically likely only after about 2464 keys are generated.

The main downside of UUID keys is that they're somewhat inefficient in terms of space and the network. They consume more space not only as a primary key but also where referenced in foreign keys and when transmitted on the wire. Also,
not all applications cope well with UUID keys.

KSUUIDs
PGD provides functions for working with a K-sortable variant of UUID data. Known as KSUUID, it generates values that can be stored using the PostgreSQL standard UUID data type. A KSUUID value is similar to UUIDv1 in that it stores
both timestamp and random data, following the UUID standard. The difference is that KSUUID is K-sortable, meaning that it's weakly sortable by timestamp. This makes it more useful as a database key, as it produces more compact

btree indexes. This behavior improves the effectiveness of search and allows natural time-sorting of result data. Unlike UUIDv1, KSUUID values don't include the MAC of the computer on which they were generated, so there are no
security concerns from using them.

We now recommend KSUUID v2in all cases. You can directly sort values generated with regular comparison operators.

There are two versions of KSUUID in PGD: v1 and v2. The legacy KSUUID v1 is deprecated but is kept to support existing installations. Don't use it for new installations. The internal contents of v1 and v2 aren't compatible. As such, the
functions to manipulate them also aren't compatible. The v2 of KSUUID also no longer stores the UUID version number.

See KSUUID v2 functions and KSUUID v1 functions in the PGD reference.

Step and offset sequences

In offset-step sequences, a normal PostgreSQL sequence is used on each node. Each sequence increments by the same amount and starts at differing offsets. For example, with step 1000, node1's sequence generates 1001, 2001, 3001, and so
on. node2's sequence generates 1002, 2002, 3002, and so on. This scheme works well even if the nodes can't communicate for extended periods. However, the designer must specify a maximum number of nodes when establishing the schema,
and it requires per-node configuration. Mistakes can easily lead to overlapping sequences.

It's relatively simple to configure this approach with PGD by creating the desired sequence on one node, like this:

CREATE TABLE some_table (
generated_value bigint primary key
)5
CREATE SEQUENCE some_seq INCREMENT 1000 OWNED BY some_table.generated_value;

ALTER TABLE some_table ALTER COLUMN generated_value SET DEFAULT nextval('some_seq');
Then, on each node calling setval() , give each node a different offset starting value, for example:

—-= On node 1
SELECT setval('some_seq', 1);

—-- On node 2
SELECT setval('some_seq', 2);

-= ... etc

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 236

EDB Postgres Distributed (PGD)

Be sure to allow a large enough INCREMENT to leave room for all the nodes you might ever want to add, since changing it in the future is difficult and disruptive.

Ifyouuse bigint values, there's no practical concern about key exhaustion, even if you use offsets of 10000 or more. It would take hundreds of years, with hundreds of machines, doing millions of inserts per second, to have any chance of
approaching exhaustion.

PGD doesn't currently offer any automation for configuring the per-node offsets on such step/offset sequences.

Composite keys

Avariant on step/offset sequences is to use a composite key composed of PRIMARY KEY (node_number, generated_value) .The node number is usually obtained from a function that returns a different number on each node. You
can create such a function by temporarily disabling DDL replication and creating a constant SQL function. Alternatively, you can use a one-row table that isn't part of a replication set to store a different value in each node.

See also

e Global Sequence management interfaces
e KSUUID v2 functions
e KSUUID v1 functions

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 237

EDB Postgres Distributed (PGD)

24 Stream triggers

PGD introduces new types of triggers that you can use for additional data processing on the downstream/target node:

e Conflict triggers
® Transform triggers

Together, these types of triggers are known as stream triggers.
Permissions required
Stream triggers are a PGD feature that requires permission. Any user wanting to create or drop triggers must have at least the bdr_application role assigned to them.
Stream triggers are designed to be trigger-like in syntax. They leverage the PostgreSQL BEFORE trigger architecture and are likely to have similar performance characteristics as PostgreSQL BEFORE triggers.

Multiple trigger definitions can use one trigger function, just as with normal PostgreSQL triggers. A trigger function is a program defined in this form: CREATE FUNCTION ... RETURNS TRIGGER .Creating the trigger doesn't require use
ofthe CREATE TRIGGER command. Instead, create stream triggers using the special PGD functions bdr.create_conflict_trigger() and bdr.create_transform_trigger() .

Once created, the trigger is visible in the catalog table pg_trigger . The stream triggers are marked as tgisinternal = true and tgenabled = 'D' and have the name suffix'_bdrc' or'_bdrt'. The view bdr.triggers
provides information on the triggers in relation to the table, the name of the procedure that's being executed, the event that triggers it, and the trigger type.

Stream triggers aren't enabled for normal SQL processing. Because of this, the ALTER TABLE ... ENABLE TRIGGER is blocked for stream triggers in both its specific name variant and the ALL variant. This mechanism prevents the
trigger from executing as a normal SQL trigger.

These triggers execute on the downstream or target node. There's no option for them to execute on the origin node. However, you might want to consider the use of row_filter expressions on the origin.

Also, any DML that's applied while executing a stream trigger isn't replicated to other PGD nodes and doesn't trigger the execution of standard local triggers. This is intentional. You can use it, for example, to log changes or conflicts captured
by a stream trigger into a table that's crash-safe and specific to that node. See Stream triggers examples for a working example.

Trigger execution during apply
Transform triggers execute first—once for each incoming change in the triggering table. These triggers fire before we attempt to locate a matching target row, allowing a very wide range of transforms to be applied efficiently and consistently.
Next, for UPDATE and DELETE changes, we locate the target row. If there's no target row, then no further processing occurs for those change types.

We then execute any normal triggers that previously were explicitly enabled as replica triggers at table level:

ALTER TABLE tablename
ENABLE REPLICA TRIGGER trigger_name;

We then decide whether a potential conflict exists. If so, we then call any conflict trigger that exists for that table.

Missing-column conflict resolution

Before transform triggers are executed, PostgreSQL tries to match the incoming tuple against the row-type of the target table.

Any column that exists on the input row but not on the target table triggers a conflict of type target_column_missing . Conversely, a column existing on the target table but not in the incoming row triggers a
source_column_missing conflict. The default resolutions for those two conflict types are respectively ignore_if_null and use_default_value.

This is relevant in the context of rolling schema upgrades, for example, if the new version of the schema introduces a new column. When replicating from an old version of the schema to a new one, the source column is missing, and the
use_default_value strategyisappropriate, as it populates the newly introduced column with the default value.

However, when replicating from a node having the new schema version to a node having the old one, the column is missing from the target table. The ignore_if_null resolverisn't appropriate for a rolling upgrade because it breaks
replication as soon as a user inserts a tuple with a non-NULL value in the new column in any of the upgraded nodes.

In view of this example, the appropriate setting for rolling schema upgrades is to configure each node to apply the ignore resolverin case ofa target_column_missing conflict.
You can do this with the following query, which you must execute separately on each node. Replace nodel with the actual node name.

SELECT
bdr.alter_node_set_conflict_resolver('nodel',

'target_column_missing', 'dignore');

Data loss and divergence risk

Setting the conflict resolver to ignore can lead to data loss and cluster divergence.
Consider the following example: table t exists on nodes 1 and 2, but its column co'l exists only on node 1.
If the conflict resolver is set to ignore , then there can be rows on node 1 where c isn't null, for example, (pk=1, col=100) .Thatrow is replicated to node 2, and the value in column c is discarded, for example, (pk=1) .

If column c is then added to the table on node 2, it's at first set to NULL on all existing rows, and the row considered above becomes (pk=1, col=NULL) .The row having pk=1 is no longer identical on all nodes, and the cluster is
therefore divergent.

The default ignore_1if_null resolverisn't affected by this risk because any row replicated to node 2 has col=NULL .

Based on this example, we recommend running LiveCompare against the whole cluster at the end of a rolling schema upgrade where the ignore resolver was used. This practice helps to ensure that you detect and fix any divergence.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 238

https://www.enterprisedb.com/docs/livecompare/latest

EDB Postgres Distributed (PGD)

Terminology of row-types
PGD uses these row-types:

® SOURCE_OLD is the row before update, that is, the key.
® SOURCE_NEW is the new row coming from another node.
e TARGET is the row that exists on the node already, that is, the conflicting row.

Conflict triggers
Conflict triggers execute when a conflict is detected by PGD. They decide what happens when the conflict occurs.

o If the trigger function returns a row, the action is applied to the target.
e If the trigger function returns a NULL row, the action is skipped.

For example, if the trigger is called fora DELETE , the trigger returns NULL if it wants to skip the DELETE . If you want the DELETE to proceed, then return a row value: either SOURCE_OLD or TARGET works. When the conflicting
operation is either INSERT or UPDATE , and the chosen resolution is to delete the conflicting row, the trigger must explicitly perform the deletion and return NULL. The trigger function can perform other SQL actions as it chooses, but those
actions are only applied locally, not replicated.

When a real data conflict occurs between two or more nodes, two or more concurrent changes are occurring. When the changes are applied, the conflict resolution occurs independently on each node. This means the conflict resolution occurs
once on each node and can occur with a significant time difference between them. As a result, communication between the multiple executions of the conflict trigger isn't possible. It's the responsibility of the author of the conflict trigger to
ensure that the trigger gives exactly the same result for all related events. Otherwise, data divergence occurs.

Warning

® You can specify multiple conflict triggers on a single table, but they must match a distinct event. That is, each conflict must match only a single conflict trigger.
e We don't recommend multiple triggers matching the same event on the same table. They might result in inconsistent behavior and will not be allowed in a future release.

If the same conflict trigger matches more than one event, you can use the TG_OP variable in the trigger to identify the operation that produced the conflict.

By default, PGD detects conflicts by observing a change of replication origin for a row. Hence, you can call a conflict trigger even when only one change is occurring. Since, in this case, there's no real conflict, this conflict detection mechanism
can generate false-positive conflicts. The conflict trigger must handle all of those identically.

In some cases, timestamp conflict detection doesn't detect a conflict at all. For example, in a concurrent UPDATE / DELETE where the DELETE occurs just after the UPDATE , any nodes that see first the UPDATE and then the DELETE
don't see any conflict. If no conflict is seen, the conflict trigger is never called. In the same situation but using row-version conflict detection, a conflict is seen, which a conflict trigger can then handle.

The trigger function has access to additional state information as well as the data row involved in the conflict, depending on the operation type:

e On INSERT, conflict triggers can access the SOURCE_NEW row from the source and TARGET row.
® On UPDATE, conflict triggers can access the SOURCE_OLD and SOURCE_NEW row from the source and TARGET row.
e On DELETE, conflict triggers can access the SOURCE_OLD row from the source and TARGET row.

You can use the function bdr.trigger_get_row() toretrieve SOURCE_OLD, SOURCE_NEW, or TARGET rows, if a value exists for that operation.
Changes to conflict triggers happen transactionally and are protected by global DML locks during replication of the configuration change. This behavior is similar to how some variants of ALTER TABLE are handled.

If primary keys are updated inside a conflict trigger, it can sometimes lead to unique constraint violations errors due to a difference in timing of execution. Hence, avoid updating primary keys in conflict triggers.

Transform triggers

These triggers are similar to conflict triggers, except they're executed for every row on the data stream against the specific table. The behavior of return values and the exposed variables is similar, but transform triggers execute before a target
row is identified, so there's no TARGET row.

You can specify multiple transform triggers on each table in PGD. Transform triggers execute in alphabetical order.
A transform trigger can filter away rows, and it can do additional operations as needed. It can alter the values of any column or set them to NULL . The return value decides the next action taken:

o If the trigger function returns a row, it's applied to the target.
e |If the trigger function returnsa NULL row, there's no further action to perform. Unexecuted triggers never execute.
e The trigger function can perform other actions as it chooses.

The trigger function has access to additional state information as well as rows involved in the conflict:

® On INSERT,transform triggers can access the SOURCE_NEW row from the source.
e On UPDATE, transform triggers can access the SOURCE_OLD and SOURCE_NEW row from the source.
e On DELETE, transform triggers can access the SOURCE_OLD row from the source.

You can use the function bdr.trigger_get_row() toretrieve SOURCE_OLD or SOURCE_NEW rows. TARGET row isn't available, since this type of trigger executes before such a target row is identified, if any.
Transform triggers look very similar to normal BEFORE row triggers but have these important differences:

e Atransform trigger gets called for every incoming change. BEFORE triggers aren't called at all for UPDATE and DELETE changes if a matching row in a table isn't found.

e Transform triggers are called before partition-table routing occurs.

e Transform triggers have access to the lookup key via SOURCE_OLD , which isn't available to normal SQL triggers.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 239

EDB Postgres Distributed (PGD)

Row contents
The SOURCE_NEW, SOURCE_OLD,and TARGET contents depend on the operation, REPLICA IDENTITY setting of a table, and the contents of the target table.

The TARGET row is available only in conflict triggers. The TARGET row contains data only if a row was found when applying UPDATE or DELETE in the target table. If the row isn't found, the TARGET is NULL .

Execution order
Execution order for triggers

e Transform triggers — Execute once for each incoming row on the target.
e Normal triggers — Execute once per row.
e Conflict triggers — Execute once per row where a conflict exists.

Stream triggers examples

A conflict trigger that provides similar behavior as the update_if_newer conflict resolver:

CREATE OR REPLACE FUNCTION update_if_newer_trig_func
RETURNS TRIGGER
LANGUAGE plpgsql
AS $%
BEGIN
IF (bdr.trigger_get_committs('TARGET")

bdr.trigger_get_committs('SOURCE_NEW')) THEN
RETURN TARGET;
ELSIF
RETURN SOURCE;
END IF;
END;
$%3

A conflict trigger that applies a delta change on a counter column and uses SOURCE_NEW for all other columns:

CREATE OR REPLACE FUNCTION delta_count_trg_func
RETURNS TRIGGER
LANGUAGE plpgsql
AS $$
DECLARE
DELTA bigint;
SOURCE_OLD record;
SOURCE_NEW record;
TARGET
record;
BEGIN
SOURCE_OLD := bdr.trigger_get_row('SOURCE_OLD");
SOURCE_NEW := bdr.trigger_get_row('SOURCE_NEW');
TARGET :=
bdr.trigger_get_row('TARGET');

DELTA := SOURCE_NEW.counter -
SOURCE_OLD. counter;

SOURCE_NEW.counter = TARGET.counter +
DELTA;

RETURN
SOURCE_NEW;
END;

$%;

A transform trigger that logs all changes to a log table instead of applying them:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 240

EDB Postgres Distributed (PGD)

CREATE OR REPLACE FUNCTION log_change
RETURNS TRIGGER
LANGUAGE plpgsql
AS $%
DECLARE
SOURCE_NEW record;
SOURCE_OLD record;
COMMITTS
timestamptz;
BEGIN
SOURCE_NEW := bdr.trigger_get_row('SOURCE_NEW');
SOURCE_OLD := bdr.trigger_get_row('SOURCE_OLD');
COMMITTS :=
bdr.trigger_get_committs('SOURCE_NEW"');

IF (TG_OP = 'INSERT')
THEN
INSERT INTO log SELECT 'I', COMMITTS,
row_to_json (SOURCE_NEW) ;
ELSIF (TG_OP = 'UPDATE')
THEN
INSERT INTO log SELECT 'U', COMMITTS,
row_to_json (SOURCE_NEW) ;
ELSIF (TG_OP = 'DELETE')
THEN
INSERT INTO log SELECT 'D', COMMITTS,
row_to_json(SOURCE_OLD) ;
END IF;

RETURN NULL; -- do not apply the
change

END;
$$;

This example shows a conflict trigger that implements trusted-source conflict detection, also known as trusted site, preferred node, or Always Wins resolution. It uses the bdr.trigger_get_origin_node_id() function to provide a
solution that works with three or more nodes.

CREATE OR REPLACE FUNCTION test_conflict_trigger()
RETURNS TRIGGER
LANGUAGE plpgsql
AS $%
DECLARE
SOURCE record;

TARGET
record;

TRUSTED_NODE bigint;
SOURCE_NODE

bigint;
TARGET_NODE
bigint;
BEGIN
TARGET :=
bdr.trigger_get_row('TARGET");
IF (TG_OP =
'DELETE'")
SOURCE := bdr.trigger_get_row('SOURCE_OLD'");
ELSE
SOURCE := bdr.trigger_get_row('SOURCE_NEW');
END IF;

TRUSTED_NODE :=
current_setting('customer.trusted_node_id');

SOURCE_NODE :=
bdr.trigger_get_origin_node_id('SOURCE_NEW");

TARGET_NODE :=
bdr.trigger_get_origin_node_id('TARGET');

IF (TRUSTED_NODE = SOURCE_NODE) THEN
RETURN SOURCE;

ELSIF (TRUSTED_NODE = TARGET_NODE) THEN
RETURN TARGET;

ELSE

RETURN NULL; -- do not apply the
change

END IF;
END;
$%3

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 241

EDB Postgres Distributed (PGD)

25 Transaction streaming

With logical replication, transactions are decoded concurrently on the publisher but aren't sent to subscribers until the transaction is committed. If the changes exceed logical_decoding_work_mem (PostgreSQL 13 and later), they're
spilled to disk. This means that, particularly with large transactions, there's some delay before they reach subscribers and might entail additional 1/0 on the publisher.

Beginning with PostgreSQL 14, transactions can optionally be decoded and sent to subscribers before they're committed on the publisher. The subscribers save the incoming changes to a staging file (or set of files) and apply them when the
transaction commits (or discard them if the transaction aborts). This makes it possible to apply transactions on subscribers as soon as the transaction commits.

PGD enhancements
PostgreSQL's built-in transaction streaming has the following limitations:

® While you no longer need to spill changes to disk on the publisher, you must write changes to disk on each subscriber.
o [f the transaction aborts, the work (changes received by each subscriber and the associated storage 1/0) is wasted.

However, PGD supports Parallel Apply, enabling multiple writer processes on each subscriber. This capability is leveraged to provide the following enhancements:

e Decoded transactions can be streamed directly to a writer on the subscriber.
® Decoded transactions don't need to be stored on disk on subscribers.
® You don't need to wait for the transaction to commit before starting to apply the transaction on the subscriber.

Caveats

® You must enable Parallel Apply.
e Workloads consisting of many small and conflicting transactions can lead to frequent deadlocks between writers.

Note

Direct streaming to writer is still an experimental feature. Use it with caution. Specifically, it might not work well with conflict resolutions since the commit timestamp of the streaming might not be available. (The transaction might
not yet have committed on the origin.)

Configuration
Configure transaction streaming in two locations:

e Atnode level, using the GUC bdr.default_streaming_mode
® At group level, using the function bdr.alter_node_group_option()

Node configuration using bdr.default_streaming_mode

Permitted values are:

e off
® writer
e file
® auto
Default valueis auto .
To make a change to this setting take effect, restart the pglogical receiver process for each subscription.
You can achieve this with a server restart.
If bdr.default_streaming_mode is set to any value other than off , the subscriber requests transaction streaming from the publisher. How this is provided can also depend on the group configuration setting. See Node configuration

using bdr.default_streaming_mode for details.

Group configuration using bdr.alter_node_group_option()
You can use the parameter streaming_mode in the function bdr.alter_node_group_option() to setthe group transaction streaming configuration.
Permitted values are:

e off

® writer

o file

® auto
e default

The default value is default .
The value of the current setting is contained in the column node_group_streaming_mode from the view bdr.node_group . The value returned is a single char type, and the possible values are D (default), W (writer), F

(file), A (auto),and O (off).

Configuration setting effects

Transaction streaming is controlled at the subscriber level by the GUC bdr.default_streaming_mode . Unless setto off , which disables transaction streaming, the subscriber requests transaction streaming.

If the publisher can provide transaction streaming, it streams transactions whenever the transaction size exceeds the threshold setin logical_decoding_work_mem . The publisher usually has no control over whether the transactions are
streamed to a file or to a writer. Except for some situations (such as COPY), it might hint for the subscriber to stream the transaction to a writer (if possible).

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 242

EDB Postgres Distributed (PGD)

The subscriber can stream transactions received from the publisher to either a writer or a file. The decision is based on several factors:

e |If Parallel Apply is off (num_writers = 1),thenit's streamed to a file. (writer 0 is always reserved for non-streamed transactions.)
e If Parallel Apply is on but all writers are already busy handling streamed transactions, then the new transaction is streamed to a file. See Monitoring PGD writers to check PGD writer status.

If streaming to a writer is possible (that is, a free writer is available), then the decision whether to stream the transaction to a writer or a file is based on the combination of group and node settings as per the following table.

Group Node Streamed to
off (any) (none)

(any) off (none)
writer file file

file writer file

default ~ writer writer
default ~ file file

default auto writer

auto (any) writer
If the group configuration is set to auto , or the group configurationis default and the node configurationis auto , then the transaction is streamed to a writer only if the publisher hinted to do this.

Currently the publisher hints for the subscriber to stream to the writer for the following transaction types. These are known to be conflict free and can be safely handled by the writer.

e COPY
e CREATE INDEX CONCURRENTLY

Monitoring
You can monitor the use of transaction streaming using the bdr.stat_subscription function on the subscriber node.

e nstream_writer — Number of transactions streamed to a writer.

e nstream_file — Number of transactions streamed to file.

e nstream_commit — Number of committed streamed transactions.

® nstream_abort — Number of aborted streamed transactions.

e nstream_start — Number of streamed transactions that were started.

e nstream_stop — Number of streamed transactions that were fully received.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 243

EDB Postgres Distributed (PGD)

26 Explicit two-phase commit (2PC)

Note

Two-phase commit isn't available with Group Commit or CAMO. See Commit scope limitations.
An application can explicitly opt to use two-phase commit with PGD. See Distributed Transaction Processing: The XA Specification.
The X/Open Distributed Transaction Processing (DTP) model envisions three software components:

® An application program (AP) that defines transaction boundaries and specifies actions that constitute a transaction
e Resource managers (RMs), such as databases or file-access systems, that provide access to shared resources
e Aseparate component called a transaction manager (TM) that assigns identifiers to transactions, monitors their progress, and takes responsibility for transaction completion and for failure recovery

PGD supports explicit external 2PC using the PREPARE TRANSACTION and COMMIT PREPARED / ROLLBACK PREPARED commands. Externally, an EDB Postgres Distributed cluster appears to be a single resource manager to the
transaction manager for a single session.

When bdr.commit_scope is local, the transaction is prepared only on the local node. Once committed, changes are replicated, and PGD then applies post-commit conflict resolution.

Using bdr.commit_scope setto local might not seem to make sense with explicit two-phase commit. However, the option is offered to allow you to control the tradeoff between transaction latency and robustness.

Explicit two-phase commit doesn't work with either CAMO or the global commit scope. Future releases might enable this combination.

Use
Two-phase commits with a local commit scope work exactly like standard PostgreSQL. Use the local commit scope:

BEGIN;
SET LOCAL bdr.commit_scope =
'local';

other commands
possible...

To start the first phase of the commit, the client must assign a global transaction id, which can be any unique string identifying the transaction:
PREPARE TRANSACTION 'some-global-id';

After a successful first phase, all nodes have applied the changes and are prepared for committing the transaction. The client must then invoke the second phase from the same node:

COMMIT PREPARED 'some-global-
id';

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 244

https://www.enterprisedb.com/docs/pgd/latest/known_issues/#general-durability-limitations
http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf

EDB Postgres Distributed (PGD)

27 Application use

Developing an application with PGD is mostly the same as working with any PostgreSQL database. What's different, though, is that you need to be aware of how your application interacts with replication. You need to know how PGD behaves
with applications, the SQL that is and isn't replicated, how different nodes are handled, and other important information.

® Application behavior looks at how PGD replication appears to an application, such as:

The commands that are replicated
The commands that run locally
When row-level locks are acquired
How and where triggers fire

Large objects

Toast

© o0 o0 o0 0 o0

DML and DDL replication shows the differences between the two classes of SQL statements and how PGD handles replicating them. It also looks at the commands PGD doesn't replicate at all.

Nodes with differences examines how PGD works with configurations where there are differing table structures and schemas on replicated nodes. Also covered is how to compare between such nodes with LiveCompare and how
differences in PostgreSQL versions running on nodes can be handled.

Application rules offers some general rules for applications to avoid data anomalies.

Timing considerations shows how the asynchronous/synchronous replication might affect an application's view of data and notes functions to mitigate stale reads.

Extension usage explains how to select, install, and configure extensions on PGD.

Table access methods (TAMs) notes the TAMs available with PGD and how to enable them.

Feature compatibility shows which server features work with which commit scopes and which commit scopes can be daisy chained together.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 245

EDB Postgres Distributed (PGD)

271 Application behavior

Much of PGD's replication behavior is transparent to applications. Understanding how it achieves that and the elements that aren't transparent is important to successfully developing an application that works well with PGD.

Replication behavior

PGD supports replicating changes made on one node to other nodes.

PGD, by default, replicates all changes from INSERT, UPDATE, DELETE, and TRUNCATE operations from the source node to other nodes. Only the final changes are sent, after all triggers and rules are processed. For example, INSERT
ON CONFLICT UPDATE sends either aninsert or an update, depending on what occurred on the origin. If an update or delete affects zero rows, then no changes are sent.

You can replicate INSERT without any preconditions.

For updates and deletes to replicate on other nodes, PGD must be able to identify the unique rows affected. PGD requires that a table have either a PRIMARY KEY defined, a UNIQUE constraint, or an explicit REPLICA IDENTITY defined on
specific columns. If one of those isn't defined, a warning is generated, and later updates or deletes are explicitly blocked. If REPLICA IDENTITY FULL is defined for a table, then a unique index isn't required. In that case, updates and deletes are
allowed and use the first non-unique index that's live, valid, not deferred, and doesn't have expressions or WHERE clauses. Otherwise, a sequential scan is used.

Truncate
You can use TRUNCATE even without a defined replication identity. Replication of TRUNCATE commands is supported, but take care when truncating groups of tables connected by foreign keys. When replicating a truncate action, the
subscriber truncates the same group of tables that was truncated on the origin, either explicitly specified or implicitly collected by CASCADE, except in cases where replication sets are defined. See Replication sets for details and examples.

This works correctly if all affected tables are part of the same subscription. But if some tables to truncate on the subscriber have foreign-key links to tables that aren't part of the same (or any) replication set, then applying the truncate action
on the subscriber fails.

Row-level locks
Row-level locks taken implicitly by INSERT, UPDATE, and DELETE commands are replicated as the changes are made. Table-level locks taken implicitly by INSERT, UPDATE, DELETE, and TRUNCATE commands are also replicated. Explicit row-

level locking (SELECT ... FOR UPDATE/FOR SHARE) by user sessions isn't replicated, nor are advisory locks. Information stored by transactions running in SERIALIZABLE mode isn't replicated to other nodes. The transaction isolation
level of SERIALIAZABLE is supported, but transactions aren't serialized across nodes in the presence of concurrent transactions on multiple nodes.

If DML is executed on multiple nodes concurrently, then potential conflicts might occur if executing with asynchronous replication. You must either handle these or avoid them. Various avoidance mechanisms are possible, discussed in
Conflicts.

Sequences

Sequences need special handling, described in Sequences. This is because in a cluster, sequences must be global to avoid nodes creating conflicting values. Global sequences are available with global locking to ensure integrity.

Binary objects

Binary data in BYTEA columns is replicated normally, allowing "blobs" of data up to 1 GB. Use of the PostgreSQL "large object" facility isn't supported in PGD.

Rules

Rules execute only on the origin node so aren't executed during apply, even if they're enabled for replicas.

Base tables only

Replication is possible only from base tables to base tables. That is, the tables on the source and target on the subscription side must be tables, not views, materialized views, or foreign tables. Attempts to replicate tables other than base
tables result in an error. DML changes that are made through updatable views are resolved to base tables on the origin and then applied to the same base table name on the target.

Partitioned tables

PGD supports partitioned tables transparently, meaning that you can add a partitioned table to a replication set and changes that involve any of the partitions are replicated downstream.

Triggers
By default, triggers execute only on the origin node. For example, an INSERT trigger executes on the origin node and is ignored when you apply the change on the target node. You can specify for triggers to execute on both the origin node at

execution time and on the target when it's replicated (apply time) by using ALTER TABLE ... ENABLE ALWAYS TRIGGER.Or, usethe REPLICA option to execute only at apply time: ALTER TABLE ... ENABLE REPLICA
TRIGGER .

Some types of trigger aren't executed on apply, even if they exist on a table and are currently enabled. Trigger types not executed are:

e Statement-level triggers (FOR EACH STATEMENT)
® Per-column UPDATE triggers (UPDATE OF column_name [, ...])

PGD replication apply uses the system-level default search_path. Replica triggers, stream triggers, and index expression functions can assume other search_path settings that then fail when they execute on apply. To prevent this from
occurring, use any of these techniques:

e Resolve object references clearly using only the default search_path.
e Always use fully qualified references to objects, for example, schema.objectname .
e Set the search path for a function using ALTER FUNCTION ... SET search_path = ... forthe functions affected.

PGD assumes that there are no issues related to text or other collatable datatypes, that is, all collations in use are available on all nodes, and the default collation is the same on all nodes. Replicating changes uses equality searches to locate
Replica Identity values, so this does't have any effect except where unique indexes are explicitly defined with nonmatching collation qualifiers. Row filters might be affected by differences in collations if collatable expressions were used.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 246

https://www.enterprisedb.com/docs/pgd/latest/reference/repsets
https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts
https://www.enterprisedb.com/docs/pgd/latest/reference/sequences

EDB Postgres Distributed (PGD)

Toast

PGD handling of very long "toasted" data in PostgreSQL is transparent to the user. The TOAST "chunkid" values likely differ between the same row on different nodes, but that doesn't cause any problems.

Other restrictions

PGD can't work correctly if Replica Identity columns are marked as external.
PostgreSQL allows CHECK() constraints that contain volatile functions. Since PGD reexecutes CHECK() constraints on apply, any subsequent reexecution that doesn't return the same result as before causes data divergence.

PGD doesn't restrict the use of foreign keys. Cascading FKs are allowed.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 247

EDB Postgres Distributed (PGD)

27.2 DML and DDL replication and nonreplication

The two major classes of SQL statement are DML and DDL.
e DML is the data modification language and is concerned with the SQL statements that modify the data stored in tables. It includes UPDATE, DELETE, and INSERT.
® DDL is the data definition language and is concerned with the SQL statements that modify how the data is stored. It includes CREATE, ALTER, and DROP.

PGD handles each class differently.

DML replication

PGD doesn't replicate the DML statement. It replicates the changes caused by the DML statement. For example, an UPDATE that changed two rows replicates two changes, whereas a DELETE that didn't remove any rows doesn't replicate
anything. This means that the results of executing volatile statements are replicated, ensuring there's no divergence between nodes as might occur with statement-based replication.

DDL replication

DDL replication works differently from DML. For DDL, PGD replicates the statement, which then executes on all nodes. Soa DROP TABLE IF EXISTS might not replicate anything on the local node, but the statement is still sent to other
nodes for execution if DDL replication is enabled. For details, see DDL replication.

PGD works to ensure that intermixed DML and DDL statements work correctly, even in the same transaction.

Nonreplicated statements
Outside of those two classes are SQL commands that PGD, by design, doesn't replicate. None of the following user commands are replicated by PGD, so their effects occur on the local/origin node only:

Cursor operations (DECLARE, CLOSE, FETCH)

Execution commands (DO, CALL, PREPARE, EXECUTE, EXPLAIN)
Session management (DEALLOCATE, DISCARD, LOAD)
Parameter commands (SET, SHOW)

Constraint manipulation (SET CONSTRAINTS)

Locking commands (LOCK)

Table maintenance commands (VACUUM, ANALYZE, CLUSTER)
Async operations (NOTIFY, LISTEN, UNLISTEN)

Since the NOTIFY SQL command and the pg_notify () functions aren't replicated, notifications aren't reliable in case of failover. This means that notifications can easily be lost at failover if a transaction is committed just when the server
crashes. Applications running LISTEN might miss notifications in case of failover.

This is true in standard PostgreSQL replication, and PGD doesn't yet improve on this.

CAMO and Eager Replication options don't allow the NOTIFY SQL command or the pg_notify() function.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 248

EDB Postgres Distributed (PGD)

27.3 Nodes with differences

Replicating between nodes with differences

By default, DDL is sent to all nodes. You can control this behavior, as described in DDL replication, and you can use it to create differences between database schemas across nodes. PGD is designed to allow replication to continue even with
minor differences between nodes. These features are designed to allow application schema migration without downtime or to allow logical standby nodes for reporting or testing.

Currently, replication requires the same table name on all nodes. A future feature might allow a mapping between different table names.

It's possible to replicate between tables with dissimilar partitioning definitions, such as a source that's a normal table replicating to a partitioned table, including support for updates that change partitions on the target. It can be faster if the
partitioning definition is the same on the source and target since dynamic partition routing doesn't need to execute at apply time. For details, see Replication sets.

By default, all columns are replicated.
PGD replicates data columns based on the column name. If a column has the same name but a different data type, PGD attempts to cast from the source type to the target type, if casts were defined that allow that.
PGD supports replicating between tables that have a different number of columns.

If the target has missing columns from the source, then PGD raises a target_column_missing conflict, for which the default conflict resolveris ignore_if_null. This throws an error if a non-NULL value arrives. Alternatively, you
can also configure a node with a conflict resolver of ignore . This setting doesn't throw an error but silently ignores any additional columns.

If the target has additional columns not seen in the source record, then PGD raises a source_column_missing conflict, for which the default conflict resolveris use_default_value . Replication proceeds if the additional columns
have a default, either NULL (if nullable) or a default expression. If not, it throws an error and halts replication.

Transform triggers can also be used on tables to provide default values or alter the incoming data in various ways before apply.
If the source and the target have different constraints, then replication is attempted, but it might fail if the rows from source can't be applied to the target. Row filters can help here.

Replicating data from one schema to a more relaxed schema doesn't cause failures. Replicating data from a schema to a more restrictive schema can be a source of potential failures. The right way to solve this is to place a constraint on the
more relaxed side, so bad data can't be entered. That way, no bad data ever arrives by replication, so it never fails the transform into the more restrictive schema. For example, if one schema has a column of type TEXT and another schema
defines the same column as XML, add a CHECK constraint onto the TEXT column to enforce that the text is XML.

You can define a table with different indexes on each node. By default, the index definitions are replicated. To specify how to create an index on only a subset of nodes or just locally, seeDDL replication .

Storage parameters, suchas fillfactor and toast_tuple_target, can differ between nodes for a table without problems. An exception to that behavior is that the value of a table's storage parameter user_catalog_table
must be identical on all nodes.

Atable being replicated must be owned by the same user/role on each node. See Security and roles for details.

Roles can have different passwords for connection on each node, although by default changes to roles are replicated to each node. See DDL replication to specify how to alter a role password on only a subset of nodes or locally.

Comparison between nodes with differences
LiveCompare is a tool for data comparison on a database against PGD and non-PGD nodes. It needs a minimum of two connections to compare against and reach a final result.

Starting with LiveCompare 1.3, you can configure with all_bdr_nodes set. This setting saves you from clarifying all the relevant DSNs for each separate node in the cluster. An EDB Postgres Distributed cluster has N amount of nodes with
connection information, but it's only the initial and output connection that LiveCompare 1.3 and later needs to complete its job. Setting logical_replication_mode states how all the nodes are communicating.

All the configuration is doneina .ini filenamed bdrLC.in1 ,for example. Find templates for this configuration filein /etc/2ndg-Tlivecompare/ .

While LiveCompare executes, you see N+1 progress bars, N being the number of processes. Once all the tables are sourced, a time displays as the transactions per second (tps) was measured. This mechanism continues to count the time, giving
you an estimate and then a total execution time at the end.

This tool offers a lot of customization and filters, such as tables, schemas, and replication_sets. LiveCompare can use stop-start without losing context information, so it can run at convenient times. After the comparison, a summary and a DML
script are generated so you can review it. Apply the DML to fix any differences found.

Replicating between different release levels

The other difference between nodes that you might encounter is where there are different major versions of PostgreSQL on the nodes. PGD is designed to replicate between different major release versions. This feature is designed to allow
major version upgrades without downtime.

PGD is also designed to replicate between nodes that have different versions of PGD software. This feature is designed to allow version upgrades and maintenance without downtime.
However, while it's possible to join a node with a major version in a cluster, you can't add a node with a minor version if the cluster uses a newer protocol version. Doing so returns an error.

Both of these features might be affected by specific restrictions. See Release notes for any known incompatibilities.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 249

https://www.enterprisedb.com/docs/pgd/latest/reference/repsets
https://www.enterprisedb.com/docs/pgd/latest/reference/security
https://www.enterprisedb.com/docs/pgd/latest/reference/ddl

EDB Postgres Distributed (PGD)

27.4 General rules for applications

Background

PGD uses replica identity values to identify the rows to change. Applications can cause difficulties if they insert, delete, and then later reuse the same unique identifiers. This is known as theABA problem. PGD can't know whether the rows are
the current row, the last row, or much older rows.

Similarly, since PGD uses table names to identify the table against which changes are replayed, a similar ABA problem exists with applications that create, drop, and then later reuse the same object names.

Rules for applications
These issues give rise to some simple rules for applications to follow:

Use unique identifiers for rows (INSERT).
Avoid modifying unique identifiers (UPDATE).
Avoid reusing deleted unique identifiers.
Avoid reusing dropped object names.

In the general case, breaking those rules can lead to data anomalies and divergence. Applications can break those rules as long as certain conditions are met. However, use caution: while anomalies are unlikely, they aren't impossible. For
example, you can reuse a row value as long as the DELETE was replayed on all nodes, including down nodes. This might normally occur in less than a second but can take days if a severe issue occurred on one node that prevented it from
restarting correctly.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 250

https://en.wikipedia.org/wiki/ABA_problem

EDB Postgres Distributed (PGD)

27.5 Timing considerations and synchronous replication

Being asynchronous by default, peer nodes might lag behind. This behavior makes it possible for a client connected to multiple PGD nodes or switching between them to read stale data.
Aqueue wait function is provided for clients or proxies to prevent such stale reads.

The synchronous replication features of Postgres are available to PGD as well. In addition, PGD provides multiple variants for more synchronous replication. See Commit scopes for an overview and comparison of all variants available and their
different modes.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 251

EDB Postgres Distributed (PGD)

27.6 Using extensions with PGD

PGD and other PostgreSQL extensions
PGD is implemented as a PostgreSQL extension (see Supported Postgres database servers). It takes advantage of PostgreSQL's expandability and flexibility to modify low-level system behavior to provide multi-master replication.
In principle, extensions provided by community PostgreSQL, EDB Postgres Advanced Server, and third-party extensions can be used with PGD. However, the distributed nature of PGD means that you need to carefully consider and plan the

extensions you select and install.

Extensions providing logical decoding

Extensions providing logical decoding, such as wal2json, may in theory work with PGD. However, there's no support for failover, meaning any WAL stream being read from such an extension can be interrupted.

Extensions providing replication or HA functionality

Any extension extending PostgreSQL with functionality related to replication or HA/failover is unlikely to work well with PGD and may even be detrimental to the health of the PGD cluster. We recommend avoiding these.

Supported extensions

These extensions are explicitly supported by PGD.

EDB Advanced Storage table access methods

The EDB Advanced Storage Pack provides a selection of table access methods (TAMs) implemented as extensions. The following TAMs are certified for use with PGD:

e Autocluster
® Refdata

For more details, see Table access methods.

pgaudit

PGD was modified to ensure compatibility with the pgaudit extension. See Postgres settings for configuration information.

Installing extensions

PostgreSQL extensions provide SQL objects, such as functions, datatypes, and, optionally, one or more shared libraries. These must be loaded into the PostgreSQL backend before you can install and use the extension.
Warning
The relevant extension packages must be available on all nodes in the cluster. Otherwise extension installation can fail and impact cluster stability.

If PGD is deployed using Trusted Postgres Architect, configure extensions using that tool. For details, see Adding Postgres extensions.

The following is relevant for manually configured PGD installations.

Configuring shared_preload_Llibraries

If an extension provides a shared library, include this library in the shared_preload_libraries configuration parameter before installing the extension.

shared_preload_libraries consists of a comma-separated list of extension names. It mustinclude bdr . The order in which you specify other extensions generally doesn't matter. However if you're using the pgaudit extension,
pgaudit mustappearin the list before bdr .

Configure shared_preload_libraries onall nodesin the cluster before installing the extension with CREATE EXTENSION . You must restart PostgreSQL to activate the new configuration.

See also Postgres settings.

Installing the extension

Install the extension using the CREATE EXTENSION command. You need to do this on only one node in the cluster. PGD's DDL replication will ensure that it propagates to all other nodes.
Warning
Do not attempt to install extensions manually on each node by, for example, disabling DDL replication before executing CREATE EXTENSION .

Do not use a command such as bdr.replicate_ddl_command() toexecute CREATE EXTENSION .

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 252

https://www.enterprisedb.com/docs/pgd/6.2/overview/architecture-and-performance/#supported-postgres-database-servers
https://github.com/eulerto/wal2json
https://www.enterprisedb.com/docs/pg_extensions/advanced_storage_pack/
https://www.enterprisedb.com/docs/pg_extensions/advanced_storage_pack/#autocluster
https://www.enterprisedb.com/docs/pg_extensions/advanced_storage_pack/#refdata
https://www.pgaudit.org/
https://www.enterprisedb.com/docs/tpa/latest/
https://www.enterprisedb.com/docs/tpa/latest/reference/postgres_extension_configuration
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-SHARED-PRELOAD-LIBRARIES
https://www.enterprisedb.com/docs/pgd/latest/reference/postgres-configuration/#postgres-settings

EDB Postgres Distributed (PGD)

27.7 Use of table access methods (TAMs) in PGD

The EDB Advanced Storage Pack provides a selection of table access methods (TAMs), available from EDB Postgres 15.0.
The following TAMs were certified for use with PGD 6.0:

e Autocluster
o Refdata

Usage of any other TAM is restricted until certified by EDB.
To use one of these TAMs on a PGD cluster, the appropriate extension library (autocluster and/or refdata) must be added to the shared_preload_libraries parameter on each node, and the PostgreSQL server restarted.

Once the extension library is present in shared_preload_libraries onall nodes in the cluster, the extension itself can be created with CREATE EXTENSION autocluster; or CREATE EXTENSION refdata; .The CREATE
EXTENSION command only needs to be executed on one node; it will be replicated to the other nodes in the cluster.

After you create the extension, use CREATE TABLE test USING autocluster; or CREATE TABLE test USING refdata; to create atable with the specified TAM. These commands replicate to all PGD nodes in the cluster.
For more information on these table access methods, see:

e Autocluster example
e Refdata example

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 253

https://www.enterprisedb.com/docs/pg_extensions/advanced_storage_pack/
https://www.enterprisedb.com/docs/pg_extensions/advanced_storage_pack/#autocluster
https://www.enterprisedb.com/docs/pg_extensions/advanced_storage_pack/#refdata
https://www.enterprisedb.com/docs/pg_extensions/advanced_storage_pack/using/#autocluster-example
https://www.enterprisedb.com/docs/pg_extensions/advanced_storage_pack/using/#refdata-example

27.8 Feature compatibility

Server feature/commit scope interoperability

Not all server features work with all commit scopes. This table shows the ones that interoperate.

Async Parallel Transaction
(default) Apply Streaming
Group Commit
CAMO
Lag Control
Synchronous Commit
Legend: Not applicable Does not interoperate Interoperates

Notes

EDB Postgres Distributed (PGD)

: The Async column in the table represents PGD without a synchronous commit scope in use. Lag Control isn't a synchronous commit scope. It's a controlling commit scope and is therefore available with asynchronous

operations.

: Attempting to use Group Commit and Transaction Streaming presents a warning. The warning suggests that you disable transaction streaming, and the transaction appears to take place. In the background, Group

Commit was disabled to allow the transaction to occur.

Commit scope/commit scope interoperability

Although you can't mix commit scopes, you cancombine rules with an AND operator. This table shows where commit scopes can be combined.

Comm cano Comro oot
Group Commit
CAMO
Lag Control
Synchronous Commit
Legend: Not applicable Does not combine Combines

Notes

Each commit scope implicitly works with itself.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

254

https://www.enterprisedb.com/docs/pgd/latest/reference/parallelapply
https://www.enterprisedb.com/docs/pgd/latest/reference/transaction-streaming
https://www.enterprisedb.com/docs/pgd/latest/reference/decoding_worker
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/group-commit
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/camo
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/lag-control
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/synchronous_commit
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/commit-scope-rules/#combining-rules
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/group-commit
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/camo
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/lag-control
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/synchronous_commit
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/group-commit
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/camo
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/lag-control
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/synchronous_commit

EDB Postgres Distributed (PGD)

28 PGD Reference

The reference section is a definitive listing of all functions, views, and commands available in EDB Postgres Distributed.

e Tables, Views, and Functions
e Command Line Interface (CLI)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 255

EDB Postgres Distributed (PGD)

28.1 Tables, views and functions reference

The reference section is a definitive listing of all functions, views, and commands available in EDB Postgres Distributed.

User visible catalogs and views

e bdr.camo_decision_journal

® bdr.commit_scopes

® bdr.conflict_history

e bdr.conflict_history_summary

e bdr.consensus_kv_data

® bdr.crdt_handlers

® bdr.ddl_replication

® bdr.depend

® bdr.failover_replication_slots

e bdr.global_consensus_journal

e bdr.global_consensus_journal_details
e bdr.global_consensus_response_journal
® bdr.global_lock

® bdr.global_locks

® bdr.group_camo_details

e bdr.group_raft_details

e bdr.group_replslots_details

® bdr.group_subscription_summary

® bdr.group_versions_details

e bdr.leader

e bdr.local_consensus_snapshot

® bdr.local_consensus_state

® bdr.local_node

® bdr.local_node_summary

® bdr.local_sync_status

e bdr.node

® bdr.node_catchup_info

® bdr.node_catchup_info_details

® bdr.node_conflict_resolvers

® bdr.node_group

® bdr.node_group_replication_sets
e bdr.node_group_summary

® bdr.node_local_info

® bdr.node_log_config

® bdr.node_peer_progress

® bdr.node_replication_rates

e bdr.node_slots

® bdr.node_summary

® bdr.parted_origin_catchup_info

e bdr.parted_origin_catchup_info_details
® bdr.queue

® bdr.replication_set

e bdr.replication_set_table

® bdr.replication_set_ddl

® bdr.replication_sets

® bdr.schema_changes

® bdr.sequence_alloc

e bdr.sequences

® bdr.stat_activity

® bdr.stat_activity additional columns
® bdr.stat_commit_scope

® bdr.stat_commit_scope_state

® bdr.stat_connection_manager

e bdr.stat_connection_manager_connections
® bdr.stat_connection_manager_node_stats
® bdr.stat_connection_manager_hba_file_rules
e bdr.stat_raft_followers_state

e bdr.stat_raft_state

e bdr.stat_receiver

® bdr.stat_receiver_transactions

® bdr.stat_relation

® bdr.stat_routing_candidate_state
e bdr.stat_routing_state

e bdr.stat_subscription

® bdr.stat_worker

® bdr.stat_writer

® bdr.subscription

® bdr.subscription_summary

e bdr.tables

® bdr.taskmgr_work_queue

® bdr.taskmgr_workitem_status

® bdr.taskmgr_local_work_queue

e bdr.taskmgr_local_workitem_status
e bdr.trigger

e bdr.triggers

® bdr.workers

® bdr.writers

e bdr.worker_tasks

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 256

System functions

Version information functions

e bdr.bdr_version
® bdr.bdr_version_num

System information functions

® bdr.get_relation_stats
e bdr.get_subscription_stats

System and progress information parameters

e bdr.local_node_id
e bdr.last_committed_lsn
e transaction_id

Node status functions

e bdr.is_node_connected
® bdr.is_node_ready

Consensus function

® bdr.consensus_disable

® bdr.consensus_enable

® bdr.consensus_proto_version

e bdr.consensus_snapshot_export
® bdr.consensus_snapshot_import
® bdr.consensus_snapshot_verify
® bdr.get_consensus_status

® bdr.get_raft_status

e bdr.raft_leadership_transfer

Utility functions

® bdr.wait_slot_confirm_lsn

® bdr.wait_node_confirm_lsn

® bdr.wait_for_apply_queue

® bdr.get_node_sub_receive_lsn
e bdr.get_node_sub_apply_lsn

® bdr.replicate_ddl_command

® bdr.run_on_all_nodes

® bdr.run_on_nodes

® bdr.run_on_group

e bdr.global_lock_table

e bdr.wait_for_xid_progress

e bdr.local_group_slot_name

® bdr.node_group_type

e bdr.alter_node_kind

® bdr.alter_subscription_skip_changes_upto

Global advisory locks

e bdr.global_advisory_lock
e bdr.global_advisory_unlock

Monitoring functions

® bdr.monitor_group_versions

® bdr.monitor_group_raft

® bdr.monitor_local_replslots
e bdr.wal_sender_stats

e bdr.get_decoding_worker_stat
e bdr.lag_control

Routing functions

e bdr.routing_leadership_transfer

CAMO functions

® bdr.is_camo_partner_connected

® bdr.is_camo_partner_ready

e bdr.get_configured_camo_partner
® bdr.wait_for_camo_partner_queue
® bdr.camo_transactions_resolved

® bdr.logical_transaction_status

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

257

Commit Scope functions

e bdr.add_commit_scope

® bdr.create_commit_scope
® bdr.alter_commit_scope
® bdr.drop_commit_scope

® bdr.remove_commit_scope

PGD settings

Conflict handling

e bdr.default_conflict_detection

Global sequence parameters

e bdr.default_sequence_kind

DDL handling

e bdr.default_replica_identity
® bdr.ddl_replication

® bdr.role_replication

® bdr.ddl_locking

e bdr.truncate_locking

Global locking

e bdr.global_lock_max_locks

® bdr.global_lock_timeout

® bdr.global_lock_statement_timeout
® bdr.global_lock_idle_timeout

® bdr.lock_table_locking

e bdr.predictive_checks

Node management

e bdr.replay_progress_frequency

Generic replication

® bdr.writers_per_subscription
® bdr.max_writers_per_subscription
® bdr.xact_replication

e bdr.permit_unsafe_commands

® bdr.batch_inserts

® bdr.maximum_clock_skew

® bdr.maximum_clock_skew_action
® bdr.accept_connections

® bdr.writer_input_queue_size

® bdr.writer_output_queue_size
® bdr.min_worker_backoff_delay

CRDTs

® bdr.crdt_raw_value

Commit scope

® bdr.commit_scope

Commit At Most Once

® bdr.camo_local_mode_delay
e bdr.camo_enable_client_warnings

Transaction streaming

e bdr.default_streaming_mode

Lag Control

® bdr.lag_control_max_commit_delay

e bdr.lag_control_max_lag_size

® bdr.lag_control_max_lag_time

® bdr.lag_control_min_conforming_nodes
e bdr.lag_control_commit_delay_adjust

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

258

® bdr.lag_control_sample_interval
® bdr.lag_control_commit_delay_start

Monitoring and logging

e bdr.debug_level

e bdr.trace_level

® bdr.track_subscription_apply
e bdr.track_relation_apply

® bdr.track_apply_lock_timing

Decoding worker

e bdr.enable_wal_decoder
e bdr.receive_lcr
® bdr.lcr_cleanup_interval

Connectivity settings

® bdr.global_connection_timeout
® bdr.global_keepalives

e bdr.global_keepalives_idle

e bdr.global_keepalives_interval
e bdr.global_keepalives_count

e bdr.global_tcp_user_timeout

Topology settings

e bdr.force_full_mesh

Internal settings - Raft timeouts

e bdr.raft_global_election_timeout
e bdr.raft_group_election_timeout
e bdr.raft_response_timeout

Internal settings - Other Raft values

® bdr.raft_keep_min_entries

® bdr.raft_log_min_apply_duration

® bdr.raft_log_min_message_duration
e bdr.raft_group_max_connections

Internal settings - Other values

bdr.backwards_compatibility
bdr.track_replication_estimates
bdr.lag_tracker_apply_rate_weight
bdr.enable_auto_sync_reconcile

Node management

List of node states

Node-management commands
o bdr_init_physical
o bdr_config

Node management interfaces

e bdr.alter_node_group_option

® bdr.alter_node_interface

® bdr.alter_node_option

e bdr.alter_subscription_enable
e bdr.alter_subscription_disable
® bdr.create_node

® bdr.create_node_group

® bdr.drop_node_group

® bdr.join_node_group

e bdr.part_node

e bdr.promote_node

® bdr.switch_node_group

® bdr.sync_node_cancel

® bdr.wait_for_join_completion

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

259

Routing functions

Commit scopes

e Commit scope syntax

o

commit_scope_degrade_operation

e Commit scope targets

o

ORIGIN_GROUP

® Commit scope groups

0o 0o o0 o0 o0 o0

ANY

ANY NOT
MAJORITY
MAJORITY NOT
ALL

ALL NOT

e Confirmation level

°

o
o
o

ON received
ON replicated
ON durable
ON visible

® Commit Scope kinds
e SYNCHRONOUS COMMIT

°

o

DEGRADE ON parameters
commit_scope_degrade_operation

e GROUP COMMIT

© 0 000 0 o0

e CAMO

°

GROUP COMMIT parameters

ABORT ON parameters

DEGRADE ON parameters
transaction_tracking settings
conflict_resolution settings
commit_decision settings
commit_scope_degrade_operation settings

DEGRADE ON parameters

e LAG CONTROL

o

Conflicts

LAG CONTROL parameters

e Conflict detection

o

List of conflict types

e Conflict resolution

o

o

o

List of conflict resolvers
Default conflict resolvers
List of conflict resolutions

e Conflict logging

Conflict functions

e bdr.
e bdr.
e bdr.

alter_table_conflict_detection
alter_node_set_conflict_resolver
alter_node_set_log_config

Replication set management

e bdr.
e bdr.
e bdr.
e bdr.

create_replication_set
alter_replication_set
drop_replication_set
alter_node_replication_sets

Replication set membership

e bdr.
e bdr.

replication_set_add_table
replication_set_remove_table

DDL replication filtering

e bdr.
e bdr.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

replication_set_add_ddl_filter
replication_set_remove_ddl_filter

EDB Postgres Distributed (PGD)

260

https://www.enterprisedb.com/docs/pgd/6.2/reference/tables-views-functions/routing

Testing and tuning commands

pgd_|

bench

Global sequence management interfaces

Sequence functions

bdr.
bdr.
bdr.
bdr.
bdr.
bdr.
bdr.
bdr.
bdr.
bdr.

alter_sequence_set_kind
extract_timestamp_from_snowflakeid
extract_nodeid_from_snowflakeid
extract_localseqid_from_snowflakeid
timestamp_to_snowflakeid
extract_timestamp_from_timeshard
extract_nodeid_from_timeshard
extract_localseqid_from_timeshard
timestamp_to_timeshard
galloc_chunk_info

KSUUID v2 functions

bdr.
bdr.
bdr.

gen_ksuuid_v2
ksuuid_v2_cmp
extract_timestamp_from_ksuuid_v2

KSUUID v1 functions

bdr.
bdr.
bdr.

gen_ksuuid
uuid_vl_cmp
extract_timestamp_from_ksuuid

Autopartition

bdr.
bdr.
bdr.
bdr.
bdr.
bdr.
bdr.

autopartition

drop_autopartition
autopartition_wait_for_partitions
autopartition_wait_for_partitions_on_all_nodes
autopartition_find_partition
autopartition_enable

autopartition_disable

Internal functions

bdr.
bdr.

autopartition_create_partition
autopartition_drop_partition

Stream triggers reference

Stream triggers manipulation interfaces

bdr.
bdr.
bdr.

create_conflict_trigger
create_transform_trigger
drop_trigger

Stream triggers row functions

bdr.
bdr.
bdr.
bdr.
bdr.
bdr.
bdr.

trigger_get_row
trigger_get_committs
trigger_get_xid
trigger_get_type
trigger_get_conflict_type
trigger_get_origin_node_id
ri_fkey_on_del_trigger

Stream triggers row variables

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

TG_NAME

TG_WHEN
TG_LEVEL

TG_OP

TG_RELID
TG_TABLE_NAME
TG_TABLE_SCHEMA
TG_NARGS
TG_ARGV[]

EDB Postgres Distributed (PGD)

261

EDB Postgres Distributed (PGD)

Internal catalogs and views

® bdr.autopartition_partitions

® bdr.autopartition_rules

® bdr.ddl_epoch

® bdr.event_history

® bdr.event_summary

e bdr.local_leader_change

® bdr.node_config

® bdr.node_config_summary

® bdr.node_group_config

e bdr.node_group_routing_config_summary
e bdr.node_group_routing_info

e bdr.node_group_routing_summary
e bdr.node_routing_config_summary
® bdr.sequence_kind

® bdr.sync_node_requests

® bdr.sync_node_requests_summary

Internal system functions

General internal functions

e bdr.bdr_get_commit_decisions

® bdr.bdr_track_commit_decision

® bdr.consensus_kv_fetch

® bdr.consensus_kv_store

® bdr.decode_message_payload

® bdr.decode_message_response_payload

e bdr.difference_fix_origin_create

® bdr.difference_fix_session_reset

® bdr.difference_fix_session_setup

e bdr.difference_fix_xact_set_avoid_conflict
e bdr.drop_node

e bdr.get_global_locks

e bdr.get_node_conflict_resolvers

® bdr.get_slot_flush_timestamp

® bdr.internal_alter_sequence_set_kind
® bdr.internal_replication_set_add_table
e bdr.internal_replication_set_remove_table
e bdr.internal_submit_join_request

® bdr.isolation_test_session_is_blocked
e bdr.local_node_info

® bdr.msgb_connect

e bdr.msgb_deliver_message

® bdr.node_catchup_state_name

® bdr.node_kind_name

® bdr.peer_state_name

® bdr.pg_xact_origin

® bdr.request_replay_progress_update

e bdr.reset_relation_stats

® bdr.reset_subscription_stats

® bdr.resynchronize_table_from_node

® bdr.seq_currval

® bdr.seq_lastval

® bdr.seq_nextval

® bdr.show_subscription_status

® bdr.show_workers

® bdr.show_writers

® bdr.sync_status_name

Task manager functions

® bdr.taskmgr_set_leader

e bdr.taskmgr_get_last_completed_workitem

® bdr.taskmgr_work_queue_check_status

® bdr.get_min_required_replication_slots

® bdr.get_min_required_worker_processes

e bdr.stat_get_activity

e bdr.worker_role_id_name

e bdr.lag_history

e bdr.get_raft_instance_by_nodegroup

® bdr.monitor_camo_on_all_nodes

® bdr.monitor_raft_details_on_all_nodes

® bdr.monitor_replslots_details_on_all_nodes
® bdr.monitor_subscription_details_on_all_nodes
® bdr.monitor_version_details_on_all_nodes

e bdr.node_group_member_info

Conflict functions

e bdr.alter_table_conflict_detection
e bdr.alter_node_set_conflict_resolver
e bdr.alter_node_set_log_config

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 262

EDB Postgres Distributed (PGD)

Column-level conflict functions

® bdr.column_timestamps_create

Conflicts

e Conflict detection
o List of conflict types

e Conflict resolution
o List of conflict resolvers
o Default conflict resolvers
o List of conflict resolutions

e Conflict logging

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 263

28.1.1

Catalogs and views are listed here in alphabetical order.

bdr.camo_decision_journal

EDB Postgres Distributed (PGD)

User visible catalogs and views

A persistent journal of decisions resolved by a CAMO partner node after a failover, in case bdr.logical_transaction_status wasinvoked. Unlike bdr.node_pre_commit, this doesn't cover transactions processed under normal
operational conditions (that is, both nodes of a CAMO pair are running and connected). Entries in this journal aren't ever cleaned up automatically. This is a diagnostic tool that the system doesn't depend on.

bdr.camo_decision_journal columns

Name Type

origin_node_id oid

origin_xid oid
decision char
decision_ts

bdr.commit_scopes

timestamptz

Description

0ID of the node where the transaction

executed

Transaction ID on the remote origin node

'c' for commit, 'a’ for abort

Decision time

Catalog storing all possible commit scopes that you can use for bdr.commit_scope to enable Group Commit.

bdr.commit_scopes columns

Name
commit_scope_id

commit_scope_name

commit_scope_origin_node_group oid

sync_scope_rule

Type Description
oid 1D of the scope to be referenced
name Name of the scope to be referenced

text

bdr.conflict_history

Node group for which the rule applies, referenced by ID

Definition of the scope

This table is the default table where conflicts are logged. The table is RANGE partitioned on column local_time andis managed by Autopartition. The default data retention period is 30 days.

Access to this table is possible by any table owner, who can see all conflicts for the tables they own, restricted by row-level security.

For details, see Logging conflicts to a table.

bdr.conflict_history columns

Name

sub_id
origin_node_id
local_xid

local_Lsn
local_time
remote_xid
remote_change_nr
remote_commit_lsn
remote_commit_time
conflict_type
conflict_resolution
conflict_index
reloid

nspname

relname

key_tuple
remote_tuple
local_tuple
apply_tuple
local_tuple_xmin

local_tuple_node_id

local_tuple_commit_time

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

Type
oid

oid

xid
pg_lsn
timestamp with time zone
xid

oid
pg_lsn
timestamp with time zone
text
text
regclass
oid

text
text
json
json
json
json

xid

oid

timestamp with time zone

Description

Subscription that produced this conflict; can be joined to bdr.subscription table

0ID (as seen in the pg_replication_origin catalog) of the node that produced the conflicting change
Local transaction of the replication process at the time of conflict

Local LSN at the time of conflict

Local time of the conflict

Transaction that produced the conflicting change on the remote node (an origin)

Index of the change within its transaction

Commit LSN of the transaction which produced the conflicting change on the remote node (an origin)
Commit timestamp of the transaction that produced the conflicting change on the remote node (an origin)
Detected type of the conflict

Conflict resolution chosen

Conflicting index (valid only if the index wasn't dropped since)

Conflicting relation (valid only if the index wasn't dropped since)

Name of the schema for the relation on which the conflict has occurred at the time of conflict (doesn't follow renames)
Name of the relation on which the conflict has occurred at the time of conflict (does not follow renames)
Json representation of the key used for matching the row

Json representation of an incoming conflicting row

Json representation of the local conflicting row

Json representation of the resulting (the one that has been applied) row

Transaction that produced the local conflicting row (if Tocal_tuple is set and the row isn't frozen)
Node that produced the local conflicting row (if Tocal_tuple issetand the row isn't frozen)

Last-known-change timestamp of the local conflicting row (if local_tuple issetand the row isn't frozen). This commit timestamp belongs to the node that produced this
tuple.

264

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts
https://www.postgresql.org/docs/current/catalog-pg-replication-origin.html

bdr.conflict_history

A view containing user-readal

_summary

ble details on row conflict.

bdr.conflict_history_summary columns

Name
nspname
relname

origin_node_id
remote_commit_lsn

remote_change_nr
local_time
local_tuple_commit_time
remote_commit_time
conflict_type

conflict_resolution

Type

text

text

oid

pg_lsn

oid

timestamp with time zone
timestamp with time zone
timestamp with time zone
text

text

bdr.consensus_kv_data

Description

Name of the schema

Name of the table

0ID (as seen in the pg_replication_origin catalog) of the node that produced the conflicting change
Commit LSN of the transaction which produced the conflicting change on the remote node (an
origin)

Index of the change within its transaction

Local time of the conflict

Time of local commit

Time of remote commit

Type of conflict

Resolution adopted

A persistent storage for the internal Raft-based KV store used by bdr.consensus_kv_store() and bdr.consensus_kv_fetch() interfaces.

bdr.consensus_kv_data Columns

Name Type
kv_key text
kv_val json

kv_create_ts timestamptz
kv_ttl int

kv_expire_ts timestamptz

bdr.crdt_handlers

Description

Unique key

Arbitrary value in json format

Last write timestamp

Time to live for the value in milliseconds

Expiration timestamp (kv

_create_ts + kv_ttl)

This table lists merge ("handlers") functions for all CRDT data types.

bdr.crdt_handlers Columns

Name Type
crdt_type_id regtype

crdt_merge_id regproc

bdr.ddl_replication

Description
CRDT data type ID

Merge function for this data
type

This view lists DDL replication configuration as set up by current DDL filters.

bdr.ddl_replication colu

mns

Name Type Description

set_ddl_name name Name of DDL filter

set_ddl_tag text Command tags it applies on (regular expression)

set_ddl_role text Roles it applies to (regular expression)

set_name name

bdr.depend

Name of the replication set for which this filter is
defined

This table tracks internal object dependencies inside PGD catalogs.

bdr.failover_replication_slots

This table tracks the status of logical replication slots that are being used with failover support. For more information on failover replication slots, seeCDC Failover support.

bdr.failover_replication_slots columns

Name Type
slot_name name
slot_id oid

Description
Name of the replication slot

1D of the replication slot

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

265

https://www.postgresql.org/docs/current/catalog-pg-replication-origin.html
https://www.enterprisedb.com/docs/pgd/latest/reference/cdc-failover

Name Type

node_group_id oid

Description

1D of the node group

PID of the process currently decoding the slot

plugin name Name of the plugin

twophase boolean Is the slot used for two-phase commit
active_node oid ID of the active node

active_pid int

prev_node oid ID of the previous node

bdr.global_consensus_journal

This catalog table logs all the Raft messages that were sent while managing global consensus.

EDB Postgres Distributed (PGD)

As for the bdr.global_consensus_response_journal catalog, the payload is stored in a binary encoded format, which can be decoded with the bdr.decode_message_payload() function. See the
bdr.global_consensus_journal_details view for more details.

bdr.global_consensus_journal columns

Name Type
log_index int8
term int8
origin oid

req_id int8

req_payload bytea

trace_context bytea

Description

ID of the journal entry

Raft term

ID of node where the request

originated

1D for the request

Payload for the request

Trace context for the request

bdr.global_consensus_journal_details

This view presents Raft messages that were sent and the corresponding responses, using the bdr.decode_message_payload() function to decode their payloads.

bdr.global_consensus_journal_details columns

Name
node_group_name
log_index

term

request_id
origin_id
req_payload
origin_node_name
message_type_no
message_type

message_payload

Type
name
int8
int8
int8
oid
bytea
name
oid
text

text

response_message_type_no oid

response_message_type
response_payload
response_errcode_no
response_errcode

response_message

text
text
text
text

text

Description

Name of the node group

ID of the journal entry

Raft term

ID of the request

ID of the node where the request originated
Payload of the request

Name of the node where the request originated
ID of the PGD message type for the request
Name of the PGD message type for the request
PGD message payload for the request

ID of the PGD message type for the response
Name of the PGD message type for the response
PGD message payload for the response
SQLSTATE for the response

Error code for the response

Error message for the response

bdr.global_consensus_response_journal

This catalog table collects all the responses to the Raft messages that were received while managing global consensus.

As for the bdr.global_consensus_journal catalog, the payload is stored in a binary-encoded format, which can be decoded with the bdr.decode_message_payload() function. See the
bdr.global_consensus_journal_details view for more details.

bdr.global_consensus_response_journal columns

Name Type
log_index int8
res_status oid

res_payload bytea

trace_context bytea

Description

1D of the journal entry

Status code for the response

Payload for the response

Trace context for the response

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

266

bdr.global_lock

This catalog table stores the information needed for recovering the global lock state on server restart.

For monitoring usage, the bdr.global_locks view is preferable because the visible rows in bdr.global_lock don't necessarily reflect all global locking activity.

Don't modify the contents of this table. It is an important PGD catalog.

bdr.global_lock columns

Name Type
ddl_epoch int8

origin_node_id oid

lock_type oid
nspname name
relname name
groupid oid
key1 integer
key2 integer

key_is_bigint boolean

bdr.global_locks

Description

DDL epoch for the lock

0ID of the node where the global lock has originated
Type of the lock (DDL or DML)

Schema name for the locked relation

Relation name for the locked relation

0ID of the top level group (for Advisory locks)

First 32-bit key or lower order 32-bits of 64-bit key (for advisory locks)

Second 32-bit key or higher order 32-bits of 64-bit key (for advisory
locks)

True if 64-bit integer key is used (for advisory locks)

EDB Postgres Distributed (PGD)

A view containing active global locks on this node. The bdr.global_locks view exposes PGD's shared-memory lock state tracking, giving administrators greater insight into PGD's global locking activity and progress.

See Monitoring global locks for more information about global locking.

bdr.global_locks columns

Name

origin_node_id
origin_node_name
lock_type

relation

pid

acquire_stage

waiters
global_lock_request_time
local_lock_request_time

last_state_change_time

Column details:

Type Description

oid 0ID of the node where the global lock has originated

name Name of the node where the global lock has originated

text Type of the lock (DDL or DML)

text Locked relation name (for DML locks) or keys (for advisory locks)
int4 PID of the process holding the lock

text Internal state of the lock acquisition process

int4 List of backends waiting for the same global lock

timestamptz ~ Time this global lock acquire was initiated by origin node

timestamptz ~ Time the local node started trying to acquire the local lock

timestamptz ~ Time acquire_stage last changed

e relation:ForDML locks, relation shows the relation on which the DML lock is acquired. For global advisory locks, relation column actually shows the two 32-bit integers or one 64-bit integer on which the lock is acquired.

e origin_node_id and origin_node_name : If these are the same as the local node's ID and name, then the local node is the initiator of the global DDL lock, that is, it is the node running the acquiring transaction. If these fields

specify a different node, then the local node is instead trying to acquire its local DDL lock to satisfy a global DDL lock request from a remote node.

e pid:The process ID of the process that requested the global DDL lock, if the local node is the requesting node. Null on other nodes. Query the origin node to determine the locker pid.

e global_lock_request_time : The timestamp at which the global-lock request initiator started the process of acquiring a global lock. Can be null if unknown on the current node. This time is stamped at the beginning of the DDL

lock request and includes the time taken for DDL epoch management and any required flushes of pending-replication queues. Currently only known on origin node.

e local_lock_request_time : The timestamp at which the local node started trying to acquire the local lock for this global lock. This includes the time taken for the heavyweight session lock acquire but doesn't include any time

taken on DDL epochs or queue flushing. If the lock is reacquired after local node restart, it becomes the node restart time.

e last_state_change_time : The timestamp at which the bdr.global_locks.acquire_stage field last changed for this global lock entry.

bdr.group_camo_details

Uses bdr.run_on_all_nodes togather CAMO-related information from all nodes.

bdr.group_camo_details columns

Name

node_id

node_name

camo_partner
is_camo_partner_connected
is_camo_partner_ready
camo_transactions_resolved

apply_lsn

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

Type Description

text Internal node ID

text Name of the node

text Node name of the camo partner
text Connection status

text Readiness status

text Are there any pending and unresolved CAMO transactions

text Latest position reported as replayed (visible)

267

Name Type Description
receive_lsn text Latest LSN of any change or message received (can go backwards in case of restarts)
apply_queue_size text Bytes difference between apply_lsn and receive_lsn

bdr.group_raft_details

Uses bdr.run_on_all_nodes to gather Raft Consensus status from all nodes.

bdr.group_raft_details columns

Name Type Description
node_id oid Internal node ID
node_name name Name of the node

node_group_name name Name of the group is part of

state text Raft worker state on the node
leader_id oid Node id of the RAFT_LEADER
current_term int Raft election internal ID
commit_index int Raft snapshot internal ID
nodes int Number of nodes accessible
voting_nodes int Number of nodes voting
protocol_version int Protocol version for this node

bdr.group_replslots_details

Uses bdr.run_on_all_nodes to gather PGD slot information from all nodes.

bdr.group_replslots_details columns

Name Type Description

node_group_name text Name of the PGD group

origin_name text Name of the origin node

target_name text Name of the target node

slot_name text Slot name on the origin node used by this subscription

active text Is the slot active (does it have a connection attached to it)

state text State of the replication (catchup, streaming, ...) or 'disconnected' if offline
write_lag interval ~ Approximate lag time for reported write

flush_lag interval Approximate lag time for reported flush

replay_lag interval Approximate lag time for reported replay

sent_lag_bytes int8 Bytes difference between sent_lsn and current WAL write position
write_lag_bytes int8 Bytes difference between write_lsn and current WAL write position
flush_lag_bytes int8 Bytes difference between flush_lsn and current WAL write position
replay_lag_byte int8 Bytes difference between replay_lsn and current WAL write position

bdr.group_subscription_summary

Uses bdr.run_on_all_nodes to gather subscription status from all nodes.

bdr.group_subscription_summary columns

Name Type Description
origin_node_name text Name of the origin of the subscription
target_node_name text Name of the target of the subscription

last_xact_replay_timestamp text ~ Timestamp of the last replayed transaction

sub_lag_seconds text Lag between now and last_xact_replay_timestamp

bdr.group_versions_details

Uses bdr.run_on_all_nodes to gather PGD information from all nodes.

bdr.group_versions_details columns

Name Type Description

node_id oid Internal node ID

node_name name Name of the node
postgres_version text PostgreSQL version on the node
bdr_version text PGD version on the node

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

268

EDB Postgres Distributed (PGD)

bdr.leader

Tracks leader nodes across subgroups in the cluster. Shows the status of all write leaders and subscriber-only group leaders (when optimized topology is enabled) in the cluster.

bdr.leader columns

Name Type Description

node_group_id oid 1D of the node group.

leader_node_id oid 1D of the leader node.

generation int Generation of the leader node. Leader_kind sets semantics.
leader_kind "char" Kind of the leader node.

Leader_kind values can be:

Value Description

Write leader, as per proxy routing. In this case leader is maintained by subgroup Raft instance.
generation corresponds to write_leader_version of respective bdr.node_group_routing_info record.

Subscriber-only group leader. This designated member of a SO group subscribes to upstream data nodes and is tasked with publishing upstream changes to remaining SO group members. Leader is maintained by top-level Raft
S instance.
generation is updated sequentially upon leader change.

bdr.local_consensus_snapshot

This catalog table contains consensus snapshots created or received by the local node.

bdr.local_consensus_snapshot columns

Name Type Description
log_index int8 ID of the journal entry
log_term int8 Raft term

snapshot ~ bytea Raft snapshot data

bdr.local_consensus_state

This catalog table stores the current state of Raft on the local node.

bdr.local_consensus_state columns

Name Type Description

node_id oid ID of the node

current_term int8 Raft term

apply_index int8 Raft apply index

voted_for oid Vote cast by this node in this term
last_known_leader oid node_id of last known Raft leader

bdr.local_node

This table identifies the local node in the current database of the current Postgres instance.

bdr.local_node columns

Name Type Description

node_id oid ID of the node

pub_repsets text[] Published replication sets
sub_repsets text[] Subscribed replication sets

node_uuid uuid UUID of the node

bdr.local_node_summary

Aview containing the same information as bdr.node_summary (plus pub_repsets and sub_repsets), but only for the local node.

bdr.local_sync_status

Information about status of either subscription or table synchronization process.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 269

bdr.local_sync_status columns

Name Type Description

sync_kind char Kind of synchronization done

sync_subid oid 1D of subscription doing the synchronization

sync_nspname name Schema name of the synchronized table (if any)

sync_relname name Name of the synchronized table (if any)

sync_status char Current state of the synchronization

sync_remote_relid oid 1D of the synchronized table (if any) on the upstream

sync_end_lsn pg_lsn Position at which the synchronization state last changed
bdr.node

This table lists all the PGD nodes in the cluster.

The view bdr.node_summary provides a human-readable version of most of the columns from bdr.node .

bdr.node columns

Name Type Description

node_id oid 1D of the node

node_name name Name of the node

node_group_id oid 1D of the node group

source_node_id oid ID of the source node

synchronize_structure ~ "char" Schema synchronization done during the join

node_state oid Consistent state of the node

target_state oid State that the node is trying to reach (during join or promotion)

seq_id int4 Sequence identifier of the node used for generating unique sequence numbers
dbname name Database name of the node

node_dsn char Connection string for the node

proto_version_ranges int(] Supported protocol version ranges by the node

generation smallint Counter incremented when a node joins with the same name as a previous node
node_kind oid ID of the node kind

node_join_finished boolean Check if the join is finished

node_uuid uuid UUID of the node (UNIQUE)

bdr.node_catchup_info

This catalog table records relevant catchup information on each node, either if it is related to the join or part procedure.

bdr.node_catchup_info columns

Name Type Description

node_id oid ID of the node

node_source_id oid ID of the node used as source for the data

slot_name name Slot used for this source

min_node_lsn pg_lsn Minimum LSN at which the node can switch to direct replay from a peer node
catchup_state oid Status code of the catchup state

origin_node_id oid ID of the node from which we want transactions

EDB Postgres Distributed (PGD)

If a node(node_id) needs missing data from a parting node(origin_node_id), it can get it from a node that already has it(node_source_id) by forwarding. The records in this table persists until the node(node_id) is a member of the EDB Postgres

Distributed cluster.

bdr.node_catchup_info_details

Aview of bdr.node_catchup_info catalog which shows info in more friendly way

bdr.node_conflict_resolvers

Currently configured conflict resolution for all known conflict types.

bdr.node_conflict_resolvers columns
Name Type Description

conflict_type text Type of the conflict

conflict_resolver text Resolver used for this conflict type

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

270

bdr.node_group

This catalog table lists all the PGD node groups. See also bdr.node_group_summary for aview containing user-readable details.

bdr.node_group columns

Name

node_group_id

node_group_name
node_group_default_repset
node_group_default_repset_ext
node_group_parent_id
node_group_flags
node_group_uuid
node_group_apply_delay
node_group_check_constraints
node_group_num_writers
node_group_enable_wal_decoder
node_group_streaming_mode
node_group_default_commit_scope
node_group_location
node_group_enable_routing

node_group_enable_raft

Type Description

oid 1D of the node group.

name Name of the node group.

oid Default replication set for this node group.
oid Default replication set for this node group.
oid 1D of parent group (0 if this is a root group).
int Group flags.

uuid The uuid of the group.

interval How long a subscriber waits before applying changes from the provider.

bool Whether the apply process checks constraints when applying data.

int Number of writers to use for subscriptions backing this node group.

bool Whether the group has enable_wal_decoder set.

char Transaction streaming setting: ‘0" - off, 'F' - file, 'W' - writer, 'A" - auto, 'D' - default.
oid 1D of the node group's default commit scope.

char Name of the location associated with the node group.

char Whether the node group allows routing through Connection Manager.

bool Whether the node group allows Raft Consensus.

bdr.node_group_replication_sets

Aview showing default replication sets create for PGD groups. See also bdr.replication_sets.

bdr.node_group_replication_sets columns

Name Type Description

node_group_name name Name of the PGD group

def_repset name Name of the default repset
def_repset_ops text[] Actions replicated by the default repset
def_repset_ext name Name of the default "external” repset (usually same as def_repset)

def_repset_ext_ops text[] Actions replicated by the default "external" repset (usually same as def_repset_ops)

bdr.node_group_summary

Aview containing user-readable details about node groups. See also bdr.node_group.

bdr.node_group_summary columns

Name Type
node_group_name name
default_repset name
parent_group_name name
node_group_type text
apply_delay interval
check_constraints boolean
num_writers integer
enable_wal_decoder boolean
streaming_mode text

default_commit_scope name

location name
enable_routing boolean
enable_raft boolean
route_writer_max_lag bigint

route_reader_max_lag bigint

route_writer_wait_flush boolean

bdr.node_local_info

A catalog table used to store per-node configuration that's specific to the local node (as opposed to global view of per-node configuration).

Description

Name of the node group

Default replication set for this node group

Name of parent group (NULL if this is a root group)

Type of the node group (one of "global”, "data", "shard" or "subscriber-only")
How long a subscriber waits before applying changes from the provider
Whether the apply process checks constraints when applying data
Number of writers to use for subscriptions backing this node group
Whether the group has enable_wal_decoder set

Transaction streaming setting: "off", "file", "writer", "auto" or "default"
Name of the node group's default commit scope

Name of the location associated with the node group

Whether the node group allows routing through connection manager
Whether the node group allows Raft Consensus

Maximum write lag accepted

Maximum read lag accepted

Switch if we need to wait for the flush

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

271

bdr.node_local_info columns

Name Type Description

node_id oid The OID of the node (including the local node)

applied_state oid Internal ID of the node state

ddl_epoch int8 Last epoch number processed by the node

slot_name name Name of the slot used to connect to that node (NULL for the local node)

origin_name name Name of the replication origin for that node. It will be NULL for the local node or for nodes that are not data nodes such as subscriber-only nodes or standbys.

bdr.node_log_config

A catalog view that stores information on the conflict logging configurations.

bdr.node_log_config columns

Name Description

log_name Name of the logging configuration

log_to_file Whether it logs to the server log file

log_to_table Whether it logs to a table, and which table is the target

log_conflict_type Which conflict types it logs, if NULL means all

log_conflict_res Which conflict resolutions it logs, if NULL means all

bdr.node_peer_progress

Catalog used to keep track of every node's progress in the replication stream. Every node in the cluster regularly broadcasts its progress every bdr . replay_progress_frequency milliseconds to all other nodes (default is 60000 ms,

that is, 1 minute). Expect N * (N-1) rows in this relation.

You might be more interested in the bdr.node_slots view for monitoring purposes. See also Monitoring.

bdr.node_peer_progress

Name

node_id

peer_node_id
last_update_sent_time
last_update_recv_time
last_update_node_lsn
peer_position
peer_replay_time
last_update_horizon_xid

last_update_horizon_lsn

columns

Type

oid

oid
timestamptz
timestamptz
pg_lsn
pg_lsn
timestamptz

oid

pg_lsn

bdr.node_replication_rates

Description

01D of the originating node that reported this position info

0ID of the node's peer (remote node) for which this position info was reported

Time at which the report was sent by the originating node

Time at which the report was received by the local server

LSN on the originating node at the time of the report

Latest LSN of the node's peer seen by the originating node

Latest replay time of peer seen by the reporting node

Internal resolution horizon: all lower xids are known resolved on the reporting node

Internal resolution horizon: same in terms of an LSN of the reporting node

This view contains information about outgoing replication activity from a given node.

bdr.node_replication_rates columns

Column Type Description
peer_node_id oid

target_name name

sent_lsn pg_lsn

replay_lsn pg_lsn

replay_lag interval

replay_lag_bytes int8

0ID of node's peer (remote node) for which this info was reported

Name of the target peer node

Latest sent position

Latest position reported as replayed (visible)

Approximate lag time for reported replay

Bytes difference between replay_lsn and current WAL write position on origin

Human-readable bytes difference between replay_Lsn and current WAL write position

LSNs being applied per second at the peer node

Approximate time required for the peer node to catch up to all the changes that are yet to be

replay_lag_size text
apply_rate bigint
catchup_interval interval N
applied
Note

The replay_lag is setimmediately to zero after reconnect. As a workaround, use replay_lag_bytes, replay_lag_size,or catchup_interval.

bdr.node_slots

This view contains information about replication slots used in the current database by PGD.

See Monitoring outgoing replication for guidance on the use and interpretation of this view's fields.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

272

https://www.postgresql.org/docs/current/catalog-pg-replication-origin.html

EDB Postgres Distributed (PGD)

bdr.node_slots columns

Name Type Description

target_dbname name Database name on the target node

node_group_name name Name of the PGD group

node_group_id oid 0ID of the PGD group

origin_name name Name of the origin node

target_name name Name of the target node

origin_id oid 0ID of the origin node

target_id oid 0ID of the target node

local_slot_name name Name of the replication slot according to PGD

slot_name name Name of the slot according to Postgres (same as above)

is_group_slot boolean gzte))ifthe slot is the node-group crash recovery slot for this node (see ["Group Replication Slot"](nodes#Group Replication

is_decoder_slot boolean Is this slot used by the decoding worker feature

plugin name Logical decoding plugin using this slot (should be pglogical_output or bdr)

slot_type text Type of the slot (should be logical)

datoid oid 0ID of the current database

database name Name of the current database

temporary bool Is the slot temporary

active bool Is the slot active (does it have a connection attached to it)

active_pid int4 PID of the process attached to the slot

xmin xid XID needed by the slot

catalog_xmin xid Catalog XID needed by the slot

restart_lsn pg_lsn LSN at which the slot can restart decoding

confirmed_flush_lsn pg_lsn Latest confirmed replicated position

usesysid oid sysid of the user the replication session is running as

usename name username of the user the replication session is running as

application_name text Application name of the client connection (used by synchronous_standby_names)

client_addr inet IP address of the client connection

client_hostname text Hostname of the client connection

client_port int4 Port of the client connection

backend_start timestamptz ~ When the connection started

state text State of the replication (catchup, streaming, ...) or 'disconnected' if offline

sent_lsn pg_lsn Latest sent position

write_lsn pg_lsn Latest position reported as written

flush_lsn pg_lsn Latest position reported as flushed to disk

replay_lsn pg_lsn Latest position reported as replayed (visible)

write_lag interval Approximate lag time for reported write

flush_lag interval Approximate lag time for reported flush

replay_lag interval Approximate lag time for reported replay

sent_lag_bytes int8 Bytes difference between sent_lsn and current WAL write position

write_lag_bytes int8 Bytes difference between write_lsn and current WAL write position

flush_lag_bytes int8 Bytes difference between flush_lsn and current WAL write position

replay_lag_bytes int8 Bytes difference between replay_lsn and current WAL write position

sent_lag_size text Human-readable bytes difference between sent_lsn and current WAL write position

write_lag_size text Human-readable bytes difference between write_lsn and current WAL write position

flush_lag_size text Human-readable bytes difference between flush_lsn and current WAL write position

replay_lag_size text Human-readable bytes difference between replay_lsn and current WAL write position
Note

The replay_lag is setimmediately to zero after reconnect. As a workaround, use replay_lag_bytes or replay_lag_size.

bdr.node_summary

This view contains summary information about all PGD nodes known to the local node.

bdr.node_summary columns

Name Type Description

node_name name Name of the node

node_group_name name Name of the PGD group the node is part of

interface_connstr text Connection string to the node

peer_state_name text Consistent state of the node in human readable form
peer_target_state_name text State that the node is trying to reach (during join or promotion)
node_seq_id int4 Sequence identifier of the node used for generating unique sequence numbers
node_local_dbname name Database name of the node

node_id oid 0ID of the node

node_group_id oid 0ID of the PGD node group

node_kind_name oid Node kind name

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 273

EDB Postgres Distributed (PGD)

Name Type Description

node_uuid uuid UUID of the node

bdr.parted_origin_catchup_info

This table records relevant catchup information on each node related to parted orgins.

bdr.parted_origin_catchup_info columns

Name Type Description
parting_peer_node_id oid ID of the parted node
node_id oid ID of the node
node_group_id oid ID of the node group

- The LSN which the node will wait for its group slot to catch up to and then move its state to
origin_catchup_lsn pg_lsn

DONE

origin_catchup_state oid Status code of the parted origin catchup

Anode(node_7d) waits for its group slot to catch up with the recorded LSN, (origin_catchup_Tsn). Thisis to ensure it's group slot is caught up with all the transactions originating from PARTED node (parting_peer_node_id).

The records in this table persists until the parting node (parting_peer_node_1id) is automatically removed.

bdr.parted_origin_catchup_info_details

This table is a friendly view of bdr.parted_origin_catchup_info with relevant catchup information on each node related to parted orgins, in this case in text form.

bdr.parted_origin_catchup_info_details columns

Name Type Description
target_node_id oid 1D of the target node
target_node_name text Name of the target node
parting_node_id oid ID of the parted node
parting_node_name text Name of the parted node
node_group_id oid 1D of the node group
node_group_name text Name of the node group
parting_catchup_lsn pg_lsn The LSN which the node will wait for its group slot to catch up to and then move its state to
DONE
parting_catchup_state oid Parted origin's catchup status code
parting_catchup_state_name text Parted origin's catchup status text

Anode(target_node_id) waits for its group slot to catch up with the recorded LSN, (parting_catchup_lsn). This s to ensure it’s group slot is caught up with all the transactions originating from PARTED node
(parting_node_id).

The records in this table persists until the parting node (parting_node_id) is automatically removed.

bdr.queue

This table stores the historical record of replicated DDL statements.

bdr.queue columns

Name Type Description

queued_at timestamptz ~ When was the statement queued

role name Which role has executed the statement
replication_sets text[] Which replication sets was the statement published to

Type of a message. Possible values:
A-Table sync

D-DDL

S - Sequence

T-Truncate

Q- SQL statement

message_type char

message json Payload of the message needed for replication of the statement

bdr.replication_set

A table that stores replication set configuration. For user queries, we recommend instead checking the bdr.replication_sets view.

bdr.replication_set columns

Name Type Description
set_id oid OID of the replication set
set_nodeid oid 01D of the node (always local node oid currently)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 274

Name

set_name
replicate_insert
replicate_update
replicate_delete
replicate_truncate
set_isinternal
set_autoadd_tables

set_autoadd_seqs

Type
name
boolean
boolean
boolean
boolean
boolean
boolean

boolean

Description

Name of the replication set

Indicates if the replication set replicates INSERTs

Indicates if the replication set replicates UPDATEs

Indicates if the replication set replicates DELETEs

Indicates if the replication set replicates TRUNCATEs

Reserved

Indicates if new tables are automatically added to this replication set

Indicates if new sequences are automatically added to this replication set

bdr.replication_set_table

A table that stores replication set table membership. For user queries, we recommend instead checking the bdr.tables view.

bdr.replication_set_table columns

Name Type
set_id oid
set_reloid regclass
set_att_list text[]

set_row_filter pg_node_tree

Description

0ID of the replication set
Local ID of the table
Reserved

Compiled row filtering expression

bdr.replication_set_ddl

A table that stores replication set ddl replication filters. For user queries, we recommend instead checking the bdr.dd1_replication view.

bdr.replication_set_ddl Columns

Name Type
set_id oid
set_ddl_name name
set_ddl_tag text

set_ddl_role text

bdr.replication_

Description

0ID of the replication set

Name of the DDL filter

Command tag for the DDL filter

Role executing the DDL

SElES]

Aview showing replication sets defined in the PGD group, even if they aren't currently used by any node.

bdr.replication_sets columns

Name

set_id

set_name
replicate_insert
replicate_update
replicate_delete
replicate_truncate
set_autoadd_tables

set_autoadd_seqs

Type
oid
name
boolean
boolean
boolean
boolean
boolean

boolean

bdr.schema_changes

Description

OID of the replication set

Name of the replication set

Indicates if the replication set replicates INSERTs

Indicates if the replication set replicates UPDATEs

Indicates if the replication set replicates DELETEs

Indicates if the replication set replicates TRUNCATES

Indicates if new tables are automatically added to this replication set

Indicates if new sequences are automatically added to this replication set

A simple view to show all the changes to schemas win PGD.

bdr.schema_changes

Name
schema_changes_ts

schema_changes_chan

columns

ge

schema_changes_classid

schema_changes_objectid

schema_changes_subid

schema_changes_descr

schema_changes_addrnames

Type Description

timestampstz D of the trigger

char Flag of change type

oid Class ID

oid Object ID

smallint Subscription

text Object changed

text[] Location of schema change

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

275

bdr.sequence_alloc

Aview to see the allocation details for galloc sequences.

bdr.sequence_alloc columns

Name Type Description

seqid regclass

seq_chunk_size bigint

seq_allocated_up_to bigint

seq_nallocs bigint

seq_last_alloc timestamptz

bdr.sequences

1D of the sequence

A sequence number for the chunk within its value

Last sequence allocated

This view lists all sequences with their kind, excluding sequences for internal PGD bookkeeping.

bdr.sequences columns

Name Type Description

nspname name Namespace containing the sequence

relname name Name of the sequence

seqkind text Type of the sequence ('local', 'timeshard’, 'galloc')

bdr.stat_activity

Dynamic activity for each backend or worker process.

EDB Postgres Distributed (PGD)

This contains the same information as pg_stat_activity,except wait_event is set correctly when the wait relates to PGD and the following Connection Manager related fields are added:

bdr.stat_activity additional columns

Name Type
connection_manager_client_addr inet
connection_manager_client_port int

connection_manager_client_hostname text

session_read_only

boolean

bdr.stat_commit_scope

Aview containing statistics for each commit scope.

bdr.stat_commit_scope columns

Column
commit_scope_name
group_name

ncalls

ncommits

naborts

ndegrades

nconfig_degrades
last_state_change_time

total_commit_time
min_commit_time
max_commit_time
mean_commit_time

stats_reset

Type
name
name
bigint
bigint
bigint
bigint
bigint
timestamp with time zone

double precision
double precision
double precision
double precision

timestamp with time zone

bdr.stat_commit_scope_state

Description
1P address of the client connection

The source port of client connected to connection manager (if the connection is done through connection
manager)

Hostname of the client connection (if the connection is done through connection manager)

Whether the session is a read-only; connected to read-only port of the connection manager

Description

Name of the commit scope

Name of group for which the commit scope is defined

The number of times the commit scope was used

The number of successful commits were made with the commit scope

The number of times the commit scope used was eventually aborted

The number of per-transaction degrade events where a backend hit the degrade timeout during commit
The number of configuration-level state changes to degraded mode by the background worker

The timestamp of the last configuration-level state change (entering or recovering from degraded
state)

Total time spent committing using the commit scope, in milliseconds
Minimum time spent committing using the commit scope, in milliseconds
Maximum time spend committing using the commit scope, in milliseconds
Mean time spent committing using the commit scope, in milliseconds

Time at which all statistics in the view were last reset

Aview of information about the current use of commit scopes by backends.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

276

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW

EDB Postgres Distributed (PGD)

bdr.stat_commit_scope_state columns

Column Type Description

pid integer Process ID of the backend

commit_scope_name name Name of the commit scope being used

group_name name Name of group for which the commit scope is defined
waiting_op_num integer Index of the first operation in the commit scope that is not satisfied yet

waiting_prepare_confirmations ~ integer ~ The number of PREPARE confirmations that are still needed by the operation
waiting_commit_confirmations integer ~ The number of COMMIT confirmations that are still needed by the operation

waiting_lsn_confirmations integer The number of LSN confirmations that are still needed by the operation

bdr.stat_connection_manager

A view contianing statistics for the connection manager on this node.

bdr.stat_connection_manager columns

Column Type Description

ntotal_rw_conns bigint Total number of read-write connections
ntotal_ro_conns bigint Total number of read-only connections
nactive_rw_conns int Number of active read-write connections

nactive_ro_conns int Number of active read-only connections

bdr.stat_connection_manager_connections

Aview containing information about the connections to the connection manager.

bdr.stat_connection_manager_connections columns

Column Type Description

connection_manager_client_addr text 1P address of the client connected to the connection manager.
connection_manager_client_port int TCP port number that the client is using for communication with the connection manager.
connection_manager_addr text IP address of the connection manager node.

connection_manager_port int TCP port number that the connection manager is using to communicate with the Postgres node.
session_read_only boolean Whether the session is read-only or not.

client_uses_tls boolean Whether the client is using TLS to connect to the connection manager node, or not.

bdr.stat_connection_manager_node_stats

Aview containing information about server connection statistics for the connection manager on this node.

bdr.stat_connection_manager_node_stats columns

Column Type Description
node_id oid 0ID of the node
node_name name Name of the node

route_rw_connections boolean Whether read-write connections are routed to this node

route_ro_connections boolean ~ Whether read-only connections are routed to this node

ntotal_rw_conns bigint Total number of read-write connections
ntotal_ro_conns bigint Total number of read-only connections
nactive_rw_conns int Number of active read-write connections
nactive_ro_conns int Number of active read-only connections

bdr.stat_connection_manager_hba_file_rules

Aview that shows only the only valid and supported rules the connection manager is using from the HBA file (pg_hba.conf) and information about those rules.

bdr.stat_connection_manager_hba_file_rules columns

Column Type Description

Rule number. This indicates the order in which each rule is considered until a match is found during

rule_number integer o
authentication.

file_name text Name of the file containing this rule.

line_number integer Line number of this rule in the file referenced in file_name.

type text Type of connection.

database text(] List of database names this rule applies to.

user_name text(] List of user names this rule applies to

address text Host name or IP address, or one of all, samehost, or samenet, or null for local connections.
netmask text IP address mask, or null if not applicable.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 277

EDB Postgres Distributed (PGD)

Column Type Description
auth_method text Authentication method.
auth_options text Options specified for authentication method, if any.

bdr.stat_raft_followers_state

Aview of the state of the raft leader's followers on the Raft leader node (empty on other nodes).

bdr.stat_raft_followers_state columns

Column Type Description

group_name name The group this information is for (each group can have a separate consensus configured).
node_name name Name of the follower node.

sent_commit_index bigint Latest Raft index sent to the follower node.

match_index bigint Raft index we expect to match the next response from the follower node.
last_message_time timestamp with time zone Last message (any, including requests) seen from the follower node.
last_heartbeat_send_time timestamp with time zone Last time the leader sent heartbeat to the follower node.

last_heartbeat_response_time timestamp with time zone Last time the leader has seen a heartbeat response from the follower node.

approx_clock_drift_ms bigint Approximate clock drift seen by the leader against the follower node in milliseconds.

bdr.stat_raft_state

Aview describing the state of the Raft consensus on the local node.

bdr.stat_raft_state columns

Column Type Description

group_name name The group this information is for (each group can have a separate consensus configured)

raft_stat text State of the local node in the Raft (LEADER', 'CANDIDATE', 'FOLLOWER', 'STOPPED')

leader_name name Name of the Raft leader, if any

voted_for_name name The node the local node voted for as leader last vote

is_voting boolean The local node part of Raft is voting

heartbeat_timeout_ms bigint The heartbeat timeout on the local node

heartbeat_elapsed_ms bigint The number of milliseconds that have elapsed since the local node has seen a heartbeat from the leader
current_term bigint The current Raft term the local node is at

commit_index bigint The current Raft commit index the local node is at

apply_index bigint The Raft commit index the local node applied to catalogs

last_log_term bigint Last Raft term in the request log

last_log_index bigint Last Raft index in the request log

oldest_log_index bigint Oldest Raft index still in the request log

newest_prunable_log_index bigint Newest Raft index that can be safely removed from the request log

snapshot_term bigint Raft term of the last snapshot

snapshot_index bigint Raft index of the last snapshot

nnodes integer Number of nodes in the Raft consensus (should normally be the same as the number of nodes in the group)
nvoting_nodes integer Number of voting nodes in the Raft consensus

bdr.stat_receiver

A view containing all the necessary info about the replication subscription receiver processes.

bdr.stat_receiver columns

Column Type Description

worker_role text Role of the BDR worker (always 'receiver')

worker_state text State of receiver worker (can be 'running’, 'down’, or 'disabled’)

worker_pid integer Process id of the receiver worker

sub_name name Name of the subscription the receiver belongs to

sub_slot_name name Replication slot name used by the receiver

source_name name Source node for this receiver (the one it connects to), this is normally the same as the origin node, but is different for forward mode subscriptions
origin_name name The origin node for this receiver (the one it receives forwarded changes from), this is normally the same as the source node, but is different for forward mode subscriptions
subscription_mode char Mode of the subscription, see bdr.subscription_summary for more details

sub_replication_sets text(] Replication sets this receiver is subscribed to

sub_apply_delay interval Apply delay interval

receive_lsn pg_lsn LSN of the last change received so far

receive_commit_lsn pg_lsn LSN of the last commit received so far

xact_apply_Llsn pg_lsn Last applied transaction LSN

xact_flush_lsn pg_lsn Last flushed transaction LSN

timestamp with time
zone

xact_apply_timestamp Last applied transaction (commit) timestamp

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 278

Column

worker_start

worker_xact_start

worker_backend_state_change
worker_backend_state
wait_event_type

wait_event

Type

timestamp with time

zone

timestamp with time

zome

timestamp with time

zone

text

text

text

bdr.stat_receiver_transactions

Description

Time at which the receiver started

details
Backend state change timestamp, see state_change in pg_stat_activity for more details

Current backend state, see state in pg_stat_activity for more details

EDB Postgres Distributed (PGD)

Time at which the receiver started local db transaction (if it is currently processing a local transaction), usually NULL, see xact_start in pg_stat_activity for more

Type of wait event the receiver is currently waiting on (if any), see wait_event_type in pg_stat_activity for more details

Exact event the receiver is currently waiting on (if any, see wait_event in pg_stat_activity for more details)

A view containing real-time transactions status, detailling which transactions the receiver is actively processing, which are sent to writers, and whether the transaction is being streamed to a file or to a writer. It also reports the writer's

progress on transactions currently being applied.

bdr.stat_receiver_transactions columns

Column

sub_name

remote_node

remote_xid
remote_commit_timestamp
remote_commit_lsn
origin_node_name

origin_lsn
txn_start_received_at
txn_last_change_received_at
txn_last_change_received_lsn
txn_source

is_streaming

txn_status

commit_position

writer_pid

txn_size

txn_apply_progress
last_change_applied_type

last_change_applied_lsn

bdr.stat_relation

Type

name
bdr.regnode
xid

Description
Name of the subscription
Name of the upstream node sending the transactions

Transaction identifier from the upstream node

timestamp with time zone ~ Transaction commit timestamp from the upstream node

pg_lsn
bdr.regnode

pg_lsn

Transaction commit LSN from the upstream node
Origin node where the transaction originally committed

LSN of the transaction on the origin node

timestamp with time zone ~ Timestamp when the transaction was first received at the downstream node

timestamp with time zone Timestamp when the last change for the transaction was received at the downstream node

pg_lsn
text
text
text
integer
integer
text
text

text

pg_lsn

LSN corresponding to the last change received

Source of this transaction (replay/file/stream)

Whether the transaction is currently streaming from the upstream
Status of the transaction

Position of this transaction in the commit queue

PID of the writer process applying the transaction, if applicable

Size of the transaction (may change if the transaction is still streaming)
Progress of the transaction, if currently being applied by the writer
Type of the last change applied by the writer

LSN of the last change applied by the writer

Shows apply statistics for each relation. Contains data only if tracking is enabled with bdr.track_relation_apply and if data was replicated for a given relation.

lock_acquire_time isupdated onlyif bdr.track_apply_lock_timing issetto on (default: off).

You can reset the stored relation statistics by calling bdr.reset_relation_stats() .

bdr.stat_relation columns

Column Type

nspname name

relname name

relid oid

total_time double precision
ninsert bigint

nupdate bigint

ndelete bigint

ntruncate bigint
shared_blks_hit bigint

shared_blks_read bigint
shared_blks_dirtied bigint
shared_blks_written bigint

blk_read_time double precision
blk_write_time double precision
lock_acquire_time double precision
stats_reset timestamp with time zone

Description

Name of the relation's schema

Name of the relation

OID of the relation

Total time spent processing replication for the relation, in milliseconds

Number of inserts replicated for the relation

Number of updates replicated for the relation

Number of deletes replicated for the relation

Number of truncates replicated for the relation

Total number of shared block cache hits for the relation

Total number of shared blocks read for the relation

Total number of shared blocks dirtied for the relation

Total number of shared blocks written for the relation

Total time spent reading blocks for the relation, in milliseconds (if track_io_timing isenabled, otherwise zero)
Total time spent writing blocks for the relation, in milliseconds (if track_io_timing is enabled, otherwise zero)
Total time spent acquiring locks on the relation, in milliseconds (if bdr.track_apply_lock_timing isenabled, otherwise zero)

Time of the last statistics reset (performed by bdr.reset_relation_stats())

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

279

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW

EDB Postgres Distributed (PGD)

bdr.stat_routing_candidate_state

Aview of information about the routing candidate nodes on the Raft leader (empty on other nodes).

bdr.stat_routing_candidate_state columns

Column Type Description

node_group_name name The group this information is for (each group can have a separate routing proxy)
node_name name Candidate node name

node_route_fence boolean The node is fenced (when true it cannot become leader or read-only connection target)
node_route_reads boolean The node is being considered as a read-only connection target

node_route_writes boolean The node is being considered as a write lead candidate.

last_message_time timestamp with time zone The time of the last Raft message (any, including requests) seen by this node (used to check liveness of node)

bdr.stat_routing_state

Aview of the state of the connection routing which the Connection Manager uses to route the connections.

bdr.stat_routing_state columns

Column Type Description

node_group_name name The group this is information for (each group can have a separate routing proxy)
write_lead_name name Name of the write lead node

previous_write_lead_name name Name of the previous write lead node

read_names name[] Array of nodes to which read-only connections are routed
write_candidate_names name[] Nodes that match all criteria needed to become write lead in case of failover

Nodes that match all criteria needed to become read-only connection targets in case of

read_candidate_names name[] N
failover

bdr.stat_subscription

Shows apply statistics for each subscription. Contains data only if tracking is enabled with bdr.track_subscription_apply .

You can reset the stored subscription statistics by calling bdr.reset_subscription_stats() .

bdr.stat_subscription columns

Column Type Description

sub_name name Name of the subscription

subid oid 0ID of the subscription

mean_apply_time double precision Average time per apply transaction, in milliseconds
nconnect bigint Number of times this subscription has connected upstream
ncommit bigint Number of commits this subscription did

nabort bigint Number of aborts writer did for this subscription

nerror bigint Number of errors writer has hit for this subscription
nskippedtx bigint Number of transactions skipped by writer for this subscription (due to skip_transaction conflict resolver)
ninsert bigint Number of inserts this subscription did

nupdate bigint Number of updates this subscription did

ndelete bigint Number of deletes this subscription did

ntruncate bigint Number of truncates this subscription did

nddl bigint Number of DDL operations this subscription has executed
ndeadlocks bigint Number of errors that were caused by deadlocks

nretries bigint Number of retries the writer did (without going for full restart/reconnect)
nstream_writer bigint Number of transactions streamed to writer

nstream_file bigint Number of transactions streamed to file

nstream_commit bigint Number of streaming transactions committed
nstream_abort bigint Number of streaming transactions aborted

nstream_start bigint Number of STREAM START messages processed
nstream_stop bigint Number of STREAM STOP messages processed
nstream_commit bigint Number of streaming transactions committed
nstream_abort bigint Number of streaming transactions aborted
nstream_prepare bigint Number of streaming transactions prepared
nstream_insert bigint Number of streaming inserts processed

nstream_update bigint Number of streaming updates processed

nstream_delete bigint Number of streaming deletes processed

nstream_truncate bigint Number of streaming truncates processed
shared_blks_hit bigint Total number of shared block cache hits by the subscription
shared_blks_read bigint Total number of shared blocks read by the subscription
shared_blks_dirtied bigint Total number of shared blocks dirtied by the subscription
shared_blks_written bigint Total number of shared blocks written by the subscription

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 280

Column
blk_read_time
blk_write_time
connect_time
last_disconnect_time
start_lsn
retries_at_same_lsn
curr_ncommit
npre_commit_confirmations
npre_commit
ncommit_prepared
nabort_prepared
nprovisional_waits
ntuple_waits
ncommit_waits

stats_reset

bdr.stat_worker

Type

double precision

double precision
timestamp with time zone
timestamp with time zone
pg_Llsn

bigint

bigint

bigint

bigint

bigint

bigint

bigint

bigint

bigint

timestamp with time zone

EDB Postgres Distributed (PGD)

Description

Total time the subscription spent reading blocks, in milliseconds (if track_io_timing isenabled, otherwise zero)
Total time the subscription spent writing blocks, in milliseconds (if track_io_timing is enabled, otherwise zero)
Time when the current upstream connection was established, NULL if not connected

Time when the last upstream connection was dropped

LSN from which this subscription requested to start replication from the upstream

Number of attempts the subscription was restarted from the same LSN value

Number of commits this subscription did after the current connection was established

Number of precommit confirmations by CAMO partners

Number of precommits

Number of prepared transaction commits

Number of prepared transaction aborts

Number of update/delete operations on same tuples by concurrent apply transactions. These are provisional waits. See Parallel Apply
Number of update/delete operations that waited to be safely applied. See Parallel Apply

Number of fully applied transactions that had to wait before being committed. See Parallel Apply

Time of the last statistics reset (performed by bdr.reset_subscription_stats())

Aview containing summary information and per worker statistics for PGD manager workers.

bdr.stat_worker columns

Column

worker_role

worker_pid

sub_name

worker_start
worker_xact_start

worker_xid

worker_xmin
worker_backend_state_change

worker_backend_state
wait_event_type

wait_event
blocked_by_pids
query

worker_query_start

bdr.stat_writer

Type

text

integer

name

timestamp with time zone
timestamp with time zone
xid

xid

timestamp with time zone

text
text

text
integer[]
text

timestamp with time zone

Description

Role of the BDR worker

Process id of the worker

Name of the subscription the worker is related to, if any

Time at which the worker started

Time at which the worker started the local db transaction, see xact_start in pg_stat_activity for more details
Transaction id of the worker, see backend_xid in pg_stat_activity for more details

Oldest transaction id needed by the worker, see backend_xmin in pg_stat_activity for more details

Backend state change timestamp see state_change in pg_stat_activity for more details

Current backend state see state in pg_stat_activity for more details

The type of wait event the worker is currently waitiing on, if any (see wait_event_type in pg_stat_activity for more
details)

The exact event the worker is waiting on, if any (see wait_event in pg_stat_activity for more details)
List of PIDs blocking the worker, if any
Query currently being run by the worker

Timestamp at which the current query run by the worker started

A view containing summary information and statistics for each subscription replication writer. There can be multiple writers for each subscription.

bdr.stat_writer columns

Column

worker_role
worker_state
worker_pid

sub_name

writer_nr

nxacts

ncommits

naborts
commit_queue_position
xact_source_xid
xact_source_commit_lsn
xact_nchanges
xact_origin_node_name

xact_origin_lsn
xact_origin_timestamp

streaming_allowed
is_streaming
nstream_file

nstream_writer

worker_start

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

Type
text
text
integer
name
integer
bigint
bigint
bigint
integer
xid
pg_Llsn
bigint
name
pg_lsn

timestamp with
time zone

boolean
boolean

bigint

bigint
timestamp with
time zone

Description

Role of the BDR worker (always 'writer')

State of the worker (can be 'running', 'down’, or 'disabled’)

Process id of the writer

Name of the subscription the writer belongs to

Writer index in the writer group for the same subscription

The number of transactions the writer has processed since start

The number of commits the writer processed since start

The number of aborts the writer processed since start

Position in the commit queue, when serializing transactions against other writers in the same writer group
Transaction id of the currently processed transaction on the source node

LSN of the currently processed transaction on the source node

The number of changes in the currently processed transaction that have been written (updated every 1000 changes)
Origin node of the currently processed transaction

Origin LSN of the currently processed transaction
Origin commit timestamp of the currently processed transaction

The writer can receive direct stream for large transactions
The writer is currently receiving a direct stream of a large transaction
The number of stream files the writer has processed

The number of directly streamed transactions the writer has processed

The time at which the writer started

281

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW

Column Type Description
ti t: ith - .
worker_xact_start ;mes amp wi The time at which the writer start the local db transaction (see xact_start in pg_stat_activity for more details)
ime zone
worker_xid xid Transaction id of the worker (see backend_x1id in pg_stat_activity for more details)
worker_xmin xid Oldest transaction id needed by the worker (see backend_xmin in pg_stat_activity for more details)

worker_backend_state_change

worker_backend_state
wait_event_type
wait_event
blocked_by_pids
query

worker_query_start

command_progress_cmdtag

command_progress_relation
command_progress_phase
command_progress_count

command_progress_phase_nr

timestamp with

time zone

text Current backend state (see state in pg_stat_activity for more details)

text The type of wait event the writer is currently waiting on, if any (see event_type in pg_stat_activity for more details)
text The exact event the writer is waiting on, if any (see wait_event in pg_stat_activity for more details)

integer[] List of PIDs blocking the writer, if any

text Query currently being run by the writer (normally only set for DDL)

timestamp with

Backend state change timestamp (see state_change in pg_stat_activity for more details)

Timestamp at which the current query run by the worker started

EDB Postgres Distributed (PGD)

For commands with progress tracking, identifies the command current processed by the writer (can be one of 'CREATE INDEX','CREATE INDEX CONCURRENTLY', 'REINDEX',

time zone

text 'REINDEX CONCURRENTLY', 'CLUSTER', and 'VACUUM FULL")

text For commands with progress tracking, identifies therelation which the command is working on

text For commands with progress tracking, name of the current phase the command is in, refer toProgress Reporting in the Postgres documentation for details
integer For commands with progress tracking, the number of phases this command has gone through

integer For commands with progress tracking, the number of the phase of command_progress_count

command_progress_phase_tuples_total real

command_progress_tuples_done

bdr.subscription

bigint

For commands with progress tracking, the number of rows the current phase of the command has to process (if the phase is process rows)

For commands with progress tracking, the number of rows the current phase of the command has already processed (if the phase is process rows)

This catalog table lists all the subscriptions owned by the local PGD node and their modes.

bdr.subscription columns

Name Type
sub_id oid
sub_name name
nodegroup_id oid
origin_node_id oid
source_node_id oid
target_node_id oid

subscription_mode char

sub_enabled bool
apply_delay interval
slot_name name
origin_name name
num_writers int
streaming_mode char
replication_sets text(]
forward_origin text(]

Description

ID of the subscription
Name of the subscription
1D of nodegroup

1D of origin node

1D of source node

1D of target node

Mode of subscription

Whether the subscription is enabled (should be replication)

How much behind should the apply of changes on this subscription be (normally

0)

Slot on upstream used by this subscription

Local origin used by this subscription

Number of writer processes this subscription uses

Streaming configuration for the subscription

Replication sets replicated by this subscription (NULL = all)

Origins forwarded by this subscription (NULL = all)

bdr.subscription_summary

This view contains summary information about all PGD subscriptions that the local node has to other nodes.

bdr.subscription_summary columns

Name Type Description

node_group_name name Name of the PGD group the node is part of

sub_name name Name of the subscription

origin_name name Name of the origin node

target_name name Name of the target node (normally local node)

sub_enabled bool Is the subscription enabled

sub_slot_name name Slot name on the origin node used by this subscription

sub_replication_sets text[] Replication sets subscribed

sub_forward_origins text(] Does the subscription accept changes forwarded from other nodes besides the origin
sub_apply_delay interval Delay transactions by this much compared to the origin

sub_origin_name name Replication origin name used by this subscription

bdr_subscription_mode char Subscription mode

subscription_status text Status of the subscription worker

node_group_id oid 01D of the PGD group the node is part of

sub_id oid OID of the subscription

origin_id oid 0ID of the origin node

target_id oid OID of the target node

receive_lsn pg_lsn Latest LSN of any change or message received (this can go backwards in case of restarts)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

282

https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/monitoring-stats.html#MONITORING-PG-STAT-ACTIVITY-VIEW
https://www.postgresql.org/docs/current/progress-reporting.html

Name Type Description

receive_commit_lsn pg_lsn Latest LSN of last COMMIT received (this can go backwards in case of restarts)
last_xact_replay_lsn pg_lsn LSN of last transaction replayed on this subscription

last_xact_flush_lsn timestamptz LSN of last transaction replayed on this subscription that's flushed durably to disk

last_xact_replay_timestamp timestamptz ~ Timestamp of last transaction replayed on this subscription

bdr.tables

This view lists information about table membership in replication sets. If a table exists in multiple replication sets, it appears multiple times in this table.

bdr.tables columns

Name Type Description

relid oid 0ID of the relation

nspname name Name of the schema relation is in

relname name Name of the relation

set_name name Name of the replication set

set_ops text[] List of replicated operations

rel_columns text[] List of replicated columns (NULL = all columns) (*)
row_filter text Row filtering expression

Conflict detection method used: row_origin (default), row_version or

conflict_detection text
column_Llevel

(*) These columns are reserved for future use and should currently be NULL

bdr.taskmgr_work_queue

Contains work items created and processed by task manager. The work items are created on only one node and processed on different nodes.

bdr . taskmgr_work_queue columns

Column Type Description

ap_wq_workid bigint Unique ID of the work item

ap_wq_ruleid int ID of the rule listed in autopartition_rules. Rules are specified using bdr.autopartition command
ap_wq_relname name Name of the relation the task belongs to

ap_wq_relnamespace name Name of the tablespace specified in rule for this work item

ap_wq_partname name Name of the partition created by the workitem

ap_wq_work_category char Work category; can be ¢ (create partition), m (migrate partition), d (drop partition), or a (alter partition)

ap_wq_work_sql text SQL query for the work item

ap_wq_work_depends Oid[] 0IDs of the nodes on which the work item depends

bdr.taskmgr_workitem_status

The status of the work items that is updated locally on each node.

bdr . taskmgr_workitem_status columns

Column Type Description

ap_wi_workid bigint ID of the work item

ap_wi_nodeid Oid 01D of the node on which the work item is being processed
ap_wi_status char Status; can be q (queued), ¢ (complete), f (failed), or u (unknown)

ap_wi_started_at timestamptz ~ Start timestamptz of work item

ap_wi_finished_at timestamptz ~ End timestamptz of work item

bdr.taskmgr_local_work_queue

EDB Postgres Distributed (PGD)

Contains work items created and processed by the task manager. This is similar to bdr.taskmgr_work_queue , except that these work items are for locally managed tables. Each node creates and processes its own local work items,

independent of other nodes in the cluster.

bdr . taskmgr_local_work_queue columns

Column Type Description

ap_wq_workid bigint Unique ID of the work item

ap_wq_ruleid int ID of the rule listed in autopartition_rules. Rules are specified using bdr.autopartition command
ap_wq_relname name Name of the relation the task belongs to

ap_wq_relnamespace name Name of the tablespace specified in rule for this work item.

ap_wq_partname name Name of the partition created by the workitem

ap_wq_work_category char Category; can be ¢ (create partition), m (migrate partition), d (drop partition), or a (alter partition)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

283

EDB Postgres Distributed (PGD)

Column Type Description
ap_wq_work_sql text SQL query for the work item

ap_wq_work_depends Oid[] Always NULL

bdr.taskmgr_local_workitem_status

The status of the work items for locally managed tables.

bdr.taskmgr_local_workitem_status columns

Column Type Description

ap_wi_workid bigint ID of the work item

ap_wi_nodeid 0id 0ID of the node on which the work item is being processed
ap_wi_status char Status; can be q (queued), ¢ (complete), f (failed), or u (unknown)

ap_wi_started_at timestamptz ~ Start timestamptz of work item

ap_wi_finished_at timestamptz ~ End timestamptz of work item

bdr.trigger

In this view, you can see all the stream triggers created. Often triggers here are created from bdr.create_conflict_trigger .

bdr.trigger columns

Name Type Description
trigger_id oid 1D of the trigger

trigger_reloid regclass Name of the relating

function
trigger_pgtgid oid Postgres trigger ID
trigger_type char Type of trigger call
trigger_name name Name of the trigger

bdr.triggers

An expanded view of bdr.trigger with columns that are easier to read.

Name Type Description

trigger_name name Name of the trigger
event_manipulation text Operations

trigger_type bdr.trigger_type Type of trigger
trigger_table bdr.trigger_reloid ~ Table that calls the trigger
trigger_function name Function used

bdr.workers

Information about running PGD worker processes.

This can be joined with bdr.stat_activity using pid to get even more insight into the state of PGD workers.

bdr.workers Columns

Name Type Description
worker_pid int Process ID of the worker process
worker_role int Numeric representation of worker role

worker_role_name text Name of the worker role

worker_subid oid Subscription ID if the worker is associated with one

bdr.writers

Specific information about PGD writer processes.

bdr.writers columns

Name Type Description

sub_name name Name of the subscription

writer_nr int Number of changes applied by the writer in the current transaction
pid int Process ID of the worker process

syncing_rel int 0OID of the relation being synchronized (if any)

streaming_allowed text Can this writer be target of direct to writer streaming

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 284

Name Type
is_streaming bool
remote_xid xid
remote_commit_lsn pg_lsn

commit_queue_position int

Description

Is there transaction being streamed to this writer

Remote transaction id of the transaction being processed (if any)

LSN of last commit processed

Position in the internal commit queue

Number of transactions processed by this writer

Number of transactions committed by this writer

Number of transactions aborted by this writer

Number of streamed-to-file transactions processed by this writer
Number of streamed-to-writer transactions processed by this writer

Number of changes processed by this writer (updated every 1000

Node where the transaction originated

LSN of the transaction at the origin

Method used to apply the transaction (replay / file / stream)

Commit timestamp of the transaction at the origin

Size of the transaction, if known

Progress of the transaction so far

Type of the last change applied by the writer

nxacts bigint

ncommits bigint

naborts bigint

nstream_file bigint

nstream_writer bigint

xact_nchanges bigint rows)
xact_origin_node_id oid

xact_origin_lsn pg_lsn

xact_origin_ts timestamp with time zone
xact_apply_source text

xact_apply_size bigint
xact_apply_progress bigint
remote_change_type "char"
remote_change_lsn pg_lsn

bdr.worker_tasks

The bdr.worker_tasks view shows PGD's current worker launch rate limiting state as well as some basic statistics on background worker launch and registration activity.

LSN of the last change applied by the writer

EDB Postgres Distributed (PGD)

Unlike the other views listed here, it isn't specific to the current database and PGD node. State for all PGD nodes on the current PostgreSQL instance is shown. Join on the current database to filter it.

bdr.worker_tasks doesn't track walsenders and output plugins.

bdr.worker_tasks columns

Column
task_key_worker_role
task_key_worker_role_name
task_key_dboid

datname

task_key_subid

sub_name
task_key_ext_libname
task_key_ext_funcname
task_key_ext_workername
task_key_remoterelid
task_pid

task_registered
since_registered
task_attached

since_attached

task_exited

since_exited

task_success
task_next_launch_not_before
until_launch_allowed
task_last_launch_requestor_pid
task_last_launch_request_time
since_last_request
task_last_launch_request_approved
task_nrequests
task_nregistrations
task_prev_pid
task_prev_registered
since_prev_registered
task_prev_launched
since_prev_launched
task_prev_exited
since_prev_exited
task_first_registered

since_first_registered

Type

integer

text

oid

name

oid

name

name

name

name

oid

integer

timestamp with time zone
interval

timestamp with time zone
interval

timestamp with time zone
interval

boolean

timestamp with time zone
interval

integer

timestamp with time zone
interval

boolean

integer

integer

integer

timestamp with time zone
interval

timestamp with time zone
interval

timestamp with time zone
interval

timestamp with time zone

interval

Description

Worker role identifier

Worker role name

Database identifier, if available

Name of the database, if available
Subscription identifier, if available

Name of the subscription, if available
Name of the library (most likely bdr)
Name of the function entry point

Name assigned to the worker

Identifier of the remote syncing relation, if available
Process ID of the worker

Worker registration timestamp

Interval since the worker registered
Worker attach timestamp

Interval since the worker attached
Worker exit timestamp

Interval since the worker exited

Is worker still running?

Timestamp when the worker will be restarted again
Time remaining for next launch

Process ID that requested launch
Timestamp when the request was made
Interval since the last request

Did the last request succeed?

Number of requests

Number of registrations

Process ID of the previous generation
Timestamp of the previous registered task
Interval since the previous registration
Timestamp of the previous launch

Interval since the previous launch
Timestamp when the previous task exited
Interval since the previous task exited
Timestamp when the first registration happened

Interval since the first registration

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

285

EDB Postgres Distributed (PGD)

28.1.2 System functions

Perform PGD management primarily by using functions you call from SQL. All functions in PGD are exposed in the bdr schema. Schema qualify any calls to these functions instead of putting bdr inthe search_path.

Version information functions

bdr.bdr_version

This function retrieves the textual representation of the version of the BDR extension currently in use.

bdr.bdr_version_num

This function retrieves the version number of the BDR extension that is currently in use. Version numbers are monotonically increasing, allowing this value to be used for less-than and greater-than comparisons.

The following formula returns the version number consisting of major version, minor version, and patch release into a single numerical value:

MAJOR_VERSION * 10000 + MINOR_VERSION * 100 + PATCH_RELEASE

System information functions

bdr.get_relation_stats

Returns the relation information.

bdr.get_subscription_stats

Returns the current subscription statistics.

System and progress information parameters

PGD exposes some parameters that you can query directly in SQL using, for example, SHOW or the current_setting() function.You canalsouse PQparameterStatus (orequivalent) from a client application.

bdr.local_node_1id

When you initialize a session, this is set to the node id the client is connected to. This allows an application to figure out the node it's connected to, even behind a transparent proxy.

It's also used with Connection pools and proxies.

bdr.last_committed_lsn

After every COMMIT of an asynchronous transaction, this parameter is updated to point to the end of the commit record on the origin node. Combining it with bdr.wait_for_apply_queue, allows applications to perform causal reads
across multiple nodes, that is, to wait until a transaction becomes remotely visible.

transaction_id

If a CAMO transaction is in progress, transaction_id isupdated to show the assigned transaction id. You can query this parameter only by using using PQparameterStatus or equivalent, and it isn't accessible in SQL. See Application
use for a usage example.

Node status functions
bdr.1is_node_connected

Synopsis
bdr.is_node_connected(node_name name)

Returns boolean by checking if the walsender for a given peer is active on this node.

bdr.is_node_ready

Synopsis

bdr.is_node_ready(node_name name, span interval DEFAULT NULL)

Returns boolean by checking if the lag is lower than the given span or lower than the timeout for TO ASYNC otherwise.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 286

EDB Postgres Distributed (PGD)

Consensus function

bdr.consensus_disable

Disables the consensus worker on the local node until server restart or until it's reenabled using bdr . consensus_enable (whichever happens first).
Warning

Disabling consensus disables some features of PGD and affects availability of the EDB Postgres Distributed cluster if left disabled for a long time. Use this function only when working with Technical Support.

bdr.consensus_enable

Reenabled disabled consensus worker on local node.

bdr.consensus_proto_version

Returns currently used consensus protocol version by the local node.

Needed by the PGD group reconfiguration internal mechanisms.

bdr.consensus_snapshot_export

Synopsis

bdr.consensus_snapshot_export(version integer DEFAULT NULL)

Generate a new PGD consensus snapshot from the currently committed-and-applied state of the local node and return it as bytea.

By default, a snapshot for the highest supported Raft version is exported. But you can override that by passing an explicit version number.

The exporting node doesn't have to be the current Raft leader, and it doesn't need to be completely up to date with the latest state on the leader. However, bdr.consensus_snapshot_import () might not accept such a snapshot.
The new snapshot isn't automatically stored to the local node's bdr.local_consensus_snapshot table. It's only returned to the caller.

The generated snapshot might be passed to bdr.consensus_snapshot_import() onany other nodes in the same PGD node group that's behind the exporting node's Raft log position.

The local PGD consensus worker must be disabled for this function to work. Typical usage is:

SELECT bdr.bdr_consensus_disable();
\copy (SELECT * FROM bdr.consensus_snapshot_export()) TO 'my_node_consensus_snapshot.data'
SELECT bdr.bdr_consensus_enable();

While the PGD consensus worker is disabled:

DDL locking attempts on the node fail or time out.

galloc sequences don't get new values.

Eager and CAMO transactions pause or error.

Other functionality that needs the distributed consensus system is disrupted. The required downtime is generally very brief.

Depending on the use case, it might be practical to extract a snapshot that already exists from the snapshot field of the bdr.local_consensus_snapshot table and use that instead. Doing so doesn't require you to stop the
consensus worker.

bdr.consensus_snapshot_import

Synopsis

bdr.consensus_snapshot_import(snapshot
bytea)

Import a consensus snapshot that was exported by bdr.consensus_snapshot_export() , usually from another node in the same PGD node group.
It's also possible to use a snapshot extracted directly from the snapshot field of the bdr.local_consensus_snapshot table on another node.
This function is useful for resetting a PGD node's catalog state to a known good state in case of corruption or user error.

You can import the snapshot if the importing node's apply_index is less than or equal to the snapshot-exporting node's commit_index when the snapshot was generated. (See bdr.get_raft_status() .) A node that can't accept
the snapshot because its log is already too far ahead raises an error and makes no changes. The imported snapshot doesn't have to be completely up to date, as once the snapshot is imported the node fetches the remaining changes from the
current leader.

The PGD consensus worker must be disabled on the importing node for this function to work. See notes on bdr.consensus_snapshot_export() for details.

It's possible to use this function to force the local node to generate a new Raft snapshot by running:
SELECT bdr.consensus_snapshot_import(bdr.consensus_snapshot_export());

This approach might also truncate the Raft logs up to the current applied log position.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 287

EDB Postgres Distributed (PGD)

bdr.consensus_snapshot_verify

Synopsis

bdr.consensus_snapshot_verify(snapshot
bytea)

Verify the given consensus snapshot that was exported by bdr.consensus_snapshot_export() . The snapshot header contains the version with which it was generated and the node tries to verify it against the same version.

The snapshot might have been exported on the same node or any other node in the cluster. If the node verifying the snapshot doesn't support the version of the exported snapshot, then an error is raised.

bdr.get_consensus_status

Returns status information about the current consensus (Raft) worker.

bdr.get_raft_status

Returns status information about the current consensus (Raft) worker. Alias for bdr . get_consensus_status.

bdr.raft_leadership_transfer

Synopsis

bdr.raft_leadership_transfer(node_name text,
wait_for_completion boolean,
node_group_name text DEFAULT NULL)

Request the node identified by node_name to be the Raft leader. The request can be initiated from any of the PGD nodes and is internally forwarded to the current leader to transfer the leadership to the designated node. The designated node
must be an ACTIVE PGD node with full voting rights.

If wait_for_completion isfalse, the request is served on a best-effort basis. If the node can't become a leader in the bdr.raft_global_lection_timeout period, then some other capable node becomes the leader again. Also,
the leadership can change over the period of time per Raft protocol. A true return result indicates only that the request was submitted successfully.

If wait_for_completion is true,then the function waits until the given node becomes the new leader and possibly waits infinitely if the requested node fails to become Raft leader (for example, due to network issues). We therefore
recommend that you always seta statement_timeout with wait_for_completion to preventan infinite loop.

The node_group_name is optional and can be used to specify the name of the node group where the leadership transfer happens. If not specified, it defaults to NULL, which is interpreted as the top-level group in the cluster. If the
node_group_name is specified, the function transfers leadership only within the specified node group.

Utility functions

bdr.wait_slot_confirm_1lsn

Allows you to wait until the last write on this session was replayed to one or all nodes.

Waits until a slot passes a certain LSN. If no position is supplied, the current write position is used on the local node.

If no slot name is passed, it waits until all PGD slots pass the LSN.

The function polls every 1000 ms for changes from other nodes.

If a slot is dropped concurrently, the wait ends for that slot. If a node is currently down and isn't updating its slot, then the wait continues. You might want to set statement_timeout tocomplete earlier in that case.

If you are using Optimized Topology, we recommend using bdr.wait_node_confirm_Llsn instead.)

Synopsis

bdr.wait_slot_confirm_lsn(slot_name text DEFAULT NULL, target_lsn pg_lsn DEFAULT
NULL)

Notes

Requires bdr_application privileges to use.

Parameters
Parameter Description

Name of the replication slot to wait for. If NULL, waits for all PGD
slot_name

slots.

target_1sn LSN to wait for. If NULL, uses the current write LSN on the local node.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 288

https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/subscriber_only/optimizing-so

EDB Postgres Distributed (PGD)

bdr.wait_node_confirm_1lsn

Wait until a node passes a certain LSN.
This function allows you to wait until the last write on this session was replayed to one or all nodes.

Upon being called, the function waits for a node to pass a certain LSN. If no LSN is supplied, the current wal_flush_lsn (using the pg_current_wal_flush_lsn() function) position is used on the local node. Supplying a node name
parameter tells the function to wait for that node to pass the LSN. If no node name is supplied (by passing NULL), the function waits until all the nodes pass the LSN.

We recommend using this function if you are using Optimized Topology instead of bdr.wait_slot_confirm_lsn.

This is because in an Optimized Topology, not all nodes have replication slots, so the function bdr.wait_slot_confirm_Tlsn might not work as expected. bdr.wait_node_confirm_1sn isdesigned to work with nodes that don't
have replication slots, using alternative strategies to determine the progress of a node.

If a node is currently down, isn't updating, or simply can't be connected to, the wait will continue indefinitely. To avoid this condition, set the statement_timeout to the maximum amount of time you are prepared to wait.

Synopsis

bdr.wait_node_confirm_lsn(node_name text DEFAULT NULL, target_lsn pg_lsn DEFAULT

NULL)
Parameters
Parameter Description
node_name Name of the node to wait for. If NULL, waits for all nodes.
LSN to wait for. If NULL, uses the current wal_flush_lsn on the local
target_lsn
node.
Notes

Requires bdr_application privileges to use.

bdr.wait_for_apply_queue

The function bdr.wait_for_apply_queue allowsa PGD node to wait for the local application of certain transactions originating from a given PGD node. It returns only after all transactions from that peer node are applied locally. An
application or a proxy can use this function to prevent stale reads.

For convenience, PGD provides a variant of this function for CAMO and the CAMO partner node. See bdr.wait_for_camo_partner_queue.

In case a specific LSN is given, that's the point in the recovery stream from which the peer waits. You can use this with bdr.last_committed_lsn retrieved from that peer node on a previous or concurrent connection.

If the given target_1lsn is NULL, this function checks the local receive buffer and uses the LSN of the last transaction received from the given peer node, effectively waiting for all transactions already received to be applied. This is
especially useful in case the peer node has failed and it's not known which transactions were sent. In this case, transactions that are still in transit or buffered on the sender side aren't waited for.

Synopsis

bdr.wait_for_apply_queue(peer_node_name TEXT, target_lsn pg_lsn)

Parameters

Parameter Description

The name of the peer node from which incoming transactions are expected to be queued and to wait for. If NULL, waits for all peer node's apply queue to be

peer_node_name
consumed.

target_1sn The LSN in the replication stream from the peer node to wait for, usually learned by way of bdr.last_committed_lsn from the peer node.

bdr.get_node_sub_receive_lsn

You can use this function on a subscriber to get the last LSN that was received from the given origin. It can be either unfiltered or filtered to take into account only relevant LSN increments for transactions to be applied.

The difference between the output of this function and the output of bdr.get_node_sub_apply_1lsn() measures the size of the corresponding apply queue.

Synopsis

bdr.get_node_sub_receive_lsn(node_name name, committed bool default true)

Parameters

Parameter Description
node_name The name of the node that's the source of the replication stream whose LSN is being retrieved.

The default (true) makes this function take into account only commits of transactions received rather than the last LSN overall. This includes actions that have no effect on the subscriber

committed
node.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 289

https://www.enterprisedb.com/docs/pgd/6/reference/tables-views-functions/functions#bdrwait_slot_confirm_lsn

bdr.get_node_sub_apply_1lsn

You can use this function on a subscriber to get the last LSN that was received and applied from the given origin.

Synopsis

bdr.get_node_sub_apply_lsn(node_name name)

Parameters

Parameter Description

node_name The name of the node that's the source of the replication stream whose LSN is being retrieved.

bdr.replicate_ddl_command

Function to replicate a DDL command to a group of nodes.

Synopsis

bdr.replicate_dd1_command(ddl_cmd text,
replication_sets

text[],
dd1_locking
text,
execute_locally bool)
Parameters
Parameter Description
dd1l_cmd DDL command to execute.

replication_sets

EDB Postgres Distributed (PGD)

An array of replication set names to apply the ddlcommand to. If NULL (or the function is passed only the ddlcommand), this parameter is set to the active PGD groups's default replication

set.
dd1_locking Astring that sets the bdr.dd1_locking value while replicating. Defaults to the GUC value for bdr.dd1_locking on the local system that's running replicate_dd1l_command .
execute_locally A Boolean that determines whether the DDL command executes locally. Defaults to true.

Notes

The only required parameter of this functionis dd1_cmd .

bdr.replicate_ddl_command() always replicates the command and is unaffected by the setting of bdr.dd1_replication.

bdr.run_on_all_nodes

Function to run a query on all nodes.

Warning

This function runs an arbitrary query on a remote node with the privileges of the user used for the internode connections as specified in the node's DSN. Use caution when granting privileges to this function.

Synopsis

bdr.run_on_all_nodes(query text)

Parameters

Parameter Description

query Arbitrary query to execute.

Notes

This function connects to other nodes and executes the query, returning a result from each of them in JSON format. Multiple rows might be returned from each node, encoded as a JSON array. Any errors, such as being unable to connect

because a node is down, are shown in the response field. No explicit statement_timeout or other runtime parameters are set, so defaults are used.

This function doesn't go through normal replication. It uses direct client connection to all known nodes. By default, the connection is created with bdr.dd1_replication = off,since the commands are already being sent to all of the

nodes in the cluster.

In PGD 6 and later, this function also sets bdr.xact_replication=off on the connection to ensure that transaction run locally only when the command is executed on another node.

Be careful when using this function since you risk breaking replication and causing inconsistencies between nodes. Use either transparent DDL replication or bdr.replicate_ddl_command() to replicate DDL. DDL might be blocked in a

future release.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

290

EDB Postgres Distributed (PGD)

Example

It's useful to use this function in monitoring, for example, as in the following query:

SELECT bdr.run_on_all_nodes($$
SELECT local_slot_name, origin_name, target_name,
replay_lag_size
FROM
bdr.node_slots
WHERE origin_name IS NOT
NULL

$$)5

This query returns something like this on a two-node cluster:

[
{
"dsn": "host=nodel port=5432 dbname=pgddb user=postgres ",
"node_id": "2232128708",
"response": {
"command_status": "SELECT 1",
"command_tuples": [
{
"origin_name": "nodel",
"target_name": '"node2",
"local_slot_name": "bdr_pgddb_bdrgroup_node2",
"replay_lag_size": "0@ bytes"
}
]
s
"node_name": "nodel"
1,
{
"dsn": "host=node2 port=5432 dbname=pgddb user=postgres ",
"node_id": "2058684375",
"response": {
"command_status": "SELECT 1",
"command_tuples": [
{
"origin_name": "node2",
"target_name": "nodel",
"local_slot_name": "bdr_pgddb_bdrgroup_nodel",
"replay_lag_size": "0 bytes"
}
]
s
"node_name": "node2"
}
]

bdr.run_on_nodes
Function to run a query on a specified list of nodes.
Warning

This function runs an arbitrary query on remote nodes with the privileges of the user used for the internode connections as specified in the node's DSN. Use caution when granting privileges to this function.

Synopsis

bdr.run_on_nodes(node_names text[], query text)

Parameters

Parameter Description

Text ARRAY of node names where the query is

node_names
executed.

query Arbitrary query to execute.

Notes

This function connects to other nodes and executes the query, returning a result from each of them in JSON format. Multiple rows can be returned from each node, encoded as a JSON array. Any errors, such as being unable to connect because
anode is down, are shown in the response field. No explicit statement_timeout or other runtime parameters are set, so defaults are used.

This function doesn't go through normal replication. It uses direct client connection to all known nodes. By default, the connection is created with bdr.dd1l_replication = off toavoid replication issues when the same replicated DDL

command is sent to multiple nodes.
In PGD 6 and later, this function also sets bdr.xact_replication=off on the connection to ensure that transactions run locally only when the command is executed on another node.

Be careful when using this function since you risk breaking replication and causing inconsistencies between nodes. For global schema changes, to replicate DDL, use either transparent DDL replication or
bdr.replicate_ddl_command() .

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 291

EDB Postgres Distributed (PGD)

bdr.run_on_group

Function to run a query on a group of nodes.
Warning

This function runs an arbitrary query on remote nodes with the privileges of the user used for the internode connections as specified in the node's DSN. Use caution when granting privileges to this function.

Synopsis

bdr.run_on_group(node_group_name text, query text)

Parameters

Parameter Description

Name of the node group where the query is

node_group_name
= S executed.

query Arbitrary query to execute.

Notes

This function connects to other nodes and executes the query, returning a result from each of them in JSON format. Multiple rows can be returned from each node, encoded as a JSON array. Any errors, such as being unable to connect because
anode is down, are shown in the response field. No explicit statement_timeout or other runtime parameters are set, so defaults are used.

This function doesn't go through normal replication. It uses direct client connection to all known nodes. By default, the connection is created with bdr.dd1_replication = off toavoid replication issues when the same replicated DDL
command is sent to multiple nodes.

In PGD 6 and later, this function also sets bdr.xact_replication=off onthe connection to ensure that transactions run locally only when the command is executed on another node.
Be careful when using this function since you risk breaking replication and causing inconsistencies between nodes in the group. For global schema changes, to replicate DDL, use either transparent DDL replication or

bdr.replicate_ddl_command() .

bdr.global_lock_table

This function acquires a global DML locks on a given table. See DDL locking details for information about global DML lock.

Synopsis

bdr.global_lock_table(relation regclass)

Parameters

Parameter Description

relation Name oroid of the relation to lock.

Notes

This function acquires the global DML lock independently of the dd1_Tlocking setting.

The bdr.global_lock_table function requires UPDATE, DELETE,or TRUNCATE privilege on the locked relation unless bdr.backwards_compatibility issetto 30618 or lower.

bdr.wait_for_xid_progress

You can use this function to wait for the given transaction (identified by its XID) originated at the given node (identified by its node id) to make enough progress on the cluster. The progress is defined as the transaction being applied on a node
and this node having seen all other replication changes done before the transaction is applied.
Synopsis

bdr.wait_for_xid_progress(origin_node_id oid, origin_topxid int4, allnodes boolean DEFAULT
true)

Parameters

Parameter Description
origin_node_id Node id of the node where the transaction originated.
origin_topxid XID of the transaction.

allnodes If true , wait for the transaction to progress on all nodes. Otherwise, wait only for the current node.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 292

https://www.enterprisedb.com/docs/pgd/latest/reference/ddl/ddl-locking.mdx

EDB Postgres Distributed (PGD)

Notes

You can use the function only for those transactions that replicated a DDL command because only those transactions are tracked currently. If awrong origin_node_id or origin_topxid issupplied, the function might wait forever or
until statement_timeout occurs.

bdr.local_group_slot_name

Returns the name of the group slot on the local node.

Example

pgddb=# SELECT bdr.local_group_slot_name();

local_group_slot_name

bdr_pgddb_bdrgroup

bdr.node_group_type

Returns the type of the given node group. Returned value is the same as what was passed to bdr.create_node_group () when the node group was created, except global is returned if the node_group_type was passed as NULL
when the group was created.

Example

pgddb=# SELECT bdr.node_group_type('bdrgroup');
node_group_type

global

bdr.alter_node_kind

PGD5 introduced a concept of Task Manager Leader node. The node is selected by PGD, but for upgraded clusters, it's important to set the node_kind properly for all nodes in the cluster. Do this manually after upgrading to the latest PGD
version by calling the bdr.alter_node_kind() SQL function for each node.

Synopsis

bdr.alter_node_kind(node_name text,
node_kind
text);

Parameters

Parameter Description
node_name Name of the node to change kind.

node_kind Kind of the node.

bdr.alter_subscription_skip_changes_upto

Because logical replication can replicate across versions, doesn't replicate global changes like roles, and can replicate selectively, sometimes the logical replication apply process can encounter an error and stop applying changes.

Wherever possible, fix such problems by making changes to the target side. CREATE any missing table that's blocking replication, CREATE a needed role, GRANT a necessary permission, and so on. But occasionally a problem can't be fixed
that way and it might be necessary to skip entirely over a transaction. Changes are skipped as entire transactions—all or nothing. To decide where to skip to, use log output to find the commit LSN, per the example that follows, or peek the
change stream with the logical decoding functions.

Unless a transaction made only one change, you often need to manually apply the transaction's effects on the target side, so it's important to save the problem transaction whenever possible, as shown in the examples that follow.

It's possible to skip over changes without bdr.alter_subscription_skip_changes_upto byusing pg_catalog.pg_logical_slot_get_binary_changes to skip tothe LSN of interest, so this is a convenience function. It
does do a faster skip, although it might bypass some kinds of errors in logical decoding.

This function works only on disabled subscriptions.

The usual sequence of steps is:

1. Identify the problem subscription and LSN of the problem commit.

2. Disable the subscription.

3. Save a copy of the transaction using pg_catalog.pg_logical_slot_peek_changes on the source node, if possible.
4. bdr.alter_subscription_skip_changes_upto on the target node.

5. Apply repaired or equivalent changes on the target manually, if necessary.

6. Reenable the subscription.

Warning

It's easy to make problems worse when using this function. Don't do anything unless you're certain it's the only option.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 293

EDB Postgres Distributed (PGD)

Synopsis

bdr.alter_subscription_skip_changes_upto(
subname text,
skip_upto_and_including
pg_lsn

)3

Example

Apply of a transaction is failing with an error, and you've determined that lower-impact fixes such as changes on the target side can't resolve this issue. You determine that you must skip the transaction.

In the error logs, find the commit record LSN to skip to, as in this example:

ERROR: XX000: CONFLICT: target_table_missing; resolver skip_if_recently_dropped returned an error: table does not exist
CONTEXT: during apply of INSERT from remote relation public.break_me in xact with commit-end 1lsn 0/300AC18 xid 131315
committs 2021-02-02 15:11:03.913792+01 (action #2) (effective sess origin id=2 1sn=0/300AC18)

while consuming 'I' message from receiver for subscription bdr_regression_bdrgroup_nodel_node2 (id=2667578509)

on node node2 (i1d=3367056606) from upstream node nodel (id=1148549230, reporiginid=2)

In this portion of log, you have the information you need: the_target_lsn: 0/300AC18 the_subscription: bdr_regression_bdrgroup_node1_node2
Next, disable the subscription so the apply worker doesn't try to connect to the replication slot:

SELECT
bdr.alter_subscription_disable('the_subscription');

You can't skip only parts of the transaction: it's all or nothing. So we strongly recommend that you save a record of it by copying it out on the provider side first, using the subscription's slot name.

\\copy (SELECT * FROM
pg_catalog.pg_logical_slot_peek_changes('the_slot_name',
'the_target_lsn', NULL, 'min_proto_version', '1', 'max_proto_version', '1',
'startup_params_format', 'l', 'proto_format', 'json'))
TO 'transaction_to_drop.csv' WITH (FORMAT csv);

This example is broken into multiple lines for readability, but issue it in a single line. \copy doesn't support multi-line commands.
You can skip the change by changing peek to get,but bdr....skip_changes_upto does a faster skip that avoids decoding and outputting all the data:

SELECT bdr.alter_subscription_skip_changes_upto('subscription_name',
'the_target_1lsn');

You can apply the same changes (or repaired versions of them) manually to the target node, using the dumped transaction contents as a guide.
Finally, reenable the subscription:

SELECT bdr.alter_subscription_enable('the_subscription');

Global advisory locks

PGD supports global advisory locks. These locks are similar to the advisory locks available in PostgreSQL except that the advisory locks supported by PGD are global. They follow semantics similar to DDL locks. So an advisory lock is obtained
by majority consensus and can be used even if one or more nodes are down or lagging behind, as long as a majority of all nodes can work together.

Currently only EXCLUSIVE locks are supported. So if another node or another backend on the same node has already acquired the advisory lock on the object, then other nodes or backends must wait for the lock to be released.

Advisory lock is transactional in nature. So the lock is released when the transaction ends unless you explicitly release it before the end of the transaction. In this case, it becomes available as soon as it's released. Session-level advisory locks
aren't currently supported.

Global advisory locks are reentrant. So if the same resource is locked three times, you must then unlock it three times to release it for use in other sessions.

bdr.global_advisory_lock

This function acquires an EXCLUSIVE lock on the provided object. If the lock isn't available, then it waits until the lock becomes available or the bdr. global_lock_timeout is reached.

Synopsis

bdr.global_advisory_lock(key bigint)

parameters

e key — The object on which an advisory lock is acquired.

Synopsis

bdr.global_advisory_lock(keyl integer, key2 integer)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 294

EDB Postgres Distributed (PGD)

Parameters

Parameter Description
keyl First part of the composite key.

key2 Second part of the composite key.

bdr.global_advisory_unlock

This function releases a previously acquired lock on the application-defined source. The lock must have been obtained in the same transaction by the application. Otherwise, an error is raised.

Synopsis

bdr.global_advisory_unlock(key bigint)

Parameters
Parameter Description
key The object on which an advisory lock is acquired.

Synopsis

bdr.global_advisory_unlock(keyl integer, key2 integer)

Parameters

Parameter Description
keyl First part of the composite key.

key2 Second part of the composite key.

Monitoring functions

bdr.monitor_group_versions

To provide a cluster-wide version check, this function uses PGD version information returned from the view bdr.group_version_details.

Synopsis

bdr.monitor_group_versions()

Notes

This function returns a record with fields status and message , as explained in Monitoring.

This function calls bdr.run_on_all_nodes() .

bdr.monitor_group_raft

To provide a cluster-wide Raft check, this function uses PGD Raft information returned from the view bdr.group_raft_details.

Synopsis

bdr.monitor_group_raft()

Parameters
Parameter Description

node_group_name The node group name to check.

Notes

This function returns a record with fields status and message , as explained in Monitoring.

This function calls bdr.run_on_all_nodes() .

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 295

EDB Postgres Distributed (PGD)

bdr.monitor_local_replslots

This function uses replication slot status information returned from the view pg_replication_slots (slotactive orinactive) to provide a local check considering all replication slots except the PGD group slots.

This function also provides status information on subscriber-only nodes that are operating as subscriber-only group leaders in a PGD cluster whenoptimized topology is enabled.

Synopsis

bdr.monitor_local_replslots()

Notes

This function returns a record with fields status and message .

Status Message

UNKNOWN This node is not part of any BDR group

0K AlL BDR replication slots are working correctly

0K This node is part of a subscriber-only group

CRITICAL There is at least 1 BDR replication slot which is inactive

CRITICAL There is at least 1 BDR replication slot which is missing

Further explaination is available in Monitoring replication slots.

bdr.wal_sender_stats

If the decoding worker is enabled, this function shows information about the decoder slot and current logical change record (LCR) segment file being read by each WAL sender.

Synopsis

bdr.wal_sender_stats()

Output columns

Column name Description

pid PID of the WAL sender. (Corresponds to the pid columnof pg_stat_replication).
is_using_lcr Whether the WAL sender is sending LCR files.

decoder_slot_name Name of the decoder replication slot.

ler_file_name Name of the current LCR file.

bdr.get_decoding_worker_stat

If the decoding worker is enabled, this function shows information about the state of the decoding worker associated with the current database. This also provides more granular information about decoding worker progress than is available via
pg_replication_slots.
Synopsis

bdr.get_decoding_worker_stat()

Output columns

Column name Description

pid The PID of the decoding worker. (Corresponds to the column active_pid in pg_replication_slots)
decoded_upto_lsn LSN up to which the decoding worker read transactional logs.

waiting Whether the decoding worker is waiting for new WAL.

waiting_for_lsn The LSN of the next expected WAL.

Notes

For details, see Monitoring WAL senders using LCR.

bdr.lag_control

If Lag Controlis enabled, this function shows information about the commit delay and number of nodes conforming to their configured lag measure for the local node and current database.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 296

https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/subscriber_only/optimizing-so

EDB Postgres Distributed (PGD)

Synopsis

bdr.lag_control()

Output columns

Column name Description

commit_scope_id OID of the commit scope (see bdr.commit_scopes).

sessions Number of sessions referencing the lag control entry.

current_commit_delay Current runtime commit delay, in fractional milliseconds.

maximum_commit_delay Configured maximum commit delay, in fractional milliseconds.

commit_delay_adjust Change to runtime commit delay possible during a sample interval, in fractional milliseconds.

current_conforming_nodes Current runtime number of nodes conforming to lag measures.

- . Configured minimum number of nodes required to conform to lag measures, below which a commit delay adjustment is
minimum_conforming_nodes

applied.
lag_bytes_threshold Lag size at which a commit delay is applied, in kilobytes.
maximum_lag_bytes Configured maximum lag size, in kilobytes.
lag_time_threshold Lag time at which a commit delay is applied, in milliseconds.
maximum_lag_time Configured maximum lag time, in milliseconds.
sample_interval Configured minimum time between lag samples and possible commit delay adjustments, in milliseconds.

Routing functions

bdr.routing_leadership_transfer

Changing the routing leader transfers the leadership of the node group to another node.

Synopsis

bdr.routing_leadership_transfer(node_group_name text,
leader_name

text,

transfer_method text DEFAULT 'strict',

transfer_timeout interval DEFAULT
'10s');
Parameters
Name Type Default Description
node_group_name text Name of group where the leadership transfer is requested.
leader_name text Name of node that will become write leader.
transfer_method text 'strict’ Type of the transfer. It canbe ' fast' orthedefault, 'strict', which checksthe maximum lag.
transfer_timeout interval '10s' Timeout of the leadership transfer. Default is 10 seconds.
CAMO functions

CAMO requires that a client actively participates in the committing of a transaction by following the transactions progress. The functions listed here are used for that purpose and explained inCAMO.

bdr.is_camo_partner_connected

Allows checking of the connection status of a CAMO partner node configured in pair mode. There currently is no equivalent for CAMO used with eager replication.

Synopsis

bdr.is_camo_partner_connected()

Return value

A Boolean value indicating whether the CAMO partner is currently connected to a WAL sender process on the local node and therefore can receive transactional data and send back confirmations.

bdr.is_camo_partner_ready

Allows checking of the readiness status of a CAMO partner node configured in pair mode. Underneath, this triggers the switch to and from local mode.

Synopsis

bdr.is_camo_partner_ready()

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 297

EDB Postgres Distributed (PGD)

Return value

A Boolean value indicating whether the CAMO partner can reasonably be expected to confirm transactions originating from the local node in a timely manner, that is, before timeout for TO ASYNC expires.
Note

This function queries the past or current state. A positive return value doesn't indicate whether the CAMO partner can confirm future transactions.

bdr.get_configured_camo_partner

This function shows the local node's CAMO partner (configured by pair mode).

Synopsis

bdr.get_configured_camo_partner()

bdr.wait_for_camo_partner_queue

The function is a wrapper around bdr.wait_for_apply_queue defaulting to query the CAMO partner node. It returns an error if the local node isn't part of a CAMO pair.

Synopsis

bdr.wait_for_camo_partner_queue()

bdr.camo_transactions_resolved

This function begins a wait for CAMO transactions to be fully resolved.

Synopsis

bdr.camo_transactions_resolved()

bdr.logical_transaction_status

To check the status of a transaction that was being committed when the node failed, the application must use this function, passing as parameters the node id of the node the transaction originated from and the transaction id on the origin
node.

Synopsis

bdr.logical_transaction_status(node_id 0ID, xid

01D,
require_camo_partner boolean DEFAULT true)
Parameters
Parameter Description
node id The node id of the PGD node the transaction originates from, usually retrieved by the client before COMMIT from the PQ parameter
= bdr.local_node_iid.
xid The transaction id on the origin node, usually retrieved by the client before COMMIT from the PQ parameter transaction_id.

require_camo_partner Defaults to true and enables configuration checks. Set to false to disable these checks and query the status of a transaction that wasn't a CAMO transaction.

Return value

The function returns one of these results:

e 'committed'::TEXT — The transaction was committed, is visible on both nodes of the CAMO pair, and is eventually replicated to all other PGD nodes. No need for the client to retry it.

e 'aborted'::TEXT — The transaction was aborted and isn't replicated to any other PGD node. The client needs to either retry it or escalate the failure to commit the transaction.

e 'in progress'::TEXT — The transaction is still in progress on this local node and wasn't committed or aborted yet. The transaction might be in the COMMIT phase, waiting for the CAMO partner to confirm or deny the commit. The
recommended client reaction is to disconnect from the origin node and reconnect to the CAMO partner to query that instead. With a load balancer or proxy in between, where the client lacks control over which node gets queried, the
client can only poll repeatedly until the status switches to either 'committed' or 'aborted' .

For eager all-node replication, peer nodes yield this result for transactions that aren't yet committed or aborted. Even transactions not yet replicated (or not even started on the origin node) might yield an in progress resultona
peer PGD node in this case. However, the client must not query the transaction status prior to attempting to commit on the origin.

"unknown': : TEXT — The transaction specified is unknown because it's either in the future, not replicated to that specific node yet, or too far in the past. The status of such a transaction isn't yet or is no longer known. This return
value is a sign of improper use by the client.

The client must be prepared to retry the function call on error.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 298

https://www.postgresql.org/docs/current/libpq-status.html#LIBPQ-PQPARAMETERSTATUS
https://www.postgresql.org/docs/current/libpq-status.html#LIBPQ-PQPARAMETERSTATUS

EDB Postgres Distributed (PGD)

Commit Scope functions

bdr.add_commit_scope

Deprecated. Use bdr.create_commit_scope instead. Previously, this function was used to add a commit scope to a node group. It's now deprecated and will emit a warning until it is removed in a future release, at which point it will raise
anerror.

bdr.create_commit_scope

bdr.create_commit_scope creates arule for the given commit scope name and origin node group. If the rule is the same for all nodes in the EDB Postgres Distributed cluster, invoking this function once for the top-level node group is
enough to fully define the commit scope.

Alternatively, you can invoke it multiple times with the same commit_scope_name but different origin node groups and rules for commit scopes that vary depending on the origin of the transaction.

Synopsis

bdr.create_commit_scope(
commit_scope_name NAME,
origin_node_group NAME,
rule TEXT,

wait_for_ready boolean DEFAULT
true)

Note

bdr.create_commit_scope replaces the deprecated bdr.add_commit_scope function. Unlike add_commit_scope, it doesn't silently overwrite existing commit scopes when the same name is used. Instead, an error is reported.

bdr.alter_commit_scope

bdr.alter_commit_scope allows you to change a specific rule for a single origin node group in a commit scope.

Synopsis
bdr.alter_commit_scope(
commit_scope_name NAME,

origin_node_group NAME,
rule TEXT)

bdr.drop_commit_scope

Drops a single rule in a commit scope. If you define multiple rules for the commit scope, you must invoke this function once per rule to fully remove the entire commit scope.

Synopsis

bdr.drop_commit_scope(
commit_scope_name NAME,
origin_node_group NAME)

Note

Dropping a commit scope that's still used as default by a node group isn't allowed.

bdr.remove_commit_scope

Deprecated. Use bdr.drop_commit_scope instead. Previously, this function was used to remove a commit scope from a node group. It's now deprecated and will emit a warning until it is removed in a future release, at which point it will
raise an error.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 299

EDB Postgres Distributed (PGD)

28.1.3 PGD settings

You can set PGD-specific configuration settings. Unless noted otherwise, you can set the values at any time.

Conflict handling

bdr.default_conflict_detection

Sets the default conflict detection method for newly created tables. Accepts same values as bdr.alter_table_conflict_detection().

Global sequence parameters

bdr.default_sequence_kind

Sets the default sequence kind.

The defaultis distributed,which means snowflakeid isusedfor int8 sequences (thatis, bigserial)and galloc sequencefor int4 (thatis, serial)and int2 sequences.

DDL handling

bdr.default_replica_identity
Sets the default value for REPLICA IDENTITY on newly created tables. The REPLICA IDENTITY defines the information written to the write-ahead log to identify rows that are updated or deleted.
The accepted values are:
Value Description

default Records the old values of the columns of the primary key, if any (this is the default PostgreSQL behavior).

full Records the old values of all columns in the row.

nothing Records no information about the old row.

auto Tables are created with REPLICA IDENTITY FULL. This is the default PGD behavior.

See the PostgreSQL documentation for more details.

PGD can't replicate UPDATE and DELETE operations on tables withouta PRIMARY KEY or UNIQUE constraint. The exception is when the replica identity for the table is FULL , either by table-specific configuration or by
bdr.default_replica_identity.

If bdr.default_replica_identity is default andthereisa UNIQUE constraintincluded in the table definition, it won't be automatically picked up as REPLICA IDENTITY .You need to setthe REPLICA IDENTITY explicitly
using ALTER TABLE ... REPLICA IDENTITY

Setting the replica identity of tables to full increases the volume of WAL written and the amount of data replicated on the wire for the table.
On setting bdr.default_replica_identity to default
When setting bdr.default_replica_identity to default using ALTER SYSTEM, always quote the value, like this:
ALTER SYSTEM SET bdr.default_replica_identity="default";

You need to include the quotes because default, unquoted, is a special value to the ALTER SYSTEM command that triggers the removal of the setting from the configuration file. When the setting is removed, the system uses the PGD
default setting, whichis auto .

bdr.dd1_replication
Automatically replicates DDL across nodes (defaultis on).
This parameter can be set only by bdr_superuser or superuser roles.
Running DDL or calling PGD administration functions with bdr.dd1_replication = off can create situations where replication stops until an administrator can intervene. See DDL replication for details.
A LOG -level log message is emitted to the PostgreSQL server logs whenever bdr.dd1l_replication issetto off.Additionally,a WARNING-level message is written whenever replication of captured DDL commands or PGD

replication functions is skipped due to this setting.

bdr.role_replication

Automatically replicates ROLE commands across nodes (default is on). Only a superuser can set this parameter. This setting works only if bdr.dd1_replication isturned on as well.
Turning this parameter off without using external methods to ensure roles are in sync across all nodes might cause replicated DDL to interrupt replication until the administrator intervenes.

See Role manipulation statements for details.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 300

https://www.postgresql.org/docs/current/sql-altertable.html#SQL-CREATETABLE-REPLICA-IDENTITY
https://www.postgresql.org/docs/current/sql-altersystem.html
https://www.enterprisedb.com/docs/pgd/latest/reference/ddl/ddl-role-manipulation.mdx

EDB Postgres Distributed (PGD)

bdr.ddl_locking

Configures the operation mode of global locking for DDL.

This parameter can be set only by bdr_superuser or superuser roles.
Possible options are:

Value Description

all Use global locking for all DDL operations. (Default)

leader Use leader-based global DML locking.

auto Currently synonomous with leader .
dml Use global locking only for DDL operations that need to prevent writes by taking the global DML lock for a relation.
of f Don't use global locking for DDL operations.

Defaultis auto .

A LOG -level log message is emitted to the PostgreSQL server logs whenever bdr.dd1_replication issetto off .Additionally,a WARNING message is written whenever any global locking steps are skipped due to this setting. It's
normal for some statements to result in two WARNING messages: one for skipping the DML lock and one for skipping the DDL lock.

For backward compatibility, bdr.dd1_locking supports aliases. on and true areanaliasfor all. false isanaliasfor off .

See also Global locking.

bdr.truncate_locking

Sets the TRUNCATE command's locking behavior (defaultis on / true). When on / true , TRUNCATE obeys the bdr.ddl_locking setting.

Global locking

DDL locking is controlled by bdr.dd1_locking . Other global locking settings include the following.

bdr.global_lock_max_locks

Sets the maximum number of global locks that can be held on a node (default is 1000). Can be set only at Postgres server start.

bdr.global_lock_timeout

Sets the maximum allowed duration of any wait for a global lock (default is 1 minute). A value of zero disables this timeout.

bdr.global_lock_statement_timeout

Sets the maximum allowed duration of any statement holding a global lock (default is 60 minutes). A value of zero disables this timeout.

bdr.global_lock_idle_timeout

Sets the maximum allowed duration of idle time in a transaction holding a global lock (default is 10 minutes). A value of zero disables this timeout.

bdr.lock_table_locking

Sets locking behavior for LOCK TABLE statement (default is on). When enabled, LOCK TABLE statement also takes a global DML lock on the cluster, blocking other locking statements.

Value Description
on Use global locking for all table locks. (Default)

of f Don't use global locking for table locks.

bdr.predictive_checks

Sets the log level for predictive checks (currently used only by global locks). Can be DEBUG, LOG, WARNING (default), or ERROR . Predictive checks are early validations for expected cluster state when doing certain operations. You can
use them for those operations for fail early rather than wait for timeouts. In global lock terms, PGD checks that there are enough nodes connected and withing reasonable lag limit for getting the quorum needed by the global lock.

Node management

bdr.replay_progress_frequency

Sets the interval for sending replication position info to the rest of the cluster (default is 1 minute).

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 301

EDB Postgres Distributed (PGD)

Generic replication

bdr.writers_per_subscription

Sets the default number of writers per subscription. (In PGD, you can also change this with bdr.alter_node_group_option foragroup.)

bdr.max_writers_per_subscription

Maximum number of writers per subscription (sets upper limit for the bdr.writers_per_subscription setting).

bdr.xact_replication

Replicates current transaction (defaultis on).

Turning this off makes the whole transaction local only, which means the transaction isn't visible to logical decoding by PGD and all other downstream targets of logical decoding. Data isn't transferred to any other node, including logical
standby nodes.

This parameter can be set only by the bdr_superuser or superuser roles.
This parameter can be set only inside the current transaction using the SET LOCAL command unless bdr.permit_unsafe_commands = on.
Note
Even with transaction replication disabled, WAL is generated, but those changes are filtered away on the origin.
Warning
Turning off bdr.xact_replication leads to datainconsistency between nodes. Use it only to recover from data divergence between nodes or in replication situations where changes on single nodes are required for replication

to continue. Use at your own risk.

bdr.permit_unsafe_commands

Overrides safety check on commands that are deemed unsafe for general use.
Requires bdr_superuser or PostgreSQL superuser.
Warning

The commands that are normally not considered safe can either produce inconsistent results or break replication altogether. Use at your own risk.

bdr.batch_inserts

Number of consecutive inserts to one table in a single transaction that turns on batch processing of inserts for that table.

This setting allows replication of large data loads as COPY internally, rather than as a set of inserts. It's also how the initial data during node join is copied.

bdr.maximum_clock_skew

Specifies the maximum difference between the incoming transaction commit timestamp and the current time on the subscriber before triggering bdr .maximum_clock_skew_action.

It checks if the timestamp of the currently replayed transaction is in the future compared to the current time on the subscriber. If it is, and the difference is larger than bdr .maximum_clock_skew , it performs the action specified by the
bdr.maximum_clock_skew_action setting.

The defaultis -1, which means ignore clock skew (the check is turned off). It's valid to set 0 as when the clocks on all servers are synchronized. The fact that the transaction is being replayed means it was committed in the past.

bdr.maximum_clock_skew_action

Specifies the action to take if a clock skew higher than bdr.maximum_clock_skew is detected.

There are two possible values for this setting:

Value Description
WARN Log a warning about this fact. The warnings are logged once per minute at the maximum to prevent flooding the server log.

WAIT Wait until the current local timestamp is no longer older than remote commit timestamp minus the bdr.maximum_clock_skew .

bdr.accept_connections

Enables or disables connections to PGD (default is on).

Requires bdr_superuser or PostgreSQL superuser.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 302

EDB Postgres Distributed (PGD)

bdr.writer_input_queue_size

Specifies the size of the shared memory queue used by the receiver to send data to the writer process. If the writer process is stalled or making slow progress, then the queue might get filled up, stalling the receiver process too. So it's important
to provide enough shared memory for this queue. The default is 1 MB, and the maximum allowed size is 1 GB. While any storage size specifier can be used to set the GUC, the default is KB.

bdr.writer_output_queue_size

Specifies the size of the shared memory queue used by the receiver to receive data from the writer process. Since the writer isn't expected to send a large amount of data, a relatively smaller sized queue is enough. The default is 32 KB, and the
maximum allowed size is 1 MB. While any storage size specifier can be used to set the GUC, the default is KB.

bdr.min_worker_backoff_delay

Allows for rate limiting of PGD background worker launches by preventing a given worker from being relaunched more often than every bdr.min_worker_backoff_delay milliseconds. On repeated errors, the backoff increases
exponentially with added jitter up to a maximum of bdr.max_worker_backoff_delay .

Time-unit suffixes are supported.

Note

This setting currently affects only receiver worker, which means it primarily affects how fast a subscription tries to reconnect on error or connection failure.
The default for bdr.min_worker_backoff_delay is1second. For bdr.max_worker_backoff_delay ,it's 1 minute.

If the backoff delay setting is changed and the PostgreSQL configuration is reloaded, then all current backoffs wait for reset. Additionally, the bdr.worker_task_reset_backoff_all() function is provided to allow the administrator
to force all backoff intervals to immediately expire.

A tracking table in shared memory is maintained to remember the last launch time of each type of worker. This tracking table isn't persistent. It's cleared by PostgreSQL restarts, including soft restarts during crash recovery after an unclean
backend exit.

You can use the view bdr.worker_tasks toinspect this state so the administrator can see any backoff rate limiting currently in effect.

For rate-limiting purposes, workers are classified by task. This key consists of the worker role, database OID, subscription ID, subscription writer ID, extension library name and function name, extension-supplied worker name, and the remote
relation ID for sync writers. NULL is used where a given classifier doesn't apply, for example, when manager workers don't have a subscription ID and receivers don't have a writer ID.

CRDTs

bdr.crdt_raw_value

Sets the output format of CRDT data types.

The default output (when this setting is o f) is to return only the current value of the base CRDT type, for example, a bigint for crdt_pncounter . When setto on , the returned value represents the full representation of the CRDT value,
which can, for example, include the state from multiple nodes.

Commit scope

bdr.commit_scope

Sets the current (or default) commit scope (default is an empty string).

Commit At Most Once

bdr.camo_local_mode_delay

The commit delay that applies in CAMO's asynchronous mode to emulate the overhead that normally occurs with the CAMO partner having to confirm transactions (default is 5 ms). Set to © to disable this feature.

bdr.camo_enable_client_warnings

Emits warnings if an activity is carried out in the database for which CAMO properties can't be guaranteed (default is enabled). Well-informed users can choose to disable this setting to reduce the amount of warnings going into their logs.

Transaction streaming

bdr.default_streaming_mode

Controls transaction streaming by the subscriber node. Possible values are: of f, writer, file,and auto .Defaultsto auto .Ifsetto off,the subscriber doesn't request transaction streaming. If set to one of the other values, the
subscriber requests transaction streaming and the publisher provides it if it supports them and if configured at group level. For more details, see Transaction streaming.

Lag Control

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 303

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/crdt
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/commit-scopes

EDB Postgres Distributed (PGD)

bdr.lag_control_max_commit_delay

Maximum acceptable post-commit delay that can be tolerated, in fractional milliseconds.

bdr.lag_control_max_lag_size

Maximum acceptable lag size that can be tolerated, in kilobytes.

bdr.lag_control_max_lag_time

Maximum acceptable lag time that can be tolerated, in milliseconds.

bdr.lag_control_min_conforming_nodes

Minimum number of nodes required to stay below acceptable lag measures.

bdr.lag_control_commit_delay_adjust

Commit delay micro adjustment measured as a fraction of the maximum commit delay time. At a default value of 0.01%, it takes 100 net increments to reach the maximum commit delay.

bdr.lag_control_sample_interval

Minimum time between lag samples and commit delay micro adjustments, in milliseconds.

bdr.lag_control_commit_delay_start

The lag threshold at which commit delay increments start to be applied, expressed as a fraction of acceptable lag measures. At a default value of 1.0%, commit delay increments don't begin until acceptable lag measures are breached.

By setting a smaller fraction, it might be possible to prevent a breach by "bending the lag curve" earlier so that it's asymptotic with the acceptable lag measure.

Monitoring and logging

bdr.debug_level

Defines the log level that PGD uses to write its debug messages. The default value is debug2 . If you want to see detailed PGD debug output, set bdr.debug_level = 'log'.

bdr.trace_level

Similarto bdr.debug_Tlevel, defines the log level to use for PGD trace messages. Enabling tracing on all nodes of an EDB Postgres Distributed cluster might help EDB Support to diagnose issues. You can set this parameter only at
Postgres server start.

Warning

Setting bdr.debug_level or bdr.trace_level toavalue>= log_min_messages can produce a very large volume of log output. Don't enabled it long term in production unless plans are in place for log filtering,
archival, and rotation to prevent disk space exhaustion.

bdr.track_subscription_apply

Tracks apply statistics for each subscription with bdr.stat_subscription (defaultis on).

bdr.track_relation_apply

Tracks apply statistics for each relation with bdr.stat_relation (defaultis off).

bdr.track_apply_lock_timing

Tracks lock timing when tracking statistics for relations with bdr.stat_relation (defaultis off).

Decoding worker

bdr.enable_wal_decoder

Enables logical change record (LCR) sending on a single node with a decoding worker (default is false). When set to true, a decoding worker process starts, and WAL senders send the LCRs it produces. If set back to false, any WAL senders

using LCR are restarted and use the WAL directly.
Note

You also need to enable this setting on all nodes in the PGD group and set the enable_wal_decoder option to true on the group.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

304

EDB Postgres Distributed (PGD)

bdr.receive_lcr

When subscribing to another node, this setting enables the node to request the use of logical change records (LCRs) for the subscription (default is false). When this setting is true on a downstream node, the node requests that upstream nodes
use LCRs when sending to it. If you set bdr.enable_wal_decoder to true on a node, also set this setting to true.

Note

You also need to enable this setting on all nodes in the PGD group and set the enable_wal_decoder option to true on the group.

bdr.lcr_cleanup_interval

Logical change record (LCR) file cleanup interval (default is 3 minutes). When the decoding worker is enabled, the decoding worker stores LCR files as a buffer. These files are periodically cleaned, and this setting controls the interval between
any two consecutive cleanups. Setting it to zero disables cleanup.

Connectivity settings

The following are a set of connectivity settings affecting all cross-node 1ibpq connections. The defaults are set to fairly conservative values and cover most production needs. All variables have SIGHUP context, meaning changes are
applied upon reload.

bdr.global_connection_timeout

Maximum time to wait while connecting, in seconds (default is 15 seconds). Write as a decimal integer, for example, 10. Zero, negative, or not specified means wait indefinitely. The minimum allowed timeout is 2 seconds, therefore a value of
1isinterpreted as 2.

bdr.global_keepalives

Controls whether TCP keepalives are used (default is 1, meaning on). If you don't want keepalives, you can change this to 0, meaning off. This parameter is ignored for connections made by a Unix-domain socket.

bdr.global_keepalives_idle

Controls the number of seconds of inactivity after which TCP sends a keepalive message to the server (default is 1 second). A value of zero uses the system default. This parameter is ignored for connections made by a Unix-domain socket or if
keepalives are disabled. It's supported only on systems where TCP_KEEPIDLE or an equivalent socket option is available. On other systems, it has no effect.

bdr.global_keepalives_interval

Controls the number of seconds after which to retransmit a TCP keepalive message that isn't acknowledged by the server (default is 2 seconds). A value of zero uses the system default. This parameter is ignored for connections made by a
Unix-domain socket or if keepalives are disabled. It's supported only on systems where TCP_KEEPINTVL oran equivalent socket option is available. On other systems, it has no effect.

bdr.global_keepalives_count

Controls the number of TCP keepalives that can be lost before the client's connection to the server is considered dead (default is 3). A value of zero uses the system default. This parameter is ignored for connections made by a Unix-domain
socket or if keepalives are disabled. It's supported only on systems where TCP_KEEPCNT or an equivalent socket option is available. On other systems, it has no effect.

bdr.global_tcp_user_timeout

Controls the number of milliseconds that transmitted data can remain unacknowledged before a connection is forcibly closed (default is 5000, that is, 5 seconds). A value of zero uses the system default. This parameter is ignored for
connections made by a Unix-domain socket. It's supported only on systems where TCP_USER_TIMEOUT is available. On other systems, it has no effect.

Topology settings
bdr.force_full_mesh

Forces the full mesh topology (defaultis on). When setto off, PGD will attempt to use the optimized topology for subscriber-only groups. This setting is only effective when the requirements for the optimized topology are met. See
Optimizing subscriber-only groups for more information.

Internal settings - Raft timeouts

bdr.raft_global_election_timeout

To account for network failures, the Raft consensus protocol implements timeouts for elections and requests. This value is used when a request is being sent to the global (top-level) group. The default is 6 seconds (6s).

bdr.raft_group_election_timeout

To account for network failures, the Raft consensus protocol implements timeouts for elections and requests. This value is used when a request is being sent to the sub-group. The default is 3 seconds (3s).

bdr.raft_response_timeout

For responses, the settings of bdr.raft_global_election_timeout and bdr.raft_group_election_timeout are used asappropriate. You can override this behavior by setting this variable. The setting of
bdr.raft_response_timeout must be less than either of the election timeout values. Set this variable to -1 to disable the override. The default is -1.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 305

EDB Postgres Distributed (PGD)

Internal settings - Other Raft values

bdr.raft_keep_min_entries
The minimum number of entries to keep in the Raft log when doing log compaction (defaultis 1000 ; PGD 5.3 and earlier: 100). The value of © disables log compaction. You can set this parameter only at Postgres server start.
Warning

If log compaction is disabled, the log grows in size forever.

bdr.raft_log_min_apply_duration

To move the state machine forward, Raft appends entries to its internal log. During normal operation, appending takes only a few milliseconds. This poses an upper threshold on the duration of that append action, above which an INFO
message is logged. This can indicate a problem. Default is 3000 ms.

bdr.raft_log_min_message_duration

When to log a consensus request. Measures roundtrip time of a PGD consensus request and logs an INFO message if the time exceeds this parameter (default is 5000 ms).

bdr.raft_group_max_connections

The maximum number of connections across all PGD groups for a Postgres server (default is 100 connections). These connections carry PGD consensus requests between the groups' nodes. You can set this parameter only at Postgres server
start.

Internal settings - Other values

bdr.backwards_compatibility

Specifies the version to be backward compatible to, in the same numerical format as used by bdr.bdr_version_num, for example, 30618 . (Default is the current PGD version.) Enables exact behavior of a former PGD version, even if this
has generally unwanted effects. Since this changes from release to release, we advise against explicit use in the configuration file unless the value is different from the current version.

bdr.track_replication_estimates

Tracks replication estimates in terms of apply rates and catchup intervals for peer nodes. Protocols like CAMO can use this information to estimate the readiness of a peer node. This parameter is enabled by default.

bdr.lag_tracker_apply_rate_weight

PGD monitors how far behind peer nodes are in terms of applying WAL from the local node and calculate a moving average of the apply rates for the lag tracking. This parameter specifies how much contribution newer calculated values have
in this moving average calculation. Default is 0.1.

bdr.enable_auto_sync_reconcile

When enabled, nodes perform automatic synchronization of data from a node that is furthest ahead with respect to the down node. Default (from 6.0.1) is on.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 306

EDB Postgres Distributed (PGD)

28.1.4 Node management

List of node states

State Description
NONE Node state is unset when the worker starts, expected to be set quickly to the current known state.
CREATED bdr.create_node() was executed, but the node isn't a member of any EDB Postgres Distributed cluster yet.

JOIN_START bdr.join_node_group() begins tojoin the local node to an existing EDB Postgres Distributed cluster.

JOINING The node join has started and is currently at the initial sync phase, creating the schema and data on the node.
CATCHUP Initial sync phase is completed. Now the join is at the last step of retrieving and applying transactions that were performed on the upstream peer node since the join started.
STANDBY Node join finished but hasn't yet started to broadcast changes. All joins spend some time in this state, but if defined as a logical standby, the node continues in this state.

e — Node was a logical standby and bdr.promote_node was just called to move the node state to ACTIVE . These two PROMOTE states have to be coherent to the fact that only one node can be with a state higher than
STANDBY but lower than ACTIVE .

PROMOTING Promotion from logical standby to full PGD node is in progress.

ACTIVE The node is a full PGD node and is currently ACTIVE . This is the most common node status.

PART_START Nodewas ACTIVE or STANDBY and bdr.part_node was just called to remove the node from the EDB Postgres Distributed cluster.

PARTING Node disconnects from other nodes and plays no further part in consensus or replication.

UPPART’CATCH Nonparting nodes synchronize any missing data from the recently parted node.

PART_CLEAN . . . N . .

5 Non-parting nodes wait until the group slots of all nodes are caught up with all the transactions that originated from the PARTED node.
PARTED Node parting operation is now complete on all nodes.

Only one node at a time can be in either of the states PROMOTE or PROMOTING.

Node-management commands

PGD also provides a command-line utility for adding nodes to the PGD group using a physical copy | pg_basebackup) of an existing node.

bdr_init_physical

Deprecated

This command is deprecated in favor of the using the pgd CLI command pgd node setup which offers a more flexible and powerful ways to create and manage nodes in a PGD group. bdr_init_physical will receive only
bug fixes in the future and is not recommended for new installations.

Version requirement

bdr_init_physical requires that both the source node and the jo
can'tuse bdr_init_physical forrolling upgrades using the node join method. For rolling upgrades, use logical join instead. See Rolling upgrade using node join for more details.

ng node have exactly the same PGD version. You can't use this command to join a node with a different PGD version to an existing cluster. This means that you

This is a regular command that's added to PostgreSQL's bin directory.

You must specify a data directory. If this data directory is empty, use pg_basebackup -X stream to fill the directory using a fast block-level copy operation.

If the specified data directory isn't empty, it's used as the base for the new node. Initially, it waits for catchup and then promotes to a master node before joining the PGD group. The ——standby option, if used, turns it into a logical standby
node.

This command drops all PostgreSQL-native logical replication subscriptions from the database (or disables them when the ~S option is used) as well as any replication origins and slots.

Synopsis

bdr_init_physical [OPTION]

Options

General options

e -D, --pgdata=DIRECTORY — The data directory to use for the new node. It can be either an empty or nonexistent directory or a directory populated using the pg_basebackup -X stream command (required).
e -1, —-log-file=FILE — Use FILE for logging. The defaultis bdr_init_physical_postgres.log.
e -n, --node-name=NAME — The name of the newly created node (required).

e -—-replication-sets=SETS — The name of a comma-separated list of replication set names to use. All replication sets are used if not specified.
e --standby — Create alogical standby (receive-only node) rather than full send/receive node.
e --node-group-name — Group to join. Defaults to the same group as source node.

e -s, —-stop — Stop the server once the initialization is done.

e -v —Increase logging verbosity.

e -L — Perform selective pg_basebackup when used with an empty/nonexistent data directory (-D option). This is a feature of EDB Postgres Extended Server only.
e -S —Instead of dropping logical replication subscriptions, disable them.

Connection options

e -d, --remote-dsn=CONNSTR — Connection string for remote node (required).
e —-local-dsn=CONNSTR — Connection string for local node (required).

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 307

EDB Postgres Distributed (PGD)

Configuration files override

e —-hba-conf — Pathtothe new pg_hba.conf.

® --postgresql-conf — Pathtothe new postgresql.conf.

e --postgresql-auto-conf — Pathtothe new postgresql.auto.conf.
Notes

The replication set names specified in the command don't affect the data that exists in the data directory before the node joins the PGD group. This is true whether bdr_init_physical makes its own base backup or an existing base
backup is being promoted to a new PGD node. Thus the —~replication-sets option affects only the data published and subscribed to after the node joins the PGD node group. This behavior is different from the way replication sets are
used in a logical join, as when using bdr.join_node_group() .

The operator can truncate unwanted tables after the join completes. Refer to the bdr.tables catalog to determine replication set membership and identify tables that aren't members of any subscribed-to replication set. We strongly
recommend that you truncate the tables rather than drop them, because:

® DDL replication sets aren't necessarily the same as row (DML) replication sets, so you might inadvertently drop the table on other nodes.
o If you later want to add the table to a replication set and you dropped it on some subset of nodes, you need to re-create it only on those nodes without creating DDL conflicts before you can add it to any replication sets.

It's simpler and safer to truncate your nonreplicated tables, leaving them present but empty.

bdr_config

This command-line utility allows you to examine the configuration of a PGD installation. It is analogous to the pg_config utility that comes with PostgreSQL. You can use it to assist in troubleshooting and support.

Synopsis

bdr_config [OPTION]

Options
Option Description
all Show all the keys and values in the configuration.
__version Show only the BDR version related keys and values. This includes the full version of the BDR extension, the Postgres version and flavor it is running against, and the BDRPG and BDR plugin API
o versions.
--debug Show only the BDR debug keys and values, including build information and feature enablement.
Example

$ /usr/lib/edb-as/16/bin/bdr_config --all

output
BDR_VERSION_COMPLETE=5.6.0
BDR_VERSION_NUM=50600
PG_VERSION=16.4.1 (Debian 16.4.1~~snapshot11329862135.2980.1.88fbec6-1.bookworm)
PG_VERSION_NUM=160004
PG_FLAVOR=EPAS
BDRPG_API_VERSION_NU 02309131
BDR_PLUGIN_API_VERSION=7011
USE_ASSERT_CHECKING=false
USE_VALGRIND=false
EXT_ENABLE_DTRACE=false
HAVE_LAG_CONTROL=true
HAVE_ASSESS_UPDATE_RI_HOOK=false
HAVE_BDRPG_PROBES=false
HAVE_CAMO=true
HAVE_DEADLOCK_DETECTOR_HOOK=true
HAVE_HEAP_UPDATE_HOOK=true
HAVE_LAG_TRACKER=true
HAVE_LCR=true
HAVE_LOG_TOAST_COLUMNS=false
HAVE_MISC_HOOKS=true
HAVE_MISSING_PARTITION_CONFLICT=true
HAVE_MULTI_PITR=false
HAVE_SELECTIVE_BASEBACKUP=false
HAVE_STREAMING_XACTS=true
HAVE_SYNC_COMMIT_HOOK=true
HAVE_TWOPHASE_DATA_HOOKS=true
HAVE_XLOG_FIND_NEXT_RECORD=true
HAVE_DETACH_CONCURRENTLY=true
HAVE_ANALYTICS=true

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 308

EDB Postgres Distributed (PGD)

28.1.5 Node management interfaces

You can add and remove nodes dynamically using the SQL interfaces.

bdr.alter_node_group_option

Modifies a PGD node group configuration.

Synopsis

bdr.alter_node_group_option(node_group_name text,
config_key text,
config_value text)

Parameters

Name Description
node_group_name Name of the group to change.
config_key Key of the option in the node group to change.

config_value New value to set for the given key.

config_value is parsed into the data type appropriate for the option.

The table shows the group options that can be changed using this function.

Name Type Description
apply_de t1 . How long nodes wait to apply incoming changes. This option is useful mainly to set up a special subgroup with delayed subscriber-only nodes. Don't set this on groups that contain data nodes or on the top-level
lay el group. Defaultis Os .
val
check_co bo
nstraint ole Whether the apply process checks the constraints when writing replicated data. We recommend keeping the default value or you risk data loss. Valid values are on or off . Defaultis on.
s an
default_) -) N) L) -)
T o te The commit scope to use by default, initially the Local commit scope. This option applies only to the top-level node group. You can use individual rules for different origin groups of the same commit scope. See
commi
- xt Origin groups for more details.
cope
bl bo
enable_r
i B ole Where Connection Manager through the group write leader is enabled for a given group. Valid values are on or off . Defaultis on for subgroupsand off for the cluster group.
outin
o an
bo) o)) o))
enable_r 1 Whether group has its own Raft consensus. This option is necessary for setting enable_routing to on . This optionis always on for the top-level group. Valid values are on or off . Defaultis on for
olLe
aft subgroups.
an

enable_w bo

al_decod ole Enables/disables the decoding worker process. You can't enable the decoding worker process if streaming_mode is already enabled. Valid values are on or off . Defaultis off .
er an

t
location te Information about group location. This option is purely metadata for monitoring. Defaultis '' (empty string).

X

. in . . .

num_writ . Number of parallel writers for the subscription backing this node group. Valid values are =1 or a positive integer. ~1 means the value specified by the GUC bdr.writers_per_subscription isused. -1 is
ers € the default.

er
route_re in

ader_max teg Maximum lag in bytes for a node to be considered a viable read-only node. Currently reserved for future use.

_lag er

route_wr in

iter_max teg Maximum lag in bytes of the new write candidate to be selected as write leader. If no candidate passes this, no writer is selected. Defaultis -1 .
_lag er

route_wr bo

iter_wai ole Whether to switch if PGD needs to wait for the flush. Currently reserved for future use.

t_flush an

Enables/disables streaming of large transactions. When set to of f , streaming is disabled. When set to any other value, large transactions are decoded while they're still in progress, and the changes are sent to the
downstream. If the value is set to file , then the incoming changes of streaming transactions are stored in a file and applied only after the transaction is committed on upstream. If the value is set towriter ,
then the incoming changes are directly sent to one of the writers, if available.

If parallel apply is disabled or no writer is free to handle streaming transactions, then the changes are written to a file and applied after the transaction is committed. If the value is set to auto , PGD tries to

streamin te

mode xt
&= intelligently pick between file and writer,depending on the transaction property and available resources. You can't enable streaming_mode if the WAL decoder is already enabled. Defaultis auto .
For more details, see Transaction streaming.
failover o
e
_slot_sc - PGD 5.7 and later only. Sets the scope for Logical Slot Failover support. Valid values are global or local . Defaultis Local . For more information, see CDC Failover support.
ope

Return value

bdr.alter_node_group_option() returns VOID on success.

An ERROR is raised if any of the provided parameters is invalid.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 309

https://www.enterprisedb.com/docs/pgd/latest/reference/connection-manager/
https://www.enterprisedb.com/docs/pgd/6/reference/cdc-failover

Notes

EDB Postgres Distributed (PGD)

You can examine the current state of node group options by way of the view bdr.node_group_summary .

This function passes a request to the group consensus mechanism to change the defaults. The changes made are replicated globally using the consensus mechanism.

The function isn't transactional. The request is processed in the background, so you can't roll back the function call. Also, the changes might not be immediately visible to the current transaction.

This function doesn't hold any locks.

bdr.alter_node_interface

Changes the connection string (DSN) of a specified node.

Synopsis

bdr.alter_node_

Parameters

Name
node_name

interface_dsn

Notes

interface(node_name text, interface_dsn text)

Description
Name of an existing node to alter.

New connection string for a node.

Run this function and make the changes only on the local node. This means that you normally execute it on every node in the PGD group, including the node that's being changed.

This function is transactional. You can roll it back, and the changes are visible to the current transaction.

The function holds lock on the local node.

bdr.alter_node_option

Modifies the PGD node routing configuration.

Synopsis

bdr.alter_node_

config_key

option(node_name text,
text,

config_value

text);

Parameters

Name
node_name
config_key

config_value

Description
Name of the node to change.
Key of the option in the node to change.

New value to set for the given key.

The node options you can change using this function are:

Config Key
route_priority
route_fence

route_writes
route_reads

route_dsn

Description

Relative routing priority of the node against other nodes in the same node group. Defaultis '-1" .

Whether the node is fenced from routing. When true, the node can't receive connections from the Connection Manager. Replication is not impacted. Defaultis 'f' (false).
Whether writes can be routed to this node, that is, whether the node can become write leader. Defaultis 't' (true) for datanodesand ' f' (false) for other node types.

Whether read-only connections can be routed to this node. Currently reserved for future use. Defaultis 't' (true) for data and subscriber-only nodes, ' f' (false) for witness and standby
nodes.

The dsn for the proxy to use to connect to this node. This option is optional. If not set, it defaults to the node's node_dsn value.

bdr.alter_subscription_enable

Enables either the specified subscription or all the subscriptions of the local PGD node. This is also known as resume subscription. No error is thrown if the subscription is already enabled. Returns the number of subscriptions affected by this

operation.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 310

EDB Postgres Distributed (PGD)

Synopsis

bdr.alter_subscription_enable(
subscription_name name DEFAULT NULL,
immediate boolean DEFAULT false

Parameters

Name Description
subscription_name Name of the subscription to enable. If NULL (the default), all subscriptions on the local node are enabled.

Used to force the action immediately, starting all the workers associated with the enabled subscription. When this option is true , you can't run this function inside of the transaction
block.

immediate

Notes

This function isn't replicated and affects only local node subscriptions (either a specific node or all nodes).

This function is transactional. You can roll it back, and the current transaction can see any catalog changes. The subscription workers are started by a background process after the transaction has committed.

bdr.alter_subscription_disable

Disables either the specified subscription or all the subscriptions of the local PGD node. Optionally, it can also immediately stop all the workers associated with the disabled subscriptions. This is also known as pause subscription. No error is

thrown if the subscription is already disabled. Returns the number of subscriptions affected by this operation.

Synopsis

bdr.alter_subscription_disable(
subscription_name name DEFAULT NULL,
immediate boolean DEFAULT false,
fast boolean DEFAULT true

Parameters

Name Description

subscription_name Name of the subscription to disable. If NULL (the default), all subscriptions on the local node are disabled.

immediate Used to force the action immediately, stopping all the workers associated with the disabled subscription. When this optionis true , you can't run this function inside of the transaction block.

fast This argument influences the behavior of immediate .Ifsetto true (the default), it stops all the workers associated with the disabled subscription without waiting for them to finish current
work.

Notes

This function isn't replicated and affects only local node subscriptions (either a specific subscription or all subscriptions).

This function is transactional. You can roll it back, and the current transaction can see any catalog changes. However, the timing of the subscription worker stopping depends on the value of immediate . If setto true , the workers receive
the stop without waiting for the COMMIT .Ifthe fast argumentissetto true,the interruption of the workers doesn't wait for current work to finish.

bdr.create_node

Creates a node.

Synopsis

bdr.create_node(node_name text,
local_dsn text,
node_kind DEFAULT NULL)

Parameters

Name Description
node_name Name of the new node. Only one node is allowed per database. Valid node names consist of lowercase letters, numbers, hyphens, and underscores.
Tlocal_dsn Connection string to the node.

node_kind One of data (the default), standby, subscriber-only,or witness . Ifyoudon'tset this parameter, orif you provide NULL , the default data node kind is used.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 311

EDB Postgres Distributed (PGD)

Notes

This function creates a record for the local node with the associated public connection string. There can be only one local record, so once it's created, the function reports an error if run again.
This function is a transactional function. You can roll it back and the changes made by it are visible to the current transaction.

The function holds lock on the newly created node until the end of the transaction.

bdr.create_node_group

Creates a PGD node group. By default, the local node joins the group as the only member. You can add more nodes to the group with bdr.join_node_group() .

Synopsis

bdr.create_node_group(node_group_name text,
parent_group_name text DEFAULT NULL,
join_node_group boolean DEFAULT true,
node_group_type text DEFAULT NULL)

Parameters

Name Description

node_group_
name

Name of the new PGD group. As with the node name, valid group names consist of only lowercase letters, numbers, and underscores.

t
parent_grou If a node subgroup is being created, this must be the name of the parent group. Provide NULL (the default) when creating the main node group for the cluster.
p_name

join_node_g Determines whether the node joins the group being created. The default value is true . Providing false when creating a subgroup means the local node won't join the new group, for example, when creating an
roup independent remote group. In this case, you must specify parent_group_name .

node_group_ Thevalid valuesare NULL or subscriber-only . NULL (the default)is for creating a normal, general-purpose node group. subscriber-only is for creating subscriber-only groups whose members receive
type changes only from the fully joined nodes in the cluster but that never send changes to other nodes.

Notes

This function passes a request to the local consensus worker that's running for the local node.

The function isn't transactional. The creation of the group is a background process, so once the function finishes, you can't roll back the changes. Also, the changes might not be immediately visible to the current transaction. You can call
bdr.wait_for_join_completion to wait until they are.

The group creation doesn't hold any locks.

bdr.drop_node_group

Drops an empty PGD node group. If there are any joined nodes in the group, the function will fail.

Synopsis

bdr.drop_node_group(node_group_name text)

Parameters

Name Description

node_group_name Name of the PGD group to drop.

Notes

This function passes a request to the group consensus mechanism to drop the group. The function isn't transactional. The dropping process happens in the background, and you can't roll it back.

bdr.join_node_group

Joins the local node to an already existing PGD group.

Synopsis

bdr.join_node_group

(
join_target_dsn text,
node_group_name text DEFAULT NULL,
wait_for_completion boolean DEFAULT
true,

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 312

https://www.enterprisedb.com/docs/pgd/latest/reference/nodes/subscriber_only/

EDB Postgres Distributed (PGD)

synchronize_structure text DEFAULT
tall'

)

Parameters

Name Description

join_targe

s Specifies the connection string to an existing (source) node in the PGD group you want to add the local node to.
_dsn

d
RIS el Optional name of the PGD group. Defaults to NULL, which tries to detect the group name from information present on the source node.

_name

wait_for_c

) Wait for the join process to complete before returning. Defaults to true .
ompletion

synchroniz

t t Specifies whether to perform database structure (schema) synchronization during the join. all, the default setting, synchronizes the complete database structure. none does not synchronize any structure. However,
e_structur

data will still be synchronized, meaning the database structure must already be present on the joining node. Note that by design, neither schema nor data will ever be synchronized to witness nodes.
e

If wait_for_completion isspecifiedas false,the function call returns as soon as the joining procedure starts. You can see the progress of the join in the log files and the bdr.event_summary information view. You can call the
function bdr.wait_for_join_completion() after bdr.join_node_group() to wait for the join operation to complete. It can emit progress information if bdr.wait_for_join_completion() is called with

verbose_progress setto true .

Notes

This function passes a request to the group consensus mechanism by way of the node that the join_target_dsn connection string points to. The changes made are replicated globally by the consensus mechanism.

The function isn't transactional and will emit an error if executed in a transaction. The joining process happens in the background and you can't roll it back. The changes are visible only to the local sessionifwait_for_completion issetto
true orbycalling bdr.wait_for_join_completion later.

A node can be part of only a single group, so you can call this function only once on each node.

Node join doesn't hold any locks in the PGD group.

bdr.part_node
Removes (parts) the node from the PGD group and eventually removes the parted node’s metadata from all nodes in the cluster.

e For the local node, it removes all the node metadata, including information about remote nodes.
e For remote nodes, it removes only the metadata for that specific node.

This operation doesn't remove data from the node.
You can call the function from any active node in the PGD group, including the node that you're removing.

Executing parting from the node being removed runs the risk of incorrectly reporting, or never reporting, the status of the removal. This is because in the process of being removed, communications are cut off from the rest of the cluster. While
the removal may succeed, there's no way to inform the node that issued the command that it failed or succeeded on the other nodes. The function can't be set to wait for completion either, for the same reason.

Once a node has parted itself, it can't part other nodes in the cluster as it's no longer part of the cluster.

We recommend avoiding using nodes to part themselves from the cluster. Instead, perform node parting operations from a node that can wait for completion and check the cluster status after the operation is complete.
Note
If you're parting the local node, you must set wait_for_completion to false.Otherwise, it reportsan error.
Warning

This action is permanent. If you want to temporarily halt replication to a node, use bdr.alter_subscription_disable() .

Synopsis

bdr.part_node
(

node_name text,

wait_for_completion boolean DEFAULT
true,

force boolean DEFAULT false

)

Parameters

Name Description

node_name Name of an existing node to part.

wait_for_comple If true,the function doesn't return until the node is fully parted from the cluster. Otherwise, the function starts the parting procedure and returns immediately without waiting. Always set to false when
tion executing on the local node or when using force .

force Forces removal of the node on the local node. This sets the node state locally if consensus can't be reached or if the node-parting process is stuck.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 313

EDB Postgres Distributed (PGD)

Warning

Using force = true can leave the PGD group in an inconsistent state. Use it only to recover from failures in which you can't remove the node any other way.

Notes

This function passes a request to the group consensus mechanism to part the given node. The changes made are replicated globally by the consensus mechanism. The parting process happens in the background, and you can't roll it back. The
changes made by the parting process are visible only to the local transaction if wait_for_completion wassetto true .

With force setto true,on consensus failure, this function sets the state of the given node only on the local node. In such a case, the function is transactional (because the function changes the node state) and you can roll it back. If the
function is called on a node that's already in process of parting with force setto true, italso marks the given node as parted locally and exits. This is useful only when the consensus can't be reached on the cluster (that is, the majority of
the nodes are down) or if the parting process is stuck.

But it's important to take into account that when the parting node that was receiving writes, the parting process can take a long time without actually being stuck. The other nodes need to resynchronize any missing data from the given node.
The other nodes need to wait till group slots of all nodes are caught up to all the transactions originating from the PARTED node.

A forced parting completely skips this resynchronization and can leave the other nodes in an inconsistent state.

The parting process doesn't hold any locks.

bdr.promote_node

Promotes a local logical standby node to a full member of the PGD group.

Synopsis

bdr.promote_node(wait_for_completion boolean DEFAULT true)

Notes

This function passes a request to the group consensus mechanism to change the defaults. The changes made are replicated globally by the consensus mechanism.

The function isn't transactional. The promotion process happens in the background, and you can't roll it back. The changes are visible only to the local transaction itwait_for_completion wassetto true orby calling
bdr.wait_for_join_completion later.

The promotion process holds lock against other promotions. This lock doesn't block other bdr.promote_node calls but prevents the background process of promotion from moving forward on more than one node at a time.

bdr.switch_node_group

Switches the local node from its current subgroup to another subgroup in the same existing PGD node group.

Synopsis

bdr.switch_node_group

(
node_group_name text,
wait_for_completion boolean DEFAULT
true
)
Parameters
Name Description
node_group_name Name of the PGD group or subgroup.

wait_for_completion Wait for the switch process to complete before returning. Defaults to true .

If wait_for_completion issetto false, thisisanasynchronous call that returns as soon as the switching procedure starts. You can see progress of the switch in logs and the bdr.event_summary information view or by calling the
bdr.wait_for_join_completion() functionafter bdr.switch_node_group() returns.

Notes

This function passes a request to the group consensus mechanism. The changes made are replicated globally by the consensus mechanism.

The function isn't transactional. The switching process happens in the background and you can't roll it back. The changes are visible only to the local transaction ifwait_for_completion wassetto true or by calling
bdr.wait_for_join_completion later.

The local node changes membership from its current subgroup to another subgroup in the same PGD node group without needing to part the cluster. The node's kind must match that of existing nodes in the target subgroup.
Node switching doesn't hold any locks in the PGD group.

Restrictions: currently, the function allows switching only between a subgroup and its PGD node group. To effect a move between subgroups you need to make two separate calls: 1) switch from subgroup to node group and, 2) switch from
node group to other subgroup.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 314

EDB Postgres Distributed (PGD)

bdr.sync_node_cancel

This function cancels a sync request for the specified origin and source nodes.

Synopsis

bdr.sync_node_cancel(origin text, source text)

Parameters

Name Description
origin Name of the origin node.

source Name of the source node.

Notes

This function cancels all sync node requests for all targets that have the given origin and source. You can invoke it only from a write lead.

bdr.wait_for_join_completion

This function waits for the join procedure of a local node to finish.

Synopsis

bdr.wait_for_join_completion(verbose_progress boolean DEFAULT false)

Parameters

Name Description

Optionally prints information about individual steps taken during the join

verbose_progress
el procedure.

Notes

This function waits until the checks state of the local node reaches the target state, which was set by bdr.create_node_group, bdr.join_node_group,or bdr.promote_node .

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 315

EDB Postgres Distributed (PGD)

28.1.6 Commit scopes

Commit scopes are rules that determine how transaction commits and conflicts are handled within a PGD system. You can read more about them inCommit Scopes.
You can manipulate commit scopes using the following functions:

® bdr.create_commit_scope
e bdr.alter_commit_scope
® bdr.drop_commit_scope

Commit scope syntax

The overall grammar for commit scope rules is composed as follows:

commit_scope:
commit_scope_operation [AND ...]

commit_scope_operation:
commit_scope_group confirmation_level commit_scope_kind

commit_scope_target:
{ (node_group [, ...1)
| ORIGIN_GROUP }

commit_scope_group:

{ ANY num [NOT] commit_scope_target
| MAJORITY [NOT] commit_scope_target
| ALL [NOT] commit_scope_target }

confirmation_level:
[ON { received|replicated|durable|visible }]

commit_scope_kind:

{ GROUP COMMIT [(group_commit_parameter = value [, ...])] [ABORT ON (abort_on_parameter = value)] [DEGRADE ON (degrade_on_parameter = value [, ...]) TO
commit_scope_degrade_operation]

| CAMO [DEGRADE ON (degrade_on_parameter = value [, ...]) TO ASYNC]

| LAG CONTROL [(lag_control_parameter = value [, ...])]

| SYNCHRONOUS COMMIT [DEGRADE ON (degrade_on_parameter = value) TO commit_scope_degrade_operation] }

commit_scope_degrade_operation:
commit_scope_group confirmation_level commit_scope_kind

Where node_group is the name of a PGD data node group.

commit_scope_degrade_operation

The commit_scope_degrade_operation is either the same commit scope kind with a less restrictive commit scope group as the overall rule being defined, or is asynchronous ASYNC).

For instance, you can degrade froman ALL SYNCHRONOUS COMMIT toa MAJORITY SYNCHRONOUS COMMIT ora MAJORITY SYNCHRONOUS COMMIT toan ANY 3 SYNCHRONOUS COMMIT orevenan ANY 3 SYNCHRONOUS
COMMIT toan ANY 2 SYNCHRONOUS COMMIT .You can also degrade from SYNCHRONOUS COMMIT to ASYNC .However, you cannot degrade from SYNCHRONOUS COMMIT to GROUP COMMIT or the other way around, regardless of
the commit scope groups involved.

Itis also possible to combine rules using AND , each with their own degradation clause:

ALL ORIGIN_GROUP SYNCHRONOUS COMMIT DEGRADE ON (timeout = 10s) TO MAJORITY ORIGIN_GROUP SYNCHRONOUS COMMIT AND ANY 1 NOT ORIGIN_GROUP SYNCHRONOUS COMMIT DEGRADE ON
(timeout = 20s) TO ASYNC

Commit scope targets

ORIGIN_GROUP

Instead of targeting a specific group, you can also use ORIGIN_GROUP , which dynamically refers to the bottommost group from which a transaction originates. Therefore, if you have a top level group, top_group , and two subgroups as
children, left_dc and right_dc,thenadding a commit scope like:

SELECT
bdr.create_commit_scope(
commit_scope_name := 'example_scope',
origin_node_group := 'top_level_group',
rule := 'MAJORITY ORIGIN_GROUP SYNCHRONOUS
COMMIT',
wait_for_ready :=
true

)5

would mean that for transactions originating on a node in left_dc , a majority of the nodes of left_dc would need to confirm the transaction synchronously before the transaction is committed. Moreover, the same rule would also mean
that for transactions originating from a node in right_dc , a majority of nodes from right_dc are required to confirm the transaction synchronously before it is committed. This saves the need to add two seperate rules, one for
left_dc andone for right_dc, to the commit scope.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 316

https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/degrading/

EDB Postgres Distributed (PGD)

Commit scope groups
ANY
Example: ANY 2 (left_dc)

A transaction under this commit scope group will be considered committed after any two nodes in the left_dc group confirm they processed the transaction.

ANY NOT

Example: ANY 2 NOT (left_dc)

Atransaction under this commit scope group will be considered committed if any two nodes that aren't in the Left_dc group confirm they processed the transaction.

MAJORITY

Example: MAJORITY (left_dc)

A transaction under this commit scope group will be considered committed if a majority of the nodes in the Left_dc group confirm they processed the transaction.

MAJORITY NOT

Example: MAJORITY NOT (left_dc)

A transaction under this commit scope group will be considered committed if a majority of the nodes that aren'tin the left_dc group confirm they processed the transaction.

ALL

Example: ALL (left_dc)
A transaction under this commit scope group will be considered committed if all of the nodes in the left_dc group confirm they processed the transaction.

When ALL isused with GROUP COMMIT ,the commit_decision setting mustbesetto raft toavoid reconciliation issues.

ALLNOT

Example: ALL NOT (left_dc)

A transaction under this commit scope group will be considered committed if all of the nodes that aren't in the left_dc group confirm they processed the transaction.

Confirmation level

The confirmation level sets the point in time when a remote PGD node confirms that it reached a particular point in processing a transaction.

ON received

A transaction is confirmed immediately after receiving it, prior to starting the local application.

ON replicated

A transaction is confirmed after applying changes of the transaction but before flushing them to disk.

ON durable

A transaction is confirmed after all of its changes are flushed to disk.

ON visible

This is the default visibility. A transaction is confirmed after all of its changes are flushed to disk and it's visible to concurrent transactions.

Commit Scope kinds
More details of the commit scope kinds and details of their parameters:

e Synchronous Commit

® Group Commit

® CAMO (Commit At Most Once)
e Lag Control

Parameter values

Specify Boolean, enum, int, and interval values using the Postgres GUC parameter value conventions.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 317

https://www.postgresql.org/docs/current/config-setting.html#CONFIG-SETTING-NAMES-VALUES

EDB Postgres Distributed (PGD)

SYNCHRONOUS COMMIT

SYNCHRONOUS COMMIT [DEGRADE ON (degrade_on_parameter = value) TO commit_scope_degrade_operation]

DEGRADE ON parameters

Parameter Type Default Description
timeout interval 0 Timeout in milliseconds (accepts other units) after which operation degrades. (0 means not set.)
require_write_lead Boolean False Specifies whether the node must be a write lead to be able to switch to degraded operation.

These set the conditions on which the commit scope rule will degrade to a less restrictive mode of operation.

commit_scope_degrade_operation

The commit_scope_degrade_operation mustbe SYNCHRONOUS COMMIT with a less restrictive commit scope group—or must be asynchronous ASYNC).

GROUP COMMIT

Allows commits to be confirmed by a consensus of nodes, controls conflict resolution settings, and, like SYNCHRONOUS COMMIT , has optional rule-degredation parameters.

GROUP COMMIT [(group_commit_parameter = value [, ...])] [ABORT ON (abort_on_parameter = value)] [DEGRADE ON (degrade_on_parameter = value) TO

commit_scope_degrade_operation]

GROUP COMMIT parameters

Parameter Type Default Description

transaction_tracking Boolean Off/False Specifies whether to track status of transaction. See transaction_tracking settings.

conflict_resolution enum async Specifies how to handle conflicts. (async | eager). See conflict_resolution settings.

. - Specifies how the COMMIT decision is made. (group | partner | raft). See commit_decision
commit_decision enum group X

settings.

ABORT ON parameters
Parameter Type Default Description
timeout interval 0 Timeout in milliseconds (accepts other units). (0 means not set.)
require_write_lead Boolean False CAMO only. If set, then for a transaction to switch to local (async) mode, a consensus request is required.
DEGRADE ON parameters
Parameter Type Default Description
timeout interval 0 Timeout in milliseconds (accepts other units) after which operation degrades. (0 means not set.)
require_write_lead Boolean False Specifies whether the node must be a write lead to be able to switch to degraded operation.

transaction_tracking settings

When set to true, two-phase commit transactions:

e Look up commit decisions when a writer is processing a PREPARE message.

® When recovering from an interruption, look up the transactions prepared before the interruption. When found, it then looks up the commit scope of the transaction and any corresponding RAFT commit decision. Suppose the node is the
origin of the transaction and doesn't have a RAFT commit decision, and transaction_tracking isoninthe commit scope. In that case, it periodically looks for a RAFT commit decision for this unresolved transaction until it's
committed or aborted.

conflict_resolution settings

The value async means resolve conflicts asynchronously during replication using the conflict resolution policy.

The value eager means that conflicts are resolved eagerly during COMMIT by aborting one of the conflicting transactions.
Eager is only available with MAJORITY or ALL commit scope groups.

When used with the ALL commit scope group, the commit_decision mustbesetto raft toavoid reconcilation issue.

See "Conflict resolution" in Group Commit.

commit_decision settings

The value group means the preceding commit_scope_group specification also affects the COMMIT decision, not just durability.

The value partner means the partner node decides whether transactions can be committed. This value is allowed only on groups with 2 data nodes.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 318

EDB Postgres Distributed (PGD)

Thevalue raft means the decision makes use of PGD's built-in Raft consensus. Once all the nodes in the selected commit scope group have confirmed the transaction, to ensure that all the nodes in the PGD cluster have noted the
transaction, it is noted with the all-node Raft.

This option must be used when the ALL commit scope group is being used to ensure no divergence between the nodes over the decision. This option may have low performance.

See "Commit decisions" in Group Commit.

commit_scope_degrade_operation settings

The commit_scope_degrade_operation mustbe GROUP_COMMIT with a less restrictive commit scope group—or must be asynchronous (ASYNC).

CAMO
With the client's cooperation, enables protection to prevent multiple insertions of the same transaction in failover scenarios.

See "CAMO" in Durability for more details.

CAMO [DEGRADE ON (degrade_on_parameter = value) TO ASYNC]

DEGRADE ON parameters

Allows degrading to asynchronous operation on timeout.

Parameter Type Default Description

timeout interval 0 Timeout in milliseconds (accepts other units) after which operation becomes asynchronous. (0 means not set.)
require_write_lead Boolean False Specifies whether the node must be a write lead to be able to switch to asynchronous mode.
LAG CONTROL

Allows the configuration of dynamic rate-limiting controlled by replication lag.

See "Lag Control" in Durability for more details.

LAG CONTROL [(lag_control_parameter = value [, ...])]
LAG CONTROL parameters
D
e
f -
Parameter Type Description
a
u
It
1
ma.x_ € int 0 The maximum lag in kB that a given node can have in the replication connection to another node. When the lag exceeds this maximum scaled by max_commit_delay, lag control adjusts the commit delay.
_size
max_lag . . - - ! -) - .)
o interval 0 The maximum replication lag in milliseconds that the given origin can have with regard to a replication connection to a given downstream node.
_time
max_com Configures the maximum delay each commit can take, in fractional milliseconds. If set to 0, it disables Lag Control. After each commit delay adjustment (for example, if the replication is lagging more than
mit_del interval 0 max_lag_size or max_lag_time), the commit delay is recalculated with the weight of the bdr.lag_control_commit_delay_adjust GUC.The max_commit_delay is a ceiling for the
ay commit delay.

e If max_lag_size and max_lag_time aresetto 0, the LAG CONTROL is disabled.
e |If max_commit_delay is notsetorsetto 0, the LAG CONTROL is disabled.

The lag size is derived from the delta of the send_ptr of the walsender to the apply_ptr of the receiver.
The lag time is calculated according to the following formula:
lag_time = (lag_size / apply_rate) * 1000;
Where lag_size isthe delta betweenthe send_ptr and apply_ptr (asusedfor max_lag_size),and apply_rate isaweighted exponential moving average, following the simplified formula:

apply_rate = prev_apply_rate * (1 - apply_rate_weight) +
((apply_ptr_diff * apply_rate_weight) / diff_secs);

Where:

e prev_apply_rate was the previously configured apply_rate , before recalculating the new rate.

e apply_rate_weight isthevalue of the GUC bdr.lag_tracker_apply_rate_weight.

e apply_ptr_diff isthe difference between the current apply_ptr andthe apply_ptr atthe pointintime when the apply rate was last computed.
e diff_secs isthedeltain seconds from the last time the apply rate was calculated.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 319

28.1.7 Conflicts

Conflict detection

List of conflict types

EDB Postgres Distributed (PGD)

PGD recognizes the following conflict types, which can be used as the conflict_type parameter:

Conflict type

insert_exists
update_differing
update_origin_change
update_missing
update_recently_deleted
update_pkey_exists
multiple_unique_conflicts
delete_recently_updated
delete_missing
target_column_missing
source_column_missing
target_table_missing

apply_error_ddl

Conflict resolution

Description

An incoming insert conflicts with an existing row by way of a primary key or a unique key/index.

Anincoming update's key row differs from a local row. This can happen only when using row version conflict detection.

An incoming update is modifying a row that was last changed by a different node.

An incoming update is trying to modify a row that doesn't exist.

An incoming update is trying to modify a row that was recently deleted.

Anincoming update has modified the PRIMARY KEY to a value that already exists on the node that's applying the change.
An incoming row conflicts with multiple rows per UNIQUE/EXCLUDE indexes of the target table.

An incoming delete with an older commit timestamp than the most recent update of the row on the current node or when usingrow version conflict detection.
Anincoming delete is trying to remove a row that doesn't exist.

The target table is missing one or more columns present in the incoming row.

The incoming row is missing one or more columns that are present in the target table.

The target table is missing.

An error was thrown by Postgres when applying a replicated DDL command.

Most conflicts can be resolved automatically. PGD defaults to a last-update-wins mechanism or, more accurately, the update_if_newer conflict resolver. This mechanism retains the most recently inserted or changed row of the two
conflicting ones based on the same commit timestamps used for conflict detection. The behavior in certain corner-case scenarios depends on the settings used for bdr.create_node_group and alternatively for

bdr.alter_node_group .

PGD lets you override the default behavior of conflict resolution by using the following function.

List of conflict resolvers

Several conflict resolvers are available in PGD, with differing coverages of the conflict types they can handle:

Resolver Description

error

Throws an error and stops replication.

Skips processing the remote change and continues replication with the next change. Can be used for insert_exists, update_differing, update_origin_change, update_missing,

skip

update_recently_deleted, update_pkey_exists, delete_recently_updated, delete_missing, target_table_missing, target_column_missing,and

source_column_missing conflict types.

Skips the remote change if it's for a table that doesn't exist downstream because it was recently (within one day) dropped on the downstream. Throw an error otherwise. Can be used for the target_table_missing

skip_if_re
cently_dro
pped

conflict type.

they're dropped.
skip_trans
action
update_if_
newer

This conflict resolver can pose challenges if a table with the same name is re-created shortly after it's dropped. In that case, one of the nodes might see the DMLs on the re-created table before it sees the DDL to re-create
the table. It then incorrectly skips the remote data, assuming that the table is recently dropped, and causes data loss. We recommend that when using this resolver, you don't reuse the object names immediately after

Skips the whole transaction that generated the conflict.

Updates if the remote row was committed later (as determined by the wall clock of the originating node) than the conflicting local row. If the timestamps are same, the node id is used as a tie-breaker to ensure that same
row is picked on all nodes (higher nodeid wins). Can be used for insert_exists, update_differing, update_origin_change,and update_pkey_exists conflict types.

Always performs the replicated action. Can be used for insert_exists (turnsthe INSERT into UPDATE), update_differing, update_origin_change, update_pkey_exists,and
delete_recently_updated (performs the delete).

update
insert_or_
skip

insert_or_
error

ignore

ignore_if_
null

use_defaul
t_value

Tries to build a new row from available information sent by the origin and INSERT it. If there isn't enough information available to build a full row, skips the change. Can be used for update_missing and
update_recently_deleted conflict types.

Tries to build new row from available information sent by origin and insert it. If there isn't enough information available to build full row, throws an error and stops the replication. If there isn't enough information
available to build full row, throws an error and stops the replication. Can be used for update_missing and update_recently_deleted conflict types.

Ignores any missing target column and continues processing.Can be used for the target_column_missing conflict type.
Ignores a missing target column if the extra column in the remote row contains a NULL value. Otherwise, throws an error and stops replication. Can be used for the target_column_missing conflict type.

Fills the missing column value with the default (including NULL if that's the column default) and continues processing. Any error while processing the default or violation of constraints (that is, NULL default on NOT NULL
column) stops replication. Can be used for the source_column_missing conflict type.

The insert_exists, update_differing, update_origin_change, update_missing, multiple_unique_conflicts, update_recently_deleted, update_pkey_exists, delete_recently_updated,
and delete_missing conflict types can also be resolved by user-defined logic usingConflict triggers.

This matrix shows the conflict types each conflict resolver can handle.

insert_exists

error X
skip X
skip_if_recently_dropped

update_if_newer X

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

update_di update_origin update_m update_recently update_pkey delete_recently delete_m target_column source_column target_table_ multiple_unique_
ering _change issing _deleted _exists _updated issing _missing _missing missing conflicts
X X X X X X X X X X X
X X X X X X X X X X X
X
X X X X

320

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts/03_conflict_detection/#row-version-conflict-detection

EDB Postgres Distributed (PGD)

insert_exists update_di update_origin update_m update_recently update_pkey delete_recently delete_m target_column source_column target_table_ multiple_unique_

ering _change issing _deleted _exists _updated issing _missing _missing missing conflicts
update X X X X X X
insert_or_skip X X
insert_or_error X X
ignore X
ignore_if_null X
use_default_value X
conflict_trigger X X X X X X X X X
Default conflict resolvers
Conflict type Resolver
insert_exists update_if_newer
update_differing update_if_newer
update_origin_change update_if_newer
update_missing insert_or_skip
update_recently_deleted skip
update_pkey_exists update_if_newer
multiple_unique_conflicts error
delete_recently_updated skip
delete_missing skip
target_column_missing ignore_if_null
source_column_missing use_default_value

target_table_missing (see

note) skip_if_recently_dropped

apply_error_ddl error

target_table_missing

This conflict type isn't detected on community PostgresqL. If the target table is missing, it causes an error and halts replication. EDB Postgres servers detect and handle missing target tables and can invoke the resolver.

List of conflict resolutions

The conflict resolution represents the kind of resolution chosen by the conflict resolver and corresponds to the specific action that was taken to resolve the conflict.

The following conflict resolutions are currently supported for the conflict_resolution parameter:

Resolution Description

apply_remote The remote (incoming) row was applied.

skip Processing of the row was skipped (no change was made locally).
merge A new row was created, merging information from remote and local row.
vser User code (a conflict trigger) produced the row that was written to the target
table.
Conflict logging

Starting with version 6.0, PGD doesn't log conflicts to the bdr.conflict_history table by default. This is because the table can grow large and cause performance issues. You can enable conflict logging by using the
bdr.alter_node_set_log_config function. This function gives you granular control over which conflicts to log, or you can set it to log all conflicts like this:

SELECT bdr.alter_node_set_log_config(' nodename', false, true, NULL, NULL);

Run this command on the named node to enable logging of all conflicts on that particular node. If you want to enable logging on all nodes, run this command on each node in the PGD group.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 321

EDB Postgres Distributed (PGD)

28.1.8 Conflict functions

bdr.alter_table_conflict_detection

Allows the table owner to change how conflict detection works for a given table.

Synopsis

bdr.alter_table_conflict_detection(relation regclass,
method text,
column_name name DEFAULT
NULL)

Parameters

relation — Name of the relation for which to set the new conflict detection method.

method — The conflict detection method to use.
column_name — The column to use for storing the column detection data. This can be skipped, in which case the column name is chosen based on the conflict detection method. The row_origin method doesn't require an extra

column for metadata storage.
The recognized methods for conflict detection are:

e row_origin — Origin of the previous change made on the tuple (seeOrigin conflict detection). This is the only method supported that doesn't require an extra column in the table.
e row_version — Row version column (see Row version conflict detection).

e column_commit_timestamp — Per-column commit timestamps (described in CLCD).

e column_modify_timestamp — Per-column modification timestamp (described in CLCD).

Notes

For more information about the difference between column_commit_timestamp and column_modify_timestamp conflict detection methods, see Current versus commit timestamp.
This function uses the same replication mechanism as DDL statements. This means the replication is affected by the ddl filters configuration.
The function takes a DML global lock on the relation for which column-level conflict resolution is being enabled.
This function is transactional. You can roll back the effects with the ROLLBACK of the transaction, and the changes are visible to the current transaction.
Only the owner of the relation can execute the bdr.alter_table_conflict_detection functionunless bdr.backwards_compatibility issetto 30618 or less.
Warning
When changing the conflict detection method from one that uses an extra column to store metadata, that column is dropped.
Warning

This function disables CAMO and gives a warning, as long as warnings aren't disabled with bdr.camo_enable_client_warnings.

bdr.alter_node_set_conflict_resolver

This function sets the behavior of conflict resolution on a given node.

Synopsis
bdr.alter_node_set_conflict_resolver(node_name text,

conflict_type text,
conflict_resolver text)

Parameters

e node_name — Name of the node that's being changed.
e conflict_type — Conflict type for which to apply the setting (see List of conflict types).
e conflict_resolver — Resolver to use for the given conflict type (see List of conflict resolvers).

Notes

Currently you can change only the local node. The function call isn't replicated. If you want to change settings on multiple nodes, you must run the function on each of them.
The configuration change made by this function overrides any default behavior of conflict resolutions specified by bdr.create_node_group or bdr.alter_node_group .

This function is transactional. You can roll back the changes, and they are visible to the current transaction.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 322

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts/03_conflict_detection/#origin-conflict-detection
https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts/03_conflict_detection/#row-version-conflict-detection
https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/column-level-conflicts
https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/column-level-conflicts

EDB Postgres Distributed (PGD)

bdr.alter_node_set_log_config

Set the conflict logging configuration for a node.

Synopsis

bdr.alter_node_set_log_config(node_name text,
log_to_file bool DEFAULT

true,
log_to_table bool DEFAULT true,
conflict_type text[] DEFAULT
NULL,
conflict_resolution text[] DEFAULT
NULL)
Parameters

e node_name — Name of the node that's being changed.

e Tlog_to_file — Whetherto log to the node log file.

e log_to_table — Whetherto logtothe bdr.conflict_history table.

e conflict_type — Conflict types to log. NULL (the default) means all.

e conflict_resolution — Conflict resolutions to log. NULL (the default) means all.

Notes

You can change only the local node. The function call isn't replicated. If you want to change settings on multiple nodes, you must run the function on each of them.

This function is transactional. You can roll back the changes, and they're visible to the current transaction.

Listing conflict logging configurations

Theview bdr.node_log_config shows all the logging configurations. It lists the name of the logging configuration, where it logs, and the conflict type and resolution it logs.

Logging conflicts to a table

If log_to_table isset to true, conflicts are logged to a table. The target table for conflict logging is bdr.conflict_history .

This table is range partitioned on the column local_time . The table is managed by autopartition. By default, a new partition is created for every day, and conflicts of the last one month are maintained. After that, the old partitions are
dropped. Autopartition creates between 7 and 14 partitions in advance. bdr_superuser can change these defaults.

Since conflicts generated for all tables managed by PGD are logged to this table, it's important to ensure that only legitimate users can read the conflicted data. PGD does this by defining ROW LEVEL SECURITY policies on the
bdr.conflict_history table. Only owners of the tables are allowed to read conflicts on the respective tables. If the underlying tables have RLS policies defined, enabled, and enforced, then even owners can't read the conflicts. RLS
policies created with the FORCE option also apply to owners of the table. In that case, some or all rows in the underlying table might not be readable even to the owner. So PGD also enforces a stricter policy on the conflict log table.

The predefined role bdr_read_all_conflicts can be granted to users who need to see all conflict details logged to the bdr.conflict_history table without also granting them bdr_superuser role.

The default role bdr_read_all_stats has access to a catalog view called bdr.conflict_history_summary .Thisview doesn't contain user data, allowing monitoring of any conflicts logged.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 323

https://github.com/security/pgd-predefined-roles/#bdr_read_all_conflicts

EDB Postgres Distributed (PGD)

28.1.9 Replication set management

Replication management and DDL

With the exception of bdr.alter_node_replication_sets, the following functions are considered to be DDL . DDL replication and global locking apply to them, if that's currently active. See DDL replication.

bdr.create_replication_set
This function creates a replication set.

Replication of this command is affected by DDL replication configuration, including DDL filtering settings.

Synopsis

bdr.create_replication_set(set_name name,
replicate_insert boolean DEFAULT

true,

replicate_update boolean DEFAULT
true,

replicate_delete boolean DEFAULT
true,

replicate_truncate boolean DEFAULT true,

autoadd_tables boolean DEFAULT
false,

autoadd_existing boolean DEFAULT
true)
Parameters

e set_name — Name of the new replication set. Must be unique across the PGD group.

e replicate_insert — Indicates whether to replicate inserts into tables in this replication set.

e replicate_update — Indicates whether to replicate updates of tables in this replication set.

e replicate_delete — Indicates whether to replicate deletes from tables in this replication set.

e replicate_truncate — Indicates whether to replicate truncates of tables in this replication set.

e autoadd_tables — Indicates whether to replicate newly created (future) tables to this replication set

e autoadd_existing — Indicates whether to add all existing user tables to this replication set. This parameter has an effect only if autoadd_tables issetto true.

Notes

By default, new replication sets don't replicate DDL or PGD administration function calls. See DDL filters for how to set up DDL replication for replication sets. A preexisting DDL filter is set up for the default group replication set that
replicates all DDL and admin function calls. It's created when the group is created but can be dropped in case you don't want the PGD group default replication set to replicate DDL or the PGD administration function calls.

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the DDL filters configuration.
The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

bdr.alter_replication_set
This function modifies the options of an existing replication set.

Replication of this command is affected by DDL replication configuration, including DDL filtering settings.

Synopsis

bdr.alter_replication_set(set_name name,
replicate_insert boolean DEFAULT

NULL,
replicate_update boolean DEFAULT
NULL,
replicate_delete boolean DEFAULT
NULL,
replicate_truncate boolean DEFAULT NULL,
autoadd_tables boolean DEFAULT
NULL)
Parameters

e set_name — Name of an existing replication set.

e replicate_insert — Indicates whether to replicate inserts into tables in this replication set.

e replicate_update — Indicates whether to replicate updates of tables in this replication set.

e replicate_delete — Indicates whether to replicate deletes from tables in this replication set.

e replicate_truncate — Indicates whether to replicate truncates of tables in this replication set.
e autoadd_tables — Indicates whether to add newly created (future) tables to this replication set.

Any of the options that are set to NULL (the default) remain the same as before.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 324

EDB Postgres Distributed (PGD)

Notes

This function uses the same replication mechanism as DDL statements. This means the replication is affected by the DDL filters configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

bdr.drop_replication_set

This function removes an existing replication set.

Replication of this command is affected by DDL replication configuration, including DDL filtering settings.

Synopsis

bdr.drop_replication_set(set_name name)

Parameters

e set_name — Name of an existing replication set.

Notes

This function uses the same replication mechanism as DDL statements. This means the replication is affected by the ddl filters configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Warning

Don't drop a replication set that's being used by at least another node because doing so stops replication on that node. If that happens, unsubscribe the affected node from that replication set. For the same reason, don't drop a
replication set with a join operation in progress when the node being joined is a member of that replication set. Replication set membership is checked only at the beginning of the join. This happens because the information on
replication set usage is local to each node, so that you can configure it on a node before it joins the group.

You can manage replication set subscriptions for a node using alter_node_replication_sets.

bdr.alter_node_replication_sets

This function changes the replication sets a node publishes and is subscribed to.

Synopsis

bdr.alter_node_replication_sets(node_name name,
set_names text[])

Parameters

e node_name — The node to modify. Currently must be a local node.
e set_names — Array of replication sets to replicate to the specified node. An empty array results in the use of the group default replication set.

Notes

This function is executed only on the local node and isn't replicated in any manner.

The replication sets listed aren't checked for existence, since this function is designed to execute before the node joins. Be careful to specify replication set names correctly to avoid errors.

This behavior allows for calling the function not only on the node that's part of the PGD group but also on a node that hasn't joined any group yet. This approach limits the data synchronized during the join. However, the schema is always fully
synchronized without regard to the replication sets setting. All tables are copied across, not just the ones specified in the replication set. You can drop unwanted tables by referring to the bdr.tables catalog table. (These might be removed

automatically in later versions of PGD.) This is currently true even if the DDL filters configuration otherwise prevents replication of DDL.

The replication sets that the node subscribes to after this call are published by the other nodes for actually replicating the changes from those nodes to the node where this function is executed.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

325

EDB Postgres Distributed (PGD)

28.1.10 Replication set membership

bdr.replication_set_add_table
This function adds a table to a replication set.
This function adds a table to a replication set and starts replicating changes from the committing of the transaction that contains the call to the function. Any existing data the table might have on a node isn't synchronized. Replication of this
command is affected by DDL replication configuration, including DDL filtering settings.
Synopsis

bdr.replication_set_add_table(relation regclass,
set_name name DEFAULT

NULL,
columns text[] DEFAULT
NULL,
row_filter text DEFAULT NULL)
Parameters

e relation — Name orOid of a table.

e set_name — Name of the replication set. If NULL (the default), then the PGD group default replication set is used.

e columns — Reserved for future use (currently does nothing and must be NULL).

e row_filter — SQL expression to use for filtering the replicated rows. If this expression isn't defined (that is, it's set to NULL, the default) then all rows are sent.

The row_filter specifies an expression producing a Boolean result, with NULLs. Expressions evaluating to True or Unknown replicate the row. A False value doesn't replicate the row. Expressions can't contain subqueries or refer to
variables other than columns of the current row being replicated. You can't reference system columns.

row_filter executes on the origin node, not on the target node. This puts an additional CPU overhead on replication for this specific table but completely avoids sending data for filtered rows. Hence network bandwidth is reduced and
overhead on the target node is applied.

row_filter neverremoves TRUNCATE commands for a specific table. You can filter away TRUNCATE commands at the replication set level.

You can replicate just some columns of a table. See Replicating between nodes with differences.

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the DDL filters configuration.
Ifthe row_filter isn't NULL, the function takes a DML global lock on the relation that's being added to the replication set. Otherwise it takes justa DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

bdr.replication_set_remove_table
This function removes a table from the replication set.

Replication of this command is affected by DDL replication configuration, including DDL filtering settings.

Synopsis

bdr.replication_set_remove_table(relation regclass,
set_name name DEFAULT
NULL)

Parameters

e relation — Name or Oid of a table.
e set_name — Name of the replication set. If NULL (the default), then the PGD group default replication set is used.

Notes

This function uses the same replication mechanism as DDL statements. This means the replication is affected by the DDL filters configuration.
The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 326

EDB Postgres Distributed (PGD)

28.1.11 DDL replication filtering

See also DDL replication filtering.

bdr.replication_set_add_ddl_filter

This function adds a DDL filter to a replication set.
Any DDL that matches the given filter is replicated to any node that's subscribed to that set. This function also affects replication of PGD admin functions.

This function doesn't prevent execution of DDL on any node. It only alters whether DDL is replicated to other nodes. Suppose two nodes have a replication filter between them that excludes all index commands. Index commands can still be
executed freely by directly connecting to each node and executing the desired DDL on that node.

The DDL filter can specify a command_tag and role_name to allow replication of only some DDL statements. The command_tag is the same as those used by event triggers for regular PostgreSQL commands. A typical example might
be to create a filter that prevents additional index commands on a logical standby from being replicated to all other nodes.

You can filter the PGD admin functions used by using a tagname matching the qualified function name. For example, bdr.replication_set_add_table isthe command tag for the function of the same name. In this case, this tag
allows all PGD functions to be filtered using bdr.* .

The role_name is used for matching against the current role that's executing the command. Both command_tag and role_name are evaluated as regular expressions, which are case sensitive.

Synopsis

bdr.replication_set_add_ddl_filter (set_name name,
dd1l_filter_name text,
command_tag

text,
role_name text DEFAULT NULL,
base_relation_name text DEFAULT NULL,
query_match text DEFAULT
NULL,
exclusive boolean DEFAULT FALSE)
Parameters

set_name — Name of the replication set. If NULL then the PGD group default replication set is used.
dd1_filter_name — Name of the DDL filter. This name must be unique across the whole PGD group.
command_tag — Regular expression for matching command tags. NULL means match everything.
role_name — Regular expression for matching role name. NULL means match all roles.
base_relation_name — Reserved for future use. Must be NULL.

query_match — Regular expression for matching the query. NULL means match all queries.
exclusive — Iftrue, other matched filters aren't taken into consideration (that is, only the exclusive filter is applied). When multiple exclusive filters match, an error is thrown. This parameter is useful for routing specific commands
to a specific replication set, while keeping the default replication through the main replication set.

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the DDL filters configuration. This also means that replication of changes to DDL filter configuration is affected by the
existing DDL filter configuration.

The function takes a DDL global lock.
This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

To view the defined replication filters, use the view bdr.dd1_replication.

Examples

To include only PGD admin functions, define a filter like this:

SELECT bdr.replication_set_add_ddl_filter('mygroup', 'mygroup_admin',
$$bdr\..x3);

To exclude everything except for index DDL:

SELECT bdr.replication_set_add_dd1l_filter('mygroup', 'index_filter',
'A(?! (CREATE INDEX|DROP INDEX|ALTER
INDEX)).*');

To include all operations on tables and indexes but exclude all others, add two filters: one for tables and one for indexes. This example shows that multiple filters provide the union of all allowed DDL commands:
SELECT bdr.replication_set_add_ddl_filter('bdrgroup','index_filter', 'A((?!INDEX).)*$');

SELECT bdr.replication_set_add_ddl_filter('bdrgroup','table_filter', '"A((?!TABLE).)*$');

bdr.replication_set_remove_ddl_filter

This function removes the DDL filter from a replication set.

Replication of this command is affected by DDL replication configuration, including the DDL filtering settings.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 327

https://www.postgresql.org/docs/current/static/event-trigger-matrix.html

EDB Postgres Distributed (PGD)

Synopsis

bdr.replication_set_remove_ddl_filter(set_name name,
ddl_filter_name text)

Parameters

e set_name — Name of the replication set. If NULL then the PGD group default replication set is used.
e ddl_filter_name — Name of the DDL filter to remove.

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the DDL filters configuration. This also means that replication of changes to the DDL filter configuration is affected by the
existing DDL filter configuration.

The function takes a DDL global lock.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 328

28.1.12 Testing and tuning commands

EDB Postgres Distributed has tools that help with testing and tuning your PGD clusters. For background, seeTesting and tuning.

pgd_bench

Synopsis
A benchmarking tool for EDB Postgres Distributed deployments.

pgd_bench [OPTION]... [DBNAME] [DBNAME2]

DBNAME can be a conninfo string of the format: "host=10.1.1.2 user=postgres dbname=master"

See pgd_bench in Testing and tuning for examples of pgd_bench options and usage.

Options

EDB Postgres Distributed (PGD)

The pgd_bench command is implemented as a wrapper around the pgbench command. This means that it shares many of the same options and created tables named pgbench as it performs its testing.

Options that are specific to pgd_bench include the following.

Setting mode

-m or -—mode

The mode can be setto regular, camo,or failover .Thedefaultis regular .

e regular — Onlyasingle node is needed to run pgd_bench.
e camo — Asecond node must be specified to act as the CAMO partner. (CAMO must be set up.)
e failover — Asecond node must be specified to act as the failover.

Whenusing -m failover ,anadditional option --retry isavailable. This option instructs pgd_bench to retry transactions when there's a failover. The ——retry option is automatically enabled when -m camo is used.

When using -m camo and providing a custom script, the SQL commands in the script must be wrapped in SQL transaction commands. That is, the first SQL command must be BEGIN , and the final SQL command must be COMMIT .

Setting GUC variables

-0 or —-set-option

This option is followed by NAME=VALUE entries, which are applied using the Postgres SET command on each server that pgd_bench connects to, and only those servers.

The other options are identical to the Postgres pgbench command. For details, see the PostgreSQLpgbench documentation.

The complete list of options (pgd_bench and pgbench) follow.

Initialization options

e -i, ——initialize — Invoke initialization mode.
e -I, ——init-steps=[dtgGvpf]+ (default "dtgvp")— Run selected initialization steps.

o d — Drop any existing pgbench tables.

o t — Create the tables used by the standard pgbench scenario.

o g — Generate data client-side and load it into the standard tables, replacing any data already present.
G — Generate data server-side and load it into the standard tables, replacing any data already present.
o v —Invoke VACUUM on the standard tables.
o p — Create primary key indexes on the standard tables.
o f — Create foreign key constraints between the standard tables.

o

e -F, ——fillfactor=NUM — Set fill factor.

e -n, --no-vacuum — Don'trun VACUUM during initialization.

e -q, --quiet — Quiet logging (one message every 5 seconds).

e -s, —-scale=NUM — Scaling factor.

e —-foreign-keys — Create foreign key constraints between tables.

e -—-index-tablespace=TABLESPACE — Create indexes in the specified tablespace.

e -—-partition-method=(range|hash) — Partition pgbench_accounts with this method. The defaultis range .
e -—-partitions=NUM — Partition pghbench_accounts into NUM parts. The defaultis © .

e -—-tablespace=TABLESPACE — Create tables in the specified tablespace.

e —-unlogged-tables — Create tables as unlogged tables. (Note: Unlogged tables aren't replicated.)

Options to select what to run

e -b, ——builtin=NAME[@W] — Add built-in script NAME weighted at W. The defaultis 1. Use -b Tlist to list available scripts.

e —f, ——file=FILENAME[@W] — Add script FILENAME weighted at W. The default is 1.
e -N, --skip-some-updates — Updates of pgbench_tellers and pgbench_branches. Sameas -b simple-update .
e -5, --select-only — Perform SELECT-only transactions. Same as -b select-only.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

329

https://www.enterprisedb.com/docs/pgd/latest/reference/testing-tuning
https://www.enterprisedb.com/docs/pgd/latest/reference/testing-tuning#pgd_bench
https://www.postgresql.org/docs/current/sql-set.html
https://www.postgresql.org/docs/current/pgbench.html

EDB Postgres Distributed (PGD)

Benchmarking options

e -c, ——client=NUM — Number of concurrent database clients. The default is 1.

e -C, --connect — Establish new connection for each transaction.

e -D, --define=VARNAME=VALUE — Define variable for use by custom script.

® —j, ——jobs=NUM — Number of threads. The default is 1.

e -1, --log — Write transaction times to log file.

e -, —-latency-T1imit=NUM — Count transactions lasting more than NUM ms as late.

e -m, —-mode=regular|camo|failover — Mode in which torun pgbench. The defaultis regular .
e -M, --protocol=simple|extended|prepared — Protocol for submitting queries. The defaultis simple.
® -n, —--no-vacuum — Don'trun VACUUM before tests.

e -0, —-set-option=NAME=VALUE — Specify runtime SET option.

e -P, --progress=NUM — Show thread progress report every NUM seconds.

® -r, —-report-per-command — Latencies, failures, and retries per command.

e -R, --rate=NUM — Target rate in transactions per second.

e -s, —-scale=NUM — Report this scale factor in output.

e -t, ——transactions=NUM — Number of transactions each client runs. The default is 10.

® -T, ——time=NUM — Duration of benchmark test, in seconds.

e -v, ——vacuum-all — Vacuum all four standard tables before tests.

e --aggregate—interval=NUM — Data over NUM seconds.

e -—-failures-detailed — Report the failures grouped by basic types.

e —-log-prefix=PREFIX — Prefix for transaction time log file. The defaultis pgbench_log.
e -—-max-tries=NUM — Max number of tries to run transaction. The defaultis 1.

® —-progress-timestamp — Use Unix epoch timestamps for progress.

® -—-random-seed=SEED — Setrandomseed (time, rand, integer).

e -—-retry — Retrytransactions on failover. Used with -m .

e -—-sampling-rate=NUM — Fraction of transactions to log, for example, 0.01 for 1%.
e —-show-script=NAME — Show built-in script code, then exit.
e -—-verbose-errors — Print messages of all errors.

Common options:

e -d, --debug — Printdebugging output.

e -h, --host=HOSTNAME — Database server host or socket directory.
® -p, ——port=PORT — Database server port number.

® -U, --username=USERNAME — Connect as specified database user.
e -V, --version — Outputversioninformation, then exit.

e -?, ——help — Show help, then exit.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 330

EDB Postgres Distributed (PGD)

28.1.13 Global sequence management interfaces

PGD provides an interface for converting between a standard PostgreSQL sequence and the PGD global sequence.

The following functions are considered to be DDL , so DDL replication and global locking applies to them.

Sequence functions
bdr.alter_sequence_set_kind
Allows the owner of a sequence to set the kind of a sequence. Once set, seqkind is visible only by way of the bdr.sequences view. In all other ways, the sequence appears as a normal sequence.

PGD treats this function as DDL , so DDL replication and global locking applies, if it's currently active. See DDL replication.

Synopsis
bdr.alter_sequence_set_kind(seqoid regclass, segkind text, start bigint DEFAULT

NULL)

Parameters

e seqoid — Name or Oid of the sequence to alter.
e seqgkind — local forastandard PostgreSQL sequence, snowflakeid or galloc for globally unique PGD sequences, or timeshard for legacy globally unique sequence.
e start — Allows specifying new starting point for galloc and local sequences.

Notes

When changing the sequence kind to galloc, the first allocated range for that sequence uses the sequence start value as the starting point. When there are existing values that were used by the sequence before it was changed to galloc,
we recommend moving the starting point so that the newly generated values don't conflict with the existing ones using the following command:

ALTER SEQUENCE seq_name START starting_value
RESTART

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the DDL filters configuration.
The function takes a global DDL lock. It also locks the sequence locally.
This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Only the owner of the sequence can execute the bdr.alter_sequence_set_kind function, unless bdr.backwards_compatibility issetto 30618 or lower.

bdr.extract_timestamp_from_snowflakeid

This function extracts the timestamp component of the snowflakeid sequence. The return value is of type timestamptz.

Synopsis

bdr.extract_timestamp_from_snowflakeid(snowflakeid bigint)

Parameters

e snowflakeid — Valueofa snowflakeid sequence.

Notes

This function executes only on the local node.

bdr.extract_nodeid_from_snowflakeid

This function extracts the nodeid component of the snowflakeid sequence.

Synopsis

bdr.extract_nodeid_from_snowflakeid(snowflakeid bigint)

Parameters

e snowflakeid — Valueofa snowflakeid sequence.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 331

Notes

This function executes only on the local node.

bdr.extract_localseqid_from_snowflakeid

This function extracts the local sequence value component of the snowflakeid sequence.

Synopsis

bdr.extract_localseqid_from_snowflakeid(snowflakeid bigint)

Parameters

e snowflakeid — Valueofa snowflakeid sequence.

Notes

This function executes only on the local node.

bdr.timestamp_to_snowflakeid

This function converts a timestamp value to a dummy snowflakeid sequence value.

This is useful for doing indexed searches or comparisons of values in the snowflakeid column and for a specific timestamp.

For example, given a table foo withacolumn id that'susinga snowflakeid sequence, you can get the number of changes since yesterday midnight like this:

SELECT count(l) FROM foo WHERE id > bdr.timestamp_to_snowflakeid('yesterday')

A query formulated this way uses an index scan on the column id .

Synopsis

bdr.timestamp_to_snowflakeid(ts timestamptz)

Parameters

e ts — Timestamp to use for the snowflakeid sequence generation.

Notes

This function executes only on the local node.

bdr.extract_timestamp_from_timeshard

This function extracts the timestamp component of the timeshard sequence. The return value is of type timestamptz.

Synopsis

bdr.extract_timestamp_from_timeshard(timeshard_seq bigint)

Parameters

e timeshard_seq — Valueofa timeshard sequence.

Notes

This function executes only on the local node.

bdr.extract_nodeid_from_timeshard

This function extracts the nodeid component of the timeshard sequence.

Synopsis

bdr.extract_nodeid_from_timeshard(timeshard_seq bigint)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

332

Parameters

e timeshard_seq —Valueofa timeshard sequence.

Notes

This function executes only on the local node.

bdr.extract_localseqid_from_timeshard

This function extracts the local sequence value component of the timeshard sequence.

Synopsis

bdr.extract_localseqid_from_timeshard(timeshard_seq bigint)

Parameters

e timeshard_seq —Valueofa timeshard sequence.

Notes

This function executes only on the local node.

bdr.timestamp_to_timeshard

This function converts a timestamp value to a dummy timeshard sequence value.

This is useful for doing indexed searches or comparisons of values in the timeshard column and for a specific timestamp.

For example, given a table foo withacolumn <id that'susinga timeshard sequence, you can get the number of changes since yesterday midnight like this:

SELECT count(1) FROM foo WHERE id > bdr.timestamp_to_timeshard('yesterday')

A query formulated this way uses an index scan on the column id .

Synopsis

bdr.timestamp_to_timeshard(ts timestamptz)

Parameters

e ts — Timestamp to use for the timeshard sequence generation.

Notes

This function executes only on the local node.

bdr.galloc_chunk_info

This function retrieves the ranges allocated to a galloc sequence on the local node.
An empty result set will be returned if the sequence has not yet been accessed on the local node.

An ERROR will be raised if the provided sequence name is not a galloc sequence.

Synopsis

bdr.galloc_chunk_info(seqname regclass)

Parameters

e seqgname -the name of the galloc sequence to query

Notes

This function executes only on the local node.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

333

KSUUID v2 functions

Functions for working with KSUUID v2 data, K-Sortable UUID data. See also KSUUID in the sequences documentation

bdr.gen_ksuuid_v2

This function generates a new KSUUID v2 value using the value of timestamp passed as an argument or current system time if NULL is passed. If you want to generate KSUUID automatically using the system time, pass a NULL argument.

The return value is of type UUID.

Synopsis

bdr.gen_ksuuid_v2(timestamptz)

Notes

This function executes only on the local node.

bdr.ksuuid_v2_cmp

This function compares the KSUUID v2 values.

It returns 1 if the first value is newer, -1 if the second value is lower, or zero if they are equal.

Synopsis

bdr.ksuuid_v2_cmp (uuid, uuid)

Parameters

e UUID — KSUUID v2 tocompare.

Notes

This function executes only on the local node.

bdr.extract_timestamp_from_ksuuid_v2

This function extracts the timestamp component of KSUUID v2. The return value is of type timestamptz .

Synopsis

bdr.extract_timestamp_from_ksuuid_v2(uuid)

Parameters

® UUID — KSUUID v2 value to extract timestamp from.

Notes

This function executes only on the local node.

KSUUID v1 functions

Functions for working with KSUUID v1 data, K-Sortable UUID data(v1). Deprecated - See KSUUID in the sequences documentationfor details.

bdr.gen_ksuuid

This function generates a new KSUUID v1 value, using the current system time. The return value is of type UUID.

Synopsis

bdr.gen_ksuuid()

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

334

https://www.enterprisedb.com/docs/pgd/latest/reference/sequences/#ksuuids
https://www.enterprisedb.com/docs/pgd/latest/reference/sequences#ksuuids

EDB Postgres Distributed (PGD)

Notes

This function executes only on the local node.

bdr.uuid_vi_cmp

This function compares the KSUUID v1 values.

It returns 1 if the first value is newer, -1 if the second value is lower, or zero if they are equal.

Synopsis

bdr.uuid_vl_cmp(uuid, uuid)

Notes

This function executes only on the local node.

Parameters

® UUID — KSUUID v1tocompare.

bdr.extract_timestamp_from_ksuuid

This function extracts the timestamp component of KSUUID v1or UUIDv1 values. The return value is of type timestamptz .

Synopsis

bdr.extract_timestamp_from_ksuuid(uuid)

Parameters

® UUID — KSUUID v1 value to extract timestamp from.

Notes

This function executes on the local node.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 335

EDB Postgres Distributed (PGD)

28.1.14 Autopartition

Autopartition allows you to split tables into several partitions. For more information, see Autopartition.

bdr.autopartition

The bdr.autopartition function configures automatic RANGE partitioning of a table.

Synopsis

bdr.autopartition(relation regclass,
partition_increment

text,
partition_initial_lowerbound text DEFAULT NULL,
partition_autocreate_expression text DEFAULT
NULL,
minimum_advance_partitions integer DEFAULT
2,
maximum_advance_partitions integer DEFAULT
S,
data_retention_period interval DEFAULT
NULL,
enabled boolean DEFAULT on,
analytics_offload_period interval DEFAULT
NULL,
drop_after_retention_period boolean DEFAULT true);
Parameters

e relation — Name or Oid of a table.

e partition_increment — Interval orincrement to next partition creation.

e partition_initial_lowerbound — Ifthe table has no partition, then the first partition with this lower bound and partition_increment apart upper bound is created.
e partition_autocreate_expression — The expression used to detect if it's time to create new partitions.

e minimum_advance_partitions — The system attempts to always have at least minimum_advance_partitions partitions.

e maximum_advance_partitions — Number of partitions to create in a single go after the number of advance partitions falls below minimum_advance_partitions.

e data_retention_period — Interval until older partitions are dropped, if defined. This value must be greater than migrate_after_period .

e enabled — Allows activity to be disabled or paused and later resumed or reenabled.

e analytics_offload_period — Provides support for partition offloading. Reserved for future use.

e drop_after_retention_period — Allows a partition to be detached instead of dropped. Set thisto false to detach instead of drop.

Examples

Daily partitions, keep data for one month:

CREATE TABLE measurement

(

logdate date not null,

peaktemp int,

unitsales int

) PARTITION BY RANGE (logdate);

bdr.autopartition('measurement', 'l day', data_retention_period := '30
days');

Create five advance partitions when only two more partitions remain. Each partition can hold 1 billion orders.

bdr.autopartition('Orders', '1000000000',
partition_initial_lowerbound := '0',
minimum_advance_partitions :=

2,
maximum_advance_partitions :=

bdr.drop_autopartition

Use bdr.drop_autopartition() todrop the autopartitioning rule for the given relation. All pending work items for the relation are deleted, and no new work items are created.

bdr.drop_autopartition(relation regclass);

Parameters

e relation — Name orOid of a table.

bdr.autopartition_wait_for_partitions

Partition creation is an asynchronous process. AutoPartition provides a set of functions to wait for the partition to be created, locally or on all nodes.

Use bdr.autopartition_wait_for_partitions() towait forthe creation of partitions on the local node. The function takes the partitioned table name and a partition key column value and waits until the partition that holds that
value is created.

The function waits only for the partitions to be created locally. It doesn't guarantee that the partitions also exists on the remote nodes.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 336

EDB Postgres Distributed (PGD)

To wait for the partition to be created on all PGD nodes, use the bdr.autopartition_wait_for_partitions_on_all_nodes() function. This function internally checks local as well as all remote nodes and waits until the partition

is created everywhere.

Synopsis

bdr.autopartition_wait_for_partitions(relation regclass, upperbound
text);

Parameters

e relation — Name or Oid of a table.
e upperbound — Partition key column value.

bdr.autopartition_wait_for_partitions_on_all_nodes

Synopsis

bdr.autopartition_wait_for_partitions_on_all_nodes(relation regclass, upperbound
text);

Parameters

e relation — Name or Oid of a table.
e upperbound — Partition key column value.

bdr.autopartition_find_partition

Use the bdr.autopartition_find_partition() function tofind the partition for the given partition key value. If partition to hold that value doesn't exist, then the function returns NULL. Otherwise Oid of the partition is returned.

Synopsis

bdr.autopartition_find_partition(relname regclass, searchkey
text);

Parameters

e relname — Name of the partitioned table.
e searchkey — Partition key value to search.

bdr.autopartition_enable

Use bdr.autopartition_enable toenable AutoPartitioning on the given table. If AutoPartitioning is already enabled, then no action occurs. See bdr.autopartition_disable to disable AutoPartitioning on the given table.

Synopsis

bdr.autopartition_enable(relname regclass);

Parameters

e relname — Name of the relation to enable AutoPartitioning.

bdr.autopartition_disable

Use bdr.autopartition_disable todisable AutoPartitioning on the given table. If AutoPartitioning is already disabled, then no action occurs.

Synopsis

bdr.autopartition_disable(relname regclass);

Parameters

e relname — Name of the relation to disable AutoPartitioning.

Internal functions

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

337

EDB Postgres Distributed (PGD)

bdr.autopartition_create_partition

AutoPartition uses an internal function bdr.autopartition_create_partition to create a standalone AutoPartition on the parent table.

Synopsis

bdr.autopartition_create_partition(relname regclass,

partname

name,

lowerb
text,

upperb
text,

nodes oid[]);
Parameters

e relname — Name or Oid of the parent table to attach to.

e partname — Name of the new AutoPartition.

e Tlowerb — Lower bound of the partition.

e upperb — Upper bound of the partition.

® nodes — Listof nodes that the new partition resides on. This parameter is internal to PGD and reserved for future use.

Notes

This is an internal function used by AutoPartition for partition management. We recommend that you don't use the function directly.

bdr.autopartition_drop_partition

AutoPartition uses an internal function bdr.autopartition_drop_partition todrop a partition that's no longer required, as per the data-retention policy. If the partitioned table was successfully dropped, the function returns
true.

Synopsis

bdr.autopartition_drop_partition(relname regclass)

Parameters

e relname — The name of the partitioned table to drop.

Notes

This function places a DDL lock on the parent table before using DROP TABLE on the chosen partition table. This function is an internal function used by AutoPartition for partition management. We recommend that you don't use the
function directly.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 338

28.1.15

SeeAlso

Stream triggers reference

Stream Triggers for an introduction to Stream Triggers.

Both conflict triggers and transform triggers have access to information about rows and metadata by way of the predefined variables provided by the trigger APl and additional information functions provided by PGD.

In PL/pgSQL, you can use the predefined variables and functions that follow:

® Row variables
e Row Information functions

o

o

o

°

Creating and dropping stream triggers is managed through the manipulation interfaces:

bdr.
bdr.

bdr
bdr
bdr
bdr

trigger_get_row
trigger_get_committs

.trigger_get_xid
.trigger_get_type
.trigger_get_conflict_type
.trigger_get_origin_node_id
bdr.

ri_fkey_on_del_trigger

e Manipulation interfaces

°

o

o

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

bdr.
bdr.
bdr.

create_conflict_trigger
create_transform_trigger
drop_trigger

EDB Postgres Distributed (PGD)

339

https://www.enterprisedb.com/docs/pgd/latest/reference/stream-triggers
https://www.enterprisedb.com/docs/pgd/latest/reference/stream-triggers/#conflict-triggers
https://www.enterprisedb.com/docs/pgd/latest/reference/stream-triggers/#transform-triggers

EDB Postgres Distributed (PGD)

28.1.15.1 Stream triggers manipulation interfaces

You can create stream triggers only on tables with REPLICA IDENTITY FULL or tables without any columns to which TOAST applies.

bdr.create_conflict_trigger

This function creates a new conflict trigger.

Synopsis

bdr.create_conflict_trigger (trigger_name text,
events text[],

relation
regclass,
function regprocedure,
args text[] DEFAULT
")
Parameters

e trigger_name — Name of the new trigger.

e events — Array of events on which to fire this trigger. Valid values are ' INSERT ',' UPDATE ', and ' DELETE ".

e relation — Relation to fire this trigger for.

e function — The function to execute.

e args — Optional. Specifies the array of parameters the trigger function receives on execution (contents of TG_ARGV variable).

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration.

The function takes a global DML lock on the relation on which the trigger is being created.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Similar to normal PostgreSQL triggers, the bdr.create_conflict_trigger functionrequires TRIGGER privilege onthe relation and EXECUTE privilege on the function. This applies with a
bdr.backwards_compatibility of 30619 or above. Additional security rules apply in PGD to all triggers including conflict triggers. See Security and roles.

bdr.create_transform_trigger

This function creates a transform trigger.

Synopsis

bdr.create_transform_trigger (trigger_name text,
events text[],

relation
regclass,
function regprocedure,
args text[] DEFAULT
")
Parameters

e trigger_name — Name of the new trigger.

e events — Array of events on which to fire this trigger. Valid values are ' INSERT ',' UPDATE ', and ' DELETE ".

e relation — Relation to fire this trigger for.

e function — The function to execute.

e args — Optional. Specify array of parameters the trigger function receives on execution (contents of TG_ARGV variable).

Notes

This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration.
The function takes a global DML lock on the relation on which the trigger is being created.
This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Similarly to normal PostgreSQL triggers, the bdr.create_transform_trigger function requires the TRIGGER privilege onthe relation and EXECUTE privilege on the function. Additional security rules apply in PGD to all
triggers including transform triggers. See Security and roles.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 340

bdr.drop_trigger

This function removes an existing stream trigger (both conflict and transform).

Synopsis

bdr.drop_trigger (trigger_name text,

relation
regclass,

ifexists boolean DEFAULT
false)
Parameters

e trigger_name — Name of an existing trigger.
e relation — The relation the trigger is defined for.

e ifexists —Whensetto true, thisfunctionignores missing triggers.

Notes
This function uses the same replication mechanism as DDL statements. This means that the replication is affected by the ddl filters configuration.

The function takes a global DML lock on the relation on which the trigger is being created.

This function is transactional. You can roll back the effects with the ROLLBACK of the transaction. The changes are visible to the current transaction.

Only the owner of the relation can execute the bdr.drop_trigger function.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

341

EDB Postgres Distributed (PGD)

28.1.15.2 Stream triggers row functions
bdr.trigger_get_row

This function returns the contents of a trigger row specified by an identifier asa RECORD . This function returns NULL if called inappropriately, that is, called with SOURCE_NEW when the operation type (TG_OP) is DELETE .

Synopsis

bdr.trigger_get_row(row_id text)

Parameters

e row_id — Identifier of the row. Can be any of SOURCE_NEW, SOURCE_OLD,and TARGET , depending on the trigger type and operation. (See the descriptions of the individual trigger types.)

bdr.trigger_get_committs

This function returns the commit timestamp of a trigger row specified by an identifier. If not available because a row is frozen or isn't available, returns NULL . Always returns NULL for row identifier SOURCE_OLD .

Synopsis

bdr.trigger_get_committs(row_id text)

Parameters

e row_id — Identifier of the row. Can be any of SOURCE_NEW, SOURCE_OLD ,and TARGET , depending on trigger type and operation. (See the descriptions of the individual trigger types.)

bdr.trigger_get_xid

This function returns the local transaction id of a TARGET row specified by an identifier. If not available because a row is frozen or isn't available, returns NULL . Always returns NULL for SOURCE_OLD and SOURCE_NEW row identifiers.

Available only for conflict triggers.

Synopsis

bdr.trigger_get_xid(row_id text)

Parameters

e row_id — Identifier of the row. Can be any of SOURCE_NEW, SOURCE_OLD ,and TARGET , depending on trigger type and operation. (See the descriptions of the individual trigger types.)

bdr.trigger_get_type

This function returns the current trigger type, which can be CONFLICT or TRANSFORM . Returns null if called outside a stream trigger.

Synopsis

bdr.trigger_get_type()

bdr.trigger_get_conflict_type

This function returns the current conflict type if called inside a conflict trigger. Otherwise, returns NULL .

See Conflict types for possible return values of this function.

Synopsis

bdr.trigger_get_conflict_type()

bdr.trigger_get_origin_node_id

This function returns the node id corresponding to the origin for the trigger row_id passed in as argument. If the origin isn't valid (which means the row originated locally), returns the node id of the source or target node, depending on the
trigger row argument. Always returns NULL for row identifier SOURCE_OLD . You can use this function to define conflict triggers to always favor a trusted source node.

Synopsis

bdr.trigger_get_origin_node_id(row_id text)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 342

https://www.enterprisedb.com/docs/pgd/latest/reference/conflict-management/conflicts/02_types_of_conflict/

EDB Postgres Distributed (PGD)

Parameters

e row_id — Identifier of the row. Can be any of SOURCE_NEW, SOURCE_OLD ,and TARGET , depending on trigger type and operation. (See the descriptions of the individual trigger types.)

bdr.ri_fkey_on_del_trigger

When called as a BEFORE trigger, this function uses FOREIGN KEY information to avoid FK anomalies.

Synopsis

bdr.ri_fkey_on_del_trigger()

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 343

EDB Postgres Distributed (PGD)

28.1.15.3 Stream triggers row variables
TG_NAME

Data type name. This variable contains the name of the trigger actually fired. The actual trigger name has a \ _bdrt or _bdrc suffix (depending on trigger type) compared to the name provided during trigger creation.

TG_WHEN

Data type text. This variable says BEFORE for both conflict and transform triggers. You can get the stream trigger type by calling the bdr.trigger_get_type() information function. See bdr.trigger_get_type.

TG_LEVEL

Data type text: a string of ROW .

TG_OP

Data type text: a string of INSERT , UPDATE , or DELETE identifying the operation for which the trigger was fired.

TG_RELID

Data type oid: the object ID of the table that caused the trigger invocation.

TG_TABLE_NAME

Data type name: the name of the table that caused the trigger invocation.

TG_TABLE_SCHEMA

Data type name: the name of the schema of the table that caused the trigger invocation. For partitioned tables, this is the name of the root table.

TG_NARGS

Data type integer: the number of arguments given to the trigger function in the bdr.create_conflict_trigger() or bdr.create_transform_trigger() statement.

TG_ARGV[]

Data type array of text: the arguments from the bdr.create_conflict_trigger() or bdr.create_transform_trigger () statement. The index counts from 0. Invalid indexes (less than 0 or greater than or equal to
TG_NARGS) resultina NULL value.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 344

EDB Postgres Distributed (PGD)

28.1.16 Internal catalogs and views

Catalogs and views are listed here in alphabetical order.

bdr.autopartition_partitions

An internal catalog table that stores information about the partitions created by the autopartitioning feature.

bdr.autopartition_partitions columns

Name Type Description
ap_parent_relid oid 0ID for relation
ap_part_relname name Name of created relation

ap_part_created_at timestamp with time zone Creation timestamp
ap_part_migrated_at timestamp with time zone Migration timestamp

ap_part_dropped_at timestamp with time zone Timestamp when dropped

bdr.autopartition_rules

An internal catalog table that stores information about the autopartitioning rules.

bdr.autopartition_rules columns

Name Type Description
ap_partition_relid oid

ap_partition_relname name

ap_partition_schemaname name

ap_partition_increment_kind "char"

ap_secondary_tablespace oid

ap_maximum_advance_partitions integer

ap_is_autoscaled boolean
ap_latest_partitions integer

ap_enabled boolean
ap_migrate_after_period interval
ap_data_retention_period interval
ap_last_triggered timestamp with time zone
ap_partition_increment_value text
ap_partition_autocreate_expr text

ap_partition_initial_lowerbound text
ap_partition_last_upperbound text

ap_partition_min_upperbound text

bdr.dd1_epoch

An internal catalog table holding state per DDL epoch.

bdr.ddl_epoch columns

Name Type Description
ddl_epoch int8 Monotonically increasing epoch number
origin_node_id oid Internal node ID of the node that requested creation of this epoch

epoch_consume_timeout timestamptz ~ Timeout of this epoch
epoch_consumed boolean Switches to true as soon as the local node has fully processed the epoch

epoch_consumed_lsn boolean LSN at which the local node has processed the epoch

bdr.event_history

Internal catalog table that tracks cluster membership events for a given PGD node. Specifically, it tracks:

® Node joins (to the cluster)
® Raft state changes (that is, whenever the node changes its role in the consensus protocol - leader, follower, or candidate to leader); seeMonitoring Raft consensus
e Whenever a worker has errored out (see bdr.workers and Monitoring PGD replication workers)

bdr.event_history columns

Name Type Description

event_node_id oid ID of the node to which the event refers

event_type int Type of the event (a node, raft, or worker-related event)
event_sub_type int Subtype of the event, that is, if it's a join, a state change, or an error

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 345

Name
event_source
event_time

event_text

event_detail

Type
text
timestamptz

text

text

bdr.event_summary

Description

Name of the worker process where the event was sourced

Timestamp at which the event occurred

Textual representation of the event (for example, the error of the worker)

A more detailed description of the event (for now, only relevant for worker
errors)

EDB Postgres Distributed (PGD)

Aview of the bdr.event_history catalog that displays the information in a more human-friendly format. Specifically, it displays the event types and subtypes as textual representations rather than integers.

bdr.local_leader_change

This is a local cache of the recent portion of leader change history. It has the same fields as bdr. leader , except that it is an ordered set of (node_group_id, leader_kind, generation) instead of a map tracking merely the current version.

bdr.node_config

An internal catalog table with per-node configuration options.

bdr.node_config

Name

node_id

columns

Type
oid

node_route_priority int

node_route_fence
node_route_writes
node_route_reads

node_route_dsn

bdr.node_config_summary

boolean
boolean
boolean

text

Description

Node ID

Priority assigned to this node
Switch to fence this node
Switch to allow writes
Switch to allow reads

Interface of this node

Aview of the bdr.node_config catalog that displays the information in a more human-readable format.

bdr .node_config_summary columns

Name
node_name

node_id

Type
text

oid

node_route_priority int

node_route_fence
node_route_writes
node_route_reads

node_route_dsn

boolean
boolean
boolean

text

effective_route_dsn text

bdr.node_group_config

Description

The name of this node

Node ID

Priority assigned to this node
Switch to fence this node
Switch to allow writes
Switch to allow reads
Interface of this node

Full DSN of this node

An internal catalog table with per-node group configuration options.

bdr.node_group_config columns

Name

node_group_id

route_writer_max_lag
route_reader_max_lag bigint

route_writer_wait_flush

Type

oid

bigint

Description
Node group ID
Maximum write lag accepted

Maximum read lag accepted

boolean Switch if we need to wait for the flush

bdr.node_group_routing_config_summary

Per-node-group routing configuration options.

bdr.node_group_routing_config_summary columns

Name
node_group_name
location

enable_routing

Type
name

name

Description
Node group name

Node group location

boolean Group routing enabled?

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

346

Name
node_group_type
route_writer_max_lag
route_reader_max_lag

route_writer_wait_flush

Type Description

text Node group type (one of "global”, "data", or "subscriber-only")
bigint Maximum write lag accepted

bigint Maximum read lag accepted

boolean Wait for flush

bdr.node_group_routing_info

An internal catalog table holding current routing information for connection manager.

bdr.node_group_routing_info columns

Name Type Description

node_group_id oid
write_node_id oid

prev_write_node_id oid

Node group ID.
Current write node.

Previous write node.

read_node_ids oid[] List of read-only nodes IDs.

record_version bigint Record version. Incremented by 1 on every material change to the routing record.
record_ts timestamptz ~ Timestamp of last update to record_version.

write_leader_version bigint Write leader version. Copied from record_version every time write_node_id is changed.
write_leader_ts timestamptz ~ Write leader timestamp. Copied from record_ts every time write_node_id is changed.

read_nodes_version bigint

Read nodes version. Copied from record_version every time read_node_ids list is
changed.

read_nodes_ts timestamptz ~ Read nodes timestamp. Copied from record_tw every time read_node_ids list is changed.

bdr.node_group_routing_summary

Aview of bdr.node_group_routing_info catalog that shows the information in more friendly way.

bdr.node_group_routing_summary columns

Name Type Description
node_group_name name Node group name
write_lead name Current write lead
previous_write_lead name Previous write lead
read_nodes name[] Current read-only nodes

bdr.node_routing_config_summary

A friendly view of the per-node routing configuration options. Shows the node name rather than the oid and shorter field names.

bdr.node_routing_config_summary columns

Name Type
node_name name
route_priority int
route_fence boolean
route_writes boolean
route_reads boolean

route_dsn text

bdr.sequence_kind

An internal state table storing the type of each non-local sequence. We recommend the view bdr.sequences for diagnostic purposes.

Description

Node name

Priority assigned to this node
Switch to fence this node
Switch to allow writes
Switch to allow reads

Interface of this node

bdr.sequence_kind columns

Name Type Description

seqid oid Internal OID of the sequence

segkind char Internal sequence kind (1 =local, t =timeshard, s =snowflakeid, g =galloc)

sequuid name Global identifier for the sequence.

bdr.sync_node_requests

An internal state table storing the state of node synchronization requests. The view bdr.sync_node_requests_summary provides a human-readable representation of this table.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

347

bdr.sync_node_requests columns

Name
sn_origin_node_id
sn_target_node_id
sn_source_node_id
sn_sync_start_lsn
sn_sync_start_ts
sn_sync_end_[sn
sn_sync_end_ts

sn_sync_status

Type Description

oid Unavailable node with changes to be synchronized
oid Node with the origin node's changes

oid Target node for the sync request

pg_Llsn Start LSN of the sync request

timestamptz ~ Start timestamp of the sync request
pg_lsn End LSN of the sync request
timestamptz ~ End timestamp of the sync request

text Status of the sync request

bdr.sync_node_requests_summary

Aview providing a human-readable version of the underlying bdr.sync_node_requests table.

bdr.sync_node_requests_summary columns

Name Type Description

origin text Unavailable node with changes to be synchronized
source text Node with the origin node's changes

target text Target node for the sync request

sync_start_lsn pg_lsn Start LSN of the sync request

sync_start_ts timestamptz ~ Start timestamp of the sync request

sync_end_lsn pg_lsn End LSN of the sync request
sync_end_ts timestamptz ~ End timestamp of the sync request
sync_status text Status of the sync request

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

348

EDB Postgres Distributed (PGD)

28.1.17 Internal system functions

The following are internal system functions. Many are used when creating various views. We recommend that you do not use the functions directly but instead use the views that they serve.

General internal functions

bdr.bdr_get_commit_decisions

Convenience routine to inspect shared memory state.

Synopsis

bdr.bdr_get_commit_decisions(dbid 0ID,
origin_node_id

01D,
origin_xid xid,
local_xid xid,
decision
"char",

decision_ts
timestamptz,
is_camo boolean)

bdr.bdr_track_commit_decision

Save the transaction commit status in the shared memory hash table. This dunction is used by the upgrade scripts to transfer commit decisions saved in bdr.node_pre_commit catalog to the shared memory hash table. The transaction commit
status will also be logged to the WAL and hence can be reloaded from WAL.

Synopsis

bdr.bdr_track_commit_decision(0ID, xid, xid, "char", timestamptz, boolean);

bdr.consensus_kv_fetch

Fetch value from the consistent KV Store in JSON format.

Synopsis

bdr.consensus_kv_fetch(IN key text) RETURNS jsonb

Parameters

Parameter Description

key An arbitrary key to fetch.

Notes

This function is an internal function, mainly used by HARP.

Warning

Don't use this function in user applications.

bdr.consensus_kv_store

Stores value in the consistent KV Store.

Returns the timestamp of the value expiration time. This function depends on tt1.If tt1 is NULL , then this function returns infinity . If the value was deleted, it returns —infinity .

Synopsis

bdr.consensus_kv_store(key text, value

jsonb,
prev_value jsonb DEFAULT NULL, ttl int DEFAULT
NULL)
Parameters
Parameter Description
key An arbitrary unique key to insert, update, or delete.
value JSON value to store. If NULL, any existing record is deleted.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 349

EDB Postgres Distributed (PGD)

Parameter Description
prev_value If set, the write operation is done only if the current value is equal to prev_value.

ttl Time-to-live of the new value, in milliseconds.

Notes

This is an internal function, mainly used by HARP.
Warning

Don't use this function in user applications.

bdr.decode_message_payload

PGD message payload function that decodes the payloads of consensus messages to a more human-readable output. Used primarily by the bdr.global_consensus_journal_details debugview.

bdr.decode_message_response_payload

PGD message payload function that decodes the payloads of responses to consensus messages to a more human-readable output. Used primarily by the bdr.global_consensus_journal_details debug view.

bdr.difference_fix_origin_create

Creates a replication origin with a given name passed as an argument but addinga bdr_ prefix. Returns the internal id of the origin. This function has the same functionality as pg_replication_origin_create() except thisfunction
requires bdr_superuser rather than postgres superuser permissions.

bdr.difference_fix_session_reset

Marks the current session as not replaying from any origin, essentially resetting the effect of bdr.difference_fix_session_setup() . It returns void. This function has the same functionality as
pg_replication_origin_session_reset() exceptthisfunction requires bdr_superuser rather than postgres superuser permissions.

Synopsis

bdr.difference_fix_session_reset()

bdr.difference_fix_session_setup

Marks the current session as replaying from the current origin. The function uses the pre-created bdr_Tlocal_only_origin local replication origin implicitly for the session. It allows replay progress to be reported and returns void. This
function has the same functionality as pg_replication_origin_session_setup() except that this function requires bdr_superuser rather than postgres superuser permissions. The earlier form of the function,
bdr.difference_fix_session_setup(text) ,wasdeprecated and will be removed in a future release.

Synopsis

bdr.difference_fix_session_setup()

bdr.difference_fix_xact_set_avoid_conflict

Marks the current transaction as replaying a transaction that committed at LSN '0/0" and timestamp '2000-01-01". This function has the same functionality as pg_replication_origin_xact_setup('0/0', '2000-01-01") except
this function requires bdr_superuser rather than postgres superuser permissions.
Synopsis

bdr.difference_fix_xact_set_avoid_conflict()

bdr.drop_node

Drops a node's metadata.
After a node has been PARTED its metadata remains present in the cluster's nodes. For example, the node will remain in the bdr.node_sumary results, marked as PARTED , until the node is dropped.

Calling bdr.drop_node('some node', force := true) canbe necessaryand appropriate when a node becomes stuck while parting. Note that it skips past syncing any data out of the node being dropped, if there is any data on that
node that still needs to be synced out. If a node stuck parting has already been reimaged or deleted, there is no harmiin calling bdr.drop_node onit. Note that this must be called for this stuck node on all nodes in the cluster so they all
have a consistent view that the node has been dropped.

This function removes the metadata for a given node from the local database. The node can be either:

o The local node, in which case it removes all the node metadata, including information about remote nodes.
e Aremote node, in which case it removes only metadata for that specific node.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 350

EDB Postgres Distributed (PGD)

When touse bdr.drop_node()

Itis not necessary to use bdr.drop_node () todrop node metadata just to reuse node names. PGD 5 and later can reuse existing node names as long as the node name in question belongs to a node in a PARTED state. Instead
of dropping the node, use bdr.part_node() toremove the original node and place itina PARTED .

Use of this internal function is limited to:

® When you're instructed to by EDB Technical Support.
e Where you're specifically instructed to in the documentation.

Use bdr.part_node toremove a node from a PGD group. That function sets the node to PARTED state and enables reuse of the node name.

Synopsis

bdr.drop_node(node_name text, cascade boolean DEFAULT false, force boolean DEFAULT false)

Parameters

Parameter Description

node_nam -
Name of an existing node.

e

cascade Deprecated, will be removed in a future release.

force Circumvents all sanity checks and forces the removal of all metadata for the given PGD node despite a possible danger of causing inconsistencies. Only Technical Support uses a forced node drop in case of emergencies
related to parting.

Notes

Before you run this function, part the node using bdr.part_node() .

This function removes metadata for a given node from the local database. The node can be the local node, in which case all the node metadata is removed, including information about remote nodes. Or it can be the remote node, in which case
only metadata for that specific node is removed.

Note
PGD can have a maximum of 1024 node records (both ACTIVE and PARTED) at one time because each node has a unique sequence number assigned to it, for use by snowflakeid and timeshard sequences. PARTED nodes aren't

automatically cleaned up. If this becomes a problem, you can use this function to remove those records.

bdr.get_global_locks

Shows information about global locks held on the local node.

Used to implement the bdr.global_locks view to provide a more detailed overview of the locks.

bdr.get_node_conflict_resolvers

Displays a text string of all the conflict resolvers on the local node.

bdr.get_slot_flush_timestamp

Retrieves the timestamp of the last flush position confirmation for a given replication slot.

Used internally to implement the bdr.node_slots view.

bdr.internal_alter_sequence_set_kind

A function previously used internally for replication of the various function calls. No longer used by the current version of PGD. Exists only for backward compatibility during rolling upgrades.

bdr.internal_replication_set_add_table

A function previously used internally for replication of the various function calls. No longer used by the current version of PGD. Exists only for backward compatibility during rolling upgrades.

bdr.internal_replication_set_remove_table

A function previously used internally for replication of the various function calls. No longer used by the current version of PGD. Exists only for backward compatibility during rolling upgrades.

bdr.internal_submit_join_request

Submits a consensus request for joining a new node.

Needed by the PGD group reconfiguration internal mechanisms.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 351

EDB Postgres Distributed (PGD)

bdr.isolation_test_session_is_blocked

A helper function, extending (and actually invoking) the original pg_isolation_test_session_is_blocked withanadded check for blocks on global locks.

Used for isolation/concurrency tests.

bdr.local_node_info

Displays information for the local node needed by the PGD group reconfiguration internal mechanisms.

Theview bdr.local_node_summary provides similar information useful for user consumption.

bdr.msgb_connect

Connects to the connection pooler of another node. Used by the consensus protocol.

bdr.msgb_deliver_message

Sends messages to another node's connection pooler. Used by the consensus protocol.

bdr.node_catchup_state_name

Converts catchup state code in name.

Synopsis

bdr.node_catchup_state_name(catchup_state oid);

Parameters

Parameter Description

0id code of the catchup

catchup_state
state.

bdr.node_kind_name

Returns human-friendly name of the node kind (datalstandby|witness|subscriber-only).

bdr.peer_state_name

Transforms the node state (node_state) into a textual representation. Used mainly to implement the bdr.node_summary view.

bdr.pg_xact_origin

Returns the origin id of a given transaction.

Synopsis

bdr.pg_xact_origin(xmin xid)

Parameters

Parameter Description

xid Transaction id whose origin is returned.

bdr.request_replay_progress_update

Requests the immediate writing of a 'replay progress update' Raft message. Used mainly for test purposes but can also be used to test if the consensus mechanism is working.

bdr.reset_relation_stats

Returns a Boolean result after resetting the relation stats, as viewed by bdr.stat_relation.

bdr.reset_subscription_stats

Returns a Boolean result after resetting the statistics created by subscriptions, as viewed by bdr.stat_subscription.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 352

bdr.resynchronize_table_from_node

Resynchronizes the relation from a remote node.

Synopsis

bdr.resynchronize_table_from_node(node_name name, relation
regclass)

Parameters

Parameter Description

The node from which to copy or resync the relation

node_name
data.

relation The relation to copy from the remote node.

Notes

This function acquires a global DML lock on the relation, truncates the relation locally, and copies data into it from the remote node.

The relation must exist on both nodes with the same name and definition.

The following are supported:

e Resynchronizing partitioned tables with identical partition definitions
® Resynchronizing partitioned table to nonpartitioned table and vice versa
e Resynchronizing referenced tables by temporarily dropping and re-creating foreign key constraints

EDB Postgres Distributed (PGD)

After running the function on a referenced table, if the referenced column data no longer matches the referencing column values, the function throws an error. After resynchronizing the referencing table data, rerun the function.

Furthermore, it supports resynchronization of tables with generated columns by computing the generated column values locally after copying the data from remote node.

Currently, row_filters are ignored by this function.

The bdr.resynchronize_table_from_node function can be executed only by the owner of the table, provided the owner has bdr_superuser privileges.

bdr.seq_currval

Part of the internal implementation of global sequence manipulation.

Invoked automatically when currval() is called on a galloc or snowflakeid sequence.

bdr.seq_lastval

Part of the internal implementation of global sequence manipulation.

Invoked automatically when lastval() is called on a galloc or snowflakeid sequence.

bdr.seq_nextval

Part of the internal implementation of global sequence increments.

Invoked automatically when nextval() is called on a galloc or snowflakeid sequence

bdr.show_subscription_status

Retrieves information about the subscription status. Used mainly to implement the bdr.subscription_summary view.

bdr.show_workers

Information related to the bdr workers.

Synopsis

bdr.show_workers (
worker_pid int,
worker_role

int,
worker_role_name

text,
worker_subid oid)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

353

bdr.show_writers

Function used in the bdr.writers view.

bdr.sync_status_name

Converts sync state code into a textual representation. Used mainly to implement the bdr.sync_node_requests_summary view.

Synopsis

bdr.sync_status_name(sync_state oid)

Parameters

Parameter Description

sync_state 0id code of the sync state.

Task manager functions

bdr.taskmgr_set_leader

EDB Postgres Distributed (PGD)

Requests the given node to be the task manager leader node. The leader node is responsible for creating new tasks. (Currently only autopartition makes use of this facility.) A witness node, a logical standby, or a subscriber-only node can't

become a leader. Such requests will fail with an error.

Synopsis

bdr.taskmgr_set_leader (node name, wait_for_completion boolean DEFAULT
true);

bdr.taskmgr_get_last_completed_workitem

Returnthe id of the last workitem successfully completed on all nodes in the cluster.

Synopsis

bdr.taskmgr_get_last_completed_workitem();

bdr.taskmgr_work_queue_check_status

Lets you see the status of the background workers that are doing their job to generate and finish the tasks.

The status can be seen through these views:

e bdr.taskmgr_work_queue_local_status

e bdr.taskmgr_work_queue_global_status
Synopsis
bdr.taskmgr_work_queue_check_status(workid

bigint
local boolean DEFAULT false);

Parameters

Parameter Description
workid The key of the task.

Tlocal Check the local status only.

Notes

Taskmgr workers are always running in the background, even before the bdr . autopartition function is called for the first time. If an invalid work-id is used, the function returns unknown . In-progress is the typical status.

bdr.get_min_required_replication_slots

Internal function intended for use by PGD-CLI.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

354

EDB Postgres Distributed (PGD)

bdr.get_min_required_worker_processes

Internal function intended for use by PGD-CLI.

bdr.stat_get_activity

Internal function underlying view bdr.stat_activity . Do not use directly. Use the bdr.stat_activity view instead.

bdr.worker_role_id_name

Internal helper function used when generating view bdr.worker_tasks . Do not use directly. Use the bdr.worker_tasks view instead.

bdr.lag_history

Internal function used when generating view bdr.node_replication_rates . Do not use directly. Use the bdr.node_replication_rates viewinstead.

bdr.get_raft_instance_by_nodegroup

Internal function used when generating view bdr.group_raft_details . Do notuse directly. Use the bdr.group_raft_details viewinstead.

bdr.monitor_camo_on_all_nodes

Internal function used when generating view bdr.group_camo_details . Do notuse directly. Use the bdr.group_camo_details view instead.

bdr.monitor_raft_details_on_all_nodes

Internal function used when generating view bdr.group_raft_details . Do notuse directly. Use the bdr.group_raft_details viewinstead.

bdr.monitor_replslots_details_on_all_nodes

Internal function used when generating view bdr.group_replslots_details . Do not use directly. Use the bdr.group_replslots_details view instead.

bdr.monitor_subscription_details_on_all_nodes

Internal function used when generating view bdr.group_subscription_summary . Do not use directly. Use the bdr.group_subscription_summary view instead.

bdr.monitor_version_details_on_all_nodes

Internal function used when generating view bdr.group_versions_details . Do not use directly. Use the bdr.group_versions_details viewinstead.

bdr.node_group_member_info

Internal function used when generating view bdr.group_raft_details .Do notuse directly. Use the bdr.group_raft_details view instead.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 355

EDB Postgres Distributed (PGD)

28.1.18 Column-Llevel conflict functions

bdr.column_timestamps_create

This function creates column-level conflict resolution. It's called within column_timestamp_enable.

Synopsis

bdr.column_timestamps_create(p_source cstring, p_timestamp
timestampstz)

Parameters

® p_source — Thetwo optionsare current or commit.
e p_timestamp — Timestamp depends on the source chosen. If commit,then TIMESTAMP_SOURCE_COMMIT .If current,then TIMESTAMP_SOURCE_CURRENT .

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 356

28.2 EDB Postgres Distributed Command Line Interface (PGD CLI)

The EDB Postgres Distributed Command Line Interface (PGD CLI) is a tool for managing your EDB Postgres Distributed cluster. It's the key tool for inspecting and managing cluster resources.
It allows you to run commands against EDB Postgres Distributed clusters to:

® Determine the health of the cluster, inspect the cluster's configuration, and manage the cluster's resources.
® Inspect and manage the cluster's nodes and groups.
e Perform a write-leader change operation on the group.

You can also install it manually on Linux and macOS systems that can connect to a PGD cluster, including:

® HCP advanced and distributed high-availability clusters.
® PGD clusters deployed using the CloudNative Postgres Global Clusters operator.
e Manually deployed PGD clusters.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

357

EDB Postgres Distributed (PGD)

28.2.1 Installing PGD CLI

You can install PGD CLI on any system that can connect to the PGD cluster. Linux and macOS are currently supported platforms to install PGD CLI on.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 358

EDB Postgres Distributed (PGD)

28.2.1.1 Installing PGD CLI on Linux

PGD CLlI is available for most Linux distributions. You can install it from the EDB repositories, which you can access with your EDB account. PGD users and EDB Cloud Service users, including those on a free trial, have an EDB account and
access to PGD CLI.

Obtain your EDB subscription token

These repositories require a token to enable downloads from them. To obtain your token, log in to EDB Repos 2.0. If this is your first time visiting the EDB Repos 2.0 page, you must selectRequest Access to generate your token. Once a
generated token is available, select the Copy icon to copy it to your clipboard, or select the eye icon to view it.

Set the EDB_SUBSCRIPTION_TOKEN environment variable

Once you have the token, execute the command shown for your operating system, substituting your token for <your-token> .
export EDB_SUBSCRIPTION_TOKEN=<your-token>

Then run the appropriate commands for your operating system.

Debian or Ubuntu

On Debian or Ubuntu, you can install PGD CLI using the apt package manager.
curl "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.deb.sh" | sudo bash

If this command returns an error like curl: (22) The requested URL returned error: 404 ,checkthatyou entered the correct token.

When the command is successful, you'll see output like this:

Executing the setup script for the 'enterprisedb/postgres_distributed' repository ...

You can now install the PGD CLI package using the command:

sudo apt-get install edb-pgd6-cli

RHEL, Rocky, AlmaLinux, or Oracle Linux

On RHEL, Rocky, AlmaLinux, or Oracle Linux, you can install PGD CLI using the yum package manager. You can also use the dnf package manager, which is the default package manager for RHEL 8 and later.
curl "https://downloads.enterprisedb.com/$EDB_SUBSCRIPTION_TOKEN/postgres_distributed/setup.rpm.sh" | sudo bash

If this command returns an error like curl: (22) The requested URL returned error: 404 ,checkthatyou entered the correct token.

When the command is successful, you'll see output like this:

Executing the setup script for the 'enterprisedb/postgres_distributed' repository ...

You can now install the PGD CLI package using the command:

sudo dnf install edb-pgd6-
cli

sudo yum qinstall edb-pgd6-
cli

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 359

https://www.enterprisedb.com/repos-downloads

EDB Postgres Distributed (PGD)

28.2.1.2 Installing PGD CLI on macOS

PGD CLlI is available for macOS as a Homebrew formula. To install it, run the following commands:

brew tap enterprisedb/tap
brew install pgd-cli

To verify the installation, run:
pgd --version

Next: Using PGD CLI

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 360

https://brew.sh/

EDB Postgres Distributed (PGD)

28.2.2 Using PGD CLI

What is the PGD CLI?

The PGD CLI is a convenient way to connect to and manage your PGD cluster. To use it, you need a user with PGD superuser privileges or equivalent. The PGD user with superuser privileges is the bdr_superuser role. An example of an
equivalent user is edb_admin on an EDB Cloud Service distributed high-availability cluster.

Setting passwords
PGD CLI doesn't interactively prompt for your password. You must pass your password using one of the following methods:

e Adding an entry to your .pgpass password file, which includes the host, port, database name, user name, and password.
® Setting the password in the PGPASSWORD environment variable.
® Including the password in the connection string.

We recommend the first option, as the other options don't scale well with multiple databases, or they compromise password confidentiality.

Running the PGD CLI

Once you have installed pgd-cli, run the pgd command to access the PGD command line interface. The pgd command needs details about the host, port, and database to connect to, along with your username and password.

Passing a database connection string

Use the —-dsn flag to pass a database connection string to the pgd command. When you pass the connection string with the —-dsn flag, you don't need a configuration file. The flag takes precedence even if a configuration file is present.
For example:

pgd nodes list "host=bdr-al port=5432 dbname=pgddb user=enterprisedb"
The database conmnection string (DSN) can also be set using the PGD_CLI_DSN environment variable. For example:

export PGD_CLI_DSN="host=bdr-al port=5432 dbname=pgddb user=enterprisedb"
pgd nodes list

The --dsn flag takes precedence over the environment variable, so if both are set, the ——dsn value is used.

See PGD CLI Command reference for a description of the command options.

Specifying a configuration file

Ifa pgd-cli-config.yml fileisin /etc/edb/pgd-cli or $HOME/.edb/pgd-cli, pgd usesit. You can override this behavior using the optional —f or —-config-file flag. For example:

pgd nodes list /opt/my-
config.yml

output

e Node Sta

dcl_subgroup data ACTIVE
dcl_subgroup data ACTIVE
dcl_subgroup data ACTIVE

Specifying the output format

Use the o or ——output flag to change the default output format to JSON. For example:

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 361

https://www.postgresql.org/docs/current/libpq-pgpass.html

EDB Postgres Distributed (PGD)

pgd nodes list -o json

[
{
"node_name": "kaftan",
"node_group_name": "dcl_subgroup",
"node_kind_name": "data",
"join_state": "ACTIVE",
"node_status": "Up",
"node_id":
3490219809,
"node_seq_id": 2,
"node_local_dbname": "pgddb"
1,
{
"node_name": "kaolin",
"node_group_name": "dcl_subgroup",
"node_kind_name": "data",
"join_state": "ACTIVE",
"node_status": "Up",
"node_id":
2111777360,
"node_seq_id": 1,
"node_local_dbname": "pgddb"
1,
{
"node_name": "kaboom",
"node_group_name": "dcl_subgroup",
"node_kind_name": "data",
"join_state": "ACTIVE",
"node_status": "Up",
"node_id":
2710197610,
"node_seq_id": 3,
"node_local_dbname": "pgddb"
}
]

The PGD CLI supports the following output formats.

Setting Format Description

simple Tabular Asimple tabular view. (Default).

— JSON Presents the raw data with no formatting. For some commands, the JSON output might show more data than the tabular output, such as extra fields and more detailed
messages.

psql PSQL A tabular view in the style of PSQL output. format.

modern Tabular A tabular view which uses box characters to deliniate the table.

markdown Markdown A Markdown style output which may product long-form, non-tabular output for some commands such as pgd assess .

Accessing the command line help

To list the supported commands, enter:

pgd --help

For help with a specific command and its parameters, enter pgd <command_name> --help . For example:
pgd nodes list help

Avoiding stale data

The PGD CLI can return stale data on the state of the cluster if it's still connecting to nodes previously parted from the cluster. Edit the pgd-cli-config.yml file, or change your —-dsn settings to ensure you are connecting to
active nodes in the cluster.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 362

EDB Postgres Distributed (PGD)

28.2.3 Configuring PGD CLI

PGD CLI can be installed on any system that can connect to the PGD cluster. To use PGD CLI, you need a user with PGD superuser privileges or equivalent. The PGD user with superuser privileges is thebdr_superuser role. An example of an
equivalent user is edb_admin on a EDB Cloud Service distributed high-availability cluster.

PGD CLI and database connection strings

You might not need a database connection string. For example, when Trusted Postgres Architect installs the PGD CLI on a system, it also configures the connection to the PGD cluster, which means that the PGD CLI can connect to the cluster
when run.

If you're installing PGD CLI manually, you must give PGD CLI a database connection string so it knows which PGD cluster to connect to.
Setting passwords
PGD CLI doesn't interactively prompt for your password. You must pass your password using one of the following methods:

e Adding an entry to your .pgpass password file, which includes the host, port, database name, user name, and password.
® Setting the password in the PGPASSWORD environment variable.
e Including the password in the connection string.

We recommend the first option, as the other options don't scale well with multiple databases, or they compromise password confidentiality.
If you don't know the database connection strings for your PGD-powered deployment, see discovering connection strings, which helps you to find the right connection strings for your cluster.

Once you have that information, you can continue.

Configuring the database to connect to

PGD CLI takes its database connection information from either the PGD CLI configuration file or the command line.

Using database connection strings in the command line

You can pass the connection string directly to pgd usingthe —-dsn option. For details, see thesample use case. For example:

pgd --dsn "host=kaboom port=5432 user=enterprisedb dbname=pgddb" nodes show --versions

Using database connection strings in an environment variable

As an alternative to passing the connection string on the command line, you can set the PGD_CLI_DSN environment variable to the connection string. For example:

export PGD_CLI_DSN="host=kaboom port=5432 user=enterprisedb dbname=pgddb"
pgd nodes show --versions

Using a configuration file

Use the pgd-cli-config.yml configuration file to specify the database connection string for your cluster. The configuration file must contain the database connection string for at least one PGD node in the cluster. The cluster name is
optional and isn't validated.

For example:

cluster:

name: cluster-—
name

endpoints:

- "host=host-1 port=5432 dbname=pgddb
user=postgres"

- "host=host-2 port=5432 dbname=pgddb
user=postgres"

- "host=host-3 port=5432 dbname=pgddb
user=postgres"

By default, pgd-cli-config.yml islocatedinthe /etc/edb/pgd-cli directory. The PGD CLI searches for pgd-cli-config.yml in the following locations. Precedence order is high to low.

1. /etc/edb/pgd-cli (default)
2. $HOME/.edb/pgd-cli

If your configuration file isn't in either of these directories, you can use the optional ~f or —-config-file flagona pgd command to set the file to read as configuration. See thesample use case.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 363

https://www.postgresql.org/docs/current/libpq-pgpass.html

EDB Postgres Distributed (PGD)

28.2.4 Discovering connection strings

You can install PGD CLI on any system that can connect to the PGD cluster. To use PGD CLI, you need a user with PGD superuser privileges or equivalent. The PGD user with superuser privileges is the bdr_superuser role. An example of an
equivalent user is edb_admin on an EDB Cloud Service distributed high-availability cluster.

PGD CLI and database connection strings

You might not need a database connection string. For example, when Trusted Postgres Architect installs the PGD CLI on a system, it also configures the connection to the PGD cluster. This means that PGD CLI can connect to the cluster when
run.

Getting your database connection string
Because of the range of different configurations that PGD supports, every deployment method has a different way of deriving a connection string for it. Generally, you can obtain the required information from the configuration of your

deployment. You can then assemble that information into connection strings.

For a cluster deployed with EDB CloudNative Postgres Global Cluster

If you are using EDB CloudNative Postgres Global Cluster (CNPG-GC), the connection string is derived from the configuration of the deployment. It is very flexible so there are multiple ways to obtain a connection string. It depends, in large
part, on the configuration of the deployment's services:

e |f you use the Node Service Template, direct connectivity to each node and proxy service is available.
o If you use the Group Service Template, there's a gateway service to each group.
e |If you use the Proxy Service Template, a single proxy provides an entry point to the cluster for all applications.

**TODO [DOCS-1499] : remove proxy references when CNPG-GC is updated to use PGD6 CM **
Consult your configuration file to determine this information.

Establish a host name or IP address, port, database name, and username. The default database name is pgddb . The default username is enterprisedb for EDB Postgres Advanced Server and postgres for PostgreSQL and EDB Postgres
Extended Server.

You can then assemble a connection string based on that information:
"host=<hostnameOrIPAddress> port=<portnumber> dbname=<databasename> user=<username>"

If the deployment's configuration requires it, add sslmode=<sslmode> .

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 364

https://www.enterprisedb.com/docs/postgres_distributed_for_kubernetes/latest/connectivity/#services

EDB Postgres Distributed (PGD)

28.2.5 Command reference

The command name for the PGD command line interface is pgd .

Synopsis

The EDB Postgres Distributed Command Line Interface (PGD CLI) is a tool to manage your EDB Postgres Distributed cluster. It allows you to run commands against EDB Postgres Distributed clusters. You can use it to inspect and manage cluster
resources.

Commands

cluster: Cluster-level commands for managing the cluster.
o show: Show cluster-level information.
o verify: Verify cluster-level information.

group: Group-level commands for managing groups.
o show: Show group-level information.
o set-option: Set group-level options.
o get-option: Get group-level options.
o set-leader: Set the write leader of a group (perform a switchover).

groups: Group related commands for listing groups.
o list: List groups.

node: Node-level commands for managing nodes.

setup: Setup a node in the cluster.

show: Show node-level information.

part: Part a PGD node from an active cluster.

set-option: Set node-level options.

get-option: Get node-level options.

set-config: Set node-level configuration.

get-config: Get node-level configuration.

upgrade: Perform a major version upgrade of a PGD Postgres node.

© 000000 O

nodes: Node related commands for listing nodes.
o list: List nodes.

events: Event log commands for viewing events.
o show: Show events.

replication: Replication related-commands for managing replication.
o show: Show replication information.

raft: Raft related commands for managing Raft consensus.
o show: Show information about Raft state.

commit-scope: Commit scope related commands for managing PGD commit scopes.
show: Show information about a commit-scope.

create: Create a commit-scope.

update: Update a commit-scope.

drop: Drop a commit-scope.

0o o o0 o

commit-scopes: Commit Scopes related commands for PGD cluster.
list: List commit scopes information for the cluster.

assess: Assesses a Postgres server's PGD compatibility.
completion: Generate shell completion scripts.

Global Options

All commands accept the following global options:

Short Long Description

Name/Path to config file.
=if --config-file Thisisignored if --dsn flag is present
Default "/etc/edb/pgd-cli/pgd-cli-config.ym!"

Database connection string
—--dsn For example "host=bdr-a1 port=5432 dbname=pgddb user=postgres"
Also set by PGD_CLI_DSN environment variable.

-h -—help Help for pgd - will show specific help for any command used

5 JE— Output format: json, psql, modern, markdown, simple (seeOutput
formats)

Additional Options

Run pgd -V to see the version information for the pgd CLI.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 365

Output formats

Used with the -0 / ——output option:

Format
simple
json
psql

modern

markdown

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

Description

Simple format - Output as a simple ASCII table (Default).
JSON format - Output as a JSON document, non-tabular
PSQL format - Output as an ASCII table in the style of PSQL
Modern format - Output as a table using box characters

Markdown table format - Output as a markdown compatible ASCII
table

EDB Postgres Distributed (PGD)

366

EDB Postgres Distributed (PGD)

28.2.5.1 pgd assess

Synopsis
The pgd assess commands are used to assess the suitability of a Postgres server instance for migration to the EDB Postgres Distributed cluster.

The command must be run with a DSN that connects to the Postgres server instance that you want to assess. This can be passed as the argument to the ——dsn option, or by setting the PGD_CLI_DSN environment variable. Not doing either
one will result in an error.

The command will then check the Postgres server instance for compatibility with the EDB Postgres Distributed cluster, and will provide a report on the compatibility of the Postgres server instance.

Syntax

pgd assess [OPTIONS]

Options

The assess command has no command specific options. But it does require a DSN to connect to the Postgres server instance that you want to assess. This can be passed as the argument to the -=—dsn option, or by setting the PGD_CLI_DSN
environment variable.

See also Global Options.

Example

ped
assess

output
Assessment Result Details
Multiple Databases Compatible Found only one user database
Materialized Views Compatible No materialized views found
EPAS Queue Tables Compatible No EPAS Queue Tables found
DDL Command Usage Requires workload analysis Cannot be checked automatically at this time

Advisory Lock Usage Potentially compatible advisory lock commands found in pg_stat_statements
Large Objects Compatible No large objects found

Trigger/Reference Privileges Compatible No triggers with incompatible privileges found

Tables with Multiple Unique Indexes Compatible No tables with multiple unique qindexes found

LOCK TABLE Usage Potentially compatible No LOCK TABLE usage found in pg_stat_statements
LISTEN/NOTIFY Usage Compatible No LISTEN/NOTIFY usage found in pg_stat_statements
Row-Level Lock Usage Potentially compatible No row-level locking commands found in pg_stat_statements

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 367

EDB Postgres Distributed (PGD)

28.2.5.2 pgd cluster

The pgd cluster commands are used to manage the EDB Postgres Distributed cluster.

Subcommands

® show: Show cluster-level information.
o verify: Verify cluster-level information.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 368

EDB Postgres Distributed (PGD)

28.2.5.2.1 pgd cluster show

Synopsis

The pgd cluster show command is used to display the cluster-level information in the EDB Postgres Distributed cluster.

Syntax

pgd cluster show [OPTIONS]

Options
The following table lists the options available for the pgd cluster show command:
Short Long Description
--clock-drift Only show detailed clock drift information.
--summary Only show cluster summary information.
--health Only show cluster health information.
Only one of the above options can be specified at a time.

See also Global Options.

Clock Drift

Please note that the current implementation of clock drift may return an inaccurate value if the cluster is under high load while running this command or has large number of nodes in it.

Symbol Meaning
* ok

warning (drift > 2
seconds)

! critical (drift > 5 seconds)
X down / unreachable
2 unknown

not applicable

Examples

Display the cluster information

pgd cluster show

output
Summary
Group Name Parent Group Group Type Node Name Node Kind
democluster global
dcl_subgroup democluster data kaboom data
dcl_subgroup democluster data kaftan data
dcl_subgroup democluster data kaolin data

Health
Check Status Details

Connections All BDR nodes are accessible

Raft Raft Consensus 1is working correctly
Replication Slots All PGD replication slots are working correctly
Clock Drift Clock drift is within permissible limit
Versions All nodes are running the same PGD version

Clock Drift
Reference Node Node Name Clock Drift

kaolin

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 369

28.2.5.2.2 pgd cluster verify

Synopsis

The pgd cluster verify commandis used to verify the configuration of an EDB Postgres Distributed cluster.

Syntax

pgd cluster verify [OPTIONS]

Options
The following table lists the options available for the pgd cluster verify command:
Short Long Description

--settings Verify Postgres settings in the cluster

--arch Verify the cluster architecture

-V --verbose Display verbose output

With no option set, the command verifies both settings and arch by default and the output is not verbose.

Use —-verbose alongside ——arch or —-settings toinclude detailed information and specific advice about the cluster status.

Include the global option -0 markdown to display the results in an inline Markdown format.

See also Global Options.

Examples

Verify the cluster settings and architecture

pgd cluster verify

EDB Postgres Distributed (PGD)

output
Architecture
Status Groups

Cluster has data nodes
Witness nodes per group
Witness-only groups

Data nodes per group

Empty groups

Nodes have node kind set Ok

Settings
Setting Name Status

.accept_connections
.dd1_locking

.max_writers_per_subscription
.raft_group_max_connections
.replay_progress_frequency
.role_replication
.start_workers
.writers_per_subscription
.xact_replication
_connections
max_prepared_transactions
max_replication_slots
max_wal_senders
max_worker_processes
shared_preload_libraries
track_commit_timestamp
wal_level

Verify the cluster architecture with verbose output

pgd cluster verify --verbose --arch

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

370

EDB Postgres Distributed (PG

Check Status | Groups | Details

Cluster has data nodes |

Max data nodes in a cluster |
Witness nodes per group |
Witness-only groups |

Data nodes per group |
Routing enabled groups Warning | dc-1 Recommended to enable routing only on global-group dc-1
Empty groups |

Nodes have node kind set |

Verify the cluster architecture, display output Markdown formatted

pgd cluster verify --arch -o markdown

Cluster has data nodes
Cluster must have at least one data node

Result: Ok

Max data nodes in a cluster

A PGD Essential cluster must have at most three data nodes

Result: Ok

Witness nodes per group
Each data group has at most one witness node

Result: Ok

Witness-only groups
Cluster has at most one witness-only group

Result: Ok

Data nodes per group
Each data group has at least one data node

Result: Ok

Routing enabled groups
A PGD Essential cluster must have routing enabled for global group only
Following groups have problems:

- dc-1
Details:

- Recommended to enable routing only on global-group dc-1

Result: Warning

Empty groups
;;;re_ar;—;; empty groups

Result: Ok

Nodes have node kind set

All nodes should have node_kind properly set

Result: Ok

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

EDB Postgres Distributed (PGD)

28.2.5.3 pgd commit-scope

The pgd commit-scope commands are used to display and manage the commit scopes in the EDB Postgres Distributed cluster.

Subcommands

show: Show information about a commit scope.
create: Create a commit scope.

update: Update a commit scope.

drop: Drop a commit scope.

list: List commit scopes.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 372

EDB Postgres Distributed (PGD)

28.2.5.3.1 pgd commit-scope create

Synopsis

The pgd commit-scope create command is used to create a commit scope in the EDB Postgres Distributed cluster.

Syntax
pgd commit-scope <COMMIT_SCOPE> create [OPTIONS] <RULE_DEFINITION> [GROUP_NAME]
Where <COMMIT_SCOPE> isthe name of the commit scope to create.

The <RULE_DEFINITION> isthe rule that defines the commit scope. The rule specifies the conditions that must be met for a transaction to be considered committed. See Commit Scopes and Commit Scope Rules for more information on
the rule syntax.

The optional [GROUP_NAME] is the name of the group to which the commit scope belongs. If omitted, it defaults to the top-level group.

Options

No command specific options. See Global Options.

Examples

Creating a Commit Scope

The following example creates a commit scope named abcl withtherule ANY 2 (dcl) on replicated group commit onthe dcl_subgroup group:

pgd commit-scope abcl create "ANY 2 (dcl_subgroup) SYNCHRONOUS COMMIT" dcl_subgroup

output
Command executed successfully

Verify the commit scope:

pgd commit-scope abcl show

output

Commit Scope Group Name Rule Definition

dcl_subgroup ANY 2 (dcl_subgroup) SYNCHRONOUS COMMIT

Creating a Commit Scope with the top-level group

The following example creates a commit scope named abc2 with therule ANY 2 (dcl_subgroup) SYNCHRONOUS COMMIT on the top-level group:

pgd commit-scope abc2 create "ANY 2 (dcl_subgroup) SYNCHRONOUS COMMIT"

output
Command executed successfully

Verify the commit scope:

pgd commit-scope abc2 show

output

Commit Scope Group Name Rule Definition

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 373

https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/commit-scope-rules/

EDB Postgres Distributed (PGD)

28.2.5.3.2 pgd commit-scope drop

Synopsis

The pgd commit-scope drop command is used to drop a commit scope from the EDB Postgres Distributed cluster.

Syntax

pgd commit-scope <COMMIT_SCOPE> drop [OPTIONS] [GROUP_NAME]

Where <COMMIT_SCOPE> is the name of the commit scope to drop.

The optional [GROUP_NAME] is the name of the group to which the commit scope belongs. If omitted, it defaults to the top-level group. Note that the name of the group must match the group name the commit scope was created with.

Options

No command specific options. See Global Options.

Examples

Drop a Commit Scope

The following example drops the commit scope named abc2 from the top-level group:

pgd commit-scope abc2 drop

output
Command executed successfully

Drop a Commit Scope from a Group

The following example drops the commit scope named abcl fromthe dcl_subgroup group:

pgd commit-scope abcl drop dcl_subgroup

output
Command executed successfully

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

374

28.2.5.3.3 pgd commit-scopes list

Synopsis

The pgd commit-scopes list command is used to list the commit scopes information for the EDB Postgres Distributed cluster.

Syntax
pgd commit-scopes list [OPTIONS] [GROUP_NAME]
Where GROUP_NAME is the name of the group for which you want to list the commit scopes. If not provided, all commit scopes in the cluster are listed.

Options
No command specific options. See the [Global Options](../#global-options) for common global options.
Examples
List all commit-scopes
“shell
pgd commit-scopes list

EDB Postgres Distributed (PGD)

output

Commit Scope Group Name Rule Definition

local protect ASYNCHRONOUS COMMIT
lag protect MAJORITY ORIGIN GROUP LAG CONTROL (max_lag_time = 30s, max_commit_delay = 10s)

majority protect MAJORITY ORIGIN GROUP SYNCHRONOUS COMMIT

adaptive protect MAJORITY ORIGIN GROUP SYNCHRONOUS COMMIT DEGRADE ON (timeout = 10s, require_write_lead = true) TO ASYNCHRONOUS COMMIT

subgroup protect ALL (group-a) SYNCHRONOUS COMMIT

List all commit-scopes for the given group

pgd commit-scopes list group-a

output
pgd commit-scopes list group-a
Commit Scope | Group Name | Rule Definition

,,,,,,,,,,,,,,,,,, S

subgroup protect | group-a | ALL (group-a) SYNCHRONOUS COMMIT

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

375

EDB Postgres Distributed (PGD)

28.2.5.3.4 pgd commit-scope show

Synopsis

The pgd commit-scope show command is used to display information about a commit scope in the EDB Postgres Distributed cluster.

Syntax
pgd commit-scope <COMMIT_SCOPE> show [OPTIONS]

Where <COMMIT_SCOPE> is the name of the commit scope for which you want to display information.

Options

No command specific options. See Global Options.

Example

Showing a Commit Scope

The following example shows the information about the commit scope abc1 :

pgd commit-scope abcl show

output

Commit Scope Group Name Rule Definitio

The Group Name column shows the name of the group to which the commit scope belongs. In this case, the commit scope belongs to the dc1_subgroup group.

The Rule Definition column shows the rule that defines the commit scope. In this case, the ruleis ANY 2 (dcl) SYCHRONOUS COMMIT .The dcl_subgroup groupisa replicated group, so the commit must be replicated to at
least two nodes in the group and any two nodes within it must acknowledge the commit before it is considered committed.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 376

EDB Postgres Distributed (PGD)

28.2.5.3.5 pgd commit-scope update

Synopsis

The pgd commit-scope update command is used to update a commit scope in the EDB Postgres Distributed cluster.

Syntax

pgd commit-scope <COMMIT_SCOPE> update [OPTIONS] <RULE_DEFINITION>[GROUP_NAME]

Where <COMMIT_SCOPE> is the name of the commit scope to update.

The <RULE_DEFINITION> isthe rule that defines the commit scope. The rule specifies the conditions that must be met for a transaction to be considered committed. See Commit Scopes and Commit Scope Rules for more information on
the rule syntax.

The optional [GROUP_NAME] is the name of the group to which the commit scope belongs. If omitted, it defaults to the top-level group.

Options

No command specific options. See Global Options.

Examples

Updating a Commit Scope

The following example updates the commit scope abc1 with the rule ANY 1 (dcl_subgroup) SYNCHRONOUS COMMIT :

pgd commit-scope abcl update "ANY 1 (dcl_subgroup) SYNCHRONOUS COMMIT" dcl_subgroup

output
Command executed successfully

Updating a Commit Scope in the Top-Level Group

The following example updates the commit scope abc2 with the rule ANY 1 (dcl_subgroup) SYNCHRONOUS COMMIT in the top-level group:

pgd commit-scope abc2 update "ANY 1 (dcl_subgroup) SYNCHRONOUS COMMIT"

output
Command executed successfully

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 377

https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes
https://www.enterprisedb.com/docs/pgd/latest/reference/commit-scopes/commit-scope-rules/

EDB Postgres Distributed (PGD)

28.2.5.4 pgd completion

Synopsis

The pgd completion commands are used to manage the completion settings for the EDB Postgres Distributed CLI.

Syntax
pgd completion <SHELL>

Where <SHELL> is the shell for which to generate the autocompletion script.

Possible values for shell are bash, fish, zsh and powershell.

Options

No command specific options. See Global Options.

Example
pgd completion zsh
This command would normally be evaluated as part of a shell session's startup files. It generates a completion script for the Zsh shell and writes it to the standard output. Therfore you would add to your . zshrc file:

eval "$(pgd completion zsh)"

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 378

EDB Postgres Distributed (PGD)

28.2.5.5 pgd events

The pgd events commands are used to display the events in the EDB Postgres Distributed cluster.

Subcommands

® show: Show events.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 379

28.2.5.5.1

Synopsis

EDB Postgres Distributed (PGD)

pgd events show

The pgd events show command is used to display the events in the EDB Postgres Distributed cluster. With no additional flags, the command displays the 20 most recent events for all nodes and groups.

Syntax

pgd events show [OPTIONS]

Options

The following table lists the options available for the pgd events show command:

Short Long

--node

Description

<NODE_NAME> Only show events for the node with the specified name.

—--group <GROUP_NAME> Only show events for the group with the specified name.

-n —-limit <LIMIT> Limit the number of events to show. Defaults to 20.

See also Global Options.

Node States

State

NONE
CREATED
JOIN_START
JOINING
CATCHUP
STANDBY

PROMOTE

PROMOTING
ACTIVE
PART_START
PARTING
PART_CATCHUP
PARTED

Description

Node state is unset when the worker starts, expected to be set quickly to the current known state.

bdr.create_node() has been executed, but the node isn't a member of any EDB Postgres Distributed cluster yet.

bdr.join_node_group() begins to join the local node to an existing EDB Postgres Distributed cluster.

The node join has started and is currently at the initial sync phase, creating the schema and data on the node.

Initial sync phase is complete; now the join is at the last step of retrieving and applying transactions that were performed on the upstream peer node since the join started.
Node join has finished, but not yet started to broadcast changes. All joins spend some time in this state, but if defined as a Logical Standby, the node will continue in this state.

Node was a logical standby and we just called bdr.promote_node to move the node state to ACTIVE. These two PROMOTE states have to be coherent to the fact, that only one node can be with a state higher than
STANDBY but lower than ACTIVE.

Promotion from logical standby to full BDR node is in progress.

The node is a full BDR node and is currently ACTIVE. This is the most common node status.

Node was ACTIVE or STANDBY and we just called bdr.part_node to remove the node from the EDB Postgres Distributed cluster.
Node disconnects from other nodes and plays no further part in consensus or replication.

Non-parting nodes synchronize any missing data from the recently parted node.

Node parting operation is now complete on all nodes.

Only one node at a time can be in either of the states PROMOTE or PROMOTING. STANDBY indicates that the node is in a read-only state.

Examples

Display the last 5 events

$ pgd events show -n 5

Event Time

2025-02-21 17
2025-02-21 17

output
Event Observer Event Subject Event Source Event Type Event Subtype Event Text Event Detail

144:00.444902 UTC kaolin kaftan consensus ROUTING STATE_CHANGE WRITE_LEADER dcl_subgroup
144:00.445080 UTC kaolin kaolin consensus ROUTING STATE_CHANGE RAFT_LEADER

{"raft_leader":"kaolin","group_name":"dcl_subgroup","read_nodes_version":1,"read_nodes":"kaboom,kaolin"}

2025-02-21 17
2025-02-21 17
2025-02-21 17

:44:00.452029 UTC kaftan kaftan consensus ROUTING STATE_CHANGE LEADER_UPDATE
:44:00.456483 UTC kaboom kaboom consensus ROUTING STATE_CHANGE LEADER_UPDATE
144:00.456667 UTC kaolin kaolin consensus ROUTING STATE_CHANGE LEADER_UPDATE

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 380

EDB Postgres Distributed (PGD)

28.2.5.6 pgd group

The pgd group commands are used to manage the groups in the EDB Postgres Distributed cluster.

Subcommands

show: Show group-level information.

set-option: Set group-level options.

get-option: Get group-level options.

set-leader: Set the write leader of a group (perform a switchover).

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 381

28.2.5.6.1 pgd group show

Synopsis

The pgd group show command is used to display group-level information in the EDB Postgres Distributed cluster.

Syntax

pgd group <GROUP_NAME> show [OPTIONS]

Where <GROUP_NAME> is the name of the group for which you want to display information.

Options

The following table lists the options available for the pgd cluster show command:

Long Description

Only Show summary of the

--summary
group.

--options Only show options of the group.

--nodes Only show nodes of the group.

Only one of the above options can be specified at a time.

See Global Options.

Examples

Show group information

pgd group group-a show

EDB Postgres Distributed (PGD)

Summary

Group Property

Group Name | group-a
Parent Group Name | pgdx6
Group Type | data
Write Leader | pgd-a3
Commit Scope |

Nodes
Node Name | Node Kind Join State

| data ACTIVE
| data ACTIVE
| data ACTIVE

Options

Option Name
analytics_autoadd_tables
analytics_storage_location
apply_delay

check_constraints
default_commit_scope

enable_raft

enable_routing
enable_wal_decoder

http_port

location

num_writers
read_only_consensus_timeout
read_only_max_client_connections
read_only_max_server_connections
read_only_port
read_write_consensus_timeout
read_write_max_client_connections
read_write_max_server_connections
read_write_port
route_reader_max_lag
route_writer_max_lag
route_writer_wait_flush
streaming_mode

use_https

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

Node Status

Value

100
true
local protect
true
true
false
6434
London
2
00:00:00
250
250
6433
00:00:00
250
250

-1
-1

Option Source

group
default
inherited
inherited
group
group
group
inherited
pg_config
group
pg_config
pg_config
pg_config
pg_config
pg_config
pg_config
pg_config
pg_config
pg_config
default
default
group
group
group

output

382

EDB Postgres Distributed (PG

Show group summary information

pgd group group-a show --summary

Group Property | value

Group Name | group-a
Parent Group Name | pgdx6
Group Type | data
Write Leader | pgd-a3
Commit Scope |

Show group nodes information

pgd group group-a show --nodes

Node Name | Node Kind | Join State | Node Status

pgd-al | data | ACTIVE | up
pgd-a2 | data | ACTIVE | up
pgd-a3 | data | ACTIVE | up

Show group options information

pgd group group-a show --options

Option Name | Option Value | Option Source

analytics_autoadd_tables false group
analytics_storage_location default
apply_delay 00:00:00 inherited
check_constraints true inherited
default_commit_scope local protect group
enable_raft true group
enable_routing true group
enable_wal_decoder false inherited
http_port 6434 pg_config
Tlocation London group
num_writers p pg_config
read_only_consensus_timeout 00:00:00 pg_config
read_only_max_client_connections 250 pg_config
read_only_max_server_connections 250 pg_config
read_only_port 6433 pg_config
read_write_consensus_timeout 00:00:00 pg_config
read_write_max_client_connections pg_config
read_write_max_server_connections pg_config
read_write_port pg_config
route_reader_max_lag default
route_writer_max_lag default
route_writer_wait_flush group
streaming_mode group
use_https group

Show group information as J:

pgd group group-a show -o json

"Summary": [

"info": "Group Name",
"value": "group-a"

"Parent Group Name",
"pgdx6"

"info": "Group Type",
"value": "data"

"info": "Write Leader",
"value": "pgd-a3"

"Commit Scope",

"

"Nodes": [
{
"join_state": "ACTIVE",
"node_kind_name": "data",
"node_name": "pgd-a2",

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

"node_status":

"join_state":

"yp!

"ACTIVE",

"node_kind_name": "data",
"node_name": "pgd-a3",

"node_status":

"join_state":

nyp"

"ACTIVE",

"node_kind_name": "data",

"node_name": "pgd-al",

"node_status":

"Options": [
{

"option_name":

"option_source":

"option_value

"option_name":

"option_source":

"option_value

"option_name":

"option_source":
"option_value":

"option_name":

"option_source":

"option_value"

"option_name":

"option_source":
"option_value":

"option_name":

nyp"

"analytics_autoadd_tables",
"group",
"false"

"analytics_storage_location",
"default",

"

"apply_delay",
"inherited",
"00:00:00"

"check_constraints",
"inherited",
"true"

"default_commit_scope",
"group",
"local protect"

"enable_raft",

"option_source": '"group",

"option_value":

"option_name":

"option_source":
"option_value":

"option_name":

"option_source":
"option_value":

"option_name":

"option_source":
"option_value":

"option_name":

"option_source":
"option_value":

"option_name":

"option_source

"option_value"

"option_name":

"option_source":
"option_value":

"option_name":

"option_source":
"option_value":

"option_name":

"option_source":
"option_value":

"option_name":

"option_source":
"option_value":

"option_name":

"option_source":

Copyright © 2009 - 2026 EnterpriseDB Corporation

"true"

"enable_routing",
"group",
"true"

"enable_wal_decoder",
"inherited",
"false"

"http_port",
"pg_config",
"6434"

"location",
"group",
"London"

"num_writers",
"pg_config",
non

"read_only_consensus_timeout",
"pg_config",
"00:00:00"

"read_only_max_client_connections",
"pg_config",
no5en

"read_only_max_server_connections",
"pg_config",
no5en

"read_only_port",
"pg_config",
"6433"

"read_write_consensus_timeout",
"pg_config",

. All rights reserved.

EDB Postgres Distributed (PG

EDB Postgres Distributed (PGD)

"option_value": "00:00:00"

"option_name": "read_write_max_client_connections",
"option_source": "pg_config",
"option_value": "250"

"option_name": "read_write_max_server_connections",
"option_source": "pg_config",
"option_value": "250"

"option_name": "read_write_port",
"option_source": "pg_config",
"option_value "6432"

"option_name": "route_reader_max_lag",
"option_source": "default",
"option_value "

"option_name": "route_writer_max_lag",
"option_source": "default",
"option_value "-in

"option_name": "route_writer_wait_flush"
"option_source": "group",

"option_value "false"

"option_name": "streaming_mode",
"option_source": '"group",
"option_value "null"

"option_name": "use_https",
"option_source": "group",
"option_value": "true"

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 385

28.2.5.6.2 pgd group set-option

Synopsis

The pgd group set-option commandis used to set group-level options in the EDB Postgres Distributed cluster.

Syntax

pgd group <GROUP_NAME> set-option [OPTIONS] <OPTION> <VALUE>

Where <GROUP_NAME> is the name of the group for which you want to get options.

And <OPTION> isthe name of a specific group option you want to get and <VALUE> is the value you want it set to. The following options are available:

Group options

Option

apply_delay
check_constraints
default_commit_scope
enable_routing
enable_raft

enable_wal_decoder

Description

The delay in applying changes to the group.
Whether to check constraints in the group.

The default commit scope of the group.

Whether to enable routing in the group.

Whether to enable Raft in the group.

Whether to enable the WAL decoder in the group.

location The location of the group.

num_writers The number of writers in the group.
route_reader_max_lag The maximum lag for the reader in the group.
route_writer_max_lag The maximum lag for the writer in the group.
streaming_mode The streaming mode of the group.
route_writer_wait_flush The wait time for flushing the writer in the group.
default_seqkind The default sequence kind of the group.
default_replica_identity The default replica identity of the group.

conflict_detection_method The conflict detection method of the group.

replay_progress_frequency The replay progress frequency of the group.

batch_inserts Whether to enable batch inserts in the group.

analytics_storage_location The storage location for analytics in the group.

analytics_autoadd_tables Whether to automatically add tables to analytics in the group.

Group Connection Manager options

Option

read_write_port

read_only_port

http_port

use_https
read_write_max_client_connections
read_write_max_server_connections
read_only_max_client_connections
read_only_max_server_connections
read_write_consensus_timeout

read_only_consensus_timeout

Group Proxy options (for PGD 5.x only)

Option

proxy_listen_address
proxy_listen_addresses
proxy_listen_port
proxy_max_client_conn
proxy_max_server_conn
proxy_server_conn_timeout
proxy_server_conn_keepalive
proxy_fallback_node_groups
proxy_fallback_node_group_timeout
proxy_consensus_grace_period
proxy_read_listen_address
proxy_read_Llisten_addresses

proxy_read_Llisten_port

Description
which port to listen on for read-write connections
which port to listen on for read-only connections

which http port to listen for REST API calls (for integration purposes)

whether http listener should use HTTPS, if enabled, the server certificate is used to TLS

maximum read-write client connections allowed, defaults to max_connections

maximum read-write connections that will be opened to server
maximum read-only client connections allowed

maximum read-only connections that will be opened to server

how long to wait on loss of consensus before read-write connections are no longer accepted

how long to wait on loss of consensus before read-only connections are no longer accepted.

Description

The listen address for the proxy in the group.
The listen addresses for the proxy in the group.
The listen port for the proxy in the group.

The maximum number of client connections for the proxy in the group.

The maximum number of server connections for the proxy in the group.

The server connection timeout for the proxy in the group.
The server connection keepalive for the proxy in the group.
The fallback node groups for the proxy in the group.

The fallback node group timeout for the proxy in the group.
The consensus grace period for the proxy in the group.

The listen address for the read proxy in the group.

The listen addresses for the read proxy in the group.

The listen port for the read proxy in the group.

EDB Postgres Distributed (PGD)

proxy_read_max_client_conn The maximum number of client connections for the read proxy in the group.

proxy_read_max_server_conn The maximum number of server connections for the read proxy in the group.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 386

EDB Postgres Distributed (PGD)

Option Description
proxy_read_server_conn_keepalive The server connection keepalive for the read proxy in the group.
proxy_read_server_conn_timeout The server connection timeout for the read proxy in the group.

proxy_read_consensus_grace_period The consensus grace period for the read proxy in the group.

Options

No command specific options. See Global Options.

Examples

Set the location of a group

pgd group dcl_subgroup set-option location London

output
Command executed successfully

Setting an option to a value with a space in it

pgd group dcl_subgroup set-option location "New York"

output
Command executed successfully

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 387

28.2.5.6.3 pgd group get-option

Synopsis

The pgd group get-option commandis used to get group-level options in the EDB Postgres Distributed cluster.

Syntax

pgd group <GROUP_NAME> get-option [OPTIONS] <OPTION>

Where <GROUP_NAME> is the name of the group for which you want to get options.

And <OPTION> isthe name of a specific group option you want to get. If you don't specify an option, the command lists all group options. The following options are available:

Group options

Option

apply_delay
check_constraints
default_commit_scope
enable_routing
enable_raft

enable_wal_decoder

Description

The delay in applying changes to the group.

Whether to check constraints in the group.

The default commit scope of the group.
Whether to enable routing in the group.

Whether to enable Raft in the group.

Whether to enable the WAL decoder in the group.

location The location of the group.

num_writers The number of writers in the group.
route_reader_max_lag The maximum lag for the reader in the group.
route_writer_max_lag The maximum lag for the writer in the group.
streaming_mode The streaming mode of the group.
route_writer_wait_flush The wait time for flushing the writer in the group.

analytics_storage_location The storage location for analytics in the group.

analytics_autoadd_tables Whether to automatically add tables to analytics in the group.

Group Connection Manager options

Option

read_write_port

read_only_port

http_port

use_https
read_write_max_client_connections
read_write_max_server_connections
read_only_max_client_connections
read_only_max_server_connections
read_write_consensus_timeout

read_only_consensus_timeout

Group Proxy options (for PGD 5.x only)

Option

proxy_listen_address
proxy_listen_addresses
proxy_listen_port
proxy_max_client_conn
proxy_max_server_conn
proxy_server_conn_timeout
proxy_server_conn_keepalive
proxy_fallback_node_groups
proxy_fallback_node_group_timeout
proxy_consensus_grace_period
proxy_read_listen_address
proxy_read_listen_addresses
proxy_read_listen_port
proxy_read_max_client_conn
proxy_read_max_server_conn
proxy_read_server_conn_keepalive
proxy_read_server_conn_timeout

proxy_read_consensus_grace_period

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

Description

which port to listen on for read-write connections

which port to listen on for read-only connections

which http port to listen for REST API calls (for integration purposes)

whether http listener should use HTTPS, if enabled, the server certificate is used to TLS
maximum read-write client connections allowed, defaults to max_connections

maximum read-write connections that will be opened to server

maximum read-only client connections allowed

maximum read-only connections that will be opened to server

how long to wait on loss of consensus before read-write connections are no longer accepted

how long to wait on loss of consensus before read-only connections are no longer accepted.

Description

The listen address for the proxy in the group.

The listen addresses for the proxy in the group.

The listen port for the proxy in the group.

The maximum number of client connections for the proxy in the group.

The maximum number of server connections for the proxy in the group.

The server connection timeout for the proxy in the group.

The server connection keepalive for the proxy in the group.

The fallback node groups for the proxy in the group.

The fallback node group timeout for the proxy in the group.

The consensus grace period for the proxy in the group.

The listen address for the read proxy in the group.

The listen addresses for the read proxy in the group.

The listen port for the read proxy in the group.

The maximum number of client connections for the read proxy in the group.
The maximum number of server connections for the read proxy in the group.
The server connection keepalive for the read proxy in the group.

The server connection timeout for the read proxy in the group.

The consensus grace period for the read proxy in the group.

EDB Postgres Distributed (PGD)

388

EDB Postgres Distributed (PGD)

When a value is shown followed by (inherited) , this means the value is not specifically set on the group, but is inherited from a parent group.

Options

No command specific options. See Global Options.

Examples

List all group options

pgd group dcl_subgroup get-option

output

Option Name Option Value

analytics_autoadd_tables
analytics_storage_location
apply_delay

check_constraints
default_commit_scope protect
enable_raft

enable_routing

enable_wal_decoder

http_port

location

num_writers
read_only_consensus_timeout
read_only_max_client_connections
read_only_max_server_connections
read_only_port
read_write_consensus_timeout
read_write_max_client_connections
read_write_max_server_connections
read_write_port
route_reader_max_lag
route_writer_max_lag
route_writer_wait_flush
streaming_mode

use_https

Get a specific group option

pgd group dcl_subgroup get-option location

output

Option Name | Option Value

location | London

Get a specific group option as json

pgd group dcl_subgroup get-option location -o json

output

"option_name": "location",

"option_value": "London"

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 389

EDB Postgres Distributed (PGD)

28.2.5.6.4 pgd group set-leader

Synopsis
The pgd group set-leader command is used to set the write leader of a group in the EDB Postgres Distributed cluster.

This command performs a switchover operation.

Syntax
pgd group <GROUP_NAME> set-leader [OPTIONS] <LEADER>

Where <GROUP_NAME> is the name of the group for which you want to set the write leader and <LEADER> is the name of the node that you want to set as the write leader.

Options
The following table lists the options available for the pgd group set-leader command:
Short Long Description

--strict Strict method (default).

Timeout period when method is strict. (Defaults to 30s (30

--timeout
seconds))

--fast Fast method.

Strict method is the default method. The strict method waits for the new leader to be in sync with the old leader before switching the leader. The fast method is immediate as it does not wait for the new leader to be in sync with the old leader
before switching the leader, ignoring route_write_max_lag.

See also Global Options.

Examples

Setting the write leader of a group

pgd group dcl_subgroup set-leader kaboom

output
Command executed successfully

Setting the write leader when node is already the leader

pgd group dcl_subgroup set-leader kaboom

output
Node kaboom is already the write leader

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 390

EDB Postgres Distributed (PGD)

28.2.5.7 pgd groups

The pgd groups commands are used to display the groups in the EDB Postgres Distributed cluster.

Subcommands

® list: List groups.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 391

EDB Postgres Distributed (PGD)

28.2.5.7.1 pgd groups list

Synopsis

The pgd groups list command is used to display the groups in the EDB Postgres Distributed cluster.

Syntax

pgd groups list [OPTIONS]

Options

The following options are available for the pgd groups list command:

Short Long Description

-v --verbose Display detailed information about the groups.

See the Global Options for common global options.

Examples

List all groups

pgd groups list

output

Group Name Parent Group Name Group Type Nodes

democluster global

dcl_subgroup democluster data

List all groups with detailed information

pgd groups list --verbose

output
Group Name Parent Group Name Group Type Nodes Raft Leader Write Leader Commit Scope Node Group ID

democluster kaftan 150732310
dcl_subgroup democluster kaftan kaboom 1302278103

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 392

EDB Postgres Distributed (PGD)

28.2.5.8 pgd node

The pgd node commands are used to manage the nodes in the EDB Postgres Distributed cluster.

Subcommands
® setup: Configure PGD data nodes in a cluster.
e show: Show node-level information.
e part: Part a PGD node from an active cluster.
® set-option: Set node-level options.
e get-option: Get node-level options.
® set-config: Set node-level configuration.
® get-config: Get node-level configuration.
o upgrade: Perform a major version upgrade of a PGD Postgres node.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 393

EDB Postgres Distributed (PGD)

28.2.5.8.1 pgd node get-config

Synopsis

The pgd node get-config command is used to get node-level configuration settings (GUC) in the EDB Postgres Distributed cluster.

Syntax
pgd node <NODE_NAME> get-config [OPTIONS] [CONFIG]
Where <NODE_NAME> is the name of the node for which you want to get options.

And [CONFIG] isthe name of a specific GUC you want to get. If no option is specified, all GUCs are displayed.

Option

The following options are available for the pgd node get-config command:

Short Long Description
Display additional information like min value, max value and description for the
-v --verbose GUC(s)

See Global Options.

Examples

Get a specific node config

pgd node pgd-al get-config bdr.batch_inserts

output

Config Name | Config Value
,,,,,,,,,,,,,,,,,,, oo

bdr.batch_inserts | 15

Get a specific node config with verbose output

pgd node pgd-al get-config max_wal_senders --verbose

output

Config Name | Config Value | Min Value | Max Value | Description
————————————————— e T S T R

max_wal_senders | 7 | o | 262143 | Sets the maximum number of simultaneously running WAL sender processes.

Get a specific node config as json

pgd node pgd-al get-config max_wal_senders -o json

output

"config_name": "max_wal_senders",
config_value": "6",

"min_value": "o",

"max_value "262143",
"description": "Sets the maximum number of simultaneously running WAL sender processes."

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 394

EDB Postgres Distributed (PGD)

28.2.5.8.2 pgd node get-option

Synopsis

The pgd node get-option command is used to get node-level options in the EDB Postgres Distributed cluster.

Syntax

pgd node <NODE_NAME> get-option [OPTIONS] [OPTION]

Where <NODE_NAME> is the name of the node for which you want to get options.

And [OPTION] isthe name of a specific group option you want to get. If no option is specified, all options are displayed.

The following options are available:

Node Options
Option Description Type
P . . - . . N - int
route_priority Relative routing priority of the node against other nodes in the same node group. Used only when electing a write leader. :'n €ge
route fence Set to fence the node. When fenced, the node can't receive connections from the Connection Manager. It therefore can't become the write leader or be available in the read-only node pool. Replication is not bool
- impacted.

route_writes Determines whether writes can be routed to this node, that is, whether the node can become write leader. bool
route_reads Determines whether read-only connections can be routed to this node (PGD 5.5.0 and later). bool
route_dsn The dsn used by the Connection Manager to connect to this node. string

Options

No command specific options. See Global Options.

Examples

Get all node options

pgd node kaboom get-option

output

Option Name Option Value

route_dsn host=kaboom port=5444 dbname=pgddb user=postgres

route_fence false
route_priority 100

route_reads true
route_writes true

Get a specific node option

pgd node kaboom get-option route_priority

output

Option Name Option Value

route_priority 100

Get all node options as json

pgd node kaboom get-option -o json

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 395

EDB Postgres Distributed (PGD)

"option_name":

"option_value":

"option_name":

"option_value":

"option_name":

"option_value":

"option_name":

"option_value":

"option_name":

"option_value":

Copyright © 2009

output

"route_dsn",

"host=kaboom port=5444 dbname=pgddb user=postgres"

"route_fence",
"false"

"route_priority",
100"

"route_reads",
"true"

"route_writes",
"true"

- 2026 EnterpriseDB Corporation. All rights reserved.

396

28.2.5.8.3 pgd node part

Synopsis

The pgd node part command removes a PGD node from an active cluster, initiating the parting operation.

The behavior of this command is conditional based on the cluster's Raft protocol version:

1. Raft protocol version 6003 and above

In this scenario, all PGD nodes in the cluster are running version 6.2 or above.

EDB Postgres Distributed (PGD)

The system immediately renames the node to its UUID and continues the complex parting operation in the background. This action allows you to rename the node's original name before the whole operation completes.

After the initial part command returns, use the node's UUID-based name to track the progress of the parting node.

The ——no-wait option is deprecated in this scenario.

N

. Raft protocol version below 6003

In this scenario, not every PGD node in the cluster is running PGD version 6.2 or above.

By default, the command waits for the entire part operation to complete. If you use ~—no-wait , the system schedules the part operation in the background and immediately returns an advisory message, without waiting for

completion.

Syntax

pgd node <NODE_NAME> part [OPTIONS]

Where <NODE_NAME> is the name of the node to be parted.

Options

The following options are available for the pgd node part command:

Option Description Note
—no-wait Schedule the part operation in the background and immediately return, without waiting for the operation to Used for Raft version below
complete. 6003

See Global Options.

Examples

Part a node (Raft protocol version 6003 and above)

pgd node pgd-al part

Starting a part node operation for node: pgd-al

This may take some time, please wait...

output

NOTICE: node pgd-al renamed to a867d475-7177-533a-a5b7-44badb2dfe4b and removal started in the background
DETAIL: node is parting nodegroup topgroup (51455156). node name pgd-al can be reused if required.

Part a node with ——no-wait option (Raft protocol version below 6003)

pgd node pgd-al part --no-wait

Starting a part node operation for node: pgd-al
This may take some time, please wait...
NOTICE: node pgd-al removal started in the background

output

DETAIL: node is parting nodegroup topgroup (51455156)

Part a node without —-no-wait option (Raft protocol version below 6003)

pgd node pgd-al part

Starting a part node operation for node: pgd-al

This may take some time, please wait...

NOTICE: Node pgd-al has been removed from the BDR group

output

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

397

EDB Postgres Distributed (PGD)

28.2.5.8.4 pgd node set-config

Synopsis
The pgd node set-config command is used to set node-level Postgres setting (GUC) in the EDB Postgres Distributed cluster. The command requires node DSN for superuser i.e. Postgres process owner user.

The command reloads the configuration on the node after setting the config and displays a warning of the GUC requires a server restart.

Syntax
pgd node <NODE_NAME> set-config [OPTIONS] <CONFIG> <VALUE>

Where <NODE_NAME> is the name of the node for which you want to get options.

And <CONFIG> isthe name of a specific node config you want to get and <VALUE> is the value you want it set to.

Options

No command specific options. See Global Options.

Examples

Set a specific node config

pgd node pgd-al set-config bdr.batch_inserts 20 --dsn "host=pgd-al port=5432 user=postgres "

output
Command executed successfully

Set a specific node config with a space in the value

pgd node pgd-a2 set-config unix_socket_directories "/var/run/edb-pge, /tmp, /var/lib/postgresql" --dsn "host=pgd-a2 port=5432 user=postgres "

output

WARN: Config change requires a Postgres restart to take effect.

Command executed successfully

Please note the WARN message indicates that the configuration change will not take effect until the Postgres server is restarted.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 398

EDB Postgres Distributed (PGD)

28.2.5.8.5 pgd node set-option

Synopsis

The pgd node set-option command is used to set node-level options in the EDB Postgres Distributed cluster.

Syntax

pgd node <NODE_NAME> set-option [OPTIONS] <OPTION> <VALUE>

Where <NODE_NAME> is the name of the node for which you want to get options.
And <OPTION> isthe name of a specific node option you want to getand <VALUE> is the value you want it set to.

The following options are available:

Node Options

Option Description
route_priority Relative routing priority of the node against other nodes in the same node group. Used only when electing a write leader.

Set to fence the node. When fenced, the node can't receive connections from the Connection Manager. It therefore can't become the write leader or be available in the read-only node pool. Replication is not

route_fence)
impacted.

route_writes Determines whether writes can be routed to this node, that is, whether the node can become write leader.
route_reads Determines whether read-only connections can be routed to this node (PGD 5.5.0 and later).

route_dsn The dsn used by the Connection Manager to connect to this node.

Options

No command specific options. See Global Options.

Examples

Set a specific node option

pgd node kaboom set-option route_priority 100

Type
intege
r

bool

bool
bool

string

output
Command executed successfully

Set a specific node option with a space in the value

pgd node kaboom set-option route_dsn "host=kaboom port=5444 dbname=pgddb user=postgres"

output
Command executed successfully

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

399

28.2.5.8.6

Synopsis

EDB Postgres Distributed (PGD)

pgd node setup

The pgd node setup command is used to configure PGD data nodes in a cluster. It can be used to set up a new node, join an existing node to a cluster, or perform a logical join of a node to the cluster.

Version requirement for physical joins

When pgd node setup performs a physical join (copying data from the remote node when the local node isn't up and running), it requires that both the source node and the joining node have exactly the same PGD version. You
can't use physical joins to join a node with a different PGD version to an existing cluster. For rolling upgrades, ensure you use logical joins instead. See Rolling upgrade using node join for more details.

The behavior of the command depends on the state of the local node and the remote node specified in the command.

If this is the first node in the cluster, pgd node setup will perform initdb and setup PGD node.

If this is not the first node, but the local node is not up and running, pgd node setup will perform a physical join of the node to the cluster. This will copy the data from the remote node to the local node as part of the initialization process,
then join the local node to the cluster. This is the fastest way to load data into a new node.

If the local node is up and running and remote node also is reachable, pgd node setup will perform a logical join of the node to the cluster. This will create a new node in the cluster and start streaming replication from the remote node.
This is the recommended way to add a new node to an existing cluster.

If the local node is up and running and remote node dsn is not provided, pgd node setup will do a node group switch if node not part of the given group.

Users and roles

The pgd node setup command requires a superuser role to run. The superuser role is used to create the data directory and initialize the database. The superuser role must have the CREATEDB privilege to create the database.

The user specified in the ——dsn option will be created if it does not exist. It will only be granted the bdr_superuser role which will allow it to administer PGD functionality. It will not, though have any other privileges on the database.

Support for Transparent Data Encryption (TDE)

Transparent Data Encryption (TDE) is an optional feature available in EDB Postgres Advanced Server and EDB Postgres Extended Server versions 15 and later.

The pgd node setup command supports this feature when initializing a new database server or when joining an existing node to the cluster. The TDE options exposed by pgd node setup are similar to theinitdb TDE options, with the

following exceptions:

® Theoption —-data-encryption isaboolean-only flag (it does not accept the AES key length value).
e |Instead, use the option —-data-encryption-keylen to specify the AES key length.

Syntax

pgd node <NODE_NAME> setup [OPTIONS] -D <PG_DATA>

Arguments

e <NODE_NAME\> The name of the node to be created. This is the name that will be used to identify the node in the cluster. It must be unique within the cluster.

Options

Option

--listen-addr
<LISTEN_ADDR>

--initial-node-count
<INITIAL_NODE_COUNT>

—-bindir <BINDIR>
--log-file <LOG_FILE>

-D, —-pgdata <PG_DATA>
—--superuser <SUPERUSER>
--node-kind <NODE_KIND>
—--group-name <GROUP_NAME>
--create-group

--cluster-name
<CLUSTER_NAME>

--cluster-dsn
<CLUSTER_DSN>

--postgresql-conf
<POSTGRESQL_CONF>

--postgresql-auto-conf
<POSTGRESQL_AUTO_CONF>

--hba-conf <HBA_CONF>
--update-pgpass

--verbose

Description
The address that the configured node will listen on for incoming connections, and the address that other nodes will use to connect to this node. This is typically set to at least Localhost , but
can be set to any valid address. The defaultis localhost .The host value fromthe —-dsn will also be appended to this list.

Number of nodes in the cluster (or planned to be in the cluster). Used to calculate various resource settings for the node. Default is 3.

<BINDIR> Specifies the directory where the binaries are located. Defaults to the directory where the running pgd binary is located.

Path to log file, used for postgres startup logs. Default is to write to a file in the current directory named postgres-<port>.log where the port value is fetched from the port attribute of -
—dsn option.

Uses <PG_DATA> as the data directory of the node. (Also set with environment variable PGDATA). It must be a valid directory and must be writable by the user running the command.
Superuser name for initdb . Defaultis postgres.

Specifies the kind of node to be created. Default is data . Supported values are data, witness, subscriber-only.

Node group name. If not provided, the node will be added to the group of the active node. It is a mandatory argument for the first node of a group.

Set this flag to create the given group, if it is not already present. This will be true by default for the first node.
Name of the cluster to join the node to. When setting up cluster for the first time this will be used to create the parent node group . Defaults to pgd if not specified.

A DSN which belongs to the active PGD cluster. This is not required when configuring the first node of a cluster, however is mandatory for subsequent nodes. Should point to the DSN of an existing
active node.

Optional path of the postgresql.conf file to be used for the node.

Optional path of the postgresql.auto.conf file to be used for the node.

Optional path of the pg_hba.conf file to be used for the node.
If set, the pgpass file for the new nodes password will be stored in the current user's . pgpass file.

Print verbose messages.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 400

https://www.enterprisedb.com/docs/tde/latest/initdb_tde_options

EDB Postgres Distributed (PGD)

Option Description
-y, ——data-encryption Adds TDE when initializing a database server.

—--data-encryption-keylen

The AES key length for TDE. Defaultis 128 . Supported values are 128 and 256 .
<AES_KEYLEN>

--key-wrap-command The wrapping/encryption command to protect the data encryption key. <KEY_WRAP_COMMAND> is customizable, but it must contain the placeholder %p .
<KEY_WRAP_COMMAND> If you don't use this option, pgd node setup falls back to the environment variable PGDATAKEYWRAPCMD .

—--key-unwrap-command The unwrapping/decryption command to access the data encryption key. <KEY_UNWRAP_COMMAND> is customizable, but it must contain the placeholder %p .
<KEY_UNWRAP_COMMAND> If you don't use this option, pgd node setup falls back to the environment variable PGDATAKEYUNWRAPCMD .

--no-key-wrap Disable the key wrapping. This option is not recommended for production use.

--copy-key-from Copy an existing data encryption key from the provided location.

<COPY_KEY_FROM> Normally, encryption keys are stored in pg_encryption/key.bin

See also Global Options.

The pgd node setup command attempts to find the database password non-interactively by checking the following methods of retrieval in order of precedence:

Password set with the password parameter provided with the —-dsn global option.
Password set with the PGPASSWORD environment variable.

Password file set with the passfile parameter provided with the —-dsn global option.
Password file set with the PGPASSFILE environment variable.

Password file .pgpass inthe HOME directory of the user invoking the command.

If the system can't find a password via any of these methods, the command prompts you to enter the password manually.

The --update-pgpass flag controls what happens after the system has successfully obtained a password. If set, it ensures that the password is saved for future non-interactive use. The password file to be updated follows this precedence
order:

® The path specified by the passfile parameter within the connection string provided for the ~~dsn option.

e The file specified by the PGPASSFILE environment variable.
® The .pgpass file located in the HOME directory of the user invoking the command.

Examples

In these examples, we will set up a cluster with on three hosts, host-1, host-2 and host-3, to create three nodes: node-1, node-2,and node-3 . The three nodes will be data nodes, and part of a cluster named pgd with the
group name group-1.

We recommend that you export the PGPASSWORD environment variable to avoid having to enter the password for the pgdadmin user each time you run a command. You can do this with the following command:

export PGPASSWORD=pgdsecret

Configuring the first node

pgd node node-1 setup --dsn "host=host-1 port=5432 user=pgdadmin dbname=pgddb" \
--listen-addr "localhost,host-1" \

--group-name group-1 --cluster-name pgd \

-D /var/lib/edb-pge/17/main

Stepping through the command, we are setting up node-1 . The first option is the ~—dsn option, which is the connection string for the node. This is typically set to host=hostname port=5432 user=pgdadmin dbname=pgd,
which is a typical connection string for a local Postgres instance.

The —-listen-address option is used to specify the address that the node will listen on for incoming connections. In this case, we are setting it to Localhost,host-1, which means that the node will listen on both the localhost and
the host-1 address.

This is the first node in the cluster, so we set the group name to group-1 and the cluster name to pgd (which is actually the default). As this is the first node in the cluster, the —~—create-group option is automatically set.
Finally, we set the data directory for the node with the —D option; this is where the Postgres data files will be stored. In this example, we are using /var/1lib/edb-pge/17/main as the data directory.

The command will create the data directory and initialize the database correctly for PGD. It will then start the node and make it available for new connections, including the other nodes joining the cluster.

Configuring a second node

pgd node node-2 setup --dsn "host=host-2 port=5432 user=pgdadmin dbname=pgddb" \
--listen-addr "localhost,host-2" \

-D /var/lib/edb-pge/17/main

—--cluster-dsn "host=host-1 port=5432 user=pgdadmin dbname=pgddb"

This command is similar to the first node, but we are settingup node-2.The --dsn option is the connection string for the node, which is typically set to host=hostname port=5432 user=pgdadmin dbname=pgd .The
cluster-dsn must point to an active node, it can point to connection manager, or proxy endpoint etc., CLI will get the real DSN of the node behind it. In this case, we are setting it to host=host-1 port=5432 user=pgdadmin
dbname=pgd , which is the connection string for the first node in the cluster.

Configuring a third node

pgd node node-3 setup --dsn "host=host-3 port=5432 user=pgdadmin dbname=pgddb" \
--listen-addr "localhost,host-3" \

--cluster-dsn "host=host-1 port=5432 user=pgdadmin dbname=pgddb" \

-D /var/lib/edb-pge/17/main

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 401

EDB Postgres Distributed (PGD)

This command is similar to the second node, but we are setting up node-3.The --dsn option is the connection string for the node, which is typically set to host=hostname port=5432 user=pgdadmin dbname=pgd .The
cluster-dsn must point to an active node, it can point to connection manager, or proxy endpoint etc., CLI will get the real DSN of the node behind it. In this case, we are setting it to host=host-1 port=5432 user=pgdadmin
dbname=pgd , which is the connection string for the first node in the cluster.

Joining a parted and dropped node to the cluster

pgd node node-2 setup --dsn "host=host-2 port=5432 user=pgdadmin dbname=pgddb" \
--listen-addr "localhost,host-2" \

--cluster-dsn "host=host-1 port=5432 user=pgdadmin dbname=pgddb" \

-D /var/lib/edb-pge/17/main

This command is similar to the setting up the subsequent nodes, but we are setting up node-2 again. The ——dsn option is the connection string for the node, which is typically set to host=hostname port=5432 user=pgdadmin
dbname=pgd . The cluster-dsn must point to an active node, it can point to connection manager, or proxy endpoint etc., CLI will get the real DSN of the node behind it. In this case, we are setting it to host=host-1 port=5432
user=pgdadmin dbname=pgd , which is the connection string for the first node in the cluster.

This is useful when a node has been parted and dropped from the cluster for some activity like maintenance and needs to be rejoined to the cluster. The command will perform a logical join of the node to the cluster, which will create a
new node in the cluster and start streaming replication from the remote node.

Configuring the first node with TDE options

pgd node node-1 setup \

--dsn "host=host-1 port=5432 user=pgdadmin dbname=pgddb" \

--listen-addr "localhost,host-1" \

--group-name group-1 --cluster-name pgd \

-D /var/lib/edb-pge/17/main \

--data-encryption \

--key-wrap-command "openssl enc -e -aes-128-cbc -pbkdf2 -pass pass:secret -out %p" \
--key-unwrap-command "openssl enc -d -aes-128-cbc -pbkdf2 -pass pass:secret -in %p"

The pgd node setup command for a TDE-enabled cluster is similar to the standard command, but requires three additional TDE-specific options: ~-data-encryption, --key-wrap-command ,and --key-unwrap-command .
For simplicity, the values for ——key-wrap-command and --key-unwrap-command in this example use a simple passphrase. However, you can configure more secure mechanisms, such as an external Key Management Service (KMS).

The example doesn't explicitly set the ——data-encryption-keylen option, defaulting the key length to 128 bits.

Configuring a second node with TDE options

pgd node node-2 setup \

—--dsn "host=host-2 port=5432 user=pgdadmin dbname=pgddb" \

--listen-addr "localhost,host-2" \

-D /var/lib/edb-pge/17/main \

--cluster-dsn "host=host-1 port=5432 user=pgdadmin dbname=pgddb" \
--key-wrap-command "openssl enc -e -aes-128-cbc -pbkdf2 -pass pass:secret -out %p" \
--key-unwrap-command "openssl enc -d -aes-128-cbc -pbkdf2 -pass pass:secret -in %p"

This command is similar to the setup used for the first node, retaining the required TDE options. The remaining arguments are consistent with the standard command used when setting up subsequent nodes in a cluster. The values of the TDE
options must be identical to those provided for the initial node.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 402

28.2.5.8.7 pgd node show

Synopsis

The pgd node show command is used to display node-level information in the EDB Postgres Distributed cluster.

Syntax

pgd node <NODE_NAME> show [OPTIONS]

Where <NODE_NAME> is the name of the node for which you want to display information.

Options

No command specific options. See Global Options.

Examples

Show node information

pgd node kaboom show

EDB Postgres Distributed (PGD)

Summary
Node Property Value

Node Name kaboom
Group Name dcl_subgroup
Node Kind CEYL]

Join State ACTIVE

Node Status Up

Node ID 2710197610
Snowflake SeqID 2

PEYELER pgddb

Opt s
Option Name Option Value

route_dsn host=kaboom port=5444 dbname=pgddb user=postgres
route_fence false

route_priority 100
route_reads true

route_writes true

Show node information as JSON

pgd node kaboom show -o json

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

output

403

EDB Postgres Distributed (PG

"Summary": [
"info": "Node Name",

"value": "kaboom"

"info": "Group Name",
"value": "dcl_subgroup"

"info": "Node Kind",
"value": "data"

"info": "Join State",
"value": "ACTIVE"

"Node Status",
"yp!

"info": "Node ID",
"value": "2710197610"

"info": "Snowflake SeqID",
nyalue": "2"

"info": "Database",
"value": "pgddb"

"Options": [
"option_name": "route_dsn",

"option_value": "host=kaboom port=5444 dbname=pgddb user=postgres "

"option_name": "route_fence",
"option_value": "false"

"option_name": "route_priority",
"option_value": "100"

"option_name": "route_reads",

"option_value": "true"

"option_name": "route_writes",
"option_value": "true"

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

28.2.5.8.8 pgd node upgrade

Synopsis

The pgd node upgrade command is used to upgrade the PostgreSQL version on a node in the EDB Postgres Distributed cluster.

Syntax

EDB Postgres Distributed (PGD)

pgd node <NODE_NAME> upgrade [OPTIONS] --old-bindir <OLD_BINDIR> --new-bindir <NEW_BINDIR> --old-datadir <OLD_DATADIR> --new-datadir <NEW_DATADIR> --database <DATABASE>

--username <USER_NAME>

Where <NODE_NAME> is the name of the node which you want to upgrade and <OLD_BINDIR> ,

bin directories, old and new Postgres instance data directories, database name, and cluster's install user name respectively.

Options

The following table lists the options available for the pgd node upgrade command:

Short Long Default Env

-b --old-bindir PGBINOLD

-B --new-bindir PGBINNEW

-d --old-datadir PGDATAOLD

-D --new-datadir PGDATANEW
--database PGDATABASE

-p --old-port 5432 PGPORTOLD
--socketdir /var/run/postgresql PGSOCKETDIR
--new-socketdir /var/run/postgresql ~ PGSOCKETDIRNEW
--check

- --jobs 1

-k --link
--old-options
--new-options

-N --no-sync

-P --new-port 5432 PGPORTNEW

-r --retain

-u --username PGUSER
--clone
--copy-by-block
—key-unwrap- PGDATAKEYUNWRAPCMD
command

See also Global Options.

Examples

Description

Old Postgres instance bin directory

New Postgres instance bin directory

Old Postgres instance data directory

New Postgres instance data directory

PGD database name

Old Postgres instance port

Directory to use for postmaster sockets during upgrade
Directory to use for postmaster sockets in the new cluster
Specify to only perform checks and not modify clusters
Number of simultaneous processes or threads to use

Use hard links instead of copying files to the new cluster

Option to pass to old postgres command, multiple invocations are appended
Option to pass to new postgres command, multiple invocations are appended

Don't wait for all files in the upgraded cluster to be written to disk

New Postgres instance port number
Retain SQL and log files even after successful completion
Cluster's install user name

Use efficient file cloning

Used to migrate data between clusters with different encryption settings. This option is supported for databases that use Transparent Data Encryption

(TDE)

Command to unwrap (decrypt) the data encryption key and access the files to copy. The command must be the same specified during the server

initialization using pgd node setup

In the following examples, "kaolin" is the name of the node to upgrade, from the Quickstart democluster.

Upgrade the PostgreSQL version on a node

pgd node kaolin upgrade --old-bindir /usr/pgsql-16/bin --new-bindir /usr/pgsql-17/bin --old-datadir /var/lib/pgsql/16/data --new-datadir /var/lib/pgsql/17/data --

database pgddb --username enterprisedb

Upgrade the PostgreSQL version on a node with hard links

pgd node kaolin upgrade --old-bindir /usr/pgsql-16/bin --new-bindir /usr/pgsql-17/bin --old-datadir /var/lib/pgsql/16/data --new-datadir /var/lib/pgsql/17/data --

database pgddb --username enterprisedb --link

Upgrade the PostgreSQL version on a node with efficient file cloning

pgd node kaolin upgrade --old-bindir /usr/pgsql-16/bin --new-bindir /usr/pgsql-17/bin --old-datadir /var/lib/pgsql/16/data --new-datadir /var/lib/pgsql/17/data --

database pgddb --username enterprisedb --clone

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved.

<NEW_BINDIR>, <OLD_DATADIR>, <NEW_DATADIR>, <DATABASE>,and <USER_NAME> are the old and new Postgres instance

405

EDB Postgres Distributed (PGD)
Upgrade the PostgreSQL version on a node with a different port number

pgd node kaolin upgrade --old-bindir /usr/pgsql-16/bin --new-bindir /usr/pgsql-17/bin --old-datadir /var/lib/pgsql/16/data --new-datadir /var/lib/pgsql/17/data --
database pgddb --username enterprisedb --old-port 5433 --new-port 5434

Upgrade the Postgres Extended version on a node with Transparent Data Encryption (TDE)

pgd node kaolin upgrade --database pgddb -B /usr/lib/edb-pge/16/bin --socketdir /var/run/edb-pge/ --old-bindir /usr/lib/edb-pge/15/bin --old-datadir /var/lib/edb-

pge/15/main --new-datadir /var/lib/edb-pge/16/main --username postgres --key-unwrap-command "openssl enc -d -aes-128-cbc -pbkdf2 -pass pass:secret -in %p" --copy-by-
block

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 406

EDB Postgres Distributed (PGD)

28.2.5.9 pgd nodes

The pgd nodes commands are used to display the nodes in the EDB Postgres Distributed cluster.

Subcommands

o list: List nodes.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 407

EDB Postgres Distributed (PGD)

28.2.5.9.1 pgd nodes list

Synopsis

The pgd nodes list command is used to display the nodes in the EDB Postgres Distributed cluster. By default, this shows the node name, group name, node kind, join state of the node and whether it is up or down.

Syntax

pgd nodes list [OPTIONS]

Options

The following options are available for the pgd nodes 1ist command:

Short Long Description
--versions Display only version information about the nodes. For each node, the BDR version and Postgres version are shown.

Display detailed information about the nodes. For each node, this option addes the node id, Snowflake sequence id and database
name.

-v --verbose

--group Filter by group name.

See Global Options for common global options.

Examples

List all nodes

pgd nodes list

output

Node Name Group Name Node Kind Join State Node Status

dcl_subgroup ACTIVE
dcl_subgroup ACTIVE
dcl_subgroup ACTIVE
dc2_subgroup ACTIVE
dc2_subgroup ACTIVE
karakul dc2_subgroup ACTIVE

List all nodes in a specific group

pgd nodes list --group dcl_subgroup

output
Node Name Group Name Node Kind Join State Node Status

dcl_subgroup ACTIVE
dcl_subgroup ACTIVE
dcl_subgroup ACTIVE

List all nodes with detailed information

pgd nodes list --verbose

output
Node Name Group Name Node Ki Join State Node Status Node ID Snowflake SeqID Database

dcl_subgroup ACTIVE 3490219809

dcl_subgroup ACTIVE 2710197610 pgddb
dcl_subgroup ACTIVE 2111777360 pgddb
dc2_subgroup ACTIVE 15991087960 pgddb
dc2_subgroup ACTIVE 1321108721 pgddb
dc2_subgroup ACTIVE 1012686451 pgddb

List all nodes version information

pgd nodes list --versions

output

Node Name BDR Version Postgres Version

(Debian L12. .bullseye)
DERET] .12, .bullseye
Y

(Debian L12. .bullseye)

[OERED L12. .bullseye)
. (Debian .12.0-1.bullseye)
karakul .7, .12.0 (Debian .12.0-1.bullseye)

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 408

EDB Postgres Distributed (PGD)

28.2.5.10 pgd raft

The pgd raft commands are used to display the raft status in the EDB Postgres Distributed cluster.

Subcommands

® show: Show raft status for the cluster.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 409

EDB Postgres Distributed (PGD)

28.2.5.10.1 pgd raft show

Synopsis

The pgd raft show command is used to display the Raft status in the EDB Postgres Distributed cluster. In particular, it lists all nodes in all groups, including the top level group, and their Raft status - leader or follower, number of nodes in
the group with them, number of voting nodes in the group, presence of a leader, and the term number.

Syntax

pgd raft show [OPTIONS]

Options

The following options are available for the pgd raft show command:

Short Long Description

--group Filter by group name.

See Global Options for common global options.

Examples

Show Raft status

pgd raft show

output

Group Name Node Name State Leader Name Current Term Commit Index Nodes Voting Nodes Protocol Version

dcl_subgroup kaftan RAFT_LEADER kaftan
dcl_subgroup kaboom RAFT_FOLLOWER kaftan
dcl_subgroup kaolin RAFT_FOLLOWER kaftan
democluster kaftan RAFT_LEADER kaftan
democluster kaboom RAFT_FOLLOWER kaftan
democluster kaolin RAFT_FOLLOWER kaftan

Note that dc1_subgroup hereis a data group with local routing, and democluster is the top level group with global routing.

The Protocol Version column shows the version of the Raft protocol in use. The Commit Index column shows the index of the last committed log entry. The Nodes column shows the total number of nodes in the group. The
Voting Nodes column shows the number of nodes that participate in the Raft consensus. The State column shows the Raft state of the node - leader or follower. The Leader Name column shows the name of the leader node in the
group. The Current Term column shows the current term number.

Show Raft status for a specific group

pgd raft show --group dcl_subgroup

output

Group Name Node Name State Leader Name Current Term Commit Index Nodes Voting Nodes Protocol Version

dcl_subgroup kaftan RAFT_LEADER kaftan
dcl_subgroup kaboom RAFT_FOLLOWER kaftan
dcl_subgroup kaolin RAFT_FOLLOWER kaftan

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 410

EDB Postgres Distributed (PGD)

28.2.5.11 pgd replication

The pgd replication commands are used to display the various aspects of replication status in the EDB Postgres Distributed cluster.

Subcommands

® show: Show replication status for the cluster.

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 411

EDB Postgres Distributed (PGD)

28.2.5.11.1 pgd replication show

Synopsis
The pgd replication show command is used to display the replication status in the EDB Postgres Distributed cluster.
By default, with no options, it produces reports on the following:

Node Replication Progress: A matrix of the replication status between nodes.
Replication Slots: The replication slots status for each node's slots.
Subscriptions: The subscription status for each subscription between nodes.
Analytics Replication: The analytics replication status for each node.

Options can be used to restrict the output to any one of the above reports. The —-verbose option can be used to increase the detail in the default report to show the LSN and the replication lag for each node's connection to other nodes.

Syntax

pgd replication show [OPTIONS]

Options

The following options are available for the pgd replication show command:

Short Long Description
--nodes Display only node to node replication status in a matrix format.
--slots Display the replication slots for each node.

--subscriptions Display the subscription status for each subscription between nodes.
--analytics Display the analytics replication status for each node.

-V --verbose Display detailed information about the replication status.

See the Global Options for common global options.

--slots

This shows Shows the status of BDR replication slots. Output with the verbose flag gives details such as is slot active, replication state (disconnected, streaming, catchup), and approximate lag.

Symbol Meaning
* ok
- warning (lag > 10M)

critical (lag > 100M OR slot is 'inactive’' OR
‘disconnected’)

X down / unreachable

= n/a

In matrix view, sometimes byte lag is shown in parentheses. It is maxOf(WriteLag, FlushLag, ReplayLag, SentLag).

Examples

Display the replication status in the EDB Postgres Distributed cluster

pgd replication show

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 412

EDB Postgres Distributed (PGD)

output
Node Replication Progress
Node kaboom kaftan kaolin

Replication Slots

Group Name Origin Node Target Node Slot Name Active State Write Lag Replay Lag Sent Lag Bytes Write Lag Bytes Replay Lag Bytes

dcl_subgroup kaboom kaftan bdr_pgddb_democluster15_kaftan streaming
dcl_subgroup kaboom kaolin bdr_pgddb_democluster15_kaolin streaming
dcl_subgroup kaftan kaboom bdr_pgddb_democlusterl5_kaboom streaming
dcl_subgroup kaftan kaolin bdr_pgddb_democluster15_kaolin streaming
dcl_subgroup kaolin kaboom bdr_pgddb_democluster15_kaboom streaming
dcl_subgroup kaolin kaftan bdr_pgddb_democluster15_kaftan streaming

Subscriptions
Origin Node Target Node Last Applied Tx Timestamp Last Applied Subscription

kaftan 2025-02-21 $18:12.661520 : . replicating
kaolin 2025-02-21 $18:12.661520 B replicating
kaboom 2025-02-21 :18:12.658069 00:00:18. replicating
kaolin 2025-02-21 :18:12.658069 00: . replicating
kaboom 2025-02-21 $18:12.663201 00: . replicating
kaftan 2025-02-21 :18:12.663201 00:00:18. replicating

Analytics Replication Progress
Origin Node Replicating Node Replicated LSN Last Updated

Display only the node to node replication status in a matrix format

pgd replication show --nodes

output

kaboom -

kaftan *
kaolin *

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 413

	1 EDB Postgres Distributed (PGD)
	Why PGD?
	What does PGD enable?
	What are the differences between PGD Essential and PGD Expanded?

	2 EDB Postgres Distributed 6 release notes
	2.1 EDB Postgres Distributed 6.2.0 release notes
	Highlights
	Features
	Enhancements
	Bug Fixes

	2.2 EDB Postgres Distributed 6.1.2 release notes
	Bug Fixes

	2.3 EDB Postgres Distributed 6.1.1 release notes
	Bug Fixes

	2.4 EDB Postgres Distributed 6.1.0 release notes
	Highlights
	Features
	Enhancements
	Changes
	Bug Fixes

	2.5 EDB Postgres Distributed 6.0.2 release notes
	Bug Fixes

	2.6 EDB Postgres Distributed 6.0.1 release notes
	Highlights
	Features
	Slots Naming Convention
	Origins Naming Convention:

	Enhancements
	Changes
	Bug Fixes

	3 Overview
	3.1 Known issues and limitations
	Known issues
	Limitations
	Nodes
	Multiple databases on single instances
	Durability options (Group Commit/CAMO)
	General durability limitations
	Group Commit
	Eager

	CAMO
	Mixed PGD versions
	Other limitations

	3.2 PGD compatibility
	PGD compatibility with PostgreSQL versions
	PGD compatibility with operating systems and architectures
	Linux

	3.3 Postgres Distributed terminology
	Asynchronous replication
	Commit scopes
	CAMO or commit-at-most-once
	Conflicts
	Connection Manager
	Consensus
	Cluster
	DDL (data definition language)
	DML (data manipulation language)
	Durability
	Eager
	Eventual consistency
	Failover
	Group commit
	Immediate consistency
	Lag Control
	Logical replication
	Logical standby node
	Node
	Node groups
	PGD cluster
	PGD node
	Physical replication
	Postgres cluster
	Quorum
	Replicated available fault tolerance (Raft)
	Read scalability
	Subscription
	Switchover
	Synchronous replication
	Subscriber-only nodes
	Two-phase commit (2PC)
	Vertical scaling or scale up
	Witness nodes
	Write leader
	Writer

	3.4 Quickstart guide
	3.4.1 Creating your first cluster
	Prerequisites
	Install the PGD Docker Quickstart kit
	Accessing the PGD Cluster
	Next Steps

	3.4.2 Working with SQL and the PGD cluster
	Connecting within the PGD Cluster
	Working with SQL
	Differences with PGD
	Next Steps

	3.4.3 Loading data into your PGD Cluster
	Online CSV Importing
	Next Steps

	3.4.4 Using PGD CLI
	Getting started with PGD CLI
	Viewing cluster status
	Viewing groups and group status
	Viewing nodes and node status
	Setting node options

	4 Planning your PGD deployment
	4.1 Architecture
	High-level architecture
	Architectural elements
	Node types
	Node roles

	Architectural flexibility
	Architecture types

	4.1.1 Architecture and performance
	Architectural options and performance
	Always-on architectures
	Supported Postgres database servers
	Characteristics affecting performance

	4.1.2 Standard PGD architecture
	Manually deploying PGD standard architecture
	PGD configuration
	Worked example
	For the first node
	For the second node
	For the third node

	4.1.3 Near/far architecture
	Synchronous replication in near/far architecture
	Manually Deploying PGD near-far architecture
	PGD configuration

	4.1.4 Always-On Architecture
	Standard EDB Always-on architectures
	Architecture details
	Always-on Single Location
	Always-on Multi-location

	Choosing your architecture
	Adding flexibility to the standard architectures

	4.1.5 Multi-Location Architectures
	4.1.6 Geo-Distributed Architectures
	4.2 Choosing a Postgres distribution
	4.3 Choosing your deployment method
	4.4 PGD compared
	4.5 Other considerations
	4.5.1 Sizing
	CPU/Core sizing

	4.5.2 Time and PGD
	Clocks and timezones

	5 Installing and configuring EDB Postgres Distributed
	5.1 Prerequisites
	Provisioning hosts
	Configuring hosts
	Create an admin user
	Ensure networking connectivity

	Worked example

	5.2 Configuring PGD repositories
	Configure the PGD repositories
	EDB_SUBSCRIPTION_TOKEN
	EDB_SUBSCRIPTION_PLAN
	EDB_REPO_TYPE

	Install the repositories
	Worked example
	Set the environment variables
	Install the repositories

	5.3 Installing the database and pgd
	Install the database and PGD software
	Set the Postgres version
	Set the package names
	EDB Postgres Advanced Server
	EDB Postgres Extended
	Community PostgreSQL

	Run the installation command

	Worked example

	5.4 Configuring the cluster
	Configuring the cluster
	Cluster name
	Group names
	Node names
	Paths and users
	On each host
	On the first host
	On the second host
	On the third host

	Worked example
	On the first host
	On the second host
	On the third host

	5.5 Checking the cluster
	Checking the cluster
	Quick test

	Worked example
	Preparation
	Ensure the cluster is ready

	Create data
	On node-1, create a table
	On node-1, populate the table
	On node-1, monitor performance
	On node-1 get a checksum

	Check data
	Log in to host-2's Postgres server
	On node-2, get a checksum
	Compare with the result from node-one
	Log in to host-3's Postgres server
	On node-3, get a checksum
	Compare with the result from node-one and node-two

	5.6 Connecting to your PGD cluster
	Connecting through the connection manager
	Connecting directly to a data node

	6 Node types and capabilities
	6.1 An overview of PGD Node types
	Data nodes
	Witness nodes
	Logical standby nodes
	Subscriber-only nodes

	6.2 Witness nodes
	Witness nodes within PGD groups or regions
	Witness node outside regions

	6.3 Logical standby nodes
	6.4 Subscriber-only nodes and groups
	6.4.1 An overview of Subscriber-only nodes
	Overview
	Subscriber-only nodes
	Subscriber-only groups
	Optimizing subscriber-only groups
	Subscriber-only nodes and DDL

	6.4.2 Creating Subscriber-only groups and nodes
	Creating a Subscriber-only group manually
	Adding a node to a new Subscriber-only group manually

	6.4.3 Joining nodes to a Subscriber-only group
	Joining a node to an existing subscriber-only group

	6.4.4 Optimizing subscriber-only groups
	Requirements for the optimized topology
	How the optimized topology works
	Subscriber-only group leaders
	Group leaders in the optimized topology
	Enabling the optimized model

	7 Node management
	7.1 Creating PGD nodes
	It's just Postgres
	Which Postgres version?
	Installing Postgres
	Installing the BDR extension
	Configuring the database for PGD

	Initializing a PGD node
	Next steps

	7.2 Groups and subgroups
	Groups
	Sub-groups

	7.3 Creating and joining PGD groups
	Creating and joining PGD groups

	7.4 Viewing PGD topology
	Listing PGD groups
	Using pgd-cli
	Using SQL

	Listing nodes in a PGD group
	Using pgd-cli
	Using SQL

	7.5 Removing nodes and groups
	Removing a node from a PGD group
	Removing a whole PGD group

	7.6 Connection DSNs and SSL (TLS)
	7.7 Node restart and down node recovery
	7.8 Automatic synchronization
	Auto-triggering the Sync
	Cancellation
	Sync Request Life Cycle
	GUC

	7.9 Node UUIDs
	Why UUIDs?
	How are UUIDs generated?
	What happens if a node is removed and a replacement added?
	UUID-related changes in PGD 6

	7.10 Replication slots created by PGD
	Group slot
	Other slot names

	8 Connection Manager
	8.1 Connection Manager overview
	About Connection Manager
	Using Connection Manager
	Read-Only connections
	TLS and Authentication

	8.2 Connection Manager Authentication
	Connection Manager connection types
	Connection Manager authentication methods
	Connection Manager authentication options
	Unsupported pg_hba.conf rules
	LDAP authentication notes and constraints

	8.3 Configuring Connection Manager
	Configuring Connection Manager

	8.4 Load Balancing with Connection Manager
	Connection Manager routing
	HAProxy example: Connection Manager routing

	Direct routing
	HAProxy example: Direct routing

	8.5 Monitoring the Connection Manager
	Available SQL tables and views
	Available HTTP/HTTPS endpoints
	Logging

	9 Postgres configuration
	Postgres settings
	Max prepared transactions
	max_prepared_transactions

	Considerations for global configuration

	10 Backup and recovery
	Logical backup and restore
	Temporary postgresql.conf settings
	pg_dump / pg_restore
	Prefer restoring to a single node cluster
	Sequences

	Physical backup and restore
	Restore
	EDB Postgres Distributed cluster failure or seeding a new cluster from a backup
	Cleanup of PGD metadata
	Cleanup of replication origins
	Cleanup of replication slots

	Eventual consistency
	Point-in-time recovery (PITR)

	Monitoring

	11 Monitoring
	11.1 Monitoring through SQL
	Monitoring overview
	Monitoring node join and removal
	Monitoring the manager worker
	Monitoring Routing
	Monitoring Replication Peers
	Monitoring outgoing replication
	Monitoring incoming replication
	Monitoring WAL senders using LCR

	Monitoring PGD replication workers
	Monitoring PGD writers
	Monitoring commit scopes
	Monitoring global locks
	Monitoring conflicts
	Apply statistics
	Standard PostgreSQL statistics views
	Monitoring PGD versions
	Monitoring Raft consensus
	Monitoring replication slots
	Monitoring transaction COMMITs

	12 AutoPartition in PGD
	Auto creation of partitions
	AutoPartition examples
	RANGE-partitioned tables
	Stopping automatic creation of partitions
	Waiting for partition creation
	Finding a partition
	Enabling or disabling autopartitioning
	Dropping or detaching a partition

	13 Commit Scopes
	Introducing
	Commit scope kinds
	Working with commit scopes

	13.1 Overview of durability options
	Overview

	13.2 Durability terminology
	Durability terminology
	Nodes

	13.3 Commit scopes
	Commit scope structure
	How a commit scope is selected
	Creating a Commit Scope
	Using a commit scope

	13.4 Predefined commit scopes
	local protect
	lag protect
	majority protect
	adaptive protect
	Examples

	13.5 Origin groups
	ORIGIN_GROUP

	13.6 Commit scope rules
	The commit scope group
	The confirmation level
	The commit scope kinds
	SYNCHRONOUS COMMIT
	GROUP COMMIT
	CAMO
	LAG CONTROL

	Combining rules

	13.7 Comparing durability options
	Comparison
	ON RECEIVED
	ON REPLICATED
	ON DURABLE
	ON VISIBLE

	13.8 Degrading commit scope rules
	Behavior
	SYNCHRONOUS COMMIT and GROUP COMMIT
	CAMO
	Monitoring degrade events
	Example monitoring query

	13.9 Synchronous Commit
	Overview
	Example
	Configuration
	Confirmation
	Details

	13.10 Group Commit
	Overview
	Example
	Requirements
	Limitations
	Configuration
	Confirmation
	Behavior
	Commit decisions
	Conflict resolution
	Aborts
	Transaction reconciliation

	Eager conflict resolution
	Usage
	Error handling
	Effects of Eager Replication in general
	Increased abort rate

	Effects of MAJORITY and ALL node replication in general
	Increased commit latency

	13.11 Commit At Most Once
	Overview
	Requirements
	Configuration
	Confirmation
	Limitations
	Failure scenarios
	Data persistence at receiver side
	Asynchronous mode
	Example
	With asynchronous mode
	Without asynchronous mode

	Application use
	Overview and requirements
	Working with the CAMO partner
	Connection pools and proxies

	CAMO limitations
	Performance implications
	Client application testing

	13.12 Lag Control
	Overview
	Background
	Requirements
	Configuration
	Confirmation
	Transaction application
	Limitations
	Caveats
	Meeting organizational objectives
	Lag Control and extensions

	13.13 Administering
	Planned shutdown and restarts

	13.14 Legacy synchronous replication using PGD
	Usage
	Comparison
	Postgres configuration parameters
	Migration to commit scopes

	13.15 Internal timing of operations
	14 Conflict Management
	14.1 Conflicts
	14.1.1 Overview
	How conflicts happen
	Avoiding or tolerating conflicts

	14.1.2 Types of Conflict
	PRIMARY KEY or UNIQUE conflicts
	INSERT/INSERT conflicts
	INSERT operations that violate UNIQUE or EXCLUDE constraints
	UPDATE/UPDATE conflicts
	UPDATE conflicts on the PRIMARY KEY
	UPDATE operations that violate UNIQUE or EXCLUDE constraints
	UPDATE/DELETE conflicts
	INSERT/UPDATE conflicts
	INSERT/DELETE conflicts
	DELETE/DELETE conflicts
	Conflicts with three or more nodes

	Foreign key constraint conflicts
	TRUNCATE conflicts
	Data conflicts for roles and tablespace differences
	Lock conflicts and deadlock aborts
	Divergent conflicts
	TOAST support details

	14.1.3 Conflict detection
	Origin conflict detection
	Row version conflict detection

	14.1.4 Conflict resolution
	14.1.5 Conflict logging
	Conflict reporting

	14.1.6 Data verification with LiveCompare
	14.2 Column-level conflict detection
	14.2.1 Overview
	When to resolve at the column level
	Special problems for column-level conflict resolution
	Handling column-level conflicts using CRDT data types

	14.2.2 Enabling and disabling column-level conflict resolution
	Using bdr.alter_table_conflict_detection to enable column-level conflict resolution
	Listing tables with column-level conflict resolution

	14.2.3 Timestamps in column-level conflict resolution
	Comparing column_modify_timestamp and column_commit_timestamp
	column_modify_timestamp
	column_commit_timestamp

	Inspecting column timestamps
	bdr.column_timestamps_to_text(bdr.column_timestamps)
	bdr.column_timestamps_to_jsonb(bdr.column_timestamps)
	bdr.column_timestamps_resolve(bdr.column_timestamps, xid)

	14.3 Conflict-free replicated data types
	14.3.1 CRDTs Overview
	Introduction to CRDTs
	CRDTs in PostgreSQL

	14.3.2 Using CRDTs
	Using CRDTs in tables
	Non-CRDT example
	CRDT example

	Configuration options
	Different types of CRDTs
	Query planning and optimization

	14.3.3 Operation-based and state-based CRDTs
	Operation-based CRDT types (CmCRDT)
	State-based CRDT types (CvCRDT)

	14.3.4 CRDT Disk-space requirements
	Operation-based CRDT disk-space reqs
	State-based CRDT disk-space reqs

	14.3.5 CRDTs vs conflict handling/reporting
	CRDT types versus conflicts handling
	CRDT types versus conflict reporting

	14.3.6 Resetting CRDT values
	Challenges when resetting CRDT values
	How to reliably handle resetting CRDT values

	14.3.7 Implemented CRDTs
	Grow-only counter (crdt_gcounter)
	Grow-only sum (crdt_gsum)
	Positive-negative counter (crdt_pncounter)
	Positive-negative sum (crdt_pnsum)
	Delta counter (crdt_delta_counter)
	Delta sum (crdt_delta_sum)

	15 Testing and tuning PGD clusters
	pgd_bench
	Notes on pgd_bench usage
	Performance testing and tuning

	16 Upgrading
	Upgrading PGD
	Upgrading Postgres or Postgres and PGD major versions
	Other upgrades

	16.1 Upgrading PGD clusters manually
	Upgrade planning
	Rolling upgrade considerations
	Rolling server software upgrades
	Rolling upgrade using node join
	Upgrading a CAMO-enabled cluster

	Upgrade preparation
	Server software upgrade
	BDR extension upgrade
	Fence the node
	Stop Postgres
	Upgrade packages
	Start Postgres
	Unfence the node

	Postgres upgrade
	Minor version Postgres upgrade
	Major version Postgres upgrade

	Upgrade check and validation
	PGD 5 - Moving from PGD Proxy to Connection Manager

	16.2 Supported PGD upgrade paths
	Upgrading to version 6.2

	16.3 Compatibility changes
	Summary
	Connection Manager
	DDL Locking changes
	Join/part behavior
	Function and node state changes
	Sequences conversion
	Parting a node drops it

	Administration function changes
	Other
	Replica identity
	Run on (all) writes
	General UI improvements

	Changes to defaults
	Global lock timeout
	Auto sync

	16.4 Application schema upgrades
	Rolling application schema upgrades

	16.5 In-place Postgres or Postgres and PGD major version upgrades
	Terminology
	Precautions
	Usage
	pgd node upgrade command-line
	Synopsis
	Options
	Environment variables

	Example
	Steps performed
	PGD Postgres checks
	pg_upgrade steps
	PGD post-upgrade steps

	16.6 Performing a Postgres major version rolling upgrade on a PGD cluster
	Upgrading Postgres major versions
	Prepare the upgrade
	Perform the upgrade on each node

	Worked example: Upgrade PGD 4 to PGD 6
	Overview
	Confirm the harp-proxy leader
	Fence the node
	Stop the Postgres service
	Stop HARP manager
	Remove and install packages
	Start the Postgres service
	Start HARP manager
	Unfence the node
	Repeat steps for all nodes
	Confirm cluster version
	Confirm SCRAM hashes
	Enable routing
	Switch to Connection Manager
	Stop harp manager and proxy services.

	Worked example: Upgrade PGD 5 to PGD 6
	Prerequisites
	Install packages for the new server and PGD

	Pre-upgrade steps
	Version Check
	Move to Connection Manager
	Write leader node verification
	Fence the node
	Initialize the new Postgres instance
	Migrate configuration to the new Postgres version
	Dry run check
	Execute the upgrade.

	Post-upgrade steps
	Update the Postgres service file
	Start the postgres service
	Verify the upgraded cluster versions
	Unfence the node
	Verify the Connection Manager is working
	Clean up and vacuum analyze
	Upgrade the remaining nodes
	Verify the final state of the cluster
	Verify the Connection Manager

	17 DDL replication
	17.1 DDL overview
	Replicated DDL
	Differences from PostgreSQL
	Executing DDL on PGD systems
	DDL and mixed PostgreSQL versions

	17.2 DDL replication options
	17.3 DDL locking details
	The global DDL lock
	The global DML lock

	17.4 Managing DDL with PGD replication
	Minimizing the impact of DDL
	Handling DDL with down nodes
	Statement-specific DDL replication concerns

	17.5 DDL command handling matrix
	Command matrix
	Command notes
	ALTER SEQUENCE
	ALTER TABLE
	ALTER TABLE disallowed commands
	ALTER TABLE locking
	ALTER TABLE examples

	ALTER TYPE
	COMMENT ON
	CREATE PROFILE or ALTER PROFILE
	CREATE SEQUENCE
	CREATE TABLE AS and SELECT INTO
	EXPLAIN
	EXPLAIN ANALYZE Replication
	EXPLAIN ANALYZE Locking

	GRANT and REVOKE
	LOCK TABLE
	SECURITY LABEL
	TRUNCATE Replication
	TRUNCATE Locking

	17.6 DDL and role manipulation statements
	17.7 Workarounds for DDL restrictions
	Adding a CONSTRAINT

	17.8 PGD functions that behave like DDL
	18 Decoding worker
	Enabling
	Disabling
	LCR file names
	Using with transaction streaming

	19 CDC Failover support
	Background
	CDC Failover support
	How CDC Failover works
	At-least-once delivery guarantees
	Exactly-once delivery

	Enabling CDC Failover support
	CDC Failover support with Postgres 17+
	Obtaining Initial Consistent Snapshot
	Failing Over to Newly Joined Nodes
	Tracking Per-Origin Progress
	Limitations

	20 Parallel Apply
	What is Parallel Apply?
	Configuring Parallel Apply
	When to use Parallel Apply
	Monitoring Parallel Apply
	Disabling Parallel Apply
	Deadlock mitigation
	Parallel Apply support

	21 Replication sets
	Using replication sets
	Behavior of partitioned tables
	Behavior with foreign keys
	Replication set membership
	Listing replication sets
	DDL replication filtering
	Selective replication example
	Cluster configuration
	Application requirements
	Creating tables
	Viewing groups and replication sets
	Adding tables to replication sets
	Testing selective replication

	22 Security and roles
	22.1 Roles
	22.2 Role management
	Role rule - No un-replicated roles
	Roles for new nodes
	Connections and roles

	22.3 PGD predefined roles
	bdr_superuser
	Privileges

	bdr_read_all_stats
	Privileges

	bdr_monitor
	Privileges

	bdr_application
	Privileges

	bdr_read_all_conflicts
	Privileges

	22.4 Roles and replication
	DDL and DML replication and users
	Differing table ownership
	Replication and row-level security
	bdr_superuser role and replication
	Privilege restrictions
	Foreign key privileges

	22.5 Access control
	Catalog tables
	PGD functions and operators
	Granting privileges on catalog objects
	Triggers

	23 Sequences
	PGD global sequences
	Automatic sequence conversion
	SnowflakeId sequences
	Timeshard sequences

	Unlogged sequences and PGD
	Globally allocated range sequences
	Converting a local sequence to a galloc sequence

	UUIDs, KSUUIDs, and other approaches
	KSUUID v2 functions
	UUIDs
	KSUUIDs
	Step and offset sequences
	Composite keys

	See also

	24 Stream triggers
	Trigger execution during apply
	Missing-column conflict resolution
	Data loss and divergence risk

	Terminology of row-types
	Conflict triggers
	Transform triggers
	Row contents
	Execution order
	Stream triggers examples

	25 Transaction streaming
	PGD enhancements
	Caveats

	Configuration
	Node configuration using bdr.default_streaming_mode
	Group configuration using bdr.alter_node_group_option()
	Configuration setting effects

	Monitoring

	26 Explicit two-phase commit (2PC)
	Use

	27 Application use
	27.1 Application behavior
	Replication behavior
	Truncate
	Row-level locks
	Sequences
	Binary objects
	Rules
	Base tables only
	Partitioned tables
	Triggers
	Toast
	Other restrictions

	27.2 DML and DDL replication and nonreplication
	DML replication
	DDL replication
	Nonreplicated statements

	27.3 Nodes with differences
	Replicating between nodes with differences
	Comparison between nodes with differences
	Replicating between different release levels

	27.4 General rules for applications
	Background
	Rules for applications

	27.5 Timing considerations and synchronous replication
	27.6 Using extensions with PGD
	PGD and other PostgreSQL extensions
	Extensions providing logical decoding
	Extensions providing replication or HA functionality

	Supported extensions
	EDB Advanced Storage table access methods
	pgaudit

	Installing extensions
	Configuring shared_preload_libraries
	Installing the extension

	27.7 Use of table access methods (TAMs) in PGD
	27.8 Feature compatibility
	Server feature/commit scope interoperability
	Notes

	Commit scope/commit scope interoperability
	Notes

	28 PGD Reference
	28.1 Tables, views and functions reference
	User visible catalogs and views
	System functions
	Version information functions
	System information functions
	System and progress information parameters
	Node status functions
	Consensus function
	Utility functions
	Global advisory locks
	Monitoring functions
	Routing functions
	CAMO functions
	Commit Scope functions

	PGD settings
	Conflict handling
	Global sequence parameters
	DDL handling
	Global locking
	Node management
	Generic replication
	CRDTs
	Commit scope
	Commit At Most Once
	Transaction streaming
	Lag Control
	Monitoring and logging
	Decoding worker
	Connectivity settings
	Topology settings
	Internal settings - Raft timeouts
	Internal settings - Other Raft values
	Internal settings - Other values

	Node management
	Node management interfaces
	Routing functions
	Commit scopes
	Conflicts
	Conflict functions
	Replication set management
	Replication set membership
	DDL replication filtering
	Testing and tuning commands
	Global sequence management interfaces
	Sequence functions
	KSUUID v2 functions
	KSUUID v1 functions

	Autopartition
	Stream triggers reference
	Stream triggers manipulation interfaces
	Stream triggers row functions
	Stream triggers row variables
	Internal catalogs and views
	Internal system functions
	General internal functions
	Task manager functions

	Conflict functions
	Column-level conflict functions
	Conflicts

	28.1.1 User visible catalogs and views
	bdr.camo_decision_journal
	bdr.camo_decision_journal columns

	bdr.commit_scopes
	bdr.commit_scopes columns

	bdr.conflict_history
	bdr.conflict_history columns

	bdr.conflict_history_summary
	bdr.conflict_history_summary columns

	bdr.consensus_kv_data
	bdr.consensus_kv_data Columns

	bdr.crdt_handlers
	bdr.crdt_handlers Columns

	bdr.ddl_replication
	bdr.ddl_replication columns

	bdr.depend
	bdr.failover_replication_slots
	bdr.failover_replication_slots columns

	bdr.global_consensus_journal
	bdr.global_consensus_journal columns

	bdr.global_consensus_journal_details
	bdr.global_consensus_journal_details columns

	bdr.global_consensus_response_journal
	bdr.global_consensus_response_journal columns

	bdr.global_lock
	bdr.global_lock columns

	bdr.global_locks
	bdr.global_locks columns

	bdr.group_camo_details
	bdr.group_camo_details columns

	bdr.group_raft_details
	bdr.group_raft_details columns

	bdr.group_replslots_details
	bdr.group_replslots_details columns

	bdr.group_subscription_summary
	bdr.group_subscription_summary columns

	bdr.group_versions_details
	bdr.group_versions_details columns

	bdr.leader
	bdr.leader columns

	bdr.local_consensus_snapshot
	bdr.local_consensus_snapshot columns

	bdr.local_consensus_state
	bdr.local_consensus_state columns

	bdr.local_node
	bdr.local_node columns

	bdr.local_node_summary
	bdr.local_sync_status
	bdr.local_sync_status columns

	bdr.node
	bdr.node columns

	bdr.node_catchup_info
	bdr.node_catchup_info columns

	bdr.node_catchup_info_details
	bdr.node_conflict_resolvers
	bdr.node_conflict_resolvers columns

	bdr.node_group
	bdr.node_group columns

	bdr.node_group_replication_sets
	bdr.node_group_replication_sets columns

	bdr.node_group_summary
	bdr.node_group_summary columns

	bdr.node_local_info
	bdr.node_local_info columns

	bdr.node_log_config
	bdr.node_log_config columns

	bdr.node_peer_progress
	bdr.node_peer_progress columns

	bdr.node_replication_rates
	bdr.node_replication_rates columns

	bdr.node_slots
	bdr.node_slots columns

	bdr.node_summary
	bdr.node_summary columns

	bdr.parted_origin_catchup_info
	bdr.parted_origin_catchup_info columns

	bdr.parted_origin_catchup_info_details
	bdr.parted_origin_catchup_info_details columns

	bdr.queue
	bdr.queue columns

	bdr.replication_set
	bdr.replication_set columns

	bdr.replication_set_table
	bdr.replication_set_table columns

	bdr.replication_set_ddl
	bdr.replication_set_ddl Columns

	bdr.replication_sets
	bdr.replication_sets columns

	bdr.schema_changes
	bdr.schema_changes columns

	bdr.sequence_alloc
	bdr.sequence_alloc columns

	bdr.sequences
	bdr.sequences columns

	bdr.stat_activity
	bdr.stat_activity additional columns
	bdr.stat_commit_scope
	bdr.stat_commit_scope columns

	bdr.stat_commit_scope_state
	bdr.stat_commit_scope_state columns

	bdr.stat_connection_manager
	bdr.stat_connection_manager columns

	bdr.stat_connection_manager_connections
	bdr.stat_connection_manager_connections columns

	bdr.stat_connection_manager_node_stats
	bdr.stat_connection_manager_node_stats columns

	bdr.stat_connection_manager_hba_file_rules
	bdr.stat_connection_manager_hba_file_rules columns

	bdr.stat_raft_followers_state
	bdr.stat_raft_followers_state columns

	bdr.stat_raft_state
	bdr.stat_raft_state columns

	bdr.stat_receiver
	bdr.stat_receiver columns

	bdr.stat_receiver_transactions
	bdr.stat_receiver_transactions columns

	bdr.stat_relation
	bdr.stat_relation columns

	bdr.stat_routing_candidate_state
	bdr.stat_routing_candidate_state columns

	bdr.stat_routing_state
	bdr.stat_routing_state columns

	bdr.stat_subscription
	bdr.stat_subscription columns

	bdr.stat_worker
	bdr.stat_worker columns

	bdr.stat_writer
	bdr.stat_writer columns

	bdr.subscription
	bdr.subscription columns

	bdr.subscription_summary
	bdr.subscription_summary columns

	bdr.tables
	bdr.tables columns

	bdr.taskmgr_work_queue
	bdr.taskmgr_work_queue columns

	bdr.taskmgr_workitem_status
	bdr.taskmgr_workitem_status columns

	bdr.taskmgr_local_work_queue
	bdr.taskmgr_local_work_queue columns

	bdr.taskmgr_local_workitem_status
	bdr.taskmgr_local_workitem_status columns

	bdr.trigger
	bdr.trigger columns

	bdr.triggers
	bdr.workers
	bdr.workers Columns

	bdr.writers
	bdr.writers columns

	bdr.worker_tasks
	bdr.worker_tasks columns

	28.1.2 System functions
	Version information functions
	bdr.bdr_version
	bdr.bdr_version_num

	System information functions
	bdr.get_relation_stats
	bdr.get_subscription_stats

	System and progress information parameters
	bdr.local_node_id
	bdr.last_committed_lsn
	transaction_id

	Node status functions
	bdr.is_node_connected
	Synopsis

	bdr.is_node_ready
	Synopsis

	Consensus function
	bdr.consensus_disable
	bdr.consensus_enable
	bdr.consensus_proto_version
	bdr.consensus_snapshot_export
	Synopsis

	bdr.consensus_snapshot_import
	Synopsis

	bdr.consensus_snapshot_verify
	Synopsis

	bdr.get_consensus_status
	bdr.get_raft_status
	bdr.raft_leadership_transfer
	Synopsis

	Utility functions
	bdr.wait_slot_confirm_lsn
	Synopsis
	Notes
	Parameters

	bdr.wait_node_confirm_lsn
	Synopsis
	Parameters
	Notes

	bdr.wait_for_apply_queue
	Synopsis
	Parameters

	bdr.get_node_sub_receive_lsn
	Synopsis
	Parameters

	bdr.get_node_sub_apply_lsn
	Synopsis
	Parameters

	bdr.replicate_ddl_command
	Synopsis
	Parameters
	Notes

	bdr.run_on_all_nodes
	Synopsis
	Parameters
	Notes
	Example

	bdr.run_on_nodes
	Synopsis
	Parameters
	Notes

	bdr.run_on_group
	Synopsis
	Parameters
	Notes

	bdr.global_lock_table
	Synopsis
	Parameters
	Notes

	bdr.wait_for_xid_progress
	Synopsis
	Parameters
	Notes

	bdr.local_group_slot_name
	Example

	bdr.node_group_type
	Example

	bdr.alter_node_kind
	Synopsis
	Parameters

	bdr.alter_subscription_skip_changes_upto
	Synopsis
	Example

	Global advisory locks
	bdr.global_advisory_lock
	Synopsis
	parameters
	Synopsis
	Parameters

	bdr.global_advisory_unlock
	Synopsis
	Parameters
	Synopsis
	Parameters

	Monitoring functions
	bdr.monitor_group_versions
	Synopsis
	Notes

	bdr.monitor_group_raft
	Synopsis
	Parameters
	Notes

	bdr.monitor_local_replslots
	Synopsis
	Notes

	bdr.wal_sender_stats
	Synopsis
	Output columns

	bdr.get_decoding_worker_stat
	Synopsis
	Output columns
	Notes

	bdr.lag_control
	Synopsis
	Output columns

	Routing functions
	bdr.routing_leadership_transfer
	Synopsis
	Parameters

	CAMO functions
	bdr.is_camo_partner_connected
	Synopsis
	Return value

	bdr.is_camo_partner_ready
	Synopsis
	Return value

	bdr.get_configured_camo_partner
	Synopsis

	bdr.wait_for_camo_partner_queue
	Synopsis

	bdr.camo_transactions_resolved
	Synopsis

	bdr.logical_transaction_status
	Synopsis
	Parameters
	Return value

	Commit Scope functions
	bdr.add_commit_scope
	bdr.create_commit_scope
	Synopsis
	Note

	bdr.alter_commit_scope
	Synopsis

	bdr.drop_commit_scope
	Synopsis

	bdr.remove_commit_scope

	28.1.3 PGD settings
	Conflict handling
	bdr.default_conflict_detection

	Global sequence parameters
	bdr.default_sequence_kind

	DDL handling
	bdr.default_replica_identity
	bdr.ddl_replication
	bdr.role_replication
	bdr.ddl_locking
	bdr.truncate_locking

	Global locking
	bdr.global_lock_max_locks
	bdr.global_lock_timeout
	bdr.global_lock_statement_timeout
	bdr.global_lock_idle_timeout
	bdr.lock_table_locking
	bdr.predictive_checks

	Node management
	bdr.replay_progress_frequency

	Generic replication
	bdr.writers_per_subscription
	bdr.max_writers_per_subscription
	bdr.xact_replication
	bdr.permit_unsafe_commands
	bdr.batch_inserts
	bdr.maximum_clock_skew
	bdr.maximum_clock_skew_action
	bdr.accept_connections
	bdr.writer_input_queue_size
	bdr.writer_output_queue_size
	bdr.min_worker_backoff_delay

	CRDTs
	bdr.crdt_raw_value

	Commit scope
	bdr.commit_scope

	Commit At Most Once
	bdr.camo_local_mode_delay
	bdr.camo_enable_client_warnings

	Transaction streaming
	bdr.default_streaming_mode

	Lag Control
	bdr.lag_control_max_commit_delay
	bdr.lag_control_max_lag_size
	bdr.lag_control_max_lag_time
	bdr.lag_control_min_conforming_nodes
	bdr.lag_control_commit_delay_adjust
	bdr.lag_control_sample_interval
	bdr.lag_control_commit_delay_start

	Monitoring and logging
	bdr.debug_level
	bdr.trace_level
	bdr.track_subscription_apply
	bdr.track_relation_apply
	bdr.track_apply_lock_timing

	Decoding worker
	bdr.enable_wal_decoder
	bdr.receive_lcr
	bdr.lcr_cleanup_interval

	Connectivity settings
	bdr.global_connection_timeout
	bdr.global_keepalives
	bdr.global_keepalives_idle
	bdr.global_keepalives_interval
	bdr.global_keepalives_count
	bdr.global_tcp_user_timeout

	Topology settings
	bdr.force_full_mesh

	Internal settings - Raft timeouts
	bdr.raft_global_election_timeout
	bdr.raft_group_election_timeout
	bdr.raft_response_timeout

	Internal settings - Other Raft values
	bdr.raft_keep_min_entries
	bdr.raft_log_min_apply_duration
	bdr.raft_log_min_message_duration
	bdr.raft_group_max_connections

	Internal settings - Other values
	bdr.backwards_compatibility
	bdr.track_replication_estimates
	bdr.lag_tracker_apply_rate_weight
	bdr.enable_auto_sync_reconcile

	28.1.4 Node management
	List of node states
	Node-management commands
	bdr_init_physical
	Synopsis
	Options
	Notes

	bdr_config
	Synopsis
	Options
	Example

	28.1.5 Node management interfaces
	bdr.alter_node_group_option
	Synopsis
	Parameters
	Return value
	Notes

	bdr.alter_node_interface
	Synopsis
	Parameters
	Notes

	bdr.alter_node_option
	Synopsis
	Parameters

	bdr.alter_subscription_enable
	Synopsis
	Parameters
	Notes

	bdr.alter_subscription_disable
	Synopsis
	Parameters
	Notes

	bdr.create_node
	Synopsis
	Parameters
	Notes

	bdr.create_node_group
	Synopsis
	Parameters
	Notes

	bdr.drop_node_group
	Synopsis
	Parameters
	Notes

	bdr.join_node_group
	Synopsis
	Parameters
	Notes

	bdr.part_node
	Synopsis
	Parameters
	Notes

	bdr.promote_node
	Synopsis
	Notes

	bdr.switch_node_group
	Synopsis
	Parameters
	Notes

	bdr.sync_node_cancel
	Synopsis
	Parameters
	Notes

	bdr.wait_for_join_completion
	Synopsis
	Parameters
	Notes

	28.1.6 Commit scopes
	Commit scope syntax
	commit_scope_degrade_operation

	Commit scope targets
	ORIGIN_GROUP

	Commit scope groups
	ANY
	ANY NOT
	MAJORITY
	MAJORITY NOT
	ALL
	ALL NOT

	Confirmation level
	ON received
	ON replicated
	ON durable
	ON visible

	Commit Scope kinds
	SYNCHRONOUS COMMIT
	DEGRADE ON parameters
	commit_scope_degrade_operation

	GROUP COMMIT
	GROUP COMMIT parameters
	ABORT ON parameters
	DEGRADE ON parameters
	transaction_tracking settings
	conflict_resolution settings
	commit_decision settings
	commit_scope_degrade_operation settings

	CAMO
	DEGRADE ON parameters

	LAG CONTROL
	LAG CONTROL parameters

	28.1.7 Conflicts
	Conflict detection
	List of conflict types

	Conflict resolution
	List of conflict resolvers
	Default conflict resolvers
	List of conflict resolutions

	Conflict logging

	28.1.8 Conflict functions
	bdr.alter_table_conflict_detection
	Synopsis
	Parameters
	Notes

	bdr.alter_node_set_conflict_resolver
	Synopsis
	Parameters
	Notes

	bdr.alter_node_set_log_config
	Synopsis
	Parameters
	Notes
	Listing conflict logging configurations
	Logging conflicts to a table

	28.1.9 Replication set management
	bdr.create_replication_set
	Synopsis
	Parameters
	Notes

	bdr.alter_replication_set
	Synopsis
	Parameters
	Notes

	bdr.drop_replication_set
	Synopsis
	Parameters
	Notes

	bdr.alter_node_replication_sets
	Synopsis
	Parameters
	Notes

	28.1.10 Replication set membership
	bdr.replication_set_add_table
	Synopsis
	Parameters
	Notes

	bdr.replication_set_remove_table
	Synopsis
	Parameters
	Notes

	28.1.11 DDL replication filtering
	bdr.replication_set_add_ddl_filter
	Synopsis
	Parameters
	Notes
	Examples

	bdr.replication_set_remove_ddl_filter
	Synopsis
	Parameters
	Notes

	28.1.12 Testing and tuning commands
	pgd_bench
	Synopsis
	Options
	Setting mode
	Setting GUC variables
	Initialization options
	Options to select what to run
	Benchmarking options
	Common options:

	28.1.13 Global sequence management interfaces
	Sequence functions
	bdr.alter_sequence_set_kind
	Synopsis
	Parameters
	Notes

	bdr.extract_timestamp_from_snowflakeid
	Synopsis
	Parameters
	Notes

	bdr.extract_nodeid_from_snowflakeid
	Synopsis
	Parameters
	Notes

	bdr.extract_localseqid_from_snowflakeid
	Synopsis
	Parameters
	Notes

	bdr.timestamp_to_snowflakeid
	Synopsis
	Parameters
	Notes

	bdr.extract_timestamp_from_timeshard
	Synopsis
	Parameters
	Notes

	bdr.extract_nodeid_from_timeshard
	Synopsis
	Parameters
	Notes

	bdr.extract_localseqid_from_timeshard
	Synopsis
	Parameters
	Notes

	bdr.timestamp_to_timeshard
	Synopsis
	Parameters
	Notes

	bdr.galloc_chunk_info
	Synopsis
	Parameters
	Notes

	KSUUID v2 functions
	bdr.gen_ksuuid_v2
	Synopsis
	Notes

	bdr.ksuuid_v2_cmp
	Synopsis
	Parameters
	Notes

	bdr.extract_timestamp_from_ksuuid_v2
	Synopsis
	Parameters
	Notes

	KSUUID v1 functions
	bdr.gen_ksuuid
	Synopsis
	Notes

	bdr.uuid_v1_cmp
	Synopsis
	Notes
	Parameters

	bdr.extract_timestamp_from_ksuuid
	Synopsis
	Parameters
	Notes

	28.1.14 Autopartition
	bdr.autopartition
	Synopsis
	Parameters
	Examples

	bdr.drop_autopartition
	Parameters

	bdr.autopartition_wait_for_partitions
	Synopsis
	Parameters

	bdr.autopartition_wait_for_partitions_on_all_nodes
	Synopsis
	Parameters

	bdr.autopartition_find_partition
	Synopsis
	Parameters

	bdr.autopartition_enable
	Synopsis
	Parameters

	bdr.autopartition_disable
	Synopsis
	Parameters

	Internal functions
	bdr.autopartition_create_partition
	Synopsis
	Parameters
	Notes

	bdr.autopartition_drop_partition
	Synopsis
	Parameters
	Notes

	28.1.15 Stream triggers reference
	28.1.15.1 Stream triggers manipulation interfaces
	bdr.create_conflict_trigger
	Synopsis
	Parameters
	Notes

	bdr.create_transform_trigger
	Synopsis
	Parameters
	Notes

	bdr.drop_trigger
	Synopsis
	Parameters
	Notes

	28.1.15.2 Stream triggers row functions
	bdr.trigger_get_row
	Synopsis
	Parameters

	bdr.trigger_get_committs
	Synopsis
	Parameters

	bdr.trigger_get_xid
	Synopsis
	Parameters

	bdr.trigger_get_type
	Synopsis

	bdr.trigger_get_conflict_type
	Synopsis

	bdr.trigger_get_origin_node_id
	Synopsis
	Parameters

	bdr.ri_fkey_on_del_trigger
	Synopsis

	28.1.15.3 Stream triggers row variables
	TG_NAME
	TG_WHEN
	TG_LEVEL
	TG_OP
	TG_RELID
	TG_TABLE_NAME
	TG_TABLE_SCHEMA
	TG_NARGS
	TG_ARGV[]

	28.1.16 Internal catalogs and views
	bdr.autopartition_partitions
	bdr.autopartition_partitions columns

	bdr.autopartition_rules
	bdr.autopartition_rules columns

	bdr.ddl_epoch
	bdr.ddl_epoch columns

	bdr.event_history
	bdr.event_history columns

	bdr.event_summary
	bdr.local_leader_change
	bdr.node_config
	bdr.node_config columns

	bdr.node_config_summary
	bdr.node_config_summary columns

	bdr.node_group_config
	bdr.node_group_config columns

	bdr.node_group_routing_config_summary
	bdr.node_group_routing_config_summary columns

	bdr.node_group_routing_info
	bdr.node_group_routing_info columns

	bdr.node_group_routing_summary
	bdr.node_group_routing_summary columns

	bdr.node_routing_config_summary
	bdr.node_routing_config_summary columns

	bdr.sequence_kind
	bdr.sequence_kind columns

	bdr.sync_node_requests
	bdr.sync_node_requests columns

	bdr.sync_node_requests_summary
	bdr.sync_node_requests_summary columns

	28.1.17 Internal system functions
	General internal functions
	bdr.bdr_get_commit_decisions
	Synopsis

	bdr.bdr_track_commit_decision
	Synopsis

	bdr.consensus_kv_fetch
	Synopsis
	Parameters
	Notes

	bdr.consensus_kv_store
	Synopsis
	Parameters
	Notes

	bdr.decode_message_payload
	bdr.decode_message_response_payload
	bdr.difference_fix_origin_create
	bdr.difference_fix_session_reset
	Synopsis

	bdr.difference_fix_session_setup
	Synopsis

	bdr.difference_fix_xact_set_avoid_conflict
	Synopsis

	bdr.drop_node
	Synopsis
	Parameters
	Notes

	bdr.get_global_locks
	bdr.get_node_conflict_resolvers
	bdr.get_slot_flush_timestamp
	bdr.internal_alter_sequence_set_kind
	bdr.internal_replication_set_add_table
	bdr.internal_replication_set_remove_table
	bdr.internal_submit_join_request
	bdr.isolation_test_session_is_blocked
	bdr.local_node_info
	bdr.msgb_connect
	bdr.msgb_deliver_message
	bdr.node_catchup_state_name
	Synopsis
	Parameters

	bdr.node_kind_name
	bdr.peer_state_name
	bdr.pg_xact_origin
	Synopsis
	Parameters

	bdr.request_replay_progress_update
	bdr.reset_relation_stats
	bdr.reset_subscription_stats
	bdr.resynchronize_table_from_node
	Synopsis
	Parameters
	Notes

	bdr.seq_currval
	bdr.seq_lastval
	bdr.seq_nextval
	bdr.show_subscription_status
	bdr.show_workers
	Synopsis

	bdr.show_writers
	bdr.sync_status_name
	Synopsis
	Parameters

	Task manager functions
	bdr.taskmgr_set_leader
	Synopsis

	bdr.taskmgr_get_last_completed_workitem
	Synopsis

	bdr.taskmgr_work_queue_check_status
	Synopsis
	Parameters
	Notes

	bdr.get_min_required_replication_slots
	bdr.get_min_required_worker_processes
	bdr.stat_get_activity
	bdr.worker_role_id_name
	bdr.lag_history
	bdr.get_raft_instance_by_nodegroup
	bdr.monitor_camo_on_all_nodes
	bdr.monitor_raft_details_on_all_nodes
	bdr.monitor_replslots_details_on_all_nodes
	bdr.monitor_subscription_details_on_all_nodes
	bdr.monitor_version_details_on_all_nodes
	bdr.node_group_member_info

	28.1.18 Column-level conflict functions
	bdr.column_timestamps_create
	Synopsis
	Parameters

	28.2 EDB Postgres Distributed Command Line Interface (PGD CLI)
	28.2.1 Installing PGD CLI
	28.2.1.1 Installing PGD CLI on Linux
	Obtain your EDB subscription token
	Set the EDB_SUBSCRIPTION_TOKEN environment variable
	Debian or Ubuntu
	RHEL, Rocky, AlmaLinux, or Oracle Linux

	28.2.1.2 Installing PGD CLI on macOS
	28.2.2 Using PGD CLI
	What is the PGD CLI?
	Running the PGD CLI
	Passing a database connection string
	Specifying a configuration file
	Specifying the output format
	Accessing the command line help

	28.2.3 Configuring PGD CLI
	PGD CLI and database connection strings
	Configuring the database to connect to
	Using database connection strings in the command line
	Using database connection strings in an environment variable
	Using a configuration file

	28.2.4 Discovering connection strings
	PGD CLI and database connection strings
	Getting your database connection string
	For a cluster deployed with EDB CloudNative Postgres Global Cluster

	28.2.5 Command reference
	Synopsis
	Commands
	Global Options
	Additional Options
	Output formats

	28.2.5.1 pgd assess
	Synopsis
	Syntax
	Options
	Example

	28.2.5.2 pgd cluster
	Subcommands

	28.2.5.2.1 pgd cluster show
	Synopsis
	Syntax
	Options
	Clock Drift
	Examples
	Display the cluster information

	28.2.5.2.2 pgd cluster verify
	Synopsis
	Syntax
	Options
	Examples
	Verify the cluster settings and architecture
	Verify the cluster architecture with verbose output
	Verify the cluster architecture, display output Markdown formatted

	28.2.5.3 pgd commit-scope
	Subcommands

	28.2.5.3.1 pgd commit-scope create
	Synopsis
	Syntax
	Options
	Examples
	Creating a Commit Scope
	Creating a Commit Scope with the top-level group

	28.2.5.3.2 pgd commit-scope drop
	Synopsis
	Syntax
	Options
	Examples
	Drop a Commit Scope
	Drop a Commit Scope from a Group

	28.2.5.3.3 pgd commit-scopes list
	Synopsis
	Syntax
	List all commit-scopes for the given group

	28.2.5.3.4 pgd commit-scope show
	Synopsis
	Syntax
	Options
	Example
	Showing a Commit Scope

	28.2.5.3.5 pgd commit-scope update
	Synopsis
	Syntax
	Options
	Examples
	Updating a Commit Scope
	Updating a Commit Scope in the Top-Level Group

	28.2.5.4 pgd completion
	Synopsis
	Syntax
	Options
	Example

	28.2.5.5 pgd events
	Subcommands

	28.2.5.5.1 pgd events show
	Synopsis
	Syntax
	Options
	Node States
	Examples
	Display the last 5 events

	28.2.5.6 pgd group
	Subcommands

	28.2.5.6.1 pgd group show
	Synopsis
	Syntax
	Options
	Examples
	Show group information
	Show group summary information
	Show group nodes information
	Show group options information
	Show group information as JSON

	28.2.5.6.2 pgd group set-option
	Synopsis
	Syntax
	Group options
	Group Connection Manager options
	Group Proxy options (for PGD 5.x only)

	Options
	Examples
	Set the location of a group
	Setting an option to a value with a space in it

	28.2.5.6.3 pgd group get-option
	Synopsis
	Syntax
	Group options
	Group Connection Manager options
	Group Proxy options (for PGD 5.x only)

	Options
	Examples
	List all group options
	Get a specific group option
	Get a specific group option as json

	28.2.5.6.4 pgd group set-leader
	Synopsis
	Syntax
	Options
	Examples
	Setting the write leader of a group
	Setting the write leader when node is already the leader

	28.2.5.7 pgd groups
	Subcommands

	28.2.5.7.1 pgd groups list
	Synopsis
	Syntax
	Options
	Examples
	List all groups
	List all groups with detailed information

	28.2.5.8 pgd node
	Subcommands

	28.2.5.8.1 pgd node get-config
	Synopsis
	Syntax
	Option
	Examples
	Get a specific node config
	Get a specific node config with verbose output
	Get a specific node config as json

	28.2.5.8.2 pgd node get-option
	Synopsis
	Syntax
	Node Options

	Options
	Examples
	Get all node options
	Get a specific node option
	Get all node options as json

	28.2.5.8.3 pgd node part
	Synopsis
	Syntax
	Options
	Examples
	Part a node (Raft protocol version 6003 and above)
	Part a node with --no-wait option (Raft protocol version below 6003)
	Part a node without --no-wait option (Raft protocol version below 6003)

	28.2.5.8.4 pgd node set-config
	Synopsis
	Syntax
	Options
	Examples
	Set a specific node config
	Set a specific node config with a space in the value

	28.2.5.8.5 pgd node set-option
	Synopsis
	Syntax
	Node Options

	Options
	Examples
	Set a specific node option
	Set a specific node option with a space in the value

	28.2.5.8.6 pgd node setup
	Synopsis
	Users and roles
	Support for Transparent Data Encryption (TDE)

	Syntax
	Arguments
	Options
	Examples
	Configuring the first node
	Configuring a second node
	Configuring a third node
	Joining a parted and dropped node to the cluster
	Configuring the first node with TDE options
	Configuring a second node with TDE options

	28.2.5.8.7 pgd node show
	Synopsis
	Syntax
	Options
	Examples
	Show node information
	Show node information as JSON

	28.2.5.8.8 pgd node upgrade
	Synopsis
	Syntax
	Options
	Examples
	Upgrade the PostgreSQL version on a node
	Upgrade the PostgreSQL version on a node with hard links
	Upgrade the PostgreSQL version on a node with efficient file cloning
	Upgrade the PostgreSQL version on a node with a different port number
	Upgrade the Postgres Extended version on a node with Transparent Data Encryption (TDE)

	28.2.5.9 pgd nodes
	Subcommands

	28.2.5.9.1 pgd nodes list
	Synopsis
	Syntax
	Options
	Examples
	List all nodes
	List all nodes in a specific group
	List all nodes with detailed information
	List all nodes version information

	28.2.5.10 pgd raft
	Subcommands

	28.2.5.10.1 pgd raft show
	Synopsis
	Syntax
	Options
	Examples
	Show Raft status
	Show Raft status for a specific group

	28.2.5.11 pgd replication
	Subcommands

	28.2.5.11.1 pgd replication show
	Synopsis
	Syntax
	Options
	--slots

	Examples
	Display the replication status in the EDB Postgres Distributed cluster
	Display only the node to node replication status in a matrix format

