
EDB Postgres Extended Server
Version 18

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. Built at 2026-01-27T09:46:57

4
5
6
7
8

10
11
14
17
20
23
26
29
32
35
36
39
42
43
46
49
52
53
54
57
58
59
60
62
64
65
67
69
72
73
74
76
78
79
81
83
84
85
86
89
90
92
94

1 EDB Postgres Extended Server
2 Release notes
2.1 EDB Postgres Extended Server 18.1.0 release notes
3 Deployment options
4 Installing EDB Postgres Extended Server on Linux
4.1 Installing EDB Postgres Extended Server on Linux x86 (amd64)
4.1.1 Installing EDB Postgres Extended Server on RHEL 9 or OL 9 x86_64
4.1.2 Installing EDB Postgres Extended Server on RHEL 8 or OL 8 x86_64
4.1.3 Installing EDB Postgres Extended Server on AlmaLinux 9 or Rocky Linux 9 x86_64
4.1.4 Installing EDB Postgres Extended Server on AlmaLinux 8 or Rocky Linux 8 x86_64
4.1.5 Installing EDB Postgres Extended Server on SLES 15 x86_64
4.1.6 Installing EDB Postgres Extended Server on Ubuntu 24.04 x86_64
4.1.7 Installing EDB Postgres Extended Server on Ubuntu 22.04 x86_64
4.1.8 Installing EDB Postgres Extended Server on Debian 12 x86_64
4.2 Installing EDB Postgres Extended Server on Linux AArch64 (ARM64)
4.2.1 Installing EDB Postgres Extended Server on RHEL 9 or OL 9 arm64
4.2.2 Installing EDB Postgres Extended Server on Debian 12 arm64
4.3 Installing EDB Postgres Extended Server on Linux IBM Power (ppc64le)
4.3.1 Installing EDB Postgres Extended Server on RHEL 9 ppc64le
4.3.2 Installing EDB Postgres Extended Server on RHEL 8 ppc64le
4.3.3 Installing EDB Postgres Extended Server on SLES 15 ppc64le
4.4 Default component locations
5 Database configuration
5.1 Setting configuration parameters
6 Transparent data encryption
7 Managing password profiles
7.1 Profile management key concepts
7.2 Creating a password profile
7.3 Modifying a profile
7.4 Dropping a password profile
7.5 Roles and profiles
7.6 Password profiles system catalogs
7.7 Working example of a password profile
8 Redacting data
8.1 Data redaction key concepts
8.2 Creating a data redaction policy
8.3 Enable/Disable data redaction policy
8.4 Removing a data redaction policy
8.5 Data redaction system catalogs
8.6 Working example of a data redaction policy
9 Replication
10 Postgres extensions supported in EDB Postgres Extended Server
11 Upgrading EDB Postgres Extended Server
11.1 Major version upgrade of EDB Postgres Extended Server
11.2 Minor EDB Postgres Extended Server upgrade
11.2.1 Minor EDB Postgres Extended Server upgrade of Debian packages
11.2.2 Minor EDB Postgres Extended Server upgrade of RPM packages
12 Configuration parameters (GUCs)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 2

98
99

100
102

13 SQL enhancements
13.1 transaction_rollback_scope parameter
13.2 JDBC properties for setting rollback scope
14 Operations

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 3

1 EDB Postgres Extended Server

EDB Postgres Extended Server is a Postgres database server distribution built on open-source, community PostgreSQL. It's fully compatible with
PostgreSQL. If you have applications written and tested to work with PostgreSQL, they will behave the same with EDB Postgres Extended Server. We will
support and fix any functionality or behavior differences between community PostgreSQL and EDB Postgres Extended Server.

EDB Postgres Extended Server's primary purpose is to extend PostgreSQL with a limited number of features that can't be implemented as extensions,
such as enhanced replication optimization used by EDB Postgres Distributed and Transparent Data Encryption, while maintaining parity in other respects.

Additional value-add enterprise features include:

Security though Transparent Data Encryption

WAL pacing delays to avoid flooding transaction logs

Additional tracing and diagnostics options

To see how EDB Postgres Extended Server compares to other databases, see Choosing your Postgres distribution.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 4

https://www.enterprisedb.com/docs/pgd/latest/
https://www.enterprisedb.com/docs/tde/latest/
https://www.enterprisedb.com/docs/tde/latest/
https://www.enterprisedb.com/docs/edb-postgres-ai/databases/postgres_distributions/

2 Release notes

The EDB Postgres Extended Server documentation describes the latest version of EDB Postgres Extended Server 18, including minor releases and
patches. These release notes cover what was new in each release.

Version Release date

18.1.0 25 Nov 2025

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 5

2.1 EDB Postgres Extended Server 18.1.0 release notes

Released: 25 Nov 2025

Deprecation

From EDB Postgres Extended Server 18.1.0 onwards, support for Debian 11 has been deprecated. Users are advised to upgrade to Debian 12 or
later versions to ensure continued support and access to the latest features and security updates.

EDB Postgres Extended Server 18.1.0 includes the following enhancements and bug fixes:

Type Description Address
es

Upstream
merge

Merged with community PostgreSQL 18.1. See the PostgreSQL 18.1 Release Notes for more information.

Feature Added password_profile extension to enable the profile-based system for enforcing advanced password
management rules on user accounts.

Feature Added data_redaction extension to provide capabilities for redacting sensitive data in query results.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 6

https://www.postgresql.org/docs/18/release-18-1.html

3 Deployment options

The deployment options include:

Installing on a virtual machine or physical server using native packages

Deploying it with EDB Postgres Distributed

Deploying it on EDB Postgres AI Cloud Service with extreme-high-availability cluster types

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 7

https://www.enterprisedb.com/docs/pgd/latest/
https://www.enterprisedb.com/docs/edb-postgres-ai/cloud-service/

4 Installing EDB Postgres Extended Server on Linux

Select a link to access the applicable installation instructions:

Linux x86-64 (amd64)

Red Hat Enterprise Linux (RHEL) and derivatives

RHEL 9, RHEL 8

Oracle Linux (OL) 9, Oracle Linux (OL) 8

Rocky Linux 9, Rocky Linux 8

AlmaLinux 9, AlmaLinux 8

SUSE Linux Enterprise (SLES)

SLES 15

Debian and derivatives

Ubuntu 24.04, Ubuntu 22.04

Debian 12

Linux IBM Power (ppc64le)

Red Hat Enterprise Linux (RHEL) and derivatives

RHEL 9, RHEL 8

SUSE Linux Enterprise (SLES)

SLES 15

Linux AArch64 (ARM64)

Red Hat Enterprise Linux (RHEL) and derivatives

RHEL 9

Oracle Linux (OL) 9

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 8

Debian and derivatives

Debian 12

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 9

4.1 Installing EDB Postgres Extended Server on Linux x86 (amd64)

Operating system-specific install instructions are described in the corresponding documentation:

Red Hat Enterprise Linux (RHEL) and derivatives

RHEL 9

RHEL 8

Oracle Linux (OL) 9

Oracle Linux (OL) 8

Rocky Linux 9

Rocky Linux 8

AlmaLinux 9

AlmaLinux 8

SUSE Linux Enterprise (SLES)

SLES 15

Debian and derivatives

Ubuntu 24.04

Ubuntu 22.04

Debian 12

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 10

4.1.1 Installing EDB Postgres Extended Server on RHEL 9 or OL 9 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

dnf repolist | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm

Install the package

sudo dnf -y install edb-postgresextended18-server edb-postgresextended18-contrib

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-18-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/pge18/bin/edb-pge-18-setup initdb

sudo systemctl start edb-pge-18

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a client
of your choice with the appropriate connection string.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 11

https://www.enterprisedb.com/repos-downloads

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

ALTER ROLE postgres with PASSWORD
'password';

running in psql
CREATE DATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 12

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 13

4.1.2 Installing EDB Postgres Extended Server on RHEL 8 or OL 8 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

dnf repolist | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

Install the package

sudo dnf -y install edb-postgresextended18-server edb-postgresextended18-contrib

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-18-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/pge18/bin/edb-pge-18-setup initdb

sudo systemctl start edb-pge-18

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a client
of your choice with the appropriate connection string.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 14

https://www.enterprisedb.com/repos-downloads

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

ALTER ROLE postgres with PASSWORD
'password';

running in psql
CREATE DATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 15

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 16

4.1.3 Installing EDB Postgres Extended Server on AlmaLinux 9 or Rocky Linux 9 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

dnf repolist | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install epel-release

Enable additional repositories to resolve dependencies:

sudo dnf config-manager --set-enabled crb

Install the package

sudo dnf -y install edb-postgresextended18-server edb-postgresextended18-contrib

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-18-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/pge18/bin/edb-pge-18-setup initdb

sudo systemctl start edb-pge-18

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 17

https://www.enterprisedb.com/repos-downloads

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a client
of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

ALTER ROLE postgres with PASSWORD
'password';

running in psql
CREATE DATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 18

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 19

4.1.4 Installing EDB Postgres Extended Server on AlmaLinux 8 or Rocky Linux 8 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

dnf repolist | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install epel-release

Enable additional repositories to resolve dependencies:

sudo dnf config-manager --set-enabled powertools

Install the package

sudo dnf -y install edb-postgresextended18-server edb-postgresextended18-contrib

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-18-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/pge18/bin/edb-pge-18-setup initdb

sudo systemctl start edb-pge-18

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 20

https://www.enterprisedb.com/repos-downloads

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a client
of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

ALTER ROLE postgres with PASSWORD
'password';

running in psql
CREATE DATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 21

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 22

4.1.5 Installing EDB Postgres Extended Server on SLES 15 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

zypper lr -E | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Activate the required SUSE module:

sudo SUSEConnect -p PackageHub/15.7/x86_64

Refresh the metadata:

sudo zypper refresh

Install the package

sudo zypper -n install edb-postgresextended18-server edb-postgresextended18-contrib

Optionally, enable the development SUSE modules only if required:

sudo SUSEConnect -p sle-module-desktop-applications/15.7/x86_64
sudo SUSEConnect -p sle-module-development-tools/15.7/x86_64
sudo zypper install edb-postgresextended18-devel

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 23

https://www.enterprisedb.com/repos-downloads

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-18-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/pge18/bin/edb-pge-18-setup initdb

sudo systemctl start edb-pge-18

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a client
of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

ALTER ROLE postgres with PASSWORD
'password';

running in psql
CREATE DATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 24

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 25

4.1.6 Installing EDB Postgres Extended Server on Ubuntu 24.04 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

apt-cache search enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-postgresextended-18

Initial configuration

This section steps you through getting started with your cluster including logging in, ensuring the installation was successful, connecting to your cluster,
and creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-18-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/lib/edb-pge/18/bin/edb-pge-18-setup initdb

sudo systemctl start edb-pge-18

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a client
of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 26

https://www.enterprisedb.com/repos-downloads

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

ALTER ROLE postgres with PASSWORD
'password';

running in psql
CREATE DATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 27

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 28

4.1.7 Installing EDB Postgres Extended Server on Ubuntu 22.04 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

apt-cache search enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-postgresextended-18

Initial configuration

This section steps you through getting started with your cluster including logging in, ensuring the installation was successful, connecting to your cluster,
and creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-18-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/lib/edb-pge/18/bin/edb-pge-18-setup initdb

sudo systemctl start edb-pge-18

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a client
of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 29

https://www.enterprisedb.com/repos-downloads

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

ALTER ROLE postgres with PASSWORD
'password';

running in psql
CREATE DATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 30

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 31

4.1.8 Installing EDB Postgres Extended Server on Debian 12 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

apt-cache search enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-postgresextended-18

Initial configuration

This section steps you through getting started with your cluster including logging in, ensuring the installation was successful, connecting to your cluster,
and creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-18-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/lib/edb-pge/18/bin/edb-pge-18-setup initdb

sudo systemctl start edb-pge-18

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a client
of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 32

https://www.enterprisedb.com/repos-downloads

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

ALTER ROLE postgres with PASSWORD
'password';

running in psql
CREATE DATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 33

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 34

4.2 Installing EDB Postgres Extended Server on Linux AArch64 (ARM64)

Operating system-specific install instructions are described in the corresponding documentation:

Red Hat Enterprise Linux (RHEL) and derivatives

RHEL 9

Oracle Linux (OL) 9

Debian and derivatives

Debian 12

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 35

4.2.1 Installing EDB Postgres Extended Server on RHEL 9 or OL 9 arm64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

dnf repolist | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm

Install the package

sudo dnf -y install edb-postgresextended18-server edb-postgresextended18-contrib

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-18-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/pge18/bin/edb-pge-18-setup initdb

sudo systemctl start edb-pge-18

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a client
of your choice with the appropriate connection string.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 36

https://www.enterprisedb.com/repos-downloads

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

ALTER ROLE postgres with PASSWORD
'password';

running in psql
CREATE DATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 37

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 38

4.2.2 Installing EDB Postgres Extended Server on Debian 12 arm64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

apt-cache search enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-postgresextended-18

Initial configuration

This section steps you through getting started with your cluster including logging in, ensuring the installation was successful, connecting to your cluster,
and creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-18-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/lib/edb-pge/18/bin/edb-pge-18-setup initdb

sudo systemctl start edb-pge-18

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a client
of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 39

https://www.enterprisedb.com/repos-downloads

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

ALTER ROLE postgres with PASSWORD
'password';

running in psql
CREATE DATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 40

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 41

4.3 Installing EDB Postgres Extended Server on Linux IBM Power (ppc64le)

Operating system-specific install instructions are described in the corresponding documentation:

Red Hat Enterprise Linux (RHEL)

RHEL 9

RHEL 8

SUSE Linux Enterprise (SLES)

SLES 15

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 42

4.3.1 Installing EDB Postgres Extended Server on RHEL 9 ppc64le

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

dnf repolist | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm

Refresh the cache:

sudo dnf makecache

Install the package

sudo dnf -y install edb-postgresextended18-server edb-postgresextended18-contrib

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-18-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/pge18/bin/edb-pge-18-setup initdb

sudo systemctl start edb-pge-18

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 43

https://www.enterprisedb.com/repos-downloads

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a client
of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

ALTER ROLE postgres with PASSWORD
'password';

running in psql
CREATE DATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 44

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 45

4.3.2 Installing EDB Postgres Extended Server on RHEL 8 ppc64le

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

dnf repolist | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

Refresh the cache:

sudo dnf makecache

Install the package

sudo dnf -y install edb-postgresextended18-server edb-postgresextended18-contrib

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-18-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/pge18/bin/edb-pge-18-setup initdb

sudo systemctl start edb-pge-18

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 46

https://www.enterprisedb.com/repos-downloads

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a client
of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

ALTER ROLE postgres with PASSWORD
'password';

running in psql
CREATE DATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 47

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 48

4.3.3 Installing EDB Postgres Extended Server on SLES 15 ppc64le

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter:

zypper lr -E | grep enterprisedb

If no output is generated, the repository is installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Activate the required SUSE module:

sudo SUSEConnect -p PackageHub/15.7/ppc64le

Refresh the metadata:

sudo zypper refresh

Install the package

sudo zypper -n install edb-postgresextended18-server edb-postgresextended18-contrib

Optionally, enable the development SUSE modules only if required:

sudo SUSEConnect -p sle-module-desktop-applications/15.7/ppc64le
sudo SUSEConnect -p sle-module-development-tools/15.7/ppc64le
sudo zypper install edb-postgresextended18-devel

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 49

https://www.enterprisedb.com/repos-downloads

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-pge-18-setup script creates a cluster.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/pge18/bin/edb-pge-18-setup initdb

sudo systemctl start edb-pge-18

To work in your cluster, log in as the postgres user. Connect to the database server using the psql command-line client. Alternatively, you can use a client
of your choice with the appropriate connection string.

sudo -iu postgres

psql postgres

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, postgres. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
You are now connected to database "hr" as user "postgres".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

ALTER ROLE postgres with PASSWORD
'password';

running in psql
CREATE DATABASE
hr;

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 50

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 51

4.4 Default component locations

The package managers for the various Linux variations install EDB Postgres Extended Server components in different locations. If you need to access the
components after installation, see:

RHEL/OL/Rocky Linux/AlmaLinux/CentOS/SLES locations
Debian/Ubuntu locations

RHEL/OL/Rocky Linux/AlmaLinux/CentOS/SLES Locations

The RPM installers place EDB Postgres Extended Server components in the directories listed in the table.

Component Location

Executables /usr/edb/pge17/bin

Libraries /usr/edb/pge17/lib

Cluster configuration files /var/lib/edb-pge/17

Documentation /usr/edb/pge17/share/man

Contrib /usr/edb/pge17/share/contrib

Data /var/lib/edb-pge/17/data

Logs /var/log/edb/pge17

Lock files /var/lock/edb/pge17

Backup area /var/lib/edb-pge/17/backups

Templates /usr/edb/pge17/share

Procedural Languages /usr/edb/pge17/lib

Development Headers /usr/edb/pge17/include

Shared data /usr/edb/pge17/share

Debian/Ubuntu Locations

The Debian package manager places EDB Postgres Extended Server components in the directories listed in the table.

Component Location

Executables /usr/lib/edb-pge/17/bin

Libraries /usr/lib/edb-pge/17/lib

Cluster configuration files /var/lib/edb-pge/17/main

Data /var/lib/edb-pge/17/main

Logs /var/log/edb-pge/

Lock files /var/lock/edb/pge17

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 52

5 Database configuration

EDB Postgres Extended Server includes features to help you to maintain, secure, and operate EDB Postgres Extended Server databases.

You can configure grand unified configuration (GUC) parameters at runtime by modifying the postgresql.conf and pg_hba.conf files.

The postgresql.conf file allows you to make persistent changes to your database configuration.
The pg_hba.conf file allows you to change access and authentication settings.

See Setting configuration parameters for more information.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 53

5.1 Setting configuration parameters

Set each configuration parameter using a name/value pair. Parameter names aren't case sensitive. The parameter name is typically separated from its
value by an optional equals sign (=).

This example shows some configuration parameter settings in the postgresql.conf file:

Types of parameter values

Parameter values are specified as one of five types:

Boolean — Acceptable values are on , off , true , false , yes , no , 1 , 0 , or any unambiguous prefix of these.
Integer — Number without a fractional part.
Floating point — Number with an optional fractional part separated by a decimal point.
String — Text value enclosed in single quotes if the value isn't a simple identifier or number, that is, the value contains special characters such as
spaces or other punctuation marks.
Enum — Specific set of string values. The allowed values can be found in the system view pg_settings.enumvals . Enum values are not case
sensitive.

Some settings specify a memory or time value. Each of these has an implicit unit, which is kilobytes, blocks (typically 8 kilobytes), milliseconds, seconds,
or minutes. You can find default units by referencing the system view pg_settings.unit . You can specify a different unit explicitly.

Valid memory units are:

kB (kilobytes)
MB (megabytes)
GB (gigabytes).

Valid time units are:

ms (milliseconds)
s (seconds)
min (minutes)
h (hours)
d (days).

The multiplier for memory units is 1024.

This is a
comment
log_connections = yes
log_destination =
'syslog'
search_path = '"$user", public'
shared_buffers = 128MB

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 54

Specifying configuration parameter settings

A number of parameter settings are set when the EDB Postgres Extended Server database product is built. These are read-only parameters, and you can't
change their values. A couple of parameters are also permanently set for each database when the database is created. These parameters are read-only
and you can't later change them for the database. However, there are a number of ways to specify the configuration parameter settings:

The initial settings for almost all configurable parameters across the entire database cluster are listed in the postgresql.conf configuration
file. These settings are put into effect upon database server start or restart. You can override some of these initial parameter settings. All
configuration parameters have built-in default settings that are in effect unless you explicitly override them.

Configuration parameters in the postgresql.conf file are overridden when the same parameters are included in the
postgresql.auto.conf file. Use the ALTER SYSTEM command to manage the configuration parameters in the
postgresql.auto.conf file.

You can modify parameter settings in the configuration file while the database server is running. If the configuration file is then reloaded (meaning
a SIGHUP signal is issued), for certain parameter types, the changed parameters settings immediately take effect. For some of these parameter
types, the new settings are available in a currently running session immediately after the reload. For others, you must start a new session to use
the new settings. And for some others, modified settings don't take effect until the database server is stopped and restarted. See the PostgreSQL
core documentation for information on how to reload the configuration file.

You can use the SQL commands ALTER DATABASE , ALTER ROLE , or ALTER ROLE IN DATABASE to modify certain parameter settings.
The modified parameter settings take effect for new sessions after you execute the command. ALTER DATABASE affects new sessions
connecting to the specified database. ALTER ROLE affects new sessions started by the specified role. ALTER ROLE IN DATABASE affects
new sessions started by the specified role connecting to the specified database. Parameter settings established by these SQL commands remain in
effect indefinitely, across database server restarts, overriding settings established by the other methods. You can change parameter settings
established using the ALTER DATABASE , ALTER ROLE , or ALTER ROLE IN DATABASE commands by either:

Reissuing these commands with a different parameter value.

Issuing these commands using the SET parameter TO DEFAULT clause or the RESET parameter clause. These clauses change
the parameter back to using the setting set by the other methods. See the PostgreSQL core documentation for the syntax of these SQL
commands.

You can make changes for certain parameter settings for the duration of individual sessions using the PGOPTIONS environment variable or by
using the SET command in the EDB-PSQL or PSQL command-line programs. Parameter settings made this way override settings established
using any of the methods discussed earlier, but only during that session.

Modifying the postgresql.conf file

The configuration parameters in the postgresql.conf file specify server behavior with regard to auditing, authentication, encryption, and other
behaviors. On Linux and Windows hosts, the postgresql.conf file resides in the data directory under your EDB Postgres Extended Server
installation.

Parameters that are preceded by a pound sign (#) are set to their default value. To change a parameter value, remove the pound sign and enter a new
value. After setting or changing a parameter, you must either reload or restart the server for the new parameter value to take effect.

In the postgresql.conf file, some parameters contain comments that indicate change requires restart . To view a list of the parameters
that require a server restart, use the following query at the psql command line:

SELECT name FROM pg_settings WHERE context =
'postmaster';

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 55

https://www.postgresql.org/docs/current/config-setting.html
https://www.postgresql.org/docs/current/sql-commands.html

Modifying the pg_hba.conf file

Appropriate authentication methods provide protection and security. Entries in the pg_hba.conf file specify the authentication methods that the
server uses with connecting clients. Before connecting to the server, you might need to modify the authentication properties specified in the
pg_hba.conf file.

When you invoke the initdb utility to create a cluster, the utility creates a pg_hba.conf file for that cluster that specifies the type of authentication
required from connecting clients. You can modify this file. After modifying the authentication settings in the pg_hba.conf file, restart the server and
apply the changes. For more information about authentication and modifying the pg_hba.conf file, see the PostgreSQL core documentation.

When the server receives a connection request, it verifies the credentials provided against the authentication settings in the pg_hba.conf file before
allowing a connection to a database. To log the pg_hba.conf file entry to authenticate a connection to the server, set the log_connections
parameter to ON in the postgresql.conf file.

A record specifies a connection type, database name, user name, client IP address, and the authentication method to authorize a connection upon
matching these parameters in the pg_hba.conf file. Once the connection to a server is authorized, you can see the matched line number and the
authentication record from the pg_hba.conf file.

This example shows a log detail for a valid pg_hba.conf entry after successful authentication:

2020-05-08 10:42:17 IST LOG: connection received: host=[local]
2020-05-08 10:42:17 IST LOG: connection authorized: user=u1 database=edb
application_name=psql
2020-05-08 10:42:17 IST DETAIL: Connection matched pg_hba.conf line 84:
"local all all md5"

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 56

https://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html

6 Transparent data encryption

Transparent data encryption (TDE) encrypts any user data stored in the database system. This encryption is transparent to the user. User data includes the
actual data stored in tables and other objects as well as system catalog data such as the names of objects.

See Transparent data encryption for more information.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 57

https://www.enterprisedb.com/docs/tde/latest

7 Managing password profiles

The password_profile extension introduces a profile-based system for enforcing advanced password management rules on user accounts. It gives
privileged users the ability to apply crucial security restrictions, such as:

Controlling detailed password policies (e.g., minimum length, complexity).

Automatically locking accounts after repeated failed logins.

Essentially, this tool provides administrators with greater control and security over user passwords than standard PostgreSQL offers, which is vital for
meeting modern compliance requirements.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 58

7.1 Profile management key concepts

The EDB Postgres Extended Server provides a password profile extension to define and enforce password management rules for user accounts through
profiles. This extension creates a new schema password_profile that contains functions, views and required function's to create and manage
password profiles.

You implement password profiles by defining a profile using the PG_PASSWORD_PROFILE function. The profiles are then assigned to user accounts
using the PG_ATTACH_ROLE_PROFILE function.

When a user attempts to change their password, the system checks the password against the rules defined in the assigned profile. If the password does
not meet the criteria, the system rejects the change and provides feedback on which rules were violated.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 59

7.2 Creating a password profile

The password_profile extension automatically creates a system-generated DEFAULT profile that sets the default limits for all the parameters.
You can change the parameter values for the DEFAULT profile, however it can't be dropped or renamed. You can create new profiles and set any
parameter to -1 to inherit the corresponding value from the DEFAULT profile.

The PG_CREATE_PROFILE function defines a new profile for password management.

Synopsis

Description

The PG_CREATE_PROFILE function creates a new profile for password management. The profile defines the profile name, limits for failed login
attempts, account lock time, password expriation and grace period, and the password verification function for complexity checks.

Parameters

profilename — Name of the password profile to create.

failed_login_attempts — Number of consecutive failed login attempts allowed before the account is locked for the length of time
specified by PASSWORD_LOCK_TIME . Supported values are:

An integer value greater than 0 .
Default — The value of failed_login_attempts specified in the DEFAULT profile.
unlimited — The connecting user can make an unlimited number of failed login attempts.

password_lock_time — Duration (in days) for which the account remains locked after exceeding the allowed failed login attempts.
Supported values are:

A numeric value greater than or equal to 0 . To specify a fractional portion of a day, specify a decimal value. For example, use the value
4.5 to specify 4 days, 12 hours.
Default — The value of password_lock_time specified in the DEFAULT profile.
unlimited — The account is locked until a database superuser manually unlocks it.

password_life_time — Duration (in days) after which the password expires and must be changed. Include the password_grace_time

PASSWORD_PROFILE.PG_CREATE_PROFILE('profilename',
 failed_login_attempts,
 password_lock_time,
 password_life_time,
 password_grace_time,
 password_verify_function)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 60

password_life_time — Duration (in days) after which the password expires and must be changed. Include the password_grace_time
clause when using the password_life_time clause to specify the number of days that pass after the password expires before connections by
the role are rejected. If you don't specify password_grace_time , the password expires on the day specified by the default value of
password_grace_time , and the user can't execute any command until they provide a new password. Supported values are:

A numeric value greater than or equal to 0. To specify a fractional portion of a day, specify a decimal value. For example, use the value
4.5 to specify 4 days, 12 hours.
Default — The value of password_life_time specified in the DEFAULT profile.
unlimited — The password doesn't have an expiration date.

password_grace_time — Duration (in days) after password expiration during which the user can still log in and change the password. When
the grace period expires, a user can connect but can't execute any command until they update their expired password. Supported values are:

A numeric value greater than or equal to 0. To specify a fractional portion of a day, specify a decimal value. For example, use the value
4.5 to specify 4 days, 12 hours.
Default — The value of password_grace_time specified in the DEFAULT profile.
unlimited — The grace period is infinite.

password_verify_function — Name of the password verification function that checks the complexity of the new password. This function
should return true if the password meets the complexity requirements, and false otherwise. Supported values are:

The name of a PL/SQL function.

Default — The value of password_verify_function specified in the default profile.

NULL

Caveats

Role accounts are not automatically attached to the DEFAULT profile. Users must explicitly assign this profile if desired.

The DEFAULT profile is essential for system operation and must not be removed. Users may, however, reset its values to the original settings.

Upon dropping the password_profile extension, users must manually clean up data remaining in the PG_PROFILE and PG_AUTH_PROFILE
tables.

If a role account's password is already stored as a hash, direct comparison is not possible. This will result in an incorrect setting for the BOOLEAN
argument of the PASSWORD_VERIFY_FUNCTION.

See also

EXAMPLE , MODIFYING A PROFILE , REMOVING A PROFILE

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 61

7.3 Modifying a profile

Altering a password profile

The PG_ALTER_PROFILE function modifies an existing password profile for password management.

Synopsis

Description

The PG_ALTER_PROFILE function modifies an existing profile for password management. The profile defines the profile name, limits for failed login
attempts, account lock time, password expiration and grace period, and the password verification function for complexity checks.

Parameters

profilename — Name of the password profile to modify.

failed_login_attempts — Number of consecutive failed login attempts allowed before the account is lockedfor the length of time specified
by PASSWORD_LOCK_TIME . Supported values are:

An integer value greater than 0 .
Default — The value of failed_login_attempts specified in the DEFAULT profile.
unlimited — The connecting user can make an unlimited number of failed login attempts.

password_lock_time — Duration (in days) for which the account remains locked after exceeding the allowed failed login attempts.
Supported values are:

A numeric value greater than or equal to 0 . To specify a fractional portion of a day, specify a decimal value. For example, use the value
4.5 to specify 4 days, 12 hours.
Default — The value of password_lock_time specified in the DEFAULT profile.
unlimited — The account is locked until a database superuser manually unlocks it.

password_life_time — Duration (in days) after which the password expires and must be changed. Include the password_grace_time
clause when using the password_life_time clause to specify the number of days that pass after the password expires before connections by
the role are rejected. If you don't specify password_grace_time , the password expires on the day specified by the default value of
password_grace_time , and the user can't execute any command until they provide a new password. Supported values are:

A numeric value greater than or equal to 0. To specify a fractional portion of a day, specify a decimal value. For example, use the value
4.5 to specify 4 days, 12 hours.
Default — The value of password_life_time specified in the DEFAULT profile.
unlimited — The password doesn't have an expiration date.

password_grace_time — Duration (in days) after password expiration during which the user can still log in and change the password. When

PASSWORD_PROFILE.PG_ALTER_PROFILE('profilename',
 failed_login_attempts,
 password_lock_time,
 password_life_time,
 password_grace_time,
 password_verify_function)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 62

password_grace_time — Duration (in days) after password expiration during which the user can still log in and change the password. When
the grace period expires, a user can connect but can't execute any command until they update their expired password. Supported values are:

A numeric value greater than or equal to 0. To specify a fractional portion of a day, specify a decimal value. For example, use the value
4.5 to specify 4 days, 12 hours.
Default — The value of password_grace_time specified in the DEFAULT profile.
unlimited — The grace period is infinite.

password_verify_function — Name of the password verification function that checks the complexity of the new password. This function
should return true if the password meets the complexity requirements, and false otherwise. Supported values are:

The name of a PL/SQL function.

Default — The value of password_verify_function specified in the default profile.

NULL

Renaming a password profile

The PG_RENAME_PROFILE function renames an existing password profile for password management.

Synopsis

Description

The PG_RENAME_PROFILE function renames an existing profile for password management.

Parameters

old_profilename — Current name of the password profile to rename.

new_profilename — New name for the password profile.

See also

EXAMPLE , CREATING A PROFILE , REMOVING A PROFILE

PASSWORD_PROFILE.PG_RENAME_PROFILE('old_profilename',
 'new_profilename')

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 63

7.4 Dropping a password profile

The PG_DROP_PROFILE function drops a password profile.

Synopsis

Description

PG_DROP_PROFILE drops the specified password profile for password management.

To use PG_DROP_PROFILE , you must not have any users assigned to the profile.

Parameters

profilename — Name of the password profile to drop.

missing_ok — If set to true, the function does not raise an error if the specified profile does not exist. If set to false, an error is raised when the
specified profile does not exist.

See also

CREATE PROFILE , MODIFYING A PROFILE

PASSWORD_PROFILE.PG_DROP_PROFILE('profilename',

missing_ok)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 64

7.5 Roles and profiles

The password_profile extension allows you to manage user roles and their associated profiles effectively. Each role can be assigned a specific
profile that dictates the password management rules applicable to that role.

Attach role and profile

When a role is created, it can be associated with a password profile using the PG_ATTACH_ROLE_PROFILE function. This association ensures that the
password management rules defined in the profile are enforced for the role.

This function accepts following parameters:

role_name — Name of the role to which the profile is being attached.
profile_name — Name of the password profile to attach to the role.

Detach role and profile

When a role is no longer needed or requires a different profile, it can be unassociated from its current profile using the PG_DETACH_ROLE_PROFILE
function.

This function accepts following parameters:

role_name — Name of the role from which the profile is being detached.

Role account status

You can check the status of a role's account by using the PG_GET_ROLE_STATUS function that is attached to the profile.

This function accepts either parameter:

role_name — Name of the role whose account status is being queried.

roleid — ID of the role whose account status is being queried.

PASSWORD_PROFILE.PG_ATTACH_ROLE_PROFILE('role_name', 'profile_name');

PASSWORD_PROFILE.PG_DETACH_ROLE_PROFILE('role_name');

PASSWORD_PROFILE.PG_GET_ROLE_STATUS('role_name');

or

PASSWORD_PROFILE.PG_GET_ROLE_STATUS('roleid');

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 65

Lock/unlock a role account

You can lock or unlock a role's account using the PG_ROLE_ACCOUNT_LOCK function. This action prevents the role from logging in until it is unlocked.

This function accepts following parameters:

role_name — Name of the role whose account is to be locked or unlocked.
lock — If true, lock the role's account; if false, unlock the role's account.

Set a role password to expire

You can set a role's password to expire using the PG_ROLE_PASSWORD_EXPIRE function. This action forces the role to change its password upon the
next login.

This function accepts following parameters:

role_name — Name of the role whose password is to be expired.

See also

CREATING A PROFILE , MODIFYING A PROFILE , REMOVING A PROFILE

PASSWORD_PROFILE.PG_ROLE_ACCOUNT_LOCK('role_name', lock);

PASSWORD_PROFILE.PG_ROLE_PASSWORD_EXPIRE('role_name');

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 66

7.6 Password profiles system catalogs

The password_profile extension creates the system catalogs that stores profile information.

pg_catalog.pg_profile

The pg_catalog.pg_profile system catalog stores information about the profiles and the password management rules added to that profile.

Column Description

oid The unique number to identify a profile.
oid is assigned to a profile by a sequence.

prfname Name of the profile.

prffailedloginattempts Number of failed login attempts allowed by the profile.

prfpasswordlocktime Locking duration in seconds after a role is locked.

prfpasswordlifetime Validity of current role password in seconds.

prfpasswordgracetime Duration in seconds after password expiration during which the role can still log in and change the
password.

prfpasswordverifyfuncdb The database OID in which the password verify function is created.

prfpasswordverifyfunc The password verify function name created by a user to impose password rules.

pg_catalog.pg_auth_profile

Column Description

roleid The unique number to identify a role.

profileid The object identifier for the role's profile.

roleaccountstatus Account status of the role.

rolefailedlogins Number of login failures of the role.

rolelockdate The timestamp when the role was last locked.

rolepasswordsetat The timestamp when the role's password was last set or modified.

rolepasswordexpire The timestamp when the role's password expires.

pg_catalog.pg_profile_info

The pg_catalog.pg_profile_info system catalog view stores information about the profiles and the corresponding parameter values.

Column Description

profile_name Name of the profile.

failed_login_attem
pts

Number of failed login attempts allowed by the profile.

password_lock_time Locking duration in days after a role is locked.

password_life_time Validity of current role password in days.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 67

password_grace_tim
e

Duration in days after password expiration during which the role can still log in and change the password.

password_verify_fu
nction

The password verify function name created by a user, in <database name>.<schema name>.<function
name> format, to impose password rules.

Column Description

pg_catalog.pg_role_profile_info

The pg_catalog.pg_role_profile_info system catalog view stores information about the roles and their associated profiles.

Column Description

role_name Name of the role.

profile_name Name of the profile associated with the role.

role_status Status of the role.

role_lock_date The timestamp when the role was last locked.

role_expiry_date The timestamp when the role's password expires.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 68

7.7 Working example of a password profile

This example walks you through the process of creating a password profile and associating it with a role. The CREATE EXTENSION command is used to
add the password profile functionality to your database.

You need to load the password_profile libraries via shared_preload_libraries in postgresql.conf file.

Add password_profile to the shared_preload_libraries line:

shared_preload_libraries = 'password_profile'

Restart the database server.

Create the extension in your database:

Create a user and GRANT EXECUTE privileges to the user for all functions in the password_profile schema:

Create a new profile as a superuser or as user1

This command creates a new profile and adds an entry to PG_PROFILE catalog.

Alter the profile to set failed_login_attempts to 2, password_lock_time to 1 day, password_life_time to 3 days and

CREATE EXTENSION password_profile;

CREATE USER user1 WITH PASSWORD 'password';
GRANT EXECUTE ON SCHEMA password_profile TO
user1;

GRANT EXECUTE ON FUNCTION password_profile.pg_create_profile(text, numeric, numeric, numeric,
numeric, text) TO user1;
GRANT EXECUTE ON FUNCTION password_profile.pg_alter_profile(text, numeric, numeric, numeric, numeric,
text) TO user1;
GRANT EXECUTE ON FUNCTION password_profile.pg_rename_profile(text, text) TO
user1;
GRANT EXECUTE ON FUNCTION password_profile.pg_attach_role_profile(text, text) TO
user1;
GRANT EXECUTE ON FUNCTION password_profile.pg_role_account_lock(text, boolean) TO
user1;
GRANT EXECUTE ON FUNCTION password_profile.pg_get_role_status(oid) TO
user1;
GRANT EXECUTE ON FUNCTION password_profile.pg_get_role_status(text) TO
user1;
GRANT EXECUTE ON FUNCTION password_profile.pg_role_password_expire(text) TO
user1;
GRANT EXECUTE ON FUNCTION password_profile.pg_detach_role_profile(text) TO
user1;
GRANT EXECUTE ON FUNCTION password_profile.pg_drop_profile(text, boolean) TO
user1;

SELECT PASSWORD_PROFILE.PG_CREATE_PROFILE('my_profile');

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 69

Alter the profile to set failed_login_attempts to 2, password_lock_time to 1 day, password_life_time to 3 days and
password_grace_time to 1 day.

output
 oid | prfname | prffailedloginattempts | prfpasswordlocktime | prfpasswordlifetime |
prfpasswordgracetime | prfpasswordverifyfuncdb | prfpasswordverifyfunc
-------+-----------+------------------------+---------------------+---------------------+----------------
------+-------------------------+-----------------------
 6108 | default | -2 | -2 | -2 |
-2 | |
 16397 | myprofile | 2 | 86400 | 259200 |
86400 | 0 | 0
 (2 rows)

The prfpasswordverifyfunc and prfpasswordverifyfuncdb column values are null for DEFAULT profile. For myprofile they
are set to 0, as no values were provided while creating this profile, so it referes to DEFAULT profile values.

Attach the profile to a role

output
 roleid | profileid | roleaccountstatus | rolefailedlogins | rolelockdate | rolepasswordsetat
| rolepasswordexpire
--------+-----------+-------------------+------------------+--------------+------------------------------
-+--------------------
 16384 | 16397 | 0 | 0 | | 2025-08-23
05:02:28.70456+00 |
(1 row)

Here the rolepasswordsetat column shows the timestamp when the role is attached to the profile. This column value gets updated
whenever the role password is updated.

Now try one failed login attempt and then query:

output
roleid | pg_get_role_status | rolefailedlogins | rolelockdate
-------+--------------------+------------------+--------------
 16384 | OPEN | 1 |
(1 row)

You can see the rolefailedlogins column has been incremented by 1 and the role status is open .

SELECT PASSWORD_PROFILE.PG_ALTER_PROFILE('my_profile', 2, 1, 3,
1);

SELECT * FROM
pg_profile;

SELECT PASSWORD_PROFILE.PG_ATTACH_ROLE_PROFILE('user1', 'myprofile');

SELECT * FROM
pg_auth_profile;

SELECT roleid, password_profile.PG_GET_ROLE_STATUS('myuser'), rolefailedlogins, rolelockdate FROM
pg_auth_profile;

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 70

Now try more failed log in attempts and then query again:

output
roleid | pg_get_role_status | rolefailedlogins | rolelockdate
-------+--------------------+------------------+-------------------------------
 16384 | LOCKED(TIMED) | 0 | 2025-08-24 07:53:58.524348+00
(1 row)

Due to multiple failed login attempts, the user account has been locked. The role status shows as LOCKED(TIMED) , and the failed login attempt
counter has been reset to 0 .

The TIMED status indicates that the account will automatically unlock after one day, as defined by the PASSWORD_LOCK_TIME parameter. A
timestamp is also recorded when the account becomes locked.

Once the lock period expires, the user will be able to log in again, and the status will return to OPEN.

If the user successfully logs in after a few failed attempts but before reaching the maximum limit (set by FAILED_LOGIN_ATTEMPTS), the
failed login counter is also reset to 0.

output
roleid | pg_get_role_status | rolefailedlogins | rolelockdate
-------+--------------------+------------------+-------------------------------
 16384 | OPEN | 0 | 2025-08-24 07:53:58.524348+00
(1 row)

It preserves the last lock date of the role.

\c -
myuser
Password for user myuser:
FATAL: role "myuser" is locked
Previous connection kept

SELECT roleid, password_profile.PG_GET_ROLE_STATUS('myuser'), rolefailedlogins, rolelockdate FROM
pg_auth_profile;

\c -
myuser
Password for user myuser:
You are now connected to database "postgres" as user
"myuser".

SELECT roleid, password_profile.PG_GET_ROLE_STATUS('myuser'), rolefailedlogins, rolelockdate FROM
pg_auth_profile;

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 71

8 Redacting data

EDB Postgres Extended Server includes features to help you to maintain, secure, and operate EDB Postgres Extended Server databases. The EDB Postgres
Extended Server Data redaction feature limits sensitive data exposure by dynamically changing data as it's displayed for certain users.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 72

8.1 Data redaction key concepts

The EDB Postgres Extended Server Data redaction extension provides a mechanism to limit sensitive data exposure by dynamically modified data
presented to non-privileged users. This extension creates a new schema data_redaction that contains functions, views and required function's to
create and manage data redaction policies.

To use the data redaction feature, first add the data_redaction libraries to shared_preload_libraries parameter in the postgresql.conf file
and restart the database server.

You implement data redaction by defining a function for each field to which to apply redaction. The function returns the value to display to the users
subject to the data redaction.

These functions are then incorporated into a redaction policy by using the CREATE_REDACTION_POLICY function. In addition to other options, this
command specifies:

The table on which the policy applies
The table columns affected by the specified redaction functions
Expressions to determine the affect session users

When a user queries a table with an active redaction policy, the system evaluates the policy expression. If the expression evaluates to true for that user
session, the system applies the redaction functions to the specified columns in the query result.

For example,

A social security number (SSN) is stored as 021-23-9567 . Privileged users can see the full SSN, while other users see only the last four digits:
xxx-xx-9567 .

For the SSN field, the redaction function returns xxx-xx-9567 for an input SSN of 021-23-9567 .

For a salary field, a redaction function always returns $0.00 , regardless of the input salary value.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 73

8.2 Creating a data redaction policy

The CREATE_REDACTION_POLICY function defines a new data redaction policy for a table.

Synopsis

Description

The CREATE_REDACTION_POLICY function creates a new data redaction policy for a table. The data redaction policy specifies how to redact sensitive
data for certain users by applying redaction functions to the specified columns of the table.

You must be the owner of a table to create or change data redaction policies for it.

The superuser and the table owner are exempt from the data redaction policy.

Parameters

policy_name — Name of the data redaction policy to create.

table_name — Name of the table the data redaction policy applies to.

schema_name — Schema name in which the table resides.

expression — The data redaction policy expression. No redaction is applied if this expression evaluates to false.

column_name — Name of the existing column of the table on which the data redaction policy is being created.

func — The data redaction function that decides how to compute the redacted column value. Return type of the redaction function must be the
same as the column type on which the data redaction policy is being added.

scope_value — The scope identifies the query part to apply redaction for the column. Scope value can be query , top_tlist , or
top_tlist_or_error .

If the scope is query , then the redaction is applied on the column regardless of where it appears in the query.
If the scope is top_tlist , then the redaction is applied on the column only when it appears in the query’s top target list.
If the scope is top_tlist_or_error , the behavior is the same as the top_tlist but throws an errors when the column appears
anywhere else in the query.

exception_value — The exception identifies the query part where redaction is exempted. Exception value can be none , equal , or

DATA_REDACTION.CREATE_REDACTION_POLICY('policy_name',
 'table_name',
 'schema_name',
 'expression',
 'column_name',
 'func',
 'scope_value',
 'exception_value')

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 74

exception_value — The exception identifies the query part where redaction is exempted. Exception value can be none , equal , or
leakproof .

If exception is none , then there's no exemption.
If exception is equal , then the column isn't redacted when used in an equality test.
If exception is leakproof , the column isn't redacted when a leakproof function is applied to it.

Caveats

The data redaction policies created on inheritance hierarchies aren't cascaded. For example, if the data redaction policy is created for a parent, it
isn't applied to the child table that inherits it, and vice versa. A user with access to these child tables can see the non-redacted data. For
information about inheritance hierarchies, see the PostgreSQL core documentation.

Users must manually adjust redaction policies when renaming or dropping any relevant objects.

If non-super user takes a dump, it has redacted values then user will get redacted values when restores that dump.

See also

EXAMPLE , ENABLE/DISABLE REDACTION POLICY , DROP REDACTION POLICY

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 75

https://www.postgresql.org/docs/current/ddl-inherit.html

8.3 Enable/Disable data redaction policy

The ENABLE_REDACTION_POLICY function enables the data redaction policy and DISABLE_REDACTION_POLICY function disables the data
redaction policy for a table.

Synopsis

Description

By default, when a data redaction policy is created, it is enabled.

ENABLE_REDACTION_POLICY function enables the specified data redaction policy for the table, while DISABLE_REDACTION_POLICY function
disables it.

Parameters

policy_name — Name of the data redaction policy to enable or disable.

table_name — Name of the table the data redaction policy applies to.

schema_name — Schema name in which the table resides.

If data redaction policy is enabled then,

Superusers and the table owner bypass data redaction and see the original data.
All other users have the redaction policy applied and see the reformatted data.

If data redaction policy is disabled then,

Superusers and the table owner bypass data redaction and see the original data.
All other users get un-redacted data.

Enable a data redaction
policy:
DATA_REDACTION.ENABLE_REDACTION_POLICY('policy_name',
 'table_name',
 'schema_name')

Disable a data redaction
policy:
DATA_REDACTION.DISABLE_REDACTION_POLICY('policy_name',
 'table_name',
 'schema_name')

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 76

See also

CREATE REDACTION POLICY , DROP REDACTION POLICY

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 77

8.4 Removing a data redaction policy

The DROP_REDACTION_POLICY function removes a data redaction policy from a table.

Synopsis

Description

DROP_REDACTION_POLICY removes the specified data redaction policy from the table.

To use DROP_REDACTION_POLICY , you must own the table that the redaction policy applies to.

Parameters

policy_name — Name of the data redaction policy to remove.

table_name — Name of the table the data redaction policy applies to.

schema_name — Schema name in which the table resides.

See also

CREATE REDACTION POLICY , ENABLE/DISABLE REDACTION POLICY

DATA_REDACTION.DROP_REDACTION_POLICY('policy_name',
 'table_name',
 'schema_name')

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 78

8.5 Data redaction system catalogs

System catalogs store the redaction policy information.

pg_redaction_policy

The catalog data_redaction.pg_redaction_policy stores information about the redaction policies for tables.

Column Description

rppolicy
id

The unique number to identify a data retention policy. The value in this field is added by a sequence.

rpname The name of the data redaction policy.

rprelnam
e

The relation on which redaction policy is created.

rprelsch
ema

Schema name in which the relation resides.

rpenable Status of the redaction policy. The default value is true . If the value is true means the policy is enabled and active. If the value is
false means the policy is disabled and inactive.

rpexpr The data redaction policy expression. If the expression is evaluated true then the policy is applied.

rpsearch
path

The value of search path set while creating the redaction policy.

Note

The data redaction policy applies for the relation if it's enabled and the expression ever evaluated true.

pg_redaction_column

The data_redactionp.pg_redaction_column system catalog stores information about the data redaction policy attached to the columns of a
table.

Column Description

rcpolicyid The unique number to identify a data redaction policy.

rcrelname The relation on which redaction policy is created.

rcrelschema Schema name in which the relation resides.

rcattname Relation's column name having the redaction policy.

rcscope The scope defined for the redaction policy.

rcexception The exception defined for the redaction policy.

rcfuncexpr The redaction function name that defines on how to redact the
data.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 79

Note

The described column is redacted if the redaction policy data_redaction.pg_redaction_column.rcpolicyid on the table is
enabled and the redaction policy expression data_redaction.pg_redaction_policy.rpexpr evaluates to true .

redaction_policy_status

The redaction_policy_status view shows the health of all current data redaction policies, reporting a status of either Valid or Invalid .

A Valid status means the policy is correctly configured and all required underlying objects (like functions or tables) are present.

An Invalid status indicates that the policy cannot be properly applied because one or more of its necessary objects are missing or no longer exist.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 80

8.6 Working example of a data redaction policy

This example walks you through how to create and implement a data redaction policy on a table.

Create the components for a data redaction policy on the employees table:

Insert some data to the employees table:

Create a user hr who can see all the data in the employees table:

Create a normal user and grant all privileges to hr and alice:

Create redaction function in which actual redaction logic resides:

CREATE OR REPLACE FUNCTION redact_ssn(ssn name) RETURNS varchar AS
$$
BEGIN
 return overlay (ssn placing 'xxx-xx' from 1);
END;
$$ LANGUAGE plpgsql;
CREATE OR REPLACE FUNCTION redact_salary(salary money) RETURNS money AS
$$
BEGIN
 return 0::money;
END;
$$ LANGUAGE plpgsql;

CREATE TABLE employees(
 id integer GENERATED BY DEFAULT AS IDENTITY PRIMARY
KEY,
 name varchar(40) NOT NULL,
 ssn varchar(11) NOT
NULL,
 phone varchar(10),
 birthday
date,
 salary
money,
 email varchar(100)
);

INSERT INTO employees (name, ssn, phone, birthday,
salary,
email)
VALUES
('Sally Sample', '020-78-9345', '5081234567', '1961-02-02', 51234.34,
'sally.sample@enterprisedb.com'),
('Jane Doe', '123-33-9345', '6171234567', '1963-02-14', 62500.00,
'jane.doe@gmail.com');

CREATE USER
hr;

CREATE USER
alice;
GRANT ALL on employees to hr,
alice;

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 81

These functions are then incorporated into a redaction policy by using the CREATE_REDACTION_POLICY function.

To use the data redaction feature, first add the data_redaction libraries by adding the following lines to the postgresql.conf file and
restarting the database server:

Restart the database server and create the extension:

Create an extension and then create a data redaction policy on employees table to redact ssn and salary columns with the default scope and
exception. Column ssn must be accessible in equality condition. The redaction policy is exempted for the hr user.

The hr user can view all columns data:

output
 id | name | ssn | phone | birthday | salary | email
----+--------------+-------------+------------+------------+------------+-------------------------------
 1 | Sally Sample | 020-78-9345 | 5081234567 | 1961-02-02 | $51,234.34 | sally.sample@enterprisedb.com
 2 | Jane Doe | 123-33-9345 | 6171234567 | 1963-02-14 | $62,500.00 | jane.doe@gmail.com
(2 rows)

The alice user can't see the actual data in ssn and salary columns:

output
 id | name | ssn | phone | birthday | salary | email
----+--------------+-------------+------------+------------+--------+-------------------------------
 1 | Sally Sample | xxx-xx-9345 | 5081234567 | 1961-02-02 | $0.00 | sally.sample@enterprisedb.com
 2 | Jane Doe | xxx-xx-9345 | 6171234567 | 1963-02-14 | $0.00 | jane.doe@gmail.com
(2 rows)

add data redaction libraries in the postgresql.conf file:
shared_preload_libraries = 'data_redaction'

CREATE EXTENSION data_redaction;
SELECT data_redaction.CREATE_REDACTION_POLICY('redact_personal_info_ssn', 'employees',
'public',
 'session_user != ''hr''', 'ssn', 'redact_ssn(ssn)',
 'query', 'equal');
SELECT data_redaction.CREATE_REDACTION_POLICY('redact_personal_info_salary', 'employees',
'public',
 'session_user != ''hr''', 'salary', 'redact_salary(salary)');

\c hr
SELECT * FROM employees;

\c edb
alice
SELECT * FROM employees;

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 82

9 Replication

EDB Postgres Extended Server provides the core functionality to support the following replication and high availability features in EDB Postgres
Distributed:

Commit At Most Once (CAMO)
Group commit
Eager replication
Decoding worker
Assessment tooling
Lag tracker
Lag control
Timestamp snapshots
Transaction streaming
Missing partition conflict
No need for UPDATE trigger on tables with TOAST
Automatically hold back FREEZE

Asynchronous processing

EDB Postgres Extended Server includes a synchronous_replication_availability parameter. A value of async for this parameter enables
asynchronous processing when not enough standby servers are available (when compared with the values as per synchronous_standby_names).
The behavior reverts to synchronous replication when the required number of synchronous standby servers reappear.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 83

https://www.enterprisedb.com/docs/pgd/latest

10 Postgres extensions supported in EDB Postgres Extended Server

EDB provides support for several Postgres extensions on EDB Postgres Extended Server:

Open-source extensions
EDB supported open-source extensions
EDB-developed extensions

See Postgres extensions available by deployment for an overview of all supported extensions and links to their documentation sites.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 84

https://www.enterprisedb.com/docs/pg_extensions/

11 Upgrading EDB Postgres Extended Server

You can upgrade EDB Postgres Extended Server installations to a more recent version.

See Upgrading a major version of EDB Postgres Extended Server for a major upgrade example.

See Upgrading a minor version of EDB Postgres Extended Server for minor upgrade examples according to your package format.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 85

11.1 Major version upgrade of EDB Postgres Extended Server

To perform a major version upgrade, install the new version of EDB Postgres Extended Server, initialize an empty cluster and use pg_upgrade to migrate
all data.

If a problem occurs during the upgrade process, you can revert to the previous version.

Overview

1. Prepare your upgrade by performing a backup of the existing instance.
2. Install the EDB Postgres Extended Server version you're upgrading toward.
3. Create a new database server:

1. Create an empty directory for the new server and ensure postgres owns it.
2. Initialize a server on a different port from the source server.
3. Start the database server.
4. Connect to the database server and ensure it's functioning.

4. Upgrade to the target server:
1. Stop both the source and the new server.
2. Use pg_upgrade by specifying the source and target bin and data directories.
3. Start the new database server.
4. Connect to the encrypted database server and ensure the data was transferred.

5. Clean up and delete the source server:
1. Clean up the database and its statistics.
2. Remove the source EDB Postgres Extended Server cluster with the script provided by pg_upgrade.

Worked example

This worked example upgrades an EDB Postgres Extended Server 16 database to EDB Postgres Extended Server 17.

Note

You can perform major upgrades of EDB Postgres Extended Server instances in the same way you upgrade an EDB Postgres Advanced Server
installation. If you need more information about the pg_upgrade utility, command line options, troubleshooting, and more, see Upgrading an
installation with pg_upgrade.

Preparing your upgrade

Use pg_dumpall, pgBackRest, or Barman to create a backup of your source server.

Installing the target EDB Postgres Extended Server version

Install EDB Postgres Extended Server version 17. Only install the packages. Don't perform any other configurations.

Creating a target server

If you don't want to create a new target instance but want to reuse an existing server with the target EDB Postgres Extended Server version, skip these
steps and ensure the target server is empty.

1. As postgres, create an empty directory for the new server:

mkdir /var/lib/edb-pge/17/upgrade_target

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 86

https://www.enterprisedb.com/docs/epas/latest/upgrading/major_upgrade/06_reverting_to_the_old_cluster/#reverting_to_the_old_cluster
https://www.enterprisedb.com/docs/epas/latest/upgrading/major_upgrade/
https://www.postgresql.org/docs/current/app-pg-dumpall.html
https://www.enterprisedb.com/docs/supported-open-source/pgbackrest/
https://www.enterprisedb.com/docs/supported-open-source/barman/
https://www.enterprisedb.com/docs/epas/latest/upgrading/major_upgrade/03_upgrading_to_advanced_server/#step-2---empty-the-target-database

2. As root, ensure the postgres user owns the directory:

sudo chown postgres /var/lib/edb-pge/17/upgrade_target
sudo chgrp postgres /var/lib/edb-pge/17/upgrade_target

3. As postgres, initialize the new server:

/usr/lib/edb-pge/17/bin/initdb -D /var/lib/edb-pge/17/upgrade_target

This command initializes a CONFIG directory with all configuration files for the encrypted server.

4. Before you start the cluster, ensure the new database runs on a different port from the source server. To alter the port, edit postgresql.conf
by uncommenting the line with #port and changing the port number, for example, to 5432.

5. Start the target server:

/usr/lib/edb-pge/17/bin/pg_ctl -D /var/lib/edb-pge/17/upgrade_target start

Note

You can also start the server with the logfile option enabled to print errors into a logfile: /usr/lib/edb-pge/17/bin/pg_ctl
-D /var/lib/edb-pge/17/upgrade_target -l logfile start

In this case, ensure the postgres user has rights to write to the log directory.

6. Connect to the server:

/usr/lib/edb-pge/17/bin/psql -p 5432

Note

If you're using two different Postgres versions, use the psql utility of the target server. Otherwise, the system will attempt to use psql
from the previous instance.

Upgrading to the target server

1. If you have any extensions or component services running in the source cluster, stop them before starting the upgrade. See Stop all component
services and servers for more information

2. Stop both the source and target servers:

/usr/lib/edb-pge/16/bin/pg_ctl -D /var/lib/edb-pge/16/upgrade-source stop
/usr/lib/edb-pge/17/bin/pg_ctl -D /var/lib/edb-pge/17/upgrade-target stop

To test for incompatibilities, run the pg_upgrade command in check mode.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 87

https://www.enterprisedb.com/docs/epas/latest/upgrading/major_upgrade/03_upgrading_to_advanced_server/#step-4---stop-all-component-services-and-servers

3. To test for incompatibilities, run the pg_upgrade command in check mode.

With -b and -B , specify the source and target BIN directories. With -d and -D , specify the source and target CONFIG directories:

/usr/lib/edb-pge/17/bin/pg_upgrade -b /usr/lib/edb-pge/16/bin -B /usr/lib/edb-pge/17/bin -d
/var/lib/edb-pge/16/upgrade-source -D /var/lib/edb-pge/17/upgrade-target --check

Note

The --check mode performs preliminary checks without executing the command.

4. To copy data from the source server to the target server, run the pg_upgrade command in normal mode:

/usr/lib/edb-pge/17/bin/pg_upgrade -b /usr/lib/edb-pge/16/bin -B /usr/lib/edb-pge/17/bin -d
/var/lib/edb-pge/16/upgrade-source -D /var/lib/edb-pge/17/upgrade-target

5. Start the target server:

/usr/lib/edb-pge/17/bin/pg_ctl -D /var/lib/edb-pge/17/upgrade-target start

6. Connect to the target database server:

/usr/lib/edb-as/17/bin/psql -p 5432

7. Perform a spot check to ensure the databases, tables, schemas, and resources you had in the unencrypted server are available in the new server.
For example, list all databases, explore the database objects, views, and so on.

8. Restart the extensions or component services you disabled in the source cluster but in the target cluster.

Cleaning up after upgrade

After you verify that pg_upgrade migrated the data successfully, and the services are running as expected, perform a cleanup.

1. Clean up the database and its statistics:

/usr/lib/edb-pge/17/bin/vacuumdb --all --analyze-in-stages

2. Remove all data files of the unencrypted server with the script generated by pg_upgrade :

./delete_old_cluster.sh

More information

Review Upgrading an installation with pg_upgrade for more information on pg_upgrade options, troubleshooting, and other considerations.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 88

https://www.enterprisedb.com/docs/epas/latest/upgrading/major_upgrade/

11.2 Minor EDB Postgres Extended Server upgrade

To perform a minor upgrade of your EDB Postgres Extended Server you only need to update your packages and restart the server.

To update your packages, ensure you use the correct package manager for your operating system.

If you installed an RPM package of EDB Postgres Extended Server (on RHEL, AlmaLinux, Rocky Linux) with dnf , see Minor EDB Postgres Extended
Server upgrade of RPM packages.

If you installed a Debian package of EDB Postgres Extended Server (on Ubuntu, Debian) with apt-get , see Minor EDB Postgres Extended Server
upgrade of Debian packages .

When you upgrade the packages, the packager manager installs the latest available minor version. For example, if you're running an xy.1 minor version,
and the latest available minor version is xy.5, the package manager will install xy.5, skipping xy.2 to xy.4.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 89

11.2.1 Minor EDB Postgres Extended Server upgrade of Debian packages

If you used apt-get to install a Debian package of EDB Postgres Extended Server (on Ubuntu, Debian), use apt-get to perform a minor version
upgrade of the packages.

Overview

1. Upgrade the EDB Postgres Extended Server packages with apt-get install .

2. Restart the server with pg_ctl .

3. Verify the server version with psql.

Worked example

1. To upgrade the existing packages, open a command line, assume root privileges, and enter the command:

sudo apt-get install <package_name>

For example, if you want to upgrade to the latest minor version of EDB Postgres Extended Server 17, run:

sudo apt-get install edb-postgresextended-17

Note

You can perform a search of the packages to ensure you update the right package beforehand. For example, to browse through all EDB
Packages, you can run sudo apt-cache edb . For more information about using apt-get commands and options, enter apt-
get --help at the command line.

2. Confirm with Y .

The output displays an overview of all performed processes, where you can see the packages that were upgraded.

3. To finalize the upgrade, restart the server. Replace <path_to_data_directory> with the path to the data directory of the server or servers
you're upgrading:

/usr/lib/edb-pge/17/bin/pg_ctl -D <path_to_data_directory> restart

For example:

/usr/lib/edb-pge/17/bin/pg_ctl -D /var/lib/edb-pge/17/upgrade restart

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 90

4. Verify the expected database version is running by connecting to psql:

/usr/lib/edb-pge/17/bin/psql

Check the server version:

SHOW server_version;

output
 server_version
--
 17.2 (EDB Postgres Extended Server 17.2.0) (Ubuntu 0:17.2-1.jammy)
(1 row)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 91

11.2.2 Minor EDB Postgres Extended Server upgrade of RPM packages

If you used dnf to install an RPM package of EDB Postgres Extended Server (on RHEL, AlmaLinux, Rocky Linux), use dnf to perform a minor version
upgrade of the packages.

Overview

1. Check for available updates with dnf check-update .

2. Upgrade the EDB Postgres Extended Server packages with dnf update .

3. Restart the server with pg_ctl .

4. Verify the server version with psql.

Worked example

1. To list the package updates available for your system, open a command line, assume root privileges, and enter the command:

sudo dnf check-update <package_name>

For example, if you want to upgrade to the latest minor version of EDB Postgres Extended Server 17, run:

sudo dnf check-update edb-postgresextended17

Note

You can include wildcard values in the search term. For example, if you're looking for EDB Packages, you can run sudo dnf check-
update edb-* . For more information about using dnf commands and options, enter dnf --help at the command line.

2. Once you've figured the name and version of the package you want to install, use dnf update to install the package:

sudo dnf update edb-postgresextended17

output
==
Package Arch Version Repository Size
==
Upgrading:
 edb-postgresextended17 x86_64 17.2-1.el9 enterprisedb-enterprise 1.7 M
 edb-postgresextended17-contrib x86_64 17.2-1.el9 enterprisedb-enterprise 724 k
 edb-postgresextended17-libs x86_64 17.2-1.el9 enterprisedb-enterprise 330 k
 edb-postgresextended17-server x86_64 17.2-1.el9 enterprisedb-enterprise 6.8 M

Transaction Summary
==
Upgrade 4 Packages

Total download size: 9.5 M
Is this ok [y/N]

Confirm with y . The output displays an overview of all performed processes, where you can see the packages that were upgraded:

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 92

3. Confirm with y . The output displays an overview of all performed processes, where you can see the packages that were upgraded:

y

output
edb-postgresextended17-17.2-1.el9.x86_64
edb-postgresextended17-contrib-17.2-1.el9.x86_64
edb-postgresextended17-libs-17.2-1.el9.x86_64
edb-postgresextended17-server-17.2-1.el9.x86_64

4. To finalize the upgrade, restart the server. Replace <path_to_data_directory> with the path to the data directory of the server or servers
you're upgrading:

/usr/edb/pge17/bin/pg_ctl -D <path_to_data_directory> restart

For example:

/usr/edb/pge17/bin/pg_ctl -D /var/lib/edb-pge/17/upgrade restart

5. Verify the expected database version is running by connecting to psql:

/usr/edb/pge17/bin/psql

Check the server version:

SHOW server_version;

output
 server_version
--
 17.2 (EDB Postgres Extended Server 17.2.0)

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 93

12 Configuration parameters (GUCs)

These Grand Unified Configuration (GUC) configuration parameters are available with EDB Postgres Extended Server.

Backend parameters

Backend parameters introduce a test probe point infrastructure for injecting sleeps or errors into PostgreSQL and extensions.

Any PROBE_POINT defined throughout the Postgres code code marks important code paths. These probe points might be activated to signal the current
backend or to elog(...) a LOG / ERROR / FATAL / PANIC . They might also, or instead, add a delay at that point in the code.

Unless explicitly activated, probe points have no effect and add only a single optimizer-hinted branch, so they're safe on hot paths.

When an active probe point is hit and the counter is satisfied, after any specified sleep interval, a log message is always emitted at DEBUG1 or higher.

pg2q.probe_point

The name of a PROBE_POINT in the code of 2ndQPostgres or in an extension that defines a PROBE_POINT . This parameter isn't validated. If a
nonexistent probe point is named, it's never hit.

Only one probe point can be active. This isn't a list, and attempting to supply a list means nothing matches.

Probe points generally have a unique name, given as the argument to the PROBE_POINT macro in the code where it's defined. It's also possible to use
the same PROBE_POINT name where multiple code paths trigger the same action of interest. A probe fires when either path is taken.

pg2q.probe_counter

You might need to act on a probe only after a loop is run for the number of times specified with this parameter. In such cases, set this GUC to the number
of iterations at which point the probe point fires, and reset the counter.

The default value is 1 , meaning the probe points always fire when the name matches.

pg2q.probe_sleep

Sleep for pg2q.probe_sleep milliseconds after hitting the probe point. Then fire the action in pg2q.probe_action .

pg2q.probe_action

Action to take when the named pg2q.probe_point is hit. Available actions are:

sleep — Emit a DEBUG message with the probe name.
log — Emit a LOG message with the probe name.
error — elog(ERROR, ...) to raise an ERROR condition.
fatal — elog(FATAL, ...) .
panic — elog(PANIC, ...) , which generally then calls abort() and delivers a SIGABRT (signal 6) to cause the backend to core

dump. The probe point tries to set the core file limit to enable core dumps if the hard ulimit permits.
sigint , sigterm , sigquit , sigkill — Deliver the named signal to the backend that hit the probe point.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 94

pg2q.probe_backend_pid

If nonzero, the probe sleep and action are skipped for backends other than the backend with this ID.

server_2q_version_num and server_2q_version

The server_2q_version_num and server_2q_version configuration parameters allow the 2ndQuadrant-specific version number and version
substring, respectively, to be accessible to external modules.

Table-level compression control option

You can set the table-level option compress_tuple_target to decide when to trigger compression on a tuple. Previously, you used the
toast_tuple_target (or the compile time default) to decide whether to compress a tuple. However, this was detrimental when a tuple is large

enough and has a good compression ratio but not large enough to cross the toast threshold.

pg2q.max_tuple_field_size

Restricts the maximum uncompressed size of the internal representation of any one field that can be written to a table, in bytes.

The default pg2q.max_tuple_field_size is 1073740799 bytes, which is 1024 bytes less than 1 GiB. This value is slightly less than the 1 GiB
maximum field size usually imposed by PostgreSQL. This margin helps prevent cases where tuples are committed to disk but can't then be processed by
logical decoding output plugins and sent to downstream servers.

Set pg2q.max_tuple_field_size to 1GB or 11073741823 to disable the feature.

If your application doesn't rely on inserting large fields, consider setting pg2q.max_tuple_field_size to a much smaller value, such as 100MB or
even less. Among other issues, large fields can:

Cause surprising application behavior
Increase memory consumption for the database engine during queries and replication
Slow down logical replication

While this parameter is enabled, oversized fields cause queries that INSERT or UPDATE an oversized field to fail with an ERROR such as:

ERROR: field big_binary_field_name in row is larger than pg2q.max_tuple_field_size
DETAIL: New or updated row in relation some_table has field big_binary_field_name
 (attno=2) with size 8161 bytes which exceeds limit 1073740799B configured
 in pg2q.max_tuple_field_size
SQLSTATE: 53400 configuration_limit_exceeded

Only the superuser can set pg2q.max_tuple_field_size . You can use a SECURITY DEFINER function wrapper if you want to allow a non-
superuser to set it.

If you change pg2q.max_tuple_field_size , fields larger than the current pg2q.max_tuple_field_size that are already on disk don't
change. You can SELECT them as usual. Any UPDATE that affects tuples with oversized fields fails, even if the oversized field isn't modified, unless the
new tuple created by the update operation satisfies the currently active size limits.

A DELETE operation doesn't check the field-size limit.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 95

The limit isn't enforced on the text-representation size for I/O of fields because doing so also prevents PostgreSQL from creating and processing
temporary in-memory json objects larger than the limit.

The limit isn't enforced for temporary tuples in tuplestores, such as set-returning functions, CTEs, and views. Size checks are deliberately not enforced for
any MATERIALIZED VIEW either.

WARNING

pg2q.max_tuple_field_size is enforced for pg_restore . If a database contains oversized tuples, it does a pg_dump as usual.
However, a subsequent pg_restore fails with the error shown previously. To work around this issue, restore the dump with
pg2q.max_tuple_field_size overridden in connection options using PGOPTIONS or the options connection-parameter string. For

example:

 PGOPTIONS='-c pg2q.max_tuple_field_size=11073741823' pg_restore ...

Data type specifics:

For a bytea field, the size used is the decoded binary size. It isn't the text-representation size in hex or octal escape form, that is, the
octet_length() of the field.

Assuming bytea_output = 'hex' , the maximum size of the I/O representation is 2 * pg2q.max_tuple_field_size + 2 bytes.

For a text , json , or xml field, the measured size is the number of bytes of text in the current database encoding (the octet_length()
of the field), not the number of characters. In UTF-8 encodings, one character usually consumes one byte but might consume six or more bytes for
some languages and scripts.

For a jsonb field, the measured size is that of the PostgreSQL internal jsonb-encoded datatype representation, the text representation of the
json document. In some cases the jsonb representation for larger json documents is smaller than the text representation. This means that it's
possible to insert json documents with text representations larger than any given pg2q.max_tuple_field_size , although it's uncommon.

Extension-defined data type behavior depends on the implementation of the data type.

The field size used for this limit is the size reported by them pg_column_size() function, minus the 4 bytes of header PostgreSQL adds to
variable-length data types, when used on a literal of the target data type. For example:

demo=> SELECT pg_column_size(BYTEA '\x00010203040506070809') - 4;
14

For example, to see the computed size of the jsonb field, use:

SELECT pg_column_size(JSONB '{"my_json_document": "yes"}') - 4;

Due to TOAST compression , pg_column_size() often reports smaller values when called on existing on-disk fields. Also, the header for
shorter values on disk might be 1 byte instead of 4.

pg2q.max_tuple_size

Restricts the maximum size of a single tuple that can be written to a table. This value is the total row width, including the uncompressed width of all
potentially compressible or external-storage-capable field values. Field headers count against the size, but fixed row headers don't.

Many PostgreSQL operations, such as logical replication, work on whole rows, as do many applications. You can use this setting to impose a limit on the
maximum row size you consider reasonable for your application to prevent inadvertent creation of oversized rows that might pose operational issues.

When applied to an UPDATE of existing tuples, pg2q.max_tuple_size isn't enforced as strictly as pg2q.max_tuple_field_size . It doesn't

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 96

When applied to an UPDATE of existing tuples, pg2q.max_tuple_size isn't enforced as strictly as pg2q.max_tuple_field_size . It doesn't
count the full size of unmodified values in columns with storage other than PLAIN .

WARNING

pg2q.max_tuple_size is enforced for pg_restore . See the caveat for pg2q.max_tuple_field_size .

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 97

13 SQL enhancements

EDB Postgres Extended Server includes a number of SQL enhancements.

Rollback options

In PostgreSQL, any error in a transaction rolls back all actions by that transaction. This behavior is different from other DBMS, such as Oracle and SQL
Server, where an error causes rollback of only the last statement. This difference in transaction handling semantics doesn't cause a problem in all cases,
but it does make implementing business logic in PostgreSQL difficult for Oracle Database and Microsoft SQL Server developers.

One workaround is to manually introduce a savepoint, internally known as subtransactions, into the application code. This is time consuming and difficult
to test. A savepoint is an additional statement and therefore increases transaction latency. Given the overhead of additional development work and
slower performance, this approach isn't viable in most cases.

EDB Postgres Extended Server allows you to roll back just the current statement. The statement-level rollback feature provides an optional mode to
choose whether to allow rollback of the whole transaction or just the current statement. No manual recoding is required. There's some added overhead,
but it's lower than for a savepoint.

See transaction_rollback_scope for information on setting the transaction rollback scope inside the database and JDBC properties for rollback
scope for information on continuing past an error on a JDBC batch job.

Cursors with prepared statements

EDB Postgres Extended Server allows declaring a cursor over a previously created prepared statement.

For example:

PREPARE foo AS ...; DECLARE c1 CURSOR FOR foo;

PL/pgSQL compatibility

EDB Postgres Extended Server integrates with other migration tools with a number of PL/pgSQL compatibility features.

For general simplicity, EDB Postgres Extended Server allows calling functions using plpqsl without the PERFORM keyword.

For example,

BEGIN somefunc(); END

Where somefunc is not a keyword.

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 98

13.1 transaction_rollback_scope parameter

To set the transaction rollback scope inside the database, use the transaction_rollback_scope parameter. The
transaction_rollback_scope parameter has two possible values:

transaction — Standard Postgres behavior, where each error aborts the whole transaction.

statement — An error while executing one statement affects only that statement and not the status of the transaction as a whole.

Setting the parameter

You can set the parameter as a user-level property, a connection option, or the mode for specific functions or procedures.

Set the parameter as a user-level property

Set the parameter as a connection option

PGOPTIONS="-c transaction_rollback_scope=statement" psql <other options>

Set the mode for specific functions or procedures

If using PL/pgSQL, you can set the mode for specific functions or procedures:

How subtransactions are handled

If you select the statement value, then a subtransaction is opened just before each SQL command. If the command is successful, the subtransaction is
committed. If the command causes an error, the subtransaction is rolled back, and the parent transaction can continue normally. The effect is that an
error during execution of one statement affects only that statement and not the status of the transaction as a whole.

Committing a subtransaction assigns the resources it holds only to its parent transaction, which might be the top-level transaction. Or it might be some
other subtransaction if there are user-defined savepoints involved. So this is not an "autonomous transaction." Rolling back a subtransaction releases all
the resources it holds, such as any locks it acquired.

ALTER USER somebody SET transaction_rollback_scope TO
statement;

ALTER FUNCTION myfunc SET transaction_rollback_scope TO
statement;

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 99

13.2 JDBC properties for setting rollback scope

If you're using a JDBC connector to connect to a client application, you use the autosave and transaction_rollback_scope properties
together to specify the transaction rollback scope.

You can specify these properties in either the connection URL or as an additional properties object parameter to DriverManager.getConnection .

autosave

The autosave parameter is a string that specifies what the driver does if a query containing multiple statements fails. The possible values are:
server , always , never , and conservative .

In autosave=server mode, JDBC relies on the server-side parameter transaction_rollback_scope to save each statement by way of
internal server savepoints before executing the next. The server rolls back to the previous statement if any statement in the query fails. If this
parameter isn't supported on the server side, JDBC rejects the connection.

In autosave=always mode, the JDBC driver first tries to use the server-side transaction_rollback_scope property. If it isn't
supported, then JDBC driver sets a savepoint before each query statement and rolls back to that savepoint in case of failure.

In autosave=never mode (default), no savepoint activity is ever carried out. In autosave=conservative mode, savepoint is set for each
query. However, the rollback is done only for rare cases like 'cached statement cannot change return type' or 'statement XXX is not valid', so JDBC
driver rolls back and retries.

The default value for this property is never .

This autosave=server property is useful only with the PostgreSQL server providing transaction_rollback_scope functionality.

transaction_rollback_scope

The autosave parameter is a string that determines the range of operations that roll back when an SQL statement fails.

The default value is TRANSACTION , which causes the entire transaction or current subtransaction to roll back. This is the only mode that you can select
with the SET TRANSACTION command.

You can specify the other possible mode, STATEMENT , only during connection establishment, ALTER USER , or ALTER DATABASE . In that mode,
only the failed SQL statement is rolled back, and the transaction is put back in normal mode.

autosave test cases

Test cases for trying out values of the autosave property are available in the BatchAutoSaveTest.java file. The following SQL code shows the
behavior that's expected when the server provides transaction_rollback_scope functionality and autosave=server is used on the JDBC
side.

With autosave=server , the following query inserts values (1) , (3) , and (4) and disregards the duplicate key violation error:

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 100

The artifacts directory contains the pgjdbc jar file postgresql-REL2Q.42.2.3.180601.jar . This file needs to be added to the
CLASSPATH as usual. It also contains the postgresql-REL2Q.42.2.3.180601-tests.jar jar that can be used to test the latest autosave
functionality.

You can test the BatchAutoSaveTest.java file provided in the artifacts as follows:

1. Export CLASSPATH to build and run the test case:

2. Compile the supplied test file:

3. Run the test (assuming user as test and running on localhost):

java -Dusername=test -Dport=5432 -Dhost=localhost -Ddatabase=postgres org.junit.runner.JUnitCore
org.postgresql.test.jdbc2.BatchAutoSaveTest

output
JUnit version 4.12
.Configuration file /Users/altaf/pg/artifacts/../build.properties does not exist. Consider adding it
to specify test db host and login
Configuration file /Users/altaf/pg/artifacts/../build.local.properties does not exist. Consider
adding it to specify test db host and login
Configuration file /Users/altaf/pg/artifacts/../build.properties does not exist. Consider adding it
to specify test db host and login
Configuration file /Users/altaf/pg/artifacts/../build.local.properties does not exist. Consider
adding it to specify test db host and login
.........
Time: 0.556

OK (10 tests)

To modify the test cases, you can modify the BatchAutoSaveTest.java file in the artifacts directory. Then compile and run the test cases.

CREATE TABLE test (id INT PRIMARY
KEY);
INSERT INTO test VALUES
(2);
BEGIN;
INSERT INTO test VALUES
(1);
INSERT INTO test VALUES
(2);
INSERT INTO test VALUES
(3);
INSERT INTO test VALUES
(4);
COMMIT;

cd artifacts
export CLASSPATH=$PWD:$PWD/postgresql-REL2Q.42.2.3.180601-tests.jar:$PWD/postgresql-
REL2Q.42.2.3.180601.jar:$PWD/junit-4.12.jar:$PWD/hamcrest-core-1.3.jar

javac -d .
BatchAutoSaveTest.java

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 101

14 Operations

EDB Postgres Extended Server has a number of features that relate to operations.

Avoid flooding transaction logs

EDB Postgres Extended Server provides WAL pacing delays to avoid flooding transaction logs. The WAL pacing configuration parameters are:

wal_insert_delay_enabled
wal_insert_delay
wal_insert_delay_size

When wal_insert_delay_enabled is enabled, a session sleeps based on the value of wal_insert_delay after WAL data of at least the value
of wal_insert_delay_size is generated. The default is off.

Additional tracing and diagnostics options

EDB Postgres Extended Server allows you to enable timeouts based on logging trace messages in specific code paths. Use the tracelog_timeout
configuration parameter to allow logging of trace messages after a timeout of the specified time occurs.

Selective physical base backup and subsequent selective recovery/restore

By default, backups are always taken of the entire database cluster. You can also back up individual databases or database objects by specifying the -L
option with the pg_basebackup utility multiple times for multiple databases.

Template databases are backed up by default. WAL data for excluded databases is still part of the WAL archives.

The backup activity stores the list of database objects specified using this option in the backup label file. The presence of these objects in the backup
label file causes selective recovery of these databases. Recovery of template databases and of global metadata related to users, languages, and so on is
also carried out as usual. WAL data belonging to excluded databases is ignored during the recovery process. Attempts to connect to excluded databases
cause errors after regular operations start following the recovery.

Additional operations feature

Reduced locking of ALTER TABLE ... REPLICA IDENTITY

EDB Postgres Extended Server

Copyright © 2009 - 2026 EnterpriseDB Corporation. All rights reserved. 102

	1 EDB Postgres Extended Server
	2 Release notes
	2.1 EDB Postgres Extended Server 18.1.0 release notes
	3 Deployment options
	4 Installing EDB Postgres Extended Server on Linux
	Linux x86-64 (amd64)
	Red Hat Enterprise Linux (RHEL) and derivatives
	SUSE Linux Enterprise (SLES)
	Debian and derivatives

	Linux IBM Power (ppc64le)
	Red Hat Enterprise Linux (RHEL) and derivatives
	SUSE Linux Enterprise (SLES)

	Linux AArch64 (ARM64)
	Red Hat Enterprise Linux (RHEL) and derivatives
	Debian and derivatives

	4.1 Installing EDB Postgres Extended Server on Linux x86 (amd64)
	Red Hat Enterprise Linux (RHEL) and derivatives
	SUSE Linux Enterprise (SLES)
	Debian and derivatives

	4.1.1 Installing EDB Postgres Extended Server on RHEL 9 or OL 9 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.1.2 Installing EDB Postgres Extended Server on RHEL 8 or OL 8 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.1.3 Installing EDB Postgres Extended Server on AlmaLinux 9 or Rocky Linux 9 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.1.4 Installing EDB Postgres Extended Server on AlmaLinux 8 or Rocky Linux 8 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.1.5 Installing EDB Postgres Extended Server on SLES 15 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.1.6 Installing EDB Postgres Extended Server on Ubuntu 24.04 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.1.7 Installing EDB Postgres Extended Server on Ubuntu 22.04 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.1.8 Installing EDB Postgres Extended Server on Debian 12 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.2 Installing EDB Postgres Extended Server on Linux AArch64 (ARM64)
	Red Hat Enterprise Linux (RHEL) and derivatives
	Debian and derivatives

	4.2.1 Installing EDB Postgres Extended Server on RHEL 9 or OL 9 arm64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.2.2 Installing EDB Postgres Extended Server on Debian 12 arm64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.3 Installing EDB Postgres Extended Server on Linux IBM Power (ppc64le)
	Red Hat Enterprise Linux (RHEL)
	SUSE Linux Enterprise (SLES)

	4.3.1 Installing EDB Postgres Extended Server on RHEL 9 ppc64le
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.3.2 Installing EDB Postgres Extended Server on RHEL 8 ppc64le
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.3.3 Installing EDB Postgres Extended Server on SLES 15 ppc64le
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	4.4 Default component locations
	RHEL/OL/Rocky Linux/AlmaLinux/CentOS/SLES Locations
	Debian/Ubuntu Locations

	5 Database configuration
	5.1 Setting configuration parameters
	Types of parameter values
	Specifying configuration parameter settings
	Modifying the postgresql.conf file
	Modifying the pg_hba.conf file

	6 Transparent data encryption
	7 Managing password profiles
	7.1 Profile management key concepts
	7.2 Creating a password profile
	Synopsis
	Description
	Parameters
	Caveats
	See also

	7.3 Modifying a profile
	Altering a password profile
	Synopsis
	Description
	Parameters

	Renaming a password profile
	Synopsis
	Description
	Parameters

	See also

	7.4 Dropping a password profile
	Synopsis
	Description
	Parameters
	See also

	7.5 Roles and profiles
	Attach role and profile
	Detach role and profile
	Role account status
	Lock/unlock a role account
	Set a role password to expire
	See also

	7.6 Password profiles system catalogs
	pg_catalog.pg_profile
	pg_catalog.pg_auth_profile
	pg_catalog.pg_profile_info
	pg_catalog.pg_role_profile_info

	7.7 Working example of a password profile
	8 Redacting data
	8.1 Data redaction key concepts
	8.2 Creating a data redaction policy
	Synopsis
	Description
	Parameters
	Caveats
	See also

	8.3 Enable/Disable data redaction policy
	Synopsis
	Description
	Parameters
	See also

	8.4 Removing a data redaction policy
	Synopsis
	Description
	Parameters
	See also

	8.5 Data redaction system catalogs
	pg_redaction_policy
	pg_redaction_column
	redaction_policy_status

	8.6 Working example of a data redaction policy
	9 Replication
	Asynchronous processing

	10 Postgres extensions supported in EDB Postgres Extended Server
	11 Upgrading EDB Postgres Extended Server
	11.1 Major version upgrade of EDB Postgres Extended Server
	Overview
	Worked example
	Preparing your upgrade
	Installing the target EDB Postgres Extended Server version
	Creating a target server
	Upgrading to the target server
	Cleaning up after upgrade

	More information

	11.2 Minor EDB Postgres Extended Server upgrade
	11.2.1 Minor EDB Postgres Extended Server upgrade of Debian packages
	Overview
	Worked example

	11.2.2 Minor EDB Postgres Extended Server upgrade of RPM packages
	Overview
	Worked example

	12 Configuration parameters (GUCs)
	Backend parameters
	pg2q.probe_point
	pg2q.probe_counter
	pg2q.probe_sleep
	pg2q.probe_action
	pg2q.probe_backend_pid

	server_2q_version_num and server_2q_version
	Table-level compression control option
	pg2q.max_tuple_field_size
	pg2q.max_tuple_size

	13 SQL enhancements
	Rollback options
	Cursors with prepared statements
	PL/pgSQL compatibility

	13.1 transaction_rollback_scope parameter
	Setting the parameter
	Set the parameter as a user-level property
	Set the parameter as a connection option
	Set the mode for specific functions or procedures

	How subtransactions are handled

	13.2 JDBC properties for setting rollback scope
	autosave
	transaction_rollback_scope
	autosave test cases

	14 Operations
	Avoid flooding transaction logs
	Additional tracing and diagnostics options
	Selective physical base backup and subsequent selective recovery/restore
	Additional operations feature

